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Abstract 

 
Current Basel minimum capital requirements for credit risk under the Advanced Internal Rating 

Based Method (AIRB) use both probability of default (PD) and loss given default (LGD) as input 

parameters into a supervisory formula (Supervisory Formula). However, the Supervisory Formula 

stresses the PD and LGD parameters differently. 

 

For PD, the AIRB Supervisory Formula takes the PD parameter as input and transforms it into a 

stressed PD. On the other hand, for LGD, the Supervisory Formula directly takes the stressed 

LGD as an exogenous input that should reflect the economic downturn conditions. Under the 

AIRB Supervisory Formula, the stressed LGD and stressed PD are not necessarily tied to 

each other. 

 

This disconnection in the stressing of PD and LGD undermines the theoretical consistency of the 

AIRB framework and leaves room for potential manipulation. Basel Committee recognizes this 

issue, and thus encourages “the development of appropriate approaches to this 

issue.”(http://www.bis.org/publ/bcbs128.pdf) 

 

This paper proposes a closed-form solution that mathematically ties the stressing of LGD and PD 

together, and therefore expands the current AIRB framework and establishes a simple 

methodology to estimate and stress test LGD. 

 

 

Disclaimer 

 

This paper was prepared by Hank Zhi Yang in his personal capacity. The views 

expressed in this paper are the author's own and do not necessarily reflect the view 

of the Office of Superintendent of Financial Institutions Canada or Government of 

Canada. 

http://www.bis.org/publ/bcbs128.pdf
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Section 1 Background and rationale  

 

 

1.1 How PD is stressed in the Current AIRB Supervisory Formula 

 

The financial and economic crisis that started in mid-2007 placed the capital base of many 

financial institutions (FIs) under severe stress, despite the fact that they had been in the process of 

implementing the Basel AIRB minimum capital requirements framework. This prompted both 

national financial regulators and the Basel Committee to consider how to strengthen the current 

capital requirement rules to make the banking sector more adequately capitalized.  

 

In this paper, we focus on the enhancement of the Basel minimum capital requirement for credit 

risk under the AIRB framework. The AIRB capital requirement prescribes a supervisory formula 

(Supervisory Formula) that calculates the credit risk capital requirement (K) as a function of the 

long-run PD, confidence level (CL) to which the single general systematic risk factor is stressed, 

an average correlation factor among obligors (ρ) and an LGD input parameter that is calibrated 

outside of the AIRB Supervisory Formula. This LGD input parameter should reflect the downturn 

LGD in stressed conditions.  

 

Equation 1 summarizes the AIRB Supervisory Formula. We ignore the maturity adjustment for 

the purpose of this paper. 
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11 CLPD is a closed-form formula based on the asymptotic single 

risk factor (ASRF) model (see Gordy). Under the Basel AIRB framework, FIs estimate average 

long-run PD that reflects expected default rates of their credit portfolios over the long term. This 

long-run PD is plugged into Equation 1, which transforms the long-run PD into a stressed PD 

(SPD) that corresponds to a given confidence level of the stress (CL) applied to the single general 

systematic risk factor. Usually CL is set at 99.9%. All else being equal, the CL in Equations 1 is 

the key driver that drives how much the long-run PD will be stressed. 

 

 

1.2 How LGD is stressed in the Current AIRB Supervisory Formula 

 

Unlike the stressing of PD, the current AIRB Supervisory Formula does not include a kernel 

component that transforms a long-run average LGD into a stressed LGD. Instead, the LGD 

parameter in Equation 1 above should already be a stressed LGD (SLGD) as an exogenous input 

that “must take into account the potential for the LGD of the facility to be higher than the default-

weighted average during a period when credit losses are substantially higher than average” 

(http://www.bis.org/publ/bcbs128.pdf).  Therefore, under the current AIRB framework, the 

stressing of LGD is not mathematically tied to the stressing of PD in the Supervisory Formula. 

 

However, it has been observed by many studies that default rate and LGD in reality do have 

positive correlation (that is, negative correlation between default rate and recovery rate). The 

chart below shows the relationship between the Moody’s speculative grade corporate annual 

default rates and the average senior unsecured debt LGDs (which is equal to 1 - recovery rate) 

http://www.federalreserve.gov/pubs/feds/2002/200255/200255pap.pdf
http://www.bis.org/publ/bcbs128.pdf
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from 1982 to 2011: (Moody’s (2012) Annual Default Study: Corporate Default and 

Recovery Rates, 1920-2011)  
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1.3 Implication of the disconnection between stressing PD and LGD 

 

The disconnection between stressing PD and LGD in the current AIRB Supervisory Formula may 

undermine the theoretical consistency of the Basel AIRB capital framework as it standardizes the 

calculation of the stressed PD but leaves the stressed LGD to be determined by the FIs. As a 

result, the SLGDs calculated by the FIs may not be tied to the SPDs that are calculated by the 

AIRB Supervisory Formula. 

 

Moreover, the disconnection leaves room for potential manipulation and capital arbitrage by FIs 

that are required to implement Basel AIRB capital framework. For portfolios of similar credit 

quality, FIs may use different methodology in calibrating their SLGD. For example, FIs may 

choose different downturn periods for calibrating SLGD, or they may incorporate different levels 

of margin of conservatism in the estimation of SLGD.  

 

Basel Committee recognizes this issue of disconnection and continues to monitor and encourage 

the development of appropriate approaches to quantifying downturn LGDs. 

 

We will propose in the following sections a closed-form solution that links the stressing of LGD 

with the stressing of PD in the AIRB Supervisory Formula. The proposed model expands the 

AIRB Supervisory Formula, enhances the consistency between stressing PD and LGD, and 

provides a simple-to-use methodology to stress-test LGD given different confidence levels. 

 

 

Section 2 Put LGD, SLGD, PD and SPD into Perspective 

 

Assuming that a firm’s asset value follows lognormal distribution, the asset value as of the 

estimation time is V0, the debt level is D (which we assume constant over the estimation horizon, 

normally one year) and the annual asset return volatility (which is the standard deviation of the 

natural logarithm of the asset values) is σ, we have the following relationship according to the 

Merton Model (On the pricing of corporate debt: The risk structure of interest rates): 

https://www.moodys.com/login.aspx?lang=en&cy=global&ReturnUrl=http%3a%2f%2fwww.moodys.com%2fviewresearchdoc.aspx%3fdocid%3dPBC_140015%26lang%3den%26cy%3dglobal
https://www.moodys.com/login.aspx?lang=en&cy=global&ReturnUrl=http%3a%2f%2fwww.moodys.com%2fviewresearchdoc.aspx%3fdocid%3dPBC_140015%26lang%3den%26cy%3dglobal
http://www.ucema.edu.ar/u/mtd98/Teoria_de_los_Contratos_Financieros/Merton_Corporate_Debt.pdf
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When the PD is stressed into SPD via the stressing of a single systemic risk factor as per Equation 

1, Equation 2 should continue to hold except that PD is now replaced by SPD and r is replaced by 

rs referring to the expected asset return under the stressed economic condition, if we assume that 

asset volatility σ stays the same. Then we have the equation below: 
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Comparing Equations 2 and 3, we can see that the expected asset return under the stressed 

economic condition (rs) must be smaller than the expected asset return under the normal 

economic condition (r) in order to satisfy the condition that PDSPD  as all other parameters are not 

changed.  In other words, the expected asset value at the end of one year under the stressed 

economic condition (Vs) must be smaller than the expected asset value under the normal 

economic condition (V) as illustrated in the graph below: 

V

Debt 

Level
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Asset Value Distribution

Normal Economic Condition
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Level
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Note that the graph is for illustrative purpose only 

 

The blue curve and red curve represent the asset value distributions of the same firm under the 

normal and stressed economic conditions respectively. The area to the left of the green bar under 

the blue curve represents the PD of the firm under the normal economic condition while the area 
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to the left of the green bar under the red curve represents the SPD of the firm under the stressed 

economic condition.  

 

Instead of looking at LGD directly, we focus on the recovery rate which is measured by the ratio 

of the expected asset value given default over the debt. Let Vd be the expected asset value given 

default and D is the debt value. We use v to represent the stochastic variable that represents the 

asset values at the year-end. Note that v is assumed to be log-normally distributed. Then Vd is the 

expected value of v conditional upon Dv  . Using the property of lognormal distribution we can 

find the conditional expected value Vd as follows: 
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The mean recovery rate (“R”) is then
D

Vd .  

 

Since we assume V is log-normally distributed, we know that Ln(v) must be normally distributed 

as shown in the graph below where µ and µs are the mean of Ln(v) under the blue and red curves 

respectively. 
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Since µ is the mean of Ln(v) from Equations 2 and 3 we can derive: 
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Section 3 The closed-form solution for SLGD  

 

In this section we will derive SLGD as a function of PD, LGD, σ and CL that will tie to the 

stressing of PD via the same single systemic risk factor. 

 

Since v is log-normally distributed, we derive the following result from Equation 4 (see Appendix 

A for detailed derivation): 

 

condition economic normal under the raterecovery  expected
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Substituting Equation 5 into the equation above, we have the following: 
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By the same token, we can derive the expected recovery rate in the stressed time: 
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Dividing Equation 8 by Equation 7, we have the following: 
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Substituting Equation 5 into the equation above, we derive the following: 
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Equation 9 is a closed-form solution that ties the stressing of the expected recovery rate 

(and hence the LGD) to the stressing of PD through the stressing of the same single systemic 

risk factor (CL). We name Equation 9 Recovery Mapping Function (RMF). 

 

Note that the RMF can also be expressed in terms of LGD:  
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Section 4 A potential simplified form of RMF   

 

The RMF shown in Section 4 implies that the stressing of the recovery rate or LGD depends on 

two multiplier components: 
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Now let’s try to make further sense out of these two multiplier components. 

 

We have assumed that the expected asset return is r as shown below: 
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We then assume rd is the expected asset return given default and rnd is the expected asset return 

given non-default and ε is the spread between rnd and rd. We have the following equations: 
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Similarly we would have the following relationship for the expected asset return under the 

stressed economic condition: 
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Comparing rs and r, we will have the following relationship: 
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We know
dre

sdr
e

R

sR
 . Substituting Equation 5 and Equation 12 into Equation 10, we have the RMF 

(Equation 9) previously derived in Section 3. 
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Equation 10 shows that how much the recovery rate will deteriorate under the stressed economic 

condition depend on two components: 

 

(1) How much will the (overall) expected asset return deteriorate  

(2) How will the product of the expected asset return spreads between default and survival modes 

and the survival probabilities change 

 

This intuitively makes sense if we re-arrange the relationship into the following: 
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Here we can more clearly see that the deterioration in the (overall) expected asset return is 

determined by the deterioration in the expected asset return given default and the deterioration in 

the spreads in the asset returns between survival and default modes weighted by the survival 

probability.  

 

It can be proven that (see Appendix B for proof): 
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Also Equation 12 will always be larger than 1 if PDSPD  and σ > 0 (see Appendix C for proof). 
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And hence: )1()1( PDSPDs   , when PDSPD  and σ > 0 

 

This means that the deterioration in the overall expected asset return (r) cannot be fully allocated 

to the deterioration in the expected asset return given default (rd). The deterioration in the survival 

probability-weighted spread )1( PD between expected return given survival and expected return 

given default also contributes to the reduction of overall expected return r. In other words, the 

difference between rsd and rd should be smaller than the difference between rs and r. The RMF 

function we derived in Section 3 fully reflects this effect via the two multiplier components-
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However, if sometimes we want to have a more conservative stressing of recovery rate, we may 

assume that all the deterioration in the (overall) expected asset return from r to rs is attributable to 

the deterioration in the expected asses return given default (from rd to rsd). We do this by setting 
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This way we obtained a simplified form of the RMF. 
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We name Equation 13 Simplified Recovery Mapping Function (SRMF). 

 

All else being equal, the SRMF produces more conservative stressed recovery rates than the RMF 

in Section 3 by allocating the deterioration in overall expected asset return entirely to the 

expected return given default.  
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Section 5 Calibration of asset return volatility σ 

 

 

The key parameter to calibrate in RMF and SRMF is the asset return volatility σ since other 

parameters such as long-run PD and long-run default weighted average LGD can be readily 

determined using FIs’ internal data or external information.  

 

There could be several approaches to calibrate σ.  One approach could be to find the implied σ 

that fits RMF and SRMF the best into the historical long-run average PD, the long-run default 

weighted average LGD, the downturn PD and the downturn LGD. In this paper, we demonstrate 

another approach by fitting the RMF and SRMF into the historical default rate and LGD time 

series and finding the implied σ that minimizes the fitting errors. The historical time series we 

used are Moody’s speculative grade corporate annual default rates and the average senior 

unsecured debt recovery rates from 1982 to 2011 as shown in Section 1.2.  

 

We calibrated σ to be 75% for RMF and 43% for SRMF (note that σ is the standard deviation of 

the Ln(v) and LGD = 1 – Recovery Rate).  

 

The graphs below show the fitting of the model-fitted LGDs under RMF and SRMF with the 

actual historical LGDs and default rates published by Moody’s.  
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The difference in the calibrated volatility parameter σ reflects the fact that SRMF assumes that 

the change in the expected asset value given default (hence recovery rate) equals to the change in 

the (overall) expected asset return. As a result, the implied asset return volatility σ under SRMF is 

much smaller than under RMF given the same set of calibration data.  

 

 

 

Section 5 Application of the Recovery Mapping Functions 

 

 

The Recovery Mapping Functions (RMF and SRMF) can be used in several ways to enhance 

financial risk management. 

 

 

5.1 Using RMFs to stress test LGD under different systemic stress level 

 

FIs can use the RMFs to stress-test LGD by changing the CL – the confidence level to which the 

general systemic risk factor is stressed. This CL will drive the stressing of both PD and LGD. 

 

Assuming the long-run average PD and long-run default-weighted average LGD are 4.63% and 

59.08%. Using the RMFs we can stress test LGD by changing the confidence level CL. The 

SLGD will change accordingly as shown in the tables below. 

 

Stress testing LGD using RMF (σ=75%) 

PD LGD rho CL SPD SLGD
4.63% 59.08% 0.20      95.0% 14.50% 61.54%

4.63% 59.08% 0.20      99.0% 23.66% 63.20%

4.63% 59.08% 0.20      99.9% 36.87% 65.39%

4.63% 59.08% 0.20      99.99% 49.17% 67.47%  



12 

 

Stress testing LGD using SRMF (σ=43%) 

PD LGD rho CL SPD SLGD
4.63% 59.08% 0.20      95.00% 14.50% 68.71%

4.63% 59.08% 0.20      99.00% 23.66% 72.97%

4.63% 59.08% 0.20      99.90% 36.87% 77.06%

4.63% 59.08% 0.20      99.99% 49.17% 79.97%  
 

The chart below compares the long-run average LGD, the stressed LGD under RMF and the 

stressed LGD under SRMF by different confidence levels 
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If we increase the asset return volatilities, we will see higher stressing of LGD given the 

same confidence levels. 

 
Stress testing LGD using RMF (σ=218%) 

PD LGD rho CL SPD SLGD
4.63% 59.08% 0.20      95.0% 14.50% 79.72%

4.63% 59.08% 0.20      99.0% 23.66% 81.51%

4.63% 59.08% 0.20      99.9% 36.87% 83.69%

4.63% 59.08% 0.20      99.99% 49.17% 85.63%  
 
Stress testing LGD using SRMF (σ=154%) 

PD LGD rho CL SPD SLGD
4.63% 59.08% 0.20      95.00% 14.50% 84.34%

4.63% 59.08% 0.20      99.00% 23.66% 90.73%

4.63% 59.08% 0.20      99.90% 36.87% 94.85%

4.63% 59.08% 0.20      99.99% 49.17% 96.83%  
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The chart below compares the long-run average LGD, the stressed LGD under RMF and the 

stressed LGD under SRMF by different confidence levels 
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5.2 Incorporating the stressed LGD into Basel AIRB capital Supervisory Formula 

 

Substituting RMF or SRMF into Equation 1, we obtain the following expanded AIRB capital 

Supervisory Formula combining the stressing of PD and LGD into one consistent model:  

 

 PDSPFDSLGDKquirementCapital )(Re                          (14)  

 

Where: 

   
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If RMF is used, then
)])([

)])([
)1(1

1

1
)()( 11













 

PD

SPD

SPD

PD
eLGDSLGD SPDPD  

If SRMF is used, then )()( 11

)1(1 SPDPDeLGDSLGD
    

 

Moody’s (2012) Annual Default Study: Corporate Default and Recovery Rates, 1920-2011 shows 

the following Average Sr. Unsecured Bond Recovery Rates by Year Prior to Default (1982-2011) 

and by credit rating. 

 

Year 1 Year 2 Year 3 Year 4 Year 5

Aaa n.a. 3.33%** 3.33%** 61.88% 75.58%

Aa 37.24% 39.02% 38.08% 43.95% 42.27%

A 31.77% 42.68% 44.28% 42.72% 42.29%

Baa 41.39% 42.25% 42.41% 42.96% 42.90%

Ba 47.11% 45.53% 44.39% 43.35% 42.89%

B 37.88% 36.85% 36.83% 37.16% 37.76%

Caa-C 35.72% 35.55% 35.29% 35.34% 35.31%  
 
To illustrate the application of RMF and SRMF, we focus on the recovery rates by Year 1. 

 

https://www.moodys.com/login.aspx?lang=en&cy=global&ReturnUrl=http%3a%2f%2fwww.moodys.com%2fviewresearchdoc.aspx%3fdocid%3dPBC_140015%26lang%3den%26cy%3dglobal
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We apply Equation 14 by substituting RMF (σ=75%) for SLGD to calculate the SPD, SLGD and 

K as follows: 

 

Rating PD R SPD LGD rho CL SLGD K
Aaa 0.01% 40.00% 0.45% 60.00% 0.20   99.9% 61.85% 0.27%
Aa 0.02% 37.24% 0.89% 62.76% 0.20   99.9% 64.69% 0.56%
A 0.07% 31.77% 2.11% 68.23% 0.20   99.9% 70.18% 1.43%

Baa 0.20% 41.39% 4.74% 58.61% 0.20   99.9% 61.67% 2.80%
Ba 1.15% 47.11% 15.94% 52.89% 0.20   99.9% 57.89% 8.56%
B 4.21% 37.88% 34.98% 62.12% 0.20   99.9% 67.80% 20.86%

Caa 14.36% 35.72% 63.89% 64.28% 0.20   99.9% 72.44% 35.88%  
Note: For “Aaa” rating, we assume its PD = 0.01% and LGD = 40% 

 

Similarly, we apply Equation 14 by substituting SRMF (σ=43%) for SLGD to calculate the SPD, 

SLGD and K as follows: 

 

Rating PD R SPD LGD rho CL SLGD K
Aaa 0.01% 40.00% 0.45% 60.00% 0.20   99.9% 75.14% 0.33%
Aa 0.02% 37.24% 0.89% 62.76% 0.20   99.9% 77.11% 0.67%
A 0.07% 31.77% 2.11% 68.23% 0.20   99.9% 80.77% 1.65%

Baa 0.20% 41.39% 4.74% 58.61% 0.20   99.9% 75.35% 3.42%
Ba 1.15% 47.11% 15.94% 52.89% 0.20   99.9% 72.79% 10.76%
B 4.21% 37.88% 34.98% 62.12% 0.20   99.9% 78.72% 24.23%

Caa 14.36% 35.72% 63.89% 64.28% 0.20   99.9% 80.60% 39.91%  
Note: For “Aaa” rating, we assume its PD = 0.01% and LGD = 40% 

 

The following chart compares the Moody’s-published LGD, stressed LGD under RMF and stressed LGD 

under SRMF by credit ratings.  
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5.3 Estimating the expected LGD from observed default rates  

 

In practice, LGD can only be accurately calculated after the end of the recovery period which is 

usually two to three years after the default. So an FI often runs into situations where the FI 

observed a certain default rate for a given year but the average LGD for these facilities that 

defaulted within this given year will still not be known yet until a couple of years later.  

 

What shall the FI do if they would like to have a quick estimation of the average LGD for these 

defaulted accounts?  

 

RMF can help the FI calculate an expected LGD for a specific year using the observed default 

rate observed in that year.   

 

Assuming the FI observed default rates in 2012 and 2013 as 3% and 1.5% respectively. However, 

since the work-out period for the defaulted accounts are two years. So the FI needs to estimate the 

expected LGD for 2012 and 2013 without knowing the actual realized LGD for these two years. 

Using RMF the FI can calculate the estimated LGDs for 2012 and 2013 (in green) as 65.53% and 

57.12%. If SRMF is used, the estimated LGDs for 2012 and 2013 are 63.11% and 58.18% 

respectively.  

 

Using RMF to estimate LGD in 2012 and 2013 
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Using SRMF to estimate LGD in 2012 and 2013 
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Section 6 Conclusion 

 

In this paper, we discussed the inherent disconnection and inconsistency in the current Basel 

AIRB Supervisory Formula for credit risk and proposed two closed-form solutions (RMF and its 

simplified form SRMF) that tie the stressing of both PD and LGD with the stressing of the single 

general systemic risk factor implied by the current AIRB Supervisory Formula. The proposed 

solutions expand the current AIRB capital framework, enhance its inherent consistency and 

provide an easy-to-use methodology to estimate and stress-test the LGD. 
 

Recovery Mapping Function (RMF) 
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Simplified Recovery Mapping Function (SRMF) 
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Appendix A - Derivation of Equation 6 

 

By definition of expected asset value given default, we have Equation 4 as follows: 
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Where Ф is the standard normal distribution function 

Since expected recovery rate R = Vd / D, we can then derive the following Equation 6: 
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Appendix B – Proof of Equation 12  

 

 

Assuming α is the expected asset value return conditional upon default and β is the expected asset 

value return conditional upon non-default, we have the following: 
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Let ε = β - α, we have: 
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When α and β are small, we can approximate: 
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When ε is small, we can approximate: 
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Similarly, we have: 
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Dividing (B1) by (B2), we can prove Equation 12 
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Appendix C – Proof of Equation 12 must be > 1 
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2) If σ  > 0, we take the first derivative of G(σ) as: 
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We take the first derivative of F(σ): 
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Since 0)]()( 11   SPDPD , we must have 0)(' F . This means that F(σ) must be a monotonically 

decreasing function of σ.  

When  , we have 0)( 02
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Given that  we have 0)( F , and F(σ) is a monotonically decreasing function of σ, we 

conclude that 0)( F  for 0 . 

Hence we have 0)(
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. This means that G(σ) must be a monotonically 

increasing function of σ. Given that 0)( G when 0 , we conclude that G(σ) must be >0 where 

0 . 
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