
Investment Decisions

and Falling Cost of Data Analytics∗

Jussi Keppo†, Hong Ming Tan‡, Chao Zhou§

March 24, 2018

Abstract

This paper studies investment decisions and their data analytics. We show that financially

constrained or highly risk-averse investors use less data analytics. We also show that the demand

of data analytics is highest for investment opportunities with high expected returns and the

demand is either high or zero for opportunities with low expected returns. Furthermore, the

falling cost of data analytics raises investors’ leverage, which leads to higher losses during the

crises.
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1 Introduction

Information reduces uncertainty and enables better decisions. Therefore, companies and individuals

are willing to pay for data and its analyses (we call this as data analytics). For instance, companies

invest in information systems and build analytics teams, they pay market research firms to establish

the likelihood that a new product is well-received in the market, and they pay recruitment agencies

to find and collect information on prospective employees. New technologies, digitalization of data,

and data analytics methods have decreased the cost of information substantially during the last few

decades (see e.g. Goldfarb and Tucker 2017). Figure 1 below illustrates this trend (storing data is

one part of data analytics, and it has become substantially cheaper). In this paper, we study how

the cost of data analytics affects firms and individuals’ investment decisions, and which type of

investors and investment opportunities benefit the most from the declining cost of data analytics.
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Figure 1: Cost of data storage. Y-axis is US$ per megabyte in a log scale. Data is from
McCallum (2017).

We develop a model where a risk averse decision maker faces a joint decision of the level of data

analytics and investment amount. More specifically, we model data acquisition, collection, and

analytics with Bayesian learning. The decision maker has a CARA (or exponential) utility function

and she has an option to buy data and analyze that before her investment decision. Information

is costly due to the price of datasets and efforts in collecting and processing the data. The more

the investor buys and analyzes data, the more signals she receives on the payoff of the investment

opportunity. After the data analytics, the decision maker decides how much to invest and, if needed,
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she uses leverage in the investment.

We derive several key results. First, the more data analytics the decision maker acquires, the

more she invests on average. This is because the analytics lowers the riskiness of the investment

and, thus, unconditionally on the analytics outcome, it makes the investment opportunity more

attractive. This indicates that data analytics is a risk management device. Second, the lower the

cost of data analytics, naturally the more the decision maker acquires analytics, which decreases

the riskiness of the investment opportunity and this way raises the investment amount and leverage.

We show that the higher leverage, driven by the falling cost of data analytics, leads to higher losses

during the crises. On the other hand, if the decision maker cannot take leverage then obviously

she invests less, but also uses less data analytics. That is, financially constrained firms have less

incentive to learn before their investments. Third, the lower the risk aversion of the decision maker,

the more she acquires data analytics. This is because a decision maker with low risk aversion invests

more in the risky investment opportunity and, therefore, she has a higher incentive to collect new

information on the opportunity. Fourth, the demand of data analytics is highest with high expected

return opportunities, which is surprising since the value of data analytics is highest for mediocre

investment opportunities. With the high expected return opportunities the decision maker uses a

high level of leverage and, therefore, she decides to thoroughly analyze the investment opportunity.

Fifth, with low expected return opportunities the decision maker acquires either a lot of data

analytics or not at all, so in this case there is lumpiness in the demand of data analytics.

Our model applies to, e.g., companies’ real asset investments, private equity and venture capital

firms’ investment decisions, and mutual funds’ portfolio decisions on publicly traded assets with a

rare event risk that cannot be learned from the market for free. In these examples, the decision

makers may acquire data analytics on the investment opportunities, and then invest according to

their forecasts on the investment payoffs and the precisions of the forecasts.

We utilize the value of information model in Keppo et al. (2008), which is related to Radner and

Stiglitz (1984), Moscarini and Smith (2001), Chade and Schlee (2002), Moscarini and Smith (2002),

and Xie et al. (2016). In contrast to these papers, we also optimize the investment level, which is not

a binary decision. In Kihlstrom (1974), a consumer faces a linear price for precision of a Gaussian

signal given a Gaussian prior. For a hyperbolic utility function, he can write utility as a function of

signals and avoid computing the density of posteriors. Our theory is not driven by such linearity,
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and we consider an investment decision with borrowing and lending. Our work is also related to

Grossman and Stiglitz (1980), where traders maximize CARA utility and may buy information on

the payoff of a stock, which is traded in a competitive market. The traders’ private information

is only partially observed from the equilibrium price as the equilibrium contains some uninformed

traders. Verrecchia (1982) extends that model to include diverse information acquisition and derives

an equilibrium in such a market. By utilizing Grossman and Stiglitz (1980) and Verrecchia (1982),

Peress (2004) shows that as long as absolute risk aversion falls in wealth, there are rising returns to

acquiring private information despite being revealed by public signals. Dugast and Foucault (2017)

show that data abundance raises asset price informativeness in the short run but not necessarily in

the long run, because profits from trading on more precise signals fall. Our paper is also related to

studies that consider portfolio optimization when the expected returns of risky assets are unknown,

but can be learned from the realized returns of the assets (e.g. Lakner 1998, Karatzas and Zhao

2001, Guéant and Pu 2017), as well as learning models, for instance, in experimental design (e.g.

Chick et al. 2017), healthcare (e.g. Chick et al. 2016, Negoescu et al. 2017), and dynamic pricing

(e.g. Afèche and Ata 2013, Yu et al. 2015, Cheung et al. 2017). In contrast to these studies, in the

present paper we optimize the quantity of information and investment amount with borrowing and

lending, and focus on the falling cost of information.

The rest of the paper is organized as follows: Section 2 introduces the decision problem and the

quantity of data analytics. Section 3 derives the value of data analytics and Section 4 solves the

optimal quantity of data analytics. Section 5 analyzes the optimal investment. Section 6 introduces

a financial constrained DM, and finally, Section 7 concludes. Appendixes A and B extend the model

to consider a nonlinear cost of data analytics and multiple investment opportunities, and show that

our results are robust with respect to these extensions.

2 Model

We assume a two period model, and that the decision maker (DM) has a CARA utility function

u(κ) = − exp(−γκ), where γ > 0 is the risk aversion parameter. Hence, u′(κ) = γ exp(−γκ) > 0,

u′′(κ) = −γ2 exp(−γκ) < 0, and the absolute values of these derivatives fall in κ. The DM has

initial wealth κ and decides the quantity of data analytics (t), the level of risky investment (w ≥ 0),
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and lending or borrowing amount. Quantity t of data analytics costs ct, so c is the marginal cost.

Each unit of the risky investment has an initial sunk cost of $1 and a payoff θ which is unknown to

the DM. When κ − w − ct < 0, the DM uses leverage. The borrowing and lending rates are both

equal to r > 0. Hence, borrowing $1 gives a payoff of $ − er in the next period. We assume that

both risky invesment and debt payoffs are discounted present values (r and θ can be calibrated to

give the present value payoffs). Therefore, the DM’s utility from the profit and loss in the next

period is − exp (−γ [w(θ − 1) + (κ− w − ct)(er − 1)]).

Let (Ω,F ,P) be a probability space, where Ω is a set, F a σ-algebra of subsets of Ω, and P a

probability measure on F . The investment payoff θ is constant but unknown, and this probability

space captures all the uncertainties related to the payoff θ. The quantity of data analytics t

corresponds to observing a noisy signal Zt on payoff θ from 0 to t (note that time is fixed, t is

quantity). The noisy signal follows dZt = θdt + dBt, where Bt is a standard Wiener process.1 Ft

is the information level from observing the noisy signal Zt up to quantity t. Thus, the DM can

learn about the payoff θ by obtaining quantity t ≥ 0 of data analytics at a marginal cost c > 0,

i.e., t quantity of data analytics costs ct. Therefore, quantity t lowers the DM’s initial wealth from

κ to κ − ct, and the leverage becomes max{w − κ + ct, 0}. Under quantity t, the expected payoff

θ̂t = E[θ|Ft] and variance st = E[(θ − θ̂t)2|Ft], where θ̂t and st are given by Kalman-Bucy filter

(see Øksendal 2003). If the DM acquires analytics quantity t ≥ 0 then the payoff can be written

as follows (the proof is in Appendix C.1).

Lemma 1 (Unconditional and conditional payoffs)

Let the DM obtain analytics quantity t ≥ 0. Unconditionally on the signal outcome, i.e., with

respect to information F0, we have

θ = θ̂0 +

√
s2

0t

1 + s0t
εt +
√
stε,

and conditional on the signal outcome, i.e., with respect to information Ft, we have

θ = θ̂t +
√
stε,

1If we used discrete time signals to model the quantity of information then the quantity would naturally be an
integer (number of signals) and the optimization of the quantity would be more complicated.
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where θ̂0 and s0 are the DM’s prior mean and variance, posterior variance st = s0
1+ts0

, εt is Ft-

measurable standard normal random variable, ε is a standard normal variable with respect to infor-

mations F0 and Ft, εt and ε are independent with respect to information F0.

By Lemma 1, initially the payoff θ follows a normal distribution with mean θ̂0 and variance

s0. With analytics quantity t > 0, variance st < s0, i.e., analytics decreases the uncertainty of

the payoff. This means that the data analytics is a risk management device. After the DM learns

the uncertainty term εt through observing the signal Zt (from 0 to t), the DM has belief θ̂t on

the payoff, but the uncertainty term ε still remains. The effect of ε falls as the DM learns more

(t → ∞) since st vanishes at infinity. That is, the DM learns the true payoff with no uncertainty

at infinite quantity of analytics.

In the first period, information is first bought and analyzed, and then the investment amount

and its funding (own money and leverage) are decided. In the second period, the investment payoff

is realized and the loans (if any) are paid back. With respect to the first period’s information, the

payoff is a normally distributed random variable. Thus, decisions (in the first period) are quantity

of data analytics (variable t), which gives information on the investment payoff, and the investment

level (variable w), which with the quantity t gives the leverage. We illustrate the structure of the

model in Figure 2.

Now we can write the DM’s optimization problem as follows

sup
t≥0

E

[
sup
w≥0

E [− exp (−γ [w(θ − 1) + (κ− ct− w)(er − 1)]) |Ft]
]
, (1)

where γ > 0, c > 0, and r > 0. Thus, the DM maximizes her expected utility from profit and

loss by acquiring analytics and making the investment decision conditional on the results of the

analytics.

3 Value of data analytics

Data analytics has value if it raises the DM’s expected utility. So, the value of data analytics is the

difference between the expected utilities with a positive quantity of data analytics and with zero

quantity of data analytics, and if this difference is positive then the data analytics brings value to

the DM. Note that presumably the value of data analytics is positive since it lowers the uncertainty
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Figure 2: Model structure. In period 1, the DM performs two steps. First, the DM optimizes
the quantity of data analytics t∗. This corresponds to observing the noisy signal Zt from 0 to
t∗. Second, the DM chooses the investment amount w∗(t∗) based on the realized signal from 0 to
t∗. In period 2, the investment profit and loss is realized, which gives utility u(profit and loss) =
u (w∗(t∗)[θ − 1] + [κ− ct∗ − w∗(t∗)][er − 1]), see (1).

of the payoff and the DM is risk averse. Thus, if the cost of data analytics is not too high, the DM

uses analytics as a risk management device.

3.1 Optimal investment

Recall that we consider a two-period model, where the DM has CARA utility function in (1) with

the coefficient of absolute risk aversion γ and initial wealth κ. We first give the optimal investment

level of the DM for a given analytics quantity t in the following lemma.

Lemma 2 (Optimal investment)

Given analytics quantity t and CARA utility function with γ > 0, the optimal investment level of

the risky investment is given by

w∗(t) = max

{
θ̂t − er

γst
, 0

}
, (2)

where r is the borrowing and lending rate, θ̂t and st are the posterior expected payoff and variance.
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Proof. From (1) we get the maximization problem:

sup
w≥0

E [− exp(−γ[w(θ − 1) + (κ− ct− w)(er − 1)])|Ft]

= sup
w≥0
− exp

(
−γw(θ̂t − 1)− γ(κ− ct− w)(er − 1) +

γ2w2

2
st

)
,

where the expected utility is strictly concave in w. The first order condition gives

−γ(θ̂t − 1) + γ(er − 1) + γ2wst = 0

and, therefore, w = θ̂t−er
γst

. By the strict concavity of the objective function and the constraint on

w, we get (2).

By (2), the higher the expected payoff θ̂t, the more the DM invests in the risky opportunity.

Furthermore, the higher the uncertainty st, the less the DM invests. A more risk averse investor

invests less, as expected. When t rises, st decreases and, unconditionally on the signal outcome,

the DM invests more. So, the more the DM uses analytics on the risky opportunity, the lower the

risk and the more she invests on average.

Note also that, as e.g. in Merton (1969) and Grossman and Stiglitz (1980), due to the CARA

utility the optimal investment (2) is independent of wealth κ, which means that the DM’s leverage

level (max{w∗(t) + ct− κ, 0}) is given by κ. We address this issue in section 6, where we consider

the case of financial constraint. That is, in that section the leverage is bounded and we show that

some of our results are driven by leverage.

3.2 Value and marginal value of data analytics

Substituting the optimal investment into the utility function in (1) gives the expected utility for any

quantity t of data analytics. This is given in the following lemma and the proof is in Appendix C.2.

Lemma 3 (Expected utility)

Given the quantity of analytics t, the expected utility of the optimal investment before observing the
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outcome of the analytics is given by

u∗(t) =E [− exp (−γ [w∗(t)(θ − 1) + (κ− ct− w∗(t))(er − 1)])]

=− eγ(κ−ct)(1−er)Φ(d(t))−
Φ
(
−d(t)√
s0t+1

)
exp

(
− θ̂2

0+e2r−2θ̂0er+2γs0(κ−ct)(er−1)
2s0

)
√
s0t+ 1

,

where Φ(·) is cumulative standard normal distribution and d(t) :=
(
er − θ̂0

)√
s0t+1
s20t

. The expecta-

tion is with respect to F0, so unconditional on the signal outcome.

This result allows us to analyze how the DM’s expected utility changes with respect to t. The

expected utility is not only a function of the quantity t; it depends also on risk aversion γ, initial

wealth κ, borrowing and lending rate r, cost of data analytics c, prior mean θ̂0 and variance s0. For

simplicity, in Lemma 3 we write u(t), but we will analyze later how the model parameters affect the

expected utility, and then we might write, e.g., u(t; γ). Note that, by (1), we use the unconditional

expectation in Lemma 3 because that is needed in deciding the quantity of analytics.

Next we introduce the value of data analytics which is the difference of the unconditional

expected utilities with a positive quantity of data analytics and zero quantity of data analytics.

The following proposition gives the value of data analytics and the proof is in Appendix C.3.

Proposition 1 (Value of data analytics)

The value of data analytics v(t) := u∗(t)− u∗(0) is given by



−eγ(κ−ct)(1−er)Φ(d(t)) +
(

1− eγct(e
r−1)

√
s0t+1

Φ
(
θ̂0−er

s0
√
t

))
exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0κ(er−1)

2s0

)
if θ̂0 > er

eγκ(1−er)
(

1− eγct(e
r−1)

2

(
1 + 1√

s0t+1

))
if θ̂0 = er

eγκ(1−er)
(

1− eγct(e
r−1)Φ(d(t))

)
−

Φ

(
θ̂0−e

r

s0
√
t

)
exp

(
−
θ̂20+e2r−2θ̂0e

r+2γs0(κ−ct)(er−1)
2s0

)
√
s0t+1

if θ̂0 < er

So, Lemma 3 gives u∗(t) and u∗(0) which then give the result. We calculate the marginal value

of data analytics from Proposition 1. This helps us solve for the optimal quantity of data analytics.

Lemma 4 (Marginal value of data analytics)

When θ̂0 6= er, the marginal value of data analytics is given by

v′(t) =
eγ(e

r−1)(ct−κ)

2(s0t+ 1)3/2

[
− 2cγ (er − 1) (s0t+ 1)3/2Φ (d(t))

− 2cγ (er − 1) (s0t+ 1)e−
(er−θ̂0)

2

2s0 Φ

(
− d(t)√

s0t+ 1

)
+ s0e

− (er−θ̂0)
2

2s0 Φ

(
− d(t)√

s0t+ 1

)]
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for all t ≥ 0. When θ̂0 = er, the marginal value is given by

v′(t) =
eγ(er−1)(ct−κ)

2(s0t+ 1)3/2

[
− cγ (er − 1) (s0t+ 1)3/2 − cγ (er − 1) (s0t+ 1) +

s0

2

]

for all t ≥ 0.

Proof. ∂tv(t) = ∂t(u
∗(t) − u∗(0)) = ∂tu

∗(t). The results follows from Lemma 3 by taking the

derivative.

From Lemma 4 we get directly the following result.

Corollary 1 (Negative marginal value at zero)

limt↓0 v
′(t) is given by


1
2 exp

(
κγ(1− er)− (er−θ̂0)2

2s0

)
[s0 − 2cγ(er − 1)] < 0 if θ̂0 > er and s0 < 2cγ(er − 1)

1
4 exp (κγ(1− er)) [s0 − 4cγ(er − 1)] < 0 if θ̂0 = er and s0 < 4cγ(er − 1)

(1− er)cγ exp(κγ(1− er)) < 0 if θ̂0 < er

where r, c, and γ are strictly positive.

Note that, by Corollary 1, we have limt↓0,θ̂0↑er v
′ 6= limt↓0,θ̂0↓er v

′ 6= limt↓0,θ̂0=er v
′. Further, for

instance, the condition in the last line of Corollary 1 can be written as s0/(2γ) < c(er − 1), which

means that the marginal value at t = 0 is negative if lending out money equal to the cost of one

unit of data analytics is greater than s0/(2γ). Note that s0/(2γ) is high if uncertainty (s0) is high

and the DM has a low level of risk aversion (γ) and, therefore, she would prefer to invest in the

risky opportunity and data analytics, and this way decrease the investment uncertainty. However,

the condition s0/(2γ) < c(er − 1) says that it is better to lend the money out; hence, the marginal

value of data analytics is negative at t = 0.

Let us define choke-off cost cCH as the highest cost c such that the value of information is

positive. That is, if c < cCH then v(t) > 0 for some t > 0.

Lemma 5 (Choke-off cost)

Let v(t) = v(t; c). There exists choke-off cost cCH > 0 such that if c < cCH then v(t; c) > 0

for some t > 0. The choke-off cost cCH = s0
2γ(er−1) if θ̂0 > er, cCH = s0

4γ(er−1) if θ̂0 = er, and

cCH ∈ (0, s0
2γ(er−1)) if θ̂0 < er.
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Proof. We consider three cases:

(i) θ̂0 > er: By Corollary 1, v′(0; c) < 0 if c > s0
2γ(er−1) . Since v(t; c) is strictly concave in t and

v(0; c) = 0, v(t; c) < 0 for all t > 0 if c > s0
2γ(er−1) .

(ii) θ̂0 = er: This is proved similarly as (i).

(iii) θ̂0 < er: By Lemma 4, v′(t; c) < 0 for all t > 0 if c = s0
2γ(er−1) . Since v′(t; c) is continuous with

respect to c, there exists ε > 0 such that v′(t; c) < 0 for all c ∈
(

s0
2γ(er−1) − ε,

s0
2γ(er−1) + ε

)
and t > 0. Because v(0; c) = 0, the value of data analytics is negative for all t > 0, and

c = s0
2γ(er−1) cannot be cCH . Since v′(t; 0) > 0, the Intermediate Value Theorem gives that

cCH ∈ (0, s0
2γ(er−1)).

By Lemma 5, there is a positive value of data analytics when c < cCH . Thus, in this case the

analytics raises the DM’s expected utility. The choke-off cost for θ̂0 ≤ er is lower than the choke-off

cost for θ̂0 > er, i.e., the DM requires a lower marginal cost to get value from analytics if the

expected payoff is low. This is because when the unconditional expected risky asset payoff is low,

the DM expects to lend her money and, thus, she requires more incentive, in the form of lower cost

of analytics, to use data analytics on the risky investment opportunity.

The next proposition gives the shape of the value of data analytics with respect to the quantity

of data analytics, and the proof is in Appendix C.4.

Proposition 2 (Shape of the value)

Let c < cCH , so that v(t) > 0 for some t > 0. The value of data analytics v(·) : R+ → R satisfies:

(i) Strictly concave if θ̂0 ≥ er.

(ii) Not globally concave if θ̂0 < er.

By Proposition 2, the optimization of the quantity of data analytics is simpler when θ̂0 ≥ er.

Corollary 2 (Risk aversion)

Let v(t) = v(t; γ). When c < cCH then v(t; γ) falls in risk aversion γ for all t such that v(t; γ) > 0.

Proof. From Proposition 1 we get ∂v
∂γ = (1 − er)(κv(t) − ctu∗(t)) which is negative when v(t) > 0

as u∗(t) is always negative (see Lemma 3).
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Figure 3: Value and marginal value of data analytics with different risk aversion γ.
Parameter values: r = 0.05, s0 = 0.01, θ̂0 = 1.15, κ = 100, and c = 0.1.

Thus, the value of data analytics falls in risk aversion. This is because, by Lemma 2, the higher

the risk aversion the less the DM invests in the risky opportunity and, therefore, information on

the investment is less valuable to her.

We next plot the value and marginal value of data analytics with respect to the quantity of

data analytics t under different parameter values. Since the value of data analytics depends on θ̂0

(Proposition 1), we consider two cases, θ̂0 ≥ er and θ̂0 < er.

Case θ̂0 ≥ er: Expected payoff higher than the lending return

Figure 3 plots the value and marginal value of data analytics against analytics quantity for four

different values of risk aversion, γ = 0.01, 0.02, 0.05, and 0.1. Consistent with Corollary 2, Figure 3a

shows that the value of data analytics falls in risk aversion. Figure 3b shows that the marginal

value falls with risk aversion as well.

Figure 4 plots the value and marginal value of data analytics against analytics quantity for four

different values of uncertainty, s0 = 0.05, 0.1, 0.2, and 0.4. The figure shows that the marginal

value of data analytics falls in the uncertainty.

Figures 3a and 4a show that when θ̂0 ≥ er, the value of data analytics is strictly concave with

respect to t, and this is proved in Proposition 2.

Case θ̂0 < er: Expected payoff lower than the lending return

Figure 5 plots the value and marginal value of data analytics against analytics quantity for four

different values of risk aversion, γ = 0.01, 0.02, 0.05, and 0.1. Consistent with Corollary 2, the
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Figure 4: Value and marginal value of data analytics with different initial uncertainty
level s0. Parameter values: r = 0.05, γ = 0.01, θ̂0 = 1.15, κ = 100, and c = 0.1.
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Figure 5: Value and marginal value of data analytics with different risk aversion γ.
Parameter values: r = 0.05, s0 = 0.01, θ̂0 = 1, κ = 100, and c = 0.1.

value and marginal value of data analytics falls in risk aversion.

Figure 6 plots the value and marginal value of data analytics against analytics quantity for four

different values of uncertainty, s0 = 0.05, 0.1, 0.2, and 0.4. The value of data analytics rises with

uncertainty, but the relationship between the marginal value of analytics and the uncertainty is

more complicated.

Finally, the following proposition analyzes the value of data analytics with respect to the ex-

pected payoff of the investment (the proof is in Appendix C.5).

Proposition 3 (Expected payoff)

The value of data analytics v(t) = v(t; θ̂0) behaves as follows with respect to the expected payoff θ̂0:
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Figure 6: Value and marginal value of data analytics with different initial uncertainty
level s0. Parameter values: r = 0.05, γ = 0.01, θ̂0 = 1, κ = 100, and c = 0.1.

(i) If c < cCH then for each t > 0, where v(t; θ̂0) > 0, there exists ς > er such that v(t; θ̂0) falls

in θ̂0 for all θ̂0 ∈ (ς,∞).

(ii) If θ̂0 < er then v(t; θ̂0) rises in θ̂0 for all t > 0.

(iii) limθ̂0→∞ v(t; θ̂0) = limθ̂0→∞ ∂tv(t; θ̂0) = 0 for all t ≥ 0.

By Proposition 3, when the expected payoff is high then the value of data analytics falls with

respect to θ̂0. Hence, the value is low for investments with high expected payoff. On the other

hand, the value of data analytics rises in θ̂0 when the expected payoff is less than er. Therefore,

the value of data analytics is also low for investments that have low expected payoff. The highest

value of data analytics is hence achieved when θ̂0 > er, but not for a very high expected payoff.

That is, data analytics gives highest value for mediocre investments. Figure 7 illustrates this.

4 Optimal quantity of data analytics

In this section, we consider the optimal quantity of data analytics. We consider two cases. First,

in subsection 4.1 we analyze the case where the DM can take leverage, and then in section 6 we

study the case where the DM cannot take leverage.
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Figure 7: Value of data analytics v(t) with respect to θ̂0. Dotted line represents θ̂0 = er. The
peak value occurs close to er (see Proposition 3). Parameter values: r = 0.05, γ = 0.01, s0 = 0.01,
κ = 100, c = 1, and t = 100.

4.1 Optimal quantity with leverage

The optimal quantity of data analytics is defined as follows

t∗ := arg min{ t | v(t) is a global maximum}.

The following result gives the existence of t∗.

Theorem 1 (Optimal quantity of data analytics)

Let c > 0. There exists bounded and nonnegative t∗ such that supt≥0 v(t) = v(t∗).

Proof. We consider two cases:

(i) θ̂0 ≥ er: In this case, v(t) is strictly concave and, hence, admits a unique global maximum.

(ii) θ̂0 < er: By definition, v(0) = 0 and lim
t→∞

v(t) = −∞ since c > 0. Thus, ∃M ∈ R such that

∀t > M , v(t) < 0. Set t∞ ∈ (M,∞) and consider the interval [0, t∞]. Since v(t) is continuous

on the closed and bounded interval [0, t∞], by the Weierstrass Extreme Value Theorem, v(t)

achieves maximum and minimum on [0, t∞] at least once. Set t∗ as the minimum value of t

where v(t) achieves the maximum.

The following corollary gives the quantity of data analytics under zero cost.
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Corollary 3 (Zero cost)

When c = 0 then t∗ =∞.

Proof. Let c = 0. If θ̂0 6= er then

v′(t) =
s0

2(s0t+ 1)3/2
exp

−
(
er − θ̂0

)2
+ 2s0κγ (er − 1)

2s0

Φ

(
− d(t)√

s0t+ 1

)
> 0,

and v′(t) = s0e
γκ(1−er)

4(s0t+1)3/2 > 0 if θ̂0 = er. Thus, in both the cases each extra unit of data analytics

raises the expected utility of the DM.

This is an intuitive result since if there is no cost of using data analytics then the DM should

use infinite quantity and learn the payoff perfectly.

The next corollary gives conditions when the DM acquires either a high quantity of data ana-

lytics or not at all.

Corollary 4 (Small quantity of analytics)

When c ∈ (0, cCH) and θ̂0 < er, the DM does not acquire small quantities of analytics.

Proof. By Corollary 1 and the conditions of this corollary, we have limt↓0 v
′(t) < 0. Since v(0) =

u∗(0)−u∗(0) = 0 and v(t) is continuous, v′(0) < 0 implies that there exists ε > 0 such that the value

of data analytics v(t) < 0 for all t ∈ (0, ε). That is, under the above conditions, small quantities of

analytics reduce the expected utility of the DM.

Corollary 4 says that the DM does not buy small quantities of data analytics when the expected

payoff is lower than the lending and borrowing rate.

The optimal quantity can be solved by using the first order condition, v′(t) = 0. By Lemma 4,

this condition can be written as

− 2cγ (er − 1) (s0t+ 1)3/2Φ (d(t))− 2cγ (er − 1) (s0t+ 1)e
− (er−θ̂0)2

2s0 Φ

(
− d(t)√

s0t+ 1

)
+ s0e

− (er−θ̂0)2

2s0 Φ

(
− d(t)√

s0t+ 1

)
= 0 (3)

15



2 4 6 8 10
c

500

1000

1500

2000

t
*

(a) θ̂0 = 1.15 > er
0.2 0.4 0.6 0.8 1.0 1.2 1.4

c

200

400

600

800

1000

1200

t
*

(b) θ̂0 = 1 < er

Figure 8: Optimal quantity of data analytics t∗ with respect to c. Parameter values:
r = 0.05, γ = 0.01, s0 = 0.01, and κ = 100.

for all θ̂0 6= er, and

−cγ (er − 1) (s0t+ 1)3/2 − cγ (er − 1) (s0t+ 1) +
s0

2
= 0 (4)

for θ̂0 = er.

Next we give the properties of the optimal quantity of data analytics (the proof is in Ap-

pendix C.6).

Theorem 2 (Properties of the optimal quantity)

We have:

(i) Optimal quantity of analytics t∗ is independent of initial wealth κ.

(ii) If c < cCH and θ̂0 ≥ er then optimal quantity t∗ falls in cost c and risk aversion γ.

By Theorem 2, the optimal quantity of analytics rises when the cost of analytics or the DM’s

risk aversion falls. Further, the optimal quantity is independent of the initial wealth κ, because,

by the CARA utility, the first order condition in (3) and (4) are independent of κ. Figures 8

– 11 illustrate the optimal quantity of data analytics with respect to different model parameters.

Figure 8 shows that the optimal quantity of data analytics falls in the marginal cost, and it gives

the demand curve of data analytics. Hence, the DM uses more analytics the less costly it is. The

discontinuity in Figure 8b is due to the choke-off cost; consistent with Corollary 4 in this case the

DM never acquires small quantities of data analytics. When θ̂0 > er, there is no discontinuity as
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Figure 9: Optimal quantity of data analytics t∗ with respect to γ. Parameter values:
r = 0.05, c = 0.1, s0 = 0.01, and κ = 100.
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(b) Optimal quantity against θ̂0

Figure 10: Optimal quantity of data analytics t∗ with respect to θ̂0. Parameter values:
r = 0.05, c = 0.1, s0 = 0.01, κ = 100, and γ = 0.01.

the value function is continuous and strictly concave. Figure 9 shows that the optimal quantity of

data analytics falls in risk aversion. This is because, by Lemma 2, a highly risk averse DM invests

less in the risky investment opportunity than a less risk averse DM, ceteris paribus, and therefore,

the highly risk averse DM has less incentive to learn and use data analytics. The discontinuity in

Figure 9b is again due to the choke-off cost. Figure 10 shows that the optimal quantity of data

analytics is non-decreasing in the expected payoff. This is surprising since, by Proposition 3 and

Figures 7 and 10a, the value of data analytics is highest for mediocre investment opportunities.2

We conjecture that Figure 10b is driven by the amount of leverage. That is, leverage and, therefore,

2Kihlstrom (1974) and Keppo et al. (2008) show that demand for information is hill-shaped in beliefs, and greatest
when the DM is most uncertain, so that very high or very low expectations lead to low demand.
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Figure 11: Optimal quantity of data analytics t∗ with respect to s0. Parameter values:
r = 0.05, γ = 0.01, c = 0.1, and κ = 100.

also the size of the risky investment rise in the expected payoff, which increases the DM’s incentive

to acquire more analytics. For robustness we sample million times parameter values (θ̂0, s0, γ) ∈

[er, 5]× [0.01, 0.05]× [0.01, 0.05], and the other parameter values are fixed and given in Figure 10;

we found that the non-decreasing property in Figure 10 holds for each of them. Further, when we

do the same robustness test without leverage (see Section 6), the non-decreasing property vanishes.

Thus, these tests indicate that our conjecture on the leverage is true.

Figure 11 shows that the effect of uncertainty level s0 on the optimal quantity of data analytics

is similar to the effect of risk aversion γ in Figure 9. This is because, by Lemma 2, when s0 or γ

rises, the DM invests less in the risky opportunity. However, if θ̂0 < er and s0 approaches zero then

the optimal quantity also approaches zero because in this case the DM learns the risky investment

is less profitable than the lending. Note that in Figure (11b) there is discontinuity close to zero due

to the choke-off cost.

5 Expected optimal investment

In this section we solve for the unconditional expected investment amount and leverage before the

DM observes the noisy signal on the investment payoff. We first give the result for the expected

optimal investment when the DM is allowed to take leverage (the proof is Appendix C.7), and in

the next section we consider the case without leverage.
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Proposition 4 (Expected optimal investment with leverage)

The expected optimal investment is given by

(i) c ≤ cCH : Optimal quantity t∗ > 0 and the expected optimal investment is given by

E [w∗(t∗)] = E

[
max

{
θ̂t∗ − er

γst∗
, 0

}]

=
(θ̂0 − er)(1 + t∗s0)

s0γ
Φ

 (θ̂0 − er)
√

1
t∗ + s0

s0

+

√
t∗ + s0(t∗)2

γ
φ

 (er − θ̂0)
√

1
t∗ + s0

s0

 ,

where the expectation is with respect to F0, so unconditional on the signal outcome.

(ii) c > cCH : Optimal quantity t∗ = 0 and the optimal investment is given by

E [w∗(0)] = w∗(0) =


θ̂0−er
s0γ

if θ̂0 > er

0 if θ̂0 ≤ er
.

The expected leverage is given by

E [max {w∗(t∗) + ct∗ − κ, 0}] =

(
(θ̂0 − er)(1 + t∗s0)

s0γ
+ ct∗ − κ

)
Φ (−b∗) +

√
t∗ + s0(t∗)2

γ
φ (b∗) ,

where b∗ =
(

(κ−ct)γs0
1+s0t∗

+ er − θ̂0

)√
s0t∗+1
s20t
∗ .

To analyze the relationship between leverage and the cost of data analytics, by Proposition 4,

we first calculate the derivative of the expected leverage with respect to the cost of analytics:

∂E[max{w∗(t∗) + ct∗ − κ, 0}]
∂c

(5)

=


0 if c > cCH(
θ̂0−er
γ + c

)
Φ (−b∗) ∂t∗∂c + φ (b∗) 1+2s0t∗

2γ
√
t∗+s0(t∗)2

∂t∗

∂c + t∗Φ (−b∗) otherwise

where b∗ =
(

(κ−ct∗)γs0
1+s0t∗

+ er − θ̂0

)√
s0t∗+1
s20t
∗ . Since this derivative depends on the optimal quantity

of data analytics t∗ that we cannot solve analytically, we next numerically analyze (5).

The DM takes leverage if the expected payoff of the investment is greater than the lending payoff,

and her investment is greater than her initial wealth. Hence, we numerically consider a case where

θ̂0 � er. We sample 100,000 parameter values (κ, s0, γ) ∈ [100, 1000] × [0.01, 0.05] × [0.01, 0.05],

while the other parameters are fixed (θ̂0 = 1.15, r = 0.05, and c = 1). In each of these cases
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derivative (5) is negative, which supports our conjecture on the falling leverage with respect to the

cost of data analytics.

If there is no financial constraint then due to the increased leverage, the falling cost of data

analytics in Figure 1 may lead to higher losses during the crises. This is illustrated in Figure 12a,

where the expected losses are higher under the low cost of analytics. As mentioned before, this

is driven by leverage: Under the low cost, the DM acquires more data analytics, which makes

the investment opportunity less risky and, therefore, she takes more leverage when investing. In

Figure 12b we analyze further the effect of cost of data analytics on investment losses. Here we

assume that the realized payoff θ is a certain number of standard deviations below the expected

payoff. Note that the higher the cost of data analytics, the higher the standard deviation is. As

can be seen, the losses are again higher under the low cost of analytics due to the higher leverage.

To further analyze the effect of leverage, let us perform the analysis in Figure 12 without

leverage; in this case the maximum quantity of data analytics is κ/c and the maximum risky

investment is κ− ct∗ ≥ 0 (see Section 6). To do that, we sample 10,000 parameter values (s0, γ) ∈

[0.01, 0.05]× [0.01, 0.05], while the other parameters are fixed (θ̂0 = 1.06, κ = 1000, and r = 0.05).

For each of these cases we compare the losses under the costs of data analytics c = 0.01 and c = 1,

respectively. Without leverage the losses corresponding to Figure 12a are again higher under the

lower cost of data analytics, but not for the losses corresponding to Figure 12b. This shows that

leverage constraints are effective in reducing losses during crises, which is important, for instance,

in banking regulation (see e.g. Peura and Keppo 2006, Hart and Zingales 2011).

Consistent with Figure 12, let us define the following two negative shocks.

Definition 1 (Shocks)

We consider the following two negative shocks:

(i) The payoff of the risky investment θ = S1, where S1 is the shock level and S1 ∈ (−∞, er).

(ii) The payoff θ = θ̂0 − S2
√
st∗, where S2 is the shock level and S2 ∈ (0,∞).

Now we can state the following result (the proof is in Appendix C.8) and it is illustrated in

Figure 12.
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Figure 12: Expected profit and loss of an investment under different analytics costs.
Other parameter values: θ̂0 = 1.06 s0 = 0.01, r = 0.05, γ = 0.01, and κ = 1000. The expected
profit and loss is given by E[w∗(t∗)](θ − 1) + (κ− ct∗ − E[w∗(t∗)])(er − 1).

Theorem 3 (Higher losses)

Consider a DM who is able to borrow. Let θ̂0 > er and consider two costs of data analytics, ch and

cl, where cCH > ch > cl > 0. We have:

(i) There exists bounded S̄1 such that the loss under cl and shock S1 is higher than the loss under

ch and shock S1 for all S1 < S̄1, where the shock is given by (i) in Definition 1.

(ii) There exist bounded S̄2 such that the loss under cl and shock S2 is higher than the loss under

ch and shock S2 for all S2 > S̄2, where the shock is given by (ii) in Definition 1.

To understand Theorem 3, let us write down the expected profit and loss under negative shock

(ii) in Definition 1 (shock (i) can be handled in a similar way). By Lemma 2, in this case the

expected profit and loss is given by

E[w∗(t∗)](θ − 1) + (κ− ct∗ − E[w∗(t∗)])(er − 1)

= E

[
max

{
θ̂t∗ − er

γst∗
, 0

}](
θ̂0 − S2

√
st∗ − 1

)
+

(
κ− ct∗ − E

[
max

{
θ̂t∗ − er

γst∗
, 0

}])
(er − 1).
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This gives the derivative of the expected profit and loss with respect to shock S2:

− E

[
max

{
θ̂t∗ − er

γst∗
, 0

}]
√
st∗ = −E

[
max

{
θ̂t∗ − er

γ
√
st∗

, 0

}]
≤ 0, (6)

which is negative and rises in the posterior variance of the investment payoff, st∗ . That is, the lower

the variance st∗ is, the more the expected profit and loss fall due to the negative shock S2. Note that,

by Lemma 1 and Theorem 2, the posterior variance st∗ rises in the cost of analytics c. Therefore,

by (6), when c falls, the investment position gets riskier. This is surprising since one could guess

that the lower posterior variance of the investment payoff leads to a less risky investment. However,

as discussed after (5), the falling posterior variance raises the expected investment and leverage,

which is a stronger effect on the investment risk than the lower posterior variance.

6 Financial constraint

In this section, we consider a financial constraint so that the DM is not able to take leverage. Hence,

the DM’s investment in the risky opportunity is bounded by κ− ct ≥ 0, and the quantity of data

analytics is bounded by κ/c. The optimal risky investment in this case is given by the following

lemma.

Lemma 6 (Optimal investment without leverage)

Given analytics quantity t ∈ [0, κc ] and the CARA utility function with γ > 0, the optimal level of

risky investment without leverage is given by

w∗NL(t) = min

{
max

{
θ̂t − er

γst
, 0

}
, κ− ct

}
.

Proof. By Lemma 2, the optimization problem without leverage:

max
w∈[0,κ−ct]

E [− exp (−γ [w(θ − 1) + (κ− ct− w)(er − 1)]) |Ft] .

By the concavity of the objective function, if w∗ ∈ (0, κ−ct) in Lemma 2 then w∗NL = w∗; if w∗ = 0

then w∗NL = 0; if w∗ > κ− ct then w∗NL = κ− ct.
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As in Section 3, we first give the expected utility of the optimal investment, and the proof is in

Appendix C.9.

Lemma 7 (Expected utility without leverage)

The expected utility of the optimal investment under a given quantity of analytics t:

u∗NL(t) =−
exp

(
−(θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)(
Φ
(
er−θ̂0
s0
√
t

+ γ(κ−ct)√
t

)
− Φ

(
er−θ̂0
s0
√
t

))
√
s0t+ 1

− e
γ2(κ−ct)2s0

2
+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er

)
s0

√
t

− γ(κ− ct)
√
s0t+ 1√

t


− eγ(κ−ct)(1−er)Φ

√s0t+ 1
(
er − θ̂0

)
s0

√
t

 ,

where the expectation is with respect to F0, so unconditional on the signal outcome.

Comparing Lemmas 3 and 7, we get the following corollary (the proof is Appendix C.10) and

it is illustrated in Figure 13.

Corollary 5 (Expected utility difference)

The difference between the expected utilities with and without leverage:

(i) If the quantity of data analytics t = 0 and if the leverage constraint in Lemma 6 is not binding

then the expected utility without leverage equals the expected utility with leverage.

(ii) If t > 0 then the expected utility without leverage is strictly lower than the expected utility

with leverage.

We next calculate the value of data analytics. For that, let us define Θ := er + κγs0. Then if

quantity of analytics t = 0 and expected payoff θ̂0 > Θ then the DM is bounded by her leverage

constraint, and thus, w∗(0) = κ.

Proposition 5 (Value of data analytics without leverage)

The value of data analytics vNL(t) := u∗NL(t)− u∗NL(0) is given as follows:
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Figure 13: Expected utility of data analytics with and without leverage. The blue solid
line is with leverage and the orange dotted line is without leverage. Parameter values: r = 0.05,
γ = 0.01, s0 = 0.01, c = 0.1, and κ = 100.

(i) θ̂0 > Θ: The leverage constraint is active, w∗(0) = κ, and vNL(t) is given by

−
exp

(
− (θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)(
Φ
(
er−θ̂0
s0
√
t

+ γ(κ−ct)√
t

)
− Φ

(
er−θ̂0
s0
√
t

))
√
s0t+ 1

+ e
γ2κ2s0

2
+γκ(1−θ̂0) − e

γ2(κ−ct)2s0
2

+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er

)
s0

√
t

− γ(κ− ct)
√
s0t+ 1√
t


− eγ(κ−ct)(1−er)Φ

√s0t+ 1
(
er − θ̂0

)
s0

√
t

 .

(ii) θ̂0 ∈ (er,Θ]: No constraints are active and vNL(t) is given by

exp

−
(
θ̂0 − er

)2

+ 2γκs0 (er − 1)

2s0


1− eγct(e

r−1)

(
Φ
(
er−θ̂0
s0
√
t

+ γ(κ−ct)√
t

)
− Φ

(
er−θ̂0
s0
√
t

))
√
s0t+ 1



− e
γ2(κ−ct)2s0

2
+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er

)
s0

√
t

− γ(κ− ct)
√
s0t+ 1√
t


− eγ(κ−ct)(1−erT )Φ

√s0t+ 1
(
er − θ̂0

)
s0

√
t

 .
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(iii) θ̂0 ≤ er: The investment constraint is active, w∗(0) = 0, and vNL(t) is given by

−
exp

(
−(θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)(
Φ
(
er−θ̂0
s0
√
t

+ γ(κ−ct)√
t

)
− Φ

(
er−θ̂0
s0
√
t

))
√
s0t+ 1

− e
γ2(κ−ct)2s0

2
+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er

)
s0

√
t

− γ(κ− ct)
√
s0t+ 1√

t


+ eγκ(1−er)

1− eγct(er−1)Φ

√s0t+ 1
(
er − θ̂0

)
s0

√
t

 .

The key difference between Propositions 1 and 5 is the one additional region in Proposition 5.

This is due to the financial constraint in Lemma 6 that prevents leverage and requires us to consider

the region where the DM’s budget constraint is not tight (er < θ̂0 ≤ Θ).

The marginal value of data analytics is complicated, but we are able to analyze that when θ̂0 > Θ

and s0 − 2cγ(er − 1) > 0. The first condition means that with zero data analytics (t = 0), the DM

would prefer to invest more than her initial wealth and, therefore, her investment is bounded by

the financial constraint. The second condition s0−2cγ(er−1) > 0 means that without the financial

constraint the marginal value is positive at t = 0 (see Corollary 1), or equivalently in this case,

c < cCH . The following corollary compares the marginal values of data analytics with and without

leverage under these two conditions (the proof is in Appendix C.11), and Figure 14 illustrates this

result.

Corollary 6 (Marginal values with and without leverage)

If θ̂0 > Θ and c < cCH then the marginal value of data analytics without leverage is strictly lower

than the marginal value of data analytics with leverage for all t ∈
(

0, s0−2cγ(er−1)
2s0cγ(er−1)

)
.

From Corollary 6 we get the following result.

Proposition 6 (Lower optimal quantity)

If θ̂0 > Θ and c < cCH then the optimal quantity t∗ is lower for a financially constrained DM.

Proof. Let v′(t) and v′NL(t) be the marginal values of data analytics with and without leverage,

and t∗ and t∗NL be the respective optimal quantities. Then v′(t) is strictly decreasing in t since

the value of data analytics with leverage is strictly concave when θ̂0 > Θ. Suppose that t∗ ≤ t∗NL.

Then v′(t∗NL) ≤ v′(t∗) = 0 = v′NL(t∗NL), but this contradicts Corollary 6.
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Figure 14: The marginal value of data analytics with and without leverage. The blue solid
line is with leverage and the orange dotted line is without leverage. Parameter values: r = 0.05,
γ = 0.01, s0 = 0.01, κ = 1000, c = 0.1, and θ̂0 = 1.16.

The value of data analytics for a financially constrained DM is bounded above by the corre-

sponding value of data analytics without the financial constraint. The next result shows when the

value under the financial constraint is strictly lower than the value without the constraint.

Corollary 7 (Value of data analytics with and without leverage)

The value of data analytics without leverage is strictly lower than the value of data analytics with

leverage if one of the following conditions holds:

(i) θ̂0 > Θ, c < cCH , and t ∈
(

0, s0−2cγ(er−1)
2s0cγ(er−1)

)
,

(ii) θ̂0 ≤ Θ.

Proof. We have two cases:

(i) θ̂0 > Θ: We have u∗(0) 6= u∗NL(0). However, v(0) = vNL(0) = 0 since v(0) = u∗(0)−u∗(0) = 0

and vNL(0) = u∗NL(0) − u∗NL(0) = 0. Define V (t) := v(t) − vNL(t). Then V (0) = 0, V (t) is

continuous, and, by Corollary 6, V ′(t) = v′(t)− v′NL(t) > 0 for all 0 < t < s0−2cγ(er−1)
2s0cγ(er−1) . Since

V (0) = 0 and V ′(t) > 0, we have v(t) > vNL(t) for all 0 < t < s0−2cγ(er−1)
2s0cγ(er−1) .

(ii) θ̂0 ≤ Θ: We have u∗(0) = u∗NL(0). By Corollary 5, u∗(t) > u∗NL(t) ∀t > 0. Therefore,

v(t) = u∗(t)− u∗(0) > u∗NL(t)− u∗NL(0) = vNL(t).
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Figure 15: Optimal quantity of data analytics t∗ without leverage and with respect to
c. Parameter values: r = 0.05, γ = 0.01, s0 = 0.01, and κ = 100.

We illustrate the optimal quantity of data analytics without leverage in Figures 15 and 16.

Figure 15 shows that the optimal quantity falls in cost, and it gives the demand curve for data

analytics. Hence, the DM uses more analytics the less costly it is. The discontinuities in Figures

15a and 15c are due to the choke-off cost.

Figure 16 shows that the optimal quantity of data analytics without leverage is first rising and

then falling in the risk aversion. The rising part is due to the leverage constraint. By Lemma 6, in-

creasing risk aversion at a low level does not change the investment, because the leverage constraint

is tight, but it raises the DM’s incentive to decrease the uncertainty by data analytics. However,

when the risk aversion is high enough, the investment amount falls because the leverage constraint

is not active anymore (see Lemma 6), and this decreases the incentive to use data analytics. There

are only two regions plotted in Figure 16 because Θ rises in γ, which means that in Figure 16a we

consider both Θ > θ̂0 > er and θ̂0 > Θ.
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Figure 16: Optimal quantity of data analytics t∗ without leverage and with respect to
γ. Parameter values: r = 0.05, c = 0.1, s0 = 0.01, and κ = 100.

Next we derive the expected optimal investment when the DM is not allowed to take leverage

(the proof is in Appendix C.12).

Proposition 7 (Expected optimal investment without leverage)

The expected optimal investment is given by

(i) c ≤ cCH :

E [w∗NL(t∗)] =E

[
min

{
max

{
θ̂t∗ − er

γst∗
, 0

}
, κ− ct

}]

=
(θ̂0 − er)(1 + t∗s0)

s0γ

(
Φ

(
d∗ +

(κ− ct)γ√
t∗
√

1 + s0t∗

)
− Φ (d∗)

)
+

√
t∗ + s0(t∗)2

γ

(
φ (d∗)− φ

(
d∗ +

(κ− ct)γ√
t∗
√

1 + s0t∗

))
+ (κ− ct)

(
1− Φ

(
d∗ +

(κ− ct)γ√
t∗
√

1 + s0t∗

))
,

where d∗ =
(er−θ̂0)

√
1
t∗+s0

s0
and the expectation is with respect to F0, so unconditional on the

signal outcome.
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Figure 17: Expected optimal investment with respect to c. The blue solid line is with
leverage and the orange dotted line is without leverage. Parameter values: r = 0.05, γ = 0.01,
s0 = 0.01, and κ = 1000.

(ii) c > cCH :

E [w∗NL(0)] =


κ if θ̂0 > Θ

θ̂0−er
s0γ

if er < θ̂0 ≤ Θ

0 if θ̂0 ≤ er

The expected optimal investment is lower for a financially constrained DM, because her in-

vestment is bounded. We are not able to compare directly the expected optimal investments in

Propositions 4 and 7 because their optimal quantities of data analytics are different and we do not

have explicit formulas for t∗. Therefore, we compare them numerically in Figure 17, where we plot

the expected optimal investments with and without leverage against the cost of data analytics.

We see from Figure 17 that the expected optimal investment with leverage falls in the cost of

data analytics c. Therefore, lower cost of data analytics raises the expected size of the investment.

That is, when c is low, the DM acquires more data analytics which then lowers the risk and raises the

investment amount as shown in Figure 17. The rising investment size means higher leverage and,

thus, leverage falls in the cost of data analytics. This is consistent with Maksimovic et al. (1999)

who show that in high-growth industries levered firms acquire more information than all-equity

financed firms.
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7 Conclusion

We have derived a new investment model where a risk averse decision maker faces a joint decision

of the level of data analytics and investment amount. Data analytics is costly due to the price

of datasets and efforts in collecting and processing the data. The more the investor buys and

analyzes data, the better she can forecast the investment payoff, which decreases the riskiness of

the investment opportunity. This indicates that data analytics is a risk management device. After

observing the results of the data analytics, the decision maker decides how much to invest and, if

needed, she uses leverage in the investment.

We showed that the more data analytics the decision maker acquires, the more she invests on

average and, therefore, the more she uses leverage. Further, the lower the cost of data analytics,

naturally the more the decision maker acquires analytics, which decreases the riskiness of the

investment opportunity and this way raises the investment amount and leverage. We showed

that the higher leverage, driven by the falling cost of data analytics, leads to higher losses during

the crises. We also showed that decision makers with low risk aversion and without leverage

constraints acquire more data analytics because they invest more and, therefore, they have a higher

incentive to collect new information on the investments. We also showed that the demand of

data analytics is highest with high expected return opportunities, as decision makers possessing

such opportunities use a high level of leverage and, therefore, decide to analyze the investment

opportunities thoroughly.
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A Nonlinear cost

We use the same model as in our main analysis, except the cost of data analytics is quadratic, ct2.

We get directly the following result.

Lemma 8 (Expected utility)

Given the quantity of analytics t, the expected utility of the optimal investment before observing the

outcome of the analytics is given by

u∗(t) =E
[
− exp(−γ(w∗(t)(θ − 1) + (κ− ct2 − w∗(t))(er − 1)))

]
=− eγ(κ−ct2)(1−er)Φ(d(t))−

Φ
(
−d(t)√
s0t+1

)
exp

(
− θ̂2

0+e2r−2θ̂0er+2γs0(κ−ct2)(er−1)
2s0

)
√
s0t+ 1

,

where Φ(·) is cumulative standard normal distribution and d(t) :=
(
er − θ̂0

)√
s0t+1
s20t

. The expecta-

tion is with respect to F0, so unconditional on the signal outcome.

The optimal investment remains the same as in the main analysis. Next we give the marginal

value of data analytics under the quadratic cost:

Lemma 9 (Marginal value of data analytics)

For t > 0, the marginal value of data analytics is given by

v′(t) =
eγ(er−1)(ct2−κ)

2(s0t+ 1)3/2

[
− 4ctγ (er − 1) (s0t+ 1)3/2Φ (d(t))

− 4ctγ (er − 1) (s0t+ 1)e
−

(er−θ̂0)2
2s0 Φ

(
− d(t)√

s0t+ 1

)
+ s0e

−
(er−θ̂0)2

2s0 Φ

(
− d(t)√

s0t+ 1

)]
.

As with the linear cost, the value function is strictly concave for θ̂0 > er.

Proposition 8 (Shape of the value of data analytics)

The value of data analytics function is strictly concave if θ̂0 > er.

Proof. The second derivative of the value function

v′′ =
eγ(er−1)(ct2−κ)

8t2(s0t+ 1)7/2

(
− 16ct2γ (er − 1) (s0t+ 1)7/2 (2cγ (er − 1) t2 + 1

)
Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)

− 2t2(s0t+ 1)e
−

(er−θ̂0)2
2s0

(
8cγ (er − 1) (s0t+ 1)

(
2ct2γ (er − 1) (s0t+ 1) + 1

)
+ 3s2

0

)
Φ


(
θ̂0 − er

)
s0

√
t


+

√
2t

π

(
er − θ̂0

)
(s0t+ 1)2e

−
(er−θ̂0)2(s0t+1)

2s20t

)
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is strictly negative if θ̂0 > er.

So when θ̂0 > er, we have a unique global maximum given by the first order condition v′(t) = 0.

The first order condition can be written as follows

− 4ctγ (er − 1) (s0t+ 1)3/2Φ (d(t))− 4ctγ (er − 1) (s0t+ 1)e
− (er−θ̂0)2

2s0 Φ

(
− d(t)√

s0t+ 1

)
+ s0e

− (er−θ̂0)2

2s0 Φ

(
− d(t)√

s0t+ 1

)
= 0. (7)

As in the main analysis, we have the following results.

Theorem 4 (Properties of the optimal quantity)

We have:

(i) The optimal quantity t∗ is independent of initial wealth κ.

(ii) If θ̂0 > er, the optimal quantity t∗ falls in cost c.

Proof. We can see from (7) that the first order condition that it is independent of κ, thus the

optimal quantity is also independent of κ. Let the left hand side of (7) be f(t∗). We have:

∂f

∂t∗
=

(
er − θ̂0

)
φ
(

(er − θ̂0)
√

s0t+1

s20t

)
2t3/2

− 4cγ (er − 1) (2s0t+ 1)e
−

(er−θ̂0)2
2s0 Φ

(
θ̂0 − er

s0

√
t

)

− 2cγ (er − 1) (5s0t+ 2)
√
s0t+ 1Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)
∂f

∂c
=− 4tγ (er − 1) (s0t+ 1)

(
e
−

(er−θ̂0)2
2s0 Φ

(
θ̂0 − er

s0

√
t

)
+
√
s0t+ 1Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

))

and by the Implicit Function Theorem, we get ∂t∗

∂c = −
∂f
∂c
∂f
∂t∗

which is strictly negative when θ̂0 >

er.

Since the optimal investment formula is the same as in the main analysis, the expected optimal

investment function remains the same. Then, by Theorem 4, Theorem 3 holds also for the quadratic

cost of data analytics.

B Multiple Investments

We extend the results to n independent investment opportunities, with the parameters of the DM

remaining the same. For each investment i ∈ {1, 2, ..., n}, we have the unknown payoff θi, and the
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prior expected payoff θ̂0,i and variance s0,i. The cost of acquiring quantity ti of data analytics for

investment i is ci. Hence, the utility of the DM in the next period is given by

− exp

(
−γ

[
n∑
i=1

wi(θi − 1) + (κ−
n∑
i=1

citi −
n∑
i=1

wi)(e
r − 1)

])
= − exp(−γ[w · (θ − 1) + (κ− c · t−w · 1)(er − 1)]).

We assume that signals on different investments are independent. As in the main analysis, let

(Ωi,Fi,Pi) be a probability space for investment i ∈ {1, 2, ..., n}. The quantity of data analytics

ti corresponds to observing a noisy signal Zti,i on payoff θi from 0 to ti. The noisy signal follows

dZti,i = θidti + dBti,i, where Bti,i is a standard Wiener process independent of the other uncertain-

ties. Fti,i is the information level from observing the noisy signal Zti,i up to quantity ti. Thus, the

DM can learn about the payoff θi by obtaining quantity ti ≥ 0 of data analytics at a marginal cost

ci > 0.

Lemmas 10 and 11 are derived directly from their counterparts in the single investment case

and their proofs are exactly the same, except the variables are indexed by i ∈ {1, 2, ..., n}.

Lemma 10 (Unconditional and conditional payoffs for investment i)

For each investment i ∈ {1, 2, ..., n}, unconditionally on the signal outcome, we have

θi = θ̂0,i +

√
s2

0,iti

1 + s0,iti
εt,i +

√
st,iεi

and conditional on the signal outcome i.e., with respect to information Ft,i, we have

θi = θ̂t,i +
√
st,iεt,

where θ̂0,i and s0,i are the DM’s prior mean and variance for investment i, st,i =
s0,i

1+tis0,i
is the

posterior variance of investment i, εt,i is Ft,i-measurable standard normal random variable, εi is

a standard normal variable with respect to informations F0,i and Ft,i, εi and εt,i are independent

with respect to information F0,i.

Proof. See Lemma 1.

Lemma 11 (Optimal investment for multiple investments)

Given analytics quantity t = (t1, t2, . . . , tn) and CARA utility function with γ > 0, the optimal level
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of risky investment is given by w∗(t) = (w∗1(t1), w∗2(t2), . . . , w∗n(tn)), where

w∗i (ti) = max

{
θ̂ti,i − er

γsti,i
, 0

}
. (8)

Proof. See Lemma 2.

Lemma 12 (Expected utility)

The expected utility of the optimal investment for multiple investments

u∗(t) =E [− exp(−γ[w∗(t) · (θ − 1) + (κ− c · t−w∗(t) · 1)(er − 1)])]

=− eγ(κ−
∑n
i=1 citi)(1−er)

n∏
i=1

Φ(di(ti)) +

Φ

(
−di(ti)√
s0,iti+1

)
exp

(
− (θ̂0,i−er)2

2s0,i

)
√
s0,iti + 1

 ,

where Φ(·) is cumulative standard normal distribution and di(ti) :=
(
er − θ̂0,i

)√
s0,iti+1

s20,iti
.

Proof. Similar to the single investment case, we find the expected utility by integrating the utility

in the next period over R2n with respect to the 2n normal PDFs and replacing the εi’s and εt,i’s

by variables xi and xi+1 for investment i:

∫
· · ·
∫

R2n

− exp(−γ[w∗(t) · (θ − 1) + (κ− c · t−w∗(t) · 1)(er − 1)])
1

(2π)n
e
− 1

2

2n∑
i=1

xi
2n∏
i=1

dxi.

We then integrate with respect to the dummy variables associated with ε1,i to get

1

(
√

2π)n

∫
· · ·
∫

Rn

−eγ(κ−
∑n
i=1 citi)(1−e

r)
n∏
i=1

exp

γw∗i er +
γ2s0,iw

∗
i

2

2s0,iti + 2
− γw∗i xi

√
s20,iti

s0,iti + 1
− γθ̂0,iw∗i −

x2
i

2

 n∏
i=1

dxi.

Observing that each i-th term in the product is similar to that in the single investment case, and

by the independence of the normal variables, we get:

−eγ(κ−
∑n
i=1 citi)(1−er)

n∏
i=1

Φ(di(ti)) +

Φ

(
−di(ti)√
s0,iti+1

)
exp

(
− (θ̂0,i−er)2

2s0,i

)
√
s0,iti + 1

 .

34



In the next proposition, we introduce new index notation ij that we formally define in the proof.

This index represents investments that have θ̂0,ij = θ̂0,k > er where k ∈ {1, 2, . . . , n}. Thus, the set

{i1, i2, . . . , im} is a subset of the set of n independent investments {1, 2, . . . , n}.

Proposition 9 (Value of data analytics)

Let ij be the index for investments such that θ̂0,ij > er and assume there are 0 ≤ m ≤ n such

investments. Then the value of data analytics v(t) := u∗(t)− u∗(0) is given by

eγκ(1−er)
im∏
ij=i1

exp

(
−

(θ̂0,ij − er)2

2s0,ij

)

−eγ(κ−
∑n
i=1 citi)(1−er)

n∏
i=1

Φ(di(ti)) +

Φ

(
−di(ti)√
s0,iti+1

)
exp

(
− (θ̂0,i−er)2

2s0,i

)
√
s0,iti + 1

 .

Note that if m = 0 then
∏im
ij=i1

exp

(
−

(θ̂0,ij−e
r)2

2s0,ij

)
= 1.

Proof. Observe that

lim
ti↓0

di(ti) = lim
ti↓0

(
er − θ̂0,i

)√s0,iti + 1

s2
0,iti

=


−∞ if θ̂0,i > er

0 θ̂0,i = er

+∞ if θ̂0,i < er

and

lim
ti↓0

−di(ti)√
s0,iti + 1

= lim
ti↓0

(
er − θ̂0,i

) −1√
s2

0,iti
=


+∞ if θ̂0,i > er

0 if θ̂0,i = er

−∞ if θ̂0,i < er

Define J := {θ̂0,i | θ̂0,i > er, i ∈ {1, 2, . . . , n}} and m := |J |. If J 6= ∅, i.e., m 6= 0, then define index

j ∈ {1, 2, . . . ,m} so that θ̂0,ij ∈ J for all j ∈ {1, 2, . . . ,m}. To find limt↓0 u
∗(t), we have

eγ(κ−
∑n
i=1 citi)(1−er) → eγκ(1−er)
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and

n∏
i=1

Φ(di(ti)) +

Φ

(
−di(ti)√
s0,iti+1

)
exp

(
− (θ̂0,i−er)2

2s0,i

)
√
s0,iti + 1

→


im∏
ij=i1

exp

(
−

(θ̂0,ij−e
r)2

2s0,ij

)
if m 6= 0

1 if m = 0

when t ↓ 0. We have this because the n −m investments with θ̂0,i ≤ er have their corresponding

limits as one in the product, and the terms involving the m investments with θ̂0,ij > er have

corresponding limits exp

(
−

(θ̂0,ij−e
r)2

2s0,ij

)
.

To avoid confusion in the sum and product terms, in the next corollary we use z for index for

investments.

Corollary 8 (Marginal value of data analytics)

The marginal value of data analytics for the z-th investment is given by

∂v(t)

∂tz
=
eγ(er−1)(cztz−κ)

2(s0,ztz + 1)3/2

[
− 2czγ (er − 1) (s0,ztz + 1)3/2Φ (d(tz))

− 2czγ (er − 1) (s0,ztz + 1)e
−

(er−θ̂0,z)
2

2s0,z Φ

(
− d(tz)√

s0,ztz + 1

)
+ s0,ze

−
(er−θ̂0,z)

2

2s0,z Φ

(
− d(tz)√

s0,ztz + 1

)]
·

e
γ

(
n∑

i=1,i 6=z
citi

)
(er−1) n∏

i=1,i 6=z

Φ(di(ti)) +

Φ

(
−di(ti)√
s0,iti+1

)
exp

(
− (θ̂0,i−er)2

2s0,i

)
√
s0,iti + 1

 .

Proof. Since we take derivative with respect to only the z-th investment, we can treat the other

variables as constants. Thus, the result is obtained directly from the single investment case in

Lemma 4, but multiplied by the other variables associated with the other investments.

Our results with a single investment case hold for each investment in the multiple investment

case because the marginal value of data analytics for each investment is just a positive scalar

multiplied by the marginal value of data analytics in the single investment case.

Hence, following the same argument as in the single investment case, the optimal quantity of

data analytics for investment j is given by the first order condition ∂v(t)
∂tj

= cj . To solve for t∗
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requires solving the system of non-linear equations



∂v(t)
∂t1

= 0

∂v(t)
∂t2

= 0

...

∂v(t)
∂tn

= 0

⇒



f1(t1) = 0

f2(t2) = 0

...

fn(tn) = 0

where

fi(ti) =− 2ciγ (er − 1) (s0,iti + 1)3/2Φ (d(ti))

− 2ciγ (er − 1) (s0,iti + 1)e
−(er−θ̂0,i)

2

2s0,i Φ

(
− d(ti)√

s0,iti + 1

)

+ s0,ie
−(er−θ̂0,i)

2

2s0,i Φ

(
− d(ti)√

s0,iti + 1

)
.

Note each equation for investment i is independent of the other n − 1 equations, and fi(ti) is

just the indexed version of (3) in the single investment case. Hence, Theorem 2 holds for each

investment i.

Furthermore, the optimal level of investment i is given by Lemma 11 which has the same formula

as in Lemma 2. Hence, the corresponding expected optimal investment i with leverage is given by

Proposition 4. Then the total expected optimal investment is given by

E[w∗(t∗)] =
n∑
i=1

E[w∗i (t
∗
i )].

As in the single investment case, the falling cost of data analytics raises leverage, which causes

higher losses during the crises. This holds for each investment i ∈ {1, 2, . . . , n}.
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C Omitted Proofs

C.1 Proof of Lemma 1

The payoff θ is constant but unknown, and the DM learns that from noisy observations dZt =

θdt+dBt. By the one dimensional Kalman-Bucy filter (see e.g. Øksendal (2003)), belief θ̂t = E[θ|Ft]

follows

dθ̂t = −stθ̂tdt+ stdZt, (9)

where the DM’s prior mean θ̂0 = E[θ|F0], and variance st = E[(θ− θ̂t)2|Ft] satisfies the (determin-

istic) Riccati equation dst
dt = −s2

t , where s0 is the prior variance. Solving the Riccati equation gives

st =
(
s−1

0 +
∫ t

0 1 ds
)−1

= s0
1+ts0

. By the dynamics of Zt and (9), we have

dθ̂t = st(dZt − θ̂tdt) = st(θ − θ̂t)dt+ stdBt,

which gives θ̂t = θ̂0 +
∫ t

0 sy(θ − θ̂y)dy +
∫ t

0 sy dBy. Therefore, we have

E[θ̂t] = θ̂0 + E

[∫ t

0
sy(θ − θ̂y)dy

]
= θ̂0 +

∫ t

0
E
[
sy(θ − θ̂y)

]
dy

= θ̂0 +

∫ t

0
E
[
E
[
sy(θ − θ̂y)|Fy

]]
dy = θ̂0 (since E[θ|Fy] = θ̂y).

Next we solve for the variance of θ̂t. By Ito’s lemma,

dθ̂2
t = 2θ̂tdθ̂t +

1

2
(2)(dθ̂t)

2 = 2θ̂tst(θ − θ̂t)dt+ 2stθ̂tdBt + s2
tdt,

which gives θ̂2
t = θ̂2

0 +
∫ t

0 2θ̂ysy(θ − θ̂y)dy +
∫ t

0 2sy θ̂ydBy +
∫ t

0 s
2
ydy. Then

E(θ̂2
t ) = θ̂2

0 + E

[∫ t

0
2θ̂ysy(θ − θ̂y)dy

]
+ E

[∫ t

0
s2
y dy

]
= θ̂2

0 +

∫ t

0
E
[
2θ̂ysy(θ − θ̂y)

]
dy + E

[∫ t

0
s2
y dy

]
= θ̂2

0 +

∫ t

0
E
[
E
[
2θ̂ysy(θ − θ̂y)|Fy

]]
dy +

s2
0t

1 + ts0

= θ̂2
0 +

∫ t

0
E
[
2θ̂ysyE

[
(θ − θ̂y)|Fy

]]
dy +

s2
0t

1 + ts0
= θ̂2

0 +
s2

0t

1 + ts0
.
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Therefore, V ar(θ̂t) =
s20t

1+ts0
and, unconditional on the signal outcome, θ̂t ∼ N(θ̂0,

s20t
1+ts0

). Hence,

θ = θ̂0 +

√
s20t

1+s0t
εt+
√
stε, where st = s0

1+ts0
, εt is Ft-measurable standard normal random variable, ε

is a standard normal variable with respect to informations F0 and Ft, and ε and εt are independent

with respect to information F0.

C.2 Proof of Lemma 3

By Lemma 1, θ = θ̂0 +

√
s20t

1+s0t
εt+
√
stε, where ε, εt ∼ N(0, 1) with respect to information F0, ε ⊥ εt,

st = s0
1+ts0

, and θ̂t = θ̂0 +

√
s20t

1+s0t
εt. Let z and x be the realized values of ε and εt, respectively.

Then we have with quantity t of analytics θ̂t = θ̂0 + x

√
s20t
s0t+1 and θ = θ̂0 + x

√
s20t
s0t+1 + z

√
s0

s0t+1 .

Further, the utility in the next period:

− exp [−γ (w∗ (θ − 1) + (κ− ct− w∗) (er − 1))]

= − exp

−γ
w∗

θ̂0 − 1 + x

√
s20t

s0t+ 1
+ z

√
s0

s0t+ 1

+ (er − 1) (κ− ct− w∗)

 .

To find the expected utility, we take the double integral over the entire domain R2 with respect to

the two normal PDFs:

1

2π

∫ ∞
−∞

∫ ∞
−∞
−e−

x2+z2

2 exp

−γ
(er − 1) (κ− ct− w∗) + w∗

θ̂0 − 1 + x

√
s20t

s0t+ 1
+ z

√
s0

s0t+ 1

 dzdx. (10)

We first evaluate the integral with respect to z:

∫ ∞
−∞
−e−

x2+z2

2 exp

−γ
(er − 1) (κ− ct− w∗) + w∗

θ̂0 − 1 + x

√
s20t

s0t+ 1
+ z

√
s0

s0t+ 1

 dz

=−
√

2πe−
x2

2 exp

−γ
(er − 1) (κ− ct− w∗) + w∗

θ̂0 − 1 + x

√
s20t

s0t+ 1

∫ ∞
−∞

e−
z2+2γw∗z

√
s0

s0t+1

2

√
2π

dz

=−
√

2π exp

γw∗er − γ(κ− ct)er +
γ2s0w∗

2

2s0t+ 2
− γw∗x

√
s20t

s0t+ 1
− γθ̂0w∗ + γ(κ− ct)−

x2

2

 . (11)

To evaluate the integral with respect to x, we determine the domain where the optimal investment

is positive. The optimal investment is given by

w∗ = max

{
θ̂t − er

γst
, 0

}
= max


(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
γs0

, 0

 .
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For w∗ to be positive, we need to have θ̂0−er+x

√
s20t
s0t+1 > 0, which gives x >

(
er − θ̂0

)√
s0t+1
s20t

:=

d(t). Hence, from (11) we get

1√
2π

∫ ∞
−∞
− exp

γw∗er − γ(κ− ct)er +
γ2s0w

∗2

2s0t+ 2
− γw∗x

√
s2

0t

s0t+ 1
− γθ̂0w

∗ + γ(κ− ct)− x2

2

 dx

=
1√
2π

∫ d(t)

−∞
− exp

γw∗er − γ(κ− ct)er +
γ2s0w

∗2

2s0t+ 2
− γw∗x

√
s2

0t

s0t+ 1
− γθ̂0w

∗ + γ(κ− ct)− x2

2

 dx

+
1√
2π

∫ ∞
d(t)

− exp

γw∗er − γ(κ− ct)er +
γ2s0w

∗2

2s0t+ 2
− γw∗x

√
s2

0t

s0t+ 1
− γθ̂0w

∗ + γ(κ− ct)− x2

2

 dx.

The first part
(∫ d(t)
−∞

)
is evaluate as follows:

1√
2π

∫ d(t)

−∞
− exp

γw∗er − γ(κ− ct)er +
γ2s0w

∗2

2s0t+ 2
− γw∗x

√
s2

0t

s0t+ 1
− γθ̂0w

∗ + γ(κ− ct)− x2

2

 dx

=
1√
2π

∫ d(t)

−∞
−e−γ(κ−ct)er+γ(κ−ct)− x

2

2 dx = −eγ(κ−ct)(1−er)Φ(d(t)).

The second part
(∫∞

d(t)

)
is evaluated by using w∗ = 1

γs0
(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
, and using

two substitutions, y = x
√

1 + s0t and Y = y + (θ̂0 − er)
√
t, and standard techniques of evaluating

expectations of normal distributions. These give

1√
2π

∫ ∞
d(t)

− exp

γw∗er − γ(κ− ct)er +
γ2s0w

∗2

2s0t+ 2
− γw∗x

√
s2

0t

s0t+ 1
− γθ̂0w

∗ + γ(κ− ct)− x2

2

 dx

= −
Φ
(
−d(t)√
s0t+1

)
exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0(κ−ct)(er−1)

2s0

)
√
s0t+ 1

.

Hence, the expected utility is given by

u∗(t) = −eγ(κ−ct)(1−er)Φ(d(t))−
Φ
(
−d(t)√
s0t+1

)
exp

(
− θ̂2

0+e2r−2θ̂0er+2γs0(κ−ct)(er−1)
2s0

)
√
s0t+ 1

,

where d(t) =
(
er − θ̂0

)√
s0t+1
s20t

.

C.3 Proof of Proposition 1

This proof has two parts. In the first part, we derive u∗(0) directly from the definition. In the

second part, we show that u∗(t) is continuous at t = 0.
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(i) Let t = 0, so that θ̂0 = θ̂0, s0 = s0, and θ = θ̂0 +
√
s0z, where z is the outcome of the standard

normal variable. This gives the utility in the next period as− exp
(
−γ
[
w∗
(
θ̂0 − 1 + z

√
s0

)
+ (er − 1) (κ− w∗)

])
,

where w∗ = max
{
θ̂0−er
γs0

, 0
}

. To calculate the expected utility, we integrate over the standard

normal PDF:

1√
2π

∫ ∞
−∞
−e− z

2

2 exp
(
−γ
[
(er − 1) (κ− w∗) + w∗

(
θ̂0 − 1 + z

√
s0

)])
dz

= −e−γ(w
∗θ̂0+κe

r−κ−w∗er)+ γ2w∗2s0
2 =


− exp

(
− θ̂

2
0+e

2r−2θ̂0er+2γs0κ(e
r−1)

2s0

)
if θ̂0 > er

−e−γκ(er−1) if θ̂0 ≤ er

(ii) Let t ↓ 0 in the expected utility u∗(t). Observe that, by Lemma 3, in u∗(t) we have:

lim
t↓0

d(t) = lim
t↓0

(
er − θ̂0

)√s0t+ 1

s2
0t

=


−∞ if θ̂0 > er

0 if θ̂0 = er

+∞ if θ̂0 < er

and

lim
t↓0

−d(t)√
s0t+ 1

= lim
t↓0

(
er − θ̂0

) −1√
s2

0t
=


+∞ if θ̂0 > er

0 if θ̂0 = er

−∞ if θ̂0 < er

Then we have:

lim
t↓0

u∗(t) = lim
t↓0
−eγ(κ−ct)(1−er)Φ(d(t))− lim

t↓0

Φ
(
−d(t)√
s0t+1

)
exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0(κ−ct)(er−1)

2s0

)
√
s0t+ 1

=


−eγκ(1−er)Φ(−∞)− Φ (+∞) exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0κ(er−1)

2s0

)
if θ̂0 > er

−eγκ(1−er)Φ(0)− Φ (0) exp (−γκ (er − 1)) if θ̂0 = er

−eγκ(1−er)Φ(+∞)− Φ (−∞) exp
(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0κ(er−1)

2s0

)
if θ̂0 < er

=


− exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0κ(er−1)

2s0

)
if θ̂0 > er

−e−γκ(er−1) if θ̂0 ≤ er
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Therefore, the value of data analytics u∗(t)− u∗(0) is given by



−eγ(κ−ct)(1−er)Φ(d(t)) +
(

1− eγct(e
r−1)

√
s0t+1

Φ
(
θ̂0−er

s0
√
t

))
exp

(
− θ̂

2
0+e2r−2θ̂0e

r+2γs0κ(er−1)

2s0

)
if θ̂0 > er

eγκ(1−er)
(

1− eγct(e
r−1)

2

(
1 + 1√

s0t+1

))
if θ̂0 = er

eγκ(1−er)
(

1− eγct(e
r−1)Φ(d(t))

)
−

Φ

(
θ̂0−e

r

s0
√
t

)
exp

(
−
θ̂20+e2r−2θ̂0e

r+2γs0(κ−ct)(er−1)
2s0

)
√
s0t+1

if θ̂0 < er

C.4 Proof of Proposition 2

Here we consider three cases: The no negative investment constraint is not binding, the marginal

value v′ is not continuous in θ̂0 (by Corollary 1, there is discontinuity when t = 0 and θ̂0 = er), and

the no negative investment constraint is binding.

(i) θ̂0 > er: The second derivative of the value function is as follows:

v′′ =
eγ(er−1)(ct−κ)

8t2 (s0t+ 1) 7/2

(
− 8c2t2γ2 (er − 1)2 (s0t+ 1) 7/2Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)

− 2s2
0t

2(s0t+ 1)e
−

(er−θ̂0)2
2s0 Φ


(
θ̂0 − er

)
s0

√
t

([2cγ (er − 1)

(
s0t+ 1

s0

)
− 1

]2

+ 2

)

+

√
2t

π

(
er − θ̂0

)
(s0t+ 1)2 e

−
(er−θ̂0)2(s0t+1)

2s20t

)
.

Hence, v′′ < 0 for all t > 0.

(ii) θ̂0 = er: Take the second derivative of the value function as follows:

v′′ =
eγ(er−1)(ct−κ)

8(s0t+ 1)5/2

(
− 4c2γ2 (er − 1)2 (s0t+ 1)5/2

− [2cγ (er − 1) + s0 (2cγ (er − 1) t− 1)]2 − 2s2
0

)
.

Again, v′′ < 0 for all t > 0.

(iii) θ̂0 < er: v(0) = 0 and v′(0) < 0. This means that there exists an interval (0, ε) such that

for all tε ∈ (0, ε), v(tε) < 0. If c < cCH , then v(t) > 0 in some region, and by continuity,

there exists a t0 such that v(t0) = 0 and t0 > tε. By the Mean Value Theorem, there exists

a d ∈ (tε, t0) such that v′(d) = v(t0)−v(tε)
t0−tε = −v(tε)

t0−tε > 0. Applying the Mean Value Theorem

again, there exists an e ∈ (0, d) such that v′′(e) = v′(d)−v′(0)
d−0 = v′(d)−v′(0)

d > 0. Hence, v(t) is

not globally concave if c < cCH and θ̂0 < er.
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C.5 Proof of Proposition 3

The value of data analytics v(t; θ̂0) is nonzero if t > 0.

(i) θ̂0 > er: We have:

∂v

∂θ̂0

= eγ(κ−ct)(1−er)φ(d(t))

√
s0t+ 1

s2
0t

(12)

− eγct(e
r−1)

s0

√
t
√
s0t+ 1

φ

(
θ̂0 − er

s0

√
t

)
exp

(
− (θ̂0 − er)2

2s0
− γκ(er − 1)

)

+
er − θ̂0

s0

(
1− eγct(e

r−1)

√
s0t+ 1

Φ

(
θ̂0 − er

s0

√
t

))
exp

(
− (θ̂0 − er)2

2s0
− γκ(er − 1)

)
.

Let c <CH . Then for v(t; θ̂0) ≥ 0, we need 1− eγct(e
r−1)

√
s0t+1

Φ
(
θ̂0−er
s0
√
t

)
> 0, and s0 > 2cγ(er − 1),

otherwise v(t; θ̂0) is negative by concavity (see Corollary 1 and Proposition 2). Let us consider

the first and third terms in (12):

eγ(κ−ct)(1−er)φ(d(t))

√
s0t+ 1

s2
0t

+
er − θ̂0

s0

(
1− eγct(e

r−1)

√
s0t+ 1

Φ

(
θ̂0 − er

s0

√
t

))
e
− (θ̂0−e

r)2

2s0
−γκ(er−1)

=e
− (θ̂0−e

r)2

2s0
−γκ(er−1)

(√
s0t+ 1

s0

√
2πt

e
− (θ̂0−e

r)2

2s20t
+γct(er−1)

+
er − θ̂0

s0

[
1− eγct(e

r−1)

√
s0t+ 1

Φ

(
θ̂0 − er

s0

√
t

)])

=e
− (θ̂0−e

r)2

2s0
−γκ(er−1)

G(θ̂0),

which implicitly defines term G(θ̂0). Then the sign of the sum of the first and third terms in

(12) is the sign of G(θ̂0), G(er) > 0, lim
θ̂0→∞

G(θ̂0) < 0, and G(θ̂0) is continuous for θ̂0 > er. By

the Intermediate Value Theorem, G(θ̂0) = 0 at least once. Let θ̂i0 be such that G(θ̂i0) = 0,

where i ∈ {1, 2, . . . }. Taking derivative with respect to θ̂0, we have:

∂G(θ̂0)

∂θ̂0
=

(
er − θ̂0
s20t

) √
s0t+ 1

s0
√

2πt
e
− (θ̂0−e

r)2

2s20t
+γct(er−1)

−
1

s0

(
1−

eγct(e
r−1)

√
s0t+ 1

Φ

(
θ̂0 − er

s0
√
t

))

−
er − θ̂0
s20
√
t

eγct(e
r−1)

√
s0t+ 1

φ

(
θ̂0 − er

s0
√
t

)

∂G(θ̂i0)

∂θ̂0
=

(
er − θ̂i0
s20t

) √
s0t+ 1

s0
√

2πt
e
−

(θ̂i0−e
r)2

2s20t
+γct(er−1)

−
1

s0

(
1−

eγct(e
r−1)

√
s0t+ 1

Φ

(
θ̂i0 − er

s0
√
t

))

−
er − θ̂i0
s20
√
t

eγct(e
r−1)

√
s0t+ 1

φ

(
θ̂i0 − er

s0
√
t

)

=
1
√

2π
e
−

(θ̂i0−e
r)2

2s20t
+γct(er−1)

(
er − θ̂i0
s20
√
t

)(
1

s0t
√
s0t+ 1

)
−

1

s0

(
1−

eγct(e
r−1)

√
s0t+ 1

Φ

(
θ̂i0 − er

s0
√
t

))
.

Hence,
∂G(θ̂i0)

∂θ̂0
< 0. Since G(er) > 0 and lim

θ̂0→∞
G(θ̂0) = −∞, then there is only one θ̂i0 with

G(θ̂i0) = 0, and let ς = θ̂1
0. Then when θ̂0 > ς, G(θ̂0) < 0 and, therefore, ∂v

∂θ̂0
< 0 in (12).

43



(ii) θ̂0 < er: We have:

∂v
∂θ̂0

=
√
t√

1+s0t
exp

(
− (θ̂0−er)2

2s0
− γ(κ− ct)(er − 1)

) [
φ
(
er−θ̂0
s0
√
t

)
− er−θ̂0

s0
√
t

Φ
(
θ̂0−er
s0
√
t

)]
. The sign of

∂v
∂θ̂0

depends on the term in the square brackets. Let X = θ̂0−er
s0
√
t

and F (X) = φ(X) +XΦ(X).

F is smooth, F (0) = 0, and dF
dX = Φ(X) > 0. So, F (X) is increasing in X for all X ≥ 0,

which implies ∂v
∂θ̂0

> 0.

(iii) It is easy to see that limθ̂0→∞ v
′(t; θ̂0) = 0 for all t ≥ 0. Since v(0; θ̂0) = 0, we have:

lim
θ̂0→∞

v(t; θ̂0) = lim
θ̂0→∞

v(0; θ̂0) + lim
θ̂0→∞

∫ t

0
v′(y; θ̂0)dy = 0.

C.6 Proof of Theorem 2

(i) (3) and (4) are independent of κ. Hence t∗ is independent of κ.

(ii) Let c < cCH so that t∗ > 0.

(a) θ̂0 > er: Let f(t) be the left hand side of (3) and t∗ ∈ (0,∞) such that f(t∗) = 0. We

have:

∂f

∂t∗
=

(
er − θ̂0

)
φ
((
er − θ̂0

)√
(s0t+1)

s20t

)
2t3/2

− 2cγ (er − 1) s0e
−

(er−θ̂0)2
2s0 Φ

(
θ̂0 − er

s0

√
t

)

− 3cγ (er − 1) s0

√
s0t+ 1Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)
∂f

∂c
=− 2γ (er − 1) (1 + s0t)

[
(s0t+ 1)1/2Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)

+ e
−

(er−θ̂0)2
2s0 Φ

(
θ̂0 − er

s0

√
t

)]
∂f

∂γ
=− 2c (er − 1) (1 + s0t)

[
(s0t+ 1)1/2Φ

((
er − θ̂0

)√s0t+ 1

s2
0t

)

+ e
−

(er−θ̂0)2
2s0 Φ

(
θ̂0 − er

s0

√
t

)]
.
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(b) θ̂0 = er: Let f(t) be the left hand side of (4) and t∗ ∈ (0,∞) such that f(t∗) = 0. Then

we have:

∂f

∂t∗
=− cγ (er − 1) s0 −

3

2
cγ (er − 1) s0

√
s0t+ 1

∂f

∂c
=− γ (er − 1) (s0t+ 1)3/2 − γ (er − 1) (s0t+ 1)

∂f

∂γ
=− c (er − 1) (s0t+ 1)3/2 − c (er − 1) (s0t+ 1).

Hence, in both cases (a) and (b), ∂f
∂c < 0, ∂f

∂γ < 0, ∂f
∂t∗ < 0, and v(t) is strictly concave, thus

admits an unique maximum. By the Implicit Function Theorem, we have ∂t∗

∂c = −
∂f
∂c
∂f
∂t∗

< 0

and ∂t∗

∂γ = −
∂f
∂γ
∂f
∂t∗

< 0.

C.7 Proof of Proposition 4

We consider two cases:

(i) c ≤ cCH : From (2) we get

E [w∗(t∗)] =E

[
max

{
θ̂t∗ − er

γst∗
, 0

}]
= E

max

 (θ̂0 + εt

√
s20t
∗

s0t∗+1
− er)(1 + s0t

∗)

γs0
, 0




=

∫ ∞
−∞

max

 (θ̂0 + x

√
s20t
∗

s0t∗+1
− er)(1 + s0t

∗)

γs0
, 0

 1√
2π
e−

x2

2 dx.

Condition w∗(t∗) > 0 corresponds to θ̂0 − er + x

√
s20t
∗

s0t∗+1 > 0, which can be written as

x >
(
er − θ̂0

)√
s0t∗+1
s20t
∗ := d∗. Hence,

∫ ∞
−∞

max

(θ̂0 + x

√
s20t
∗

s0t∗+1 − e
r)(1 + s0t

∗)

γs0
, 0

 1√
2π
e−

x2

2 dx

=

∫ ∞
d∗

(θ̂0 + x

√
s20t
∗

s0t∗+1 − e
r)(1 + s0t

∗)

γs0

1√
2π
e−

x2

2 dx

=
(θ̂0 − er)(1 + t∗s0)

γs0
Φ(−d∗) +

√
t∗
√

1 + s0t∗

γ

∫ ∞
d∗

x√
2π
e−

x2

2 dx

=
(θ̂0 − er)(1 + t∗s0)

γs0
Φ(−d∗) +

√
t∗
√

1 + s0t∗

γ

[
− 1√

2π
e−

x2

2

]∞
d∗

=
(θ̂0 − er)(1 + t∗s0)

γs0
Φ(−d∗) +

√
t∗
√

1 + s0t∗

γ
φ(d∗).
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(ii) c > cCH : t∗ = 0, hence w∗ = max
{
θ̂0−er
γs0

, 0
}

= θ̂0−er
γs0

if θ̂0 > er, and otherwise w∗ = 0.

To find the expected leverage, we consider the values of x such that

1

γs0

θ̂0 + x

√
s2

0t
∗

s0t∗ + 1
− er

 (1 + s0t
∗) > κ− ct∗,

which gives x >
(

(κ−ct∗)γs0
1+s0t∗

+ er − θ̂0

)√
s0t∗+1
s20t
∗ := b∗. Hence, the expected leverage:

E[max {w∗(t∗) + ct∗ − κ, 0}]

=E

max

max

(θ̂0 + ε2

√
s20t
∗

s0t∗+1 − e
r)(1 + s0t

∗)

γs0
, 0

+ ct∗ − κ, 0




=

∫ ∞
b∗

(θ̂0 + x

√
s20t
∗

s0t∗+1 − e
r)(1 + s0t

∗)

γs0
+ ct∗ − κ

 1√
2π
e−

x2

2 dx

=

(
(θ̂0 − er)(1 + t∗s0)

s0γ
+ ct∗ − κ

)
Φ (−b∗) +

√
t∗ + s0(t∗)2

γ
φ (b∗) .

C.8 Proof of Theorem 3

(i) S1: The expected profit and loss is given by

E[w∗(t∗)](S1 − 1) + (κ− ct∗ − E[w∗(t∗)])(er − 1).

By taking derivative with respect to S1, we get ∂E[Profit]
∂S1

= E[w∗(t∗)]. This is the slope of the

profit and loss line in Figure 12a. Note that the slope is positive. By Proposition 4, ∂E[w∗(t∗)]
∂c

is given by

θ̂0 − er

γ
Φ

 (θ̂0 − er)
√

1
t∗ + s0

s0

 ∂t∗

∂c
+ φ

 (er − θ̂0)
√

1
t∗ + s0

s0

 1 + 2s0t
∗

2γ
√
t∗ + s0(t∗)2

∂t∗

∂c

for c < cCH . Since ∂E[w∗(t∗)]
∂c is negative for θ̂0 > er, the slope of the expected profit and loss

line increases with falling cost of data analytics. So, the expected profit and loss lines with

different costs are not parallel. Let S̄1 be the shock value, where the two lines corresponding

to high cost ch and low cost cl intersect. S̄1 exists and is unique because non-parallel lines

intersect at one point. Hence, decreasing cost from ch to cl results in an anti-clockwise rotation
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of the expected profit and loss line, and for all S1 < S̄1, the lower cost of analytics results in

higher losses.

(ii) S2: The expected profit and loss is given by

E[w∗(t∗)](θ̂0 − S2
√
st∗ − 1) + (κ− ct∗ − E[w∗(t∗)])(er − 1).

Taking derivative with respect to S2, we have

∂E[Profit]

∂S2
= −E[w∗(t∗)]

√
st∗ = −E[w∗(t∗)]

√
s0√

1 + s0t∗
.

This is again the slope of the profit and loss line in Figure 12b. Note that the slope is negative.

Taking derivative with respect to c we get

−
(θ̂0 − er)

√
s0

2γ
√

1 + s0t∗
Φ

 (θ̂0 − er)
√

1
t∗ + s0

s0

 ∂t∗

∂c
− φ

 (er − θ̂0)
√

1
t∗ + s0

s0

 √
s0

2
√
t∗γ

∂t∗

∂c
(13)

for c < cCH . Since (13) is positive for θ̂0 > er, the slope of the expected profit and loss

line decreases with falling cost of data analytics. So, the expected profit and loss lines with

different costs are not parallel. Let S̄2 be the shock value where the two lines corresponding

to high cost ch and low cost cl intersect. S̄2 exists and is unique because non-parallel lines

intersect at one point. Hence, decreasing cost from ch to cl results in a clockwise rotation of

the expected profit and loss line, and for all S2 > S̄2, lower cost of analytics results in high

losses.

C.9 Proof of Lemma 7

The proof is similar to that of Lemma 3. The expected utility without leverage is

u∗NL(t) = E [− exp(−γ(w∗NL(θ − 1) + (κ− ct− w∗NL)(er − 1)))] =

1

2π

∫ ∞
−∞

∫ ∞
−∞
−e−

x2+z2

2 exp

−γ
(er − 1) (κ− ct− w∗NL) + w∗NL

θ̂0 − 1 + x

√
s20t

s0t+ 1
+ z

√
s0

s0t+ 1

 dzdx. (14)
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We first evaluate the integral with respect to z, which gives the same form as in (11) in the proof

of Lemma 3:

∫ ∞
−∞
−e−

x2+z2

2 exp

−γ
(er − 1) (κ− ct− w∗NL) + w∗NL

θ̂0 − 1 + x

√
s20t

s0t+ 1
+ z

√
s0

s0t+ 1

 dz

=−
√

2πe−
x2

2 exp

−γ
(er − 1) (κ− ct− w∗NL) + w∗NL

θ̂0 − 1 + x

√
s20t

s0t+ 1

∫ ∞
−∞

e−
z2+2γw∗NLz

√
s0

s0t+1

2

√
2π

dz

=−
√

2π exp

γw∗NLer − γ(κ− ct)er +
γ2s0w∗NL

2

2s0t+ 2
− γw∗NLx

√
s20t

s0t+ 1
− γθ̂0w∗NL + γ(κ− ct)−

x2

2

 . (15)

To evaluate the integral with respect to x, we determine the domain where the optimal investment

without leverage is positive, as well as where the leverage constraint is binding. The optimal

investment without leverage is given by

w∗NL = min

{
max

{
θ̂t − er

γst
, 0

}
, κ− ct

}

= min

max


(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
γs0

, 0

 , κ− ct

 .

Define d(t) :=
√
s0t+1(er−θ̂0)

s0
√
t

and D(t) := d(t)+ (κ−ct)γ√
t
√
s0t+1

. If x < d(t) then w∗NL = 0, and if x > D(t)

then w∗NL = κ− ct. Hence, dividing (15) by 2π (because earlier we moved 1/2π out of the integrals

in (10) and (14)) and integrating over the domain give

1
√

2π

∫ ∞
−∞
− exp

γw∗NLer − γ(κ− ct)er +
γ2s0w∗NL

2

2s0t+ 2
− γw∗NLx

√
s20t

s0t+ 1
− γθ̂0w∗NL + γ(κ− ct)−

x2

2

 dx

=
1
√

2π

∫ d

−∞
− exp

(
−γ(κ− ct)er + γ(κ− ct)−

x2

2

)
dx

+
1
√

2π

∫ D

d
− exp

γw∗NLer − γ(κ− ct)er +
γ2s0w∗NL

2

2s0t+ 2
− γw∗NLx

√
s20t

s0t+ 1
− γθ̂0w∗NL + γ(κ− ct)−

x2

2

 dx

+
1
√

2π

∫ ∞
D
− exp

γ2s0(κ− ct)2

2s0t+ 2
− γ(κ− ct)x

√
s20t

s0t+ 1
+ γ(κ− ct)(1− θ̂0)−

x2

2

 dx. (16)

Simplifying the integrals by using the normal CDF gives the result.

C.10 Proof of Corollary 5

(i) From the derivation of the expected utility without leverage in Lemma 7, we know that the

integration the expected utilities with and without leverage are the same for the first iterated
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integral given by (11), except with w∗ replaced by w∗NL. If t = 0, then the expected utilities

are given by this first iterated integral. Further, in this case if the leverage constraint is not

binding, then w∗NL = w∗ and the expected utilities are equal.

(ii) Continuing from (i), if t > 0 then integrating with respect to x in the region
∫ D(t)
−∞ · dx for

(11) and (15) gives the same result and we only need to compare the region
∫∞
D(t) · dx, where

D(t) =
√
s0t+1(er−θ̂0)

s0
√
t

+ (κ−ct)γ√
t
√
s0t+1

. In this region, w∗ ≥ κ − ct and w∗NL = κ − ct due to the

financial constraint. Note that w∗ = 1
γs0

(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
is increasing with

respect to x and

w∗NL = min

{
1
γs0

(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
, κ− ct

}
. The integrand is

− 1√
2π

exp

γwer − γ(κ− ct)er +
γ2s0w

2

2s0t+ 2
− γwx

√
s2

0t

s0t+ 1
− γθ̂0w + γ(κ− ct)− x2

2

 .

and consider the terms involving w in the exponent:

γwer +
γ2s0w

2

2s0t+ 2
− γwx

√
s2

0t

s0t+ 1
− γθ̂0w =

γ2s0w
2

2s0t+ 2
− γw

θ̂0 − er + x

√
s2

0t

s0t+ 1



=
s0γ

2

2(s0t+ 1)


w − (s0t+1)

(
θ̂0−er+x

√
s20t

s0t+1

)
γs0


2

−

 (s0t+1)

(
θ̂0−er+x

√
s20t

s0t+1

)
γs0


2 .

which is always larger for w = w∗NL = κ− ct than for w = w∗ =

1
γs0

(s0t+ 1)

(
θ̂0 − er + x

√
s20t
s0t+1

)
. Hence,

∫ ∞
D
− exp

γw∗NLer − γ(κ− ct)er +
γ2s0w∗NL

2

2s0t+ 2
− γw∗NLx

√
s20t

s0t+ 1
− γθ̂0w∗NL + γ(κ− ct)−

x2

2

 dx

<

∫ ∞
D
− exp

γw∗er − γ(κ− ct)er +
γ2s0w∗

2

2s0t+ 2
− γw∗x

√
s20t

s0t+ 1
− γθ̂0w∗ + γ(κ− ct)−

x2

2

 dx,

and the expected utility without leverage is strictly lower than the expected utility with

leverage.

C.11 Proof of Corollary 6

Since v(t) = u∗(t)−u∗(0) and vNL(t) = u∗NL(t)−u∗NL(0), we only need to consider u∗(t) and u∗NL(t)

when differentiating v(t) with respect to t. Further, comparing u∗(t) with u∗NL(t) and removing
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terms that are equal, for u∗NL(t) we need to focus only on the derivatives of

−
exp

(
−(θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)
Φ
(
er−θ̂0
s0
√
t

+ γ(κ−ct)√
t

)
√
s0t+ 1

and

−e
γ2(κ−ct)2s0

2
+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er

)
s0

√
t

− γ(κ− ct)
√
s0t+ 1√

t

 ;

and for u∗(t) the derivative of

−
exp

(
−(θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)
√
s0t+ 1

.

Let us consider the term for u∗(t) minus the two terms for u∗NL(t), and take derivative with respect

to t. This gives

(s0 − 2cγ (er − 1) (1 + s0t))
(

1− Φ
(
er−θ̂0+γs0(κ−ct)

s0
√
t

))
exp

(
γ (er − 1) (ct− κ)− (er−θ̂0)2

2s0

)
2(s0t+ 1)3/2

+

cγs0

√
t exp

(
− (θ̂0−er)

2
+2γ(κ−ct)s0(er−1)

2s0

)
√
s0t+ 1

φ

(
er − θ̂0 + s0γ(κ− ct)

s0

√
t

)

+cγ(θ̂0 − 1− γs0(κ− ct))e
γ2(κ−ct)2s0

2
+γ(κ−ct)(1−θ̂0)Φ

√s0t+ 1
(
θ̂0 − er − γs0(κ− ct)

)
s0

√
t

 . (17)

If θ̂0 > Θ then the term (θ̂0−1−γs0(κ−ct)) in (17) is postive. If c < cCH , then s0 > 2cγ(er−1) and

the marginal value of data analytics with leverage in Lemma 4 and the term s0−2cγ(er−1)(s0t+1)

in (17) are positive for all t ∈
(

0, s0−2cγ(er−1)
2s0cγ(er−1)

)
. Hence, (17) is positive.

C.12 Proof of Proposition 7

The proof is similar to Proposition 4, with one addition region in the integration. That is, to find

the expectation, the integral
∫∞
−∞ is divided to

∫ d∗
−∞+

∫ D∗
d∗ +

∫∞
D∗ , where d∗ :=

(er−θ̂0)
√

1
t∗+s0

s0
and

D∗ := d∗ + (κ−ct)γ√
t∗
√
s0t∗+1

. The result is obtained by direct integration.
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