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Abstract

We examine how extreme market risks are priced in the cross-section of asset returns at
various horizons. Based on the frequency decomposition of covariance between indicator
functions, we define the quantile cross-spectral beta of an asset capturing tail-specific as
well as horizon-, or frequency-specific risks. Further, we work with two notions of frequency-
specific extreme market risks. First, we define tail market risk that captures dependence
between extremely low market as well as asset returns. Second, extreme market volatility
risk is characterized by dependence between extremely high increments of market volatility
and extremely low asset return. Empirical findings based on the datasets with long enough
history, 30 Fama-French Industry portfolios, and 25 Fama-French portfolios sorted on size
and book-to-market support our intuition. Results suggest that both frequency-specific tail
market risk and extreme volatility risks are significantly priced and our five-factor model
provides improvement over specifications considered by previous literature.
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1 Introduction

Classical result of asset pricing literature states that price of an asset should be equal to its
expected discounted payoff. In the Capital Asset Pricing Model (CAPM) introduced by [Sharpe
(1964)), [Lintner| (1965), [Black! (1972), we assume that stochastic discount factor can be approxi-
mated by return on market portfolio and thus expected excess returns can be fully described by
their market betas based on covariance between asset return and market return. Yet, decades
of the consequent research show that we are unable to sufficiently explain the cross-section of
asset returns with this notion. Instead, literature calls for more accurate characterization of
risks associated with assets that will better reflect preferences of investors. We aim to show
that in order to understand formation of expected returns, one has to look into some special
features of asset returns that are crucial in terms of preferences of a representative investor. We
argue that the two important features are risk related to tail events, and frequency-specific risk.

*Note that this is the first draft of the paper.
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To characterize the risks, we derive novel quantile cross-spectral representation of beta. Our
work nests classical representation that simply averages beta with equal weights over different
quantile levels, as well as frequencies.

Economists has long recognized that decisions under risk are more sensitive to changes in
probability of possible extreme events compared to probability of a typical event. The expected
utility might not reflect this behavior since it weights probability of outcomes linearly. Conse-
quently, CAPM beta as an aggregate measure of risk may fail to explain the cross-section of
asset returns. Several alternative notions emerged in the literature. [Mao| (1970) presents survey
evidence showing that decision makers tend to think of risk in terms of the possibility of out-
comes below some target. For an expected utility maximizing investor, [Bawa and Lindenberg
(1977) has provided a theoretical rationale for using lower partial moment as a measure of port-
folio risk. Based on the rank-dependent expected utility due to Yaari| (1987), Polkovnichenko
and Zhao| (2013) introduce utility with probability weights and derive corresponding pricing
kernel. More recently, |Ang et al.| (2006); Lettau et al.| (2014)) argue that downside risk — risk of
negative returns — is priced across asset classes and is not captured by CAPM betas. Further,
Farago and Tédongap (2017)) extend the results using general equilibrium model based on gen-
eralized disappointment aversion and shows that downside risks in terms of market return and
market volatility are priced in the cross-section of asset returnsE]

The results described above leads us to question appropriateness of the expected utility
maximizers in asset pricing. A recent strand of literature solves the problem by considering
quantile of the utility instead of expectation. This literature complements the literature focusing
on downside risk as it highlights the notion of economic agents particularly averse to outcomes
below some threshold compared to outcomes above this threshold. The concept of a quantile
maximizer and its features was proposed by |[Manski (1988)), and later axiomatized by Rostek
(2010). Most recently, |de Castro and Galvao| (2017)) develop a model of quantile optimizer
in a dynamic setting. A different approach to emphasizing investor’s aversion towards least
favorable outcomes defines theory based on Choquet expactations. This approach is based
on distortion function that alters probability distribution of future outcomes by accentuating
probabilities associated with least desirable outcomes. This approach was utilized in finance,
for example, by Bassett Jr et al.| (2004]).

Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of investors
to tail risk, aggregating linearly weighted outcomes over various frequencies, or economic cycles
may not reflect risk specific to different investment horizons. One can suspect that an investor
cares differently about short-term and long-term risk according to their preferred investment
horizon. Distinguishing between long-term and short-term dependence between economic vari-
ables was proven to be an insightful approach since the introduction of co-integration (Engle
and Granger, 1987)). Frequency decomposition of risk thus uncovers another important fea-
ture of risk which cannot be captured solely by market beta which captures risk averaged over
all frequencies. This recent approach to asset pricing enables to shed light on asset returns
and investor’s behaviour from a different point of view highlighting heterogeneous preferences.

In addition, it is interesting to note that equity and variance risk premium are also associated with com-
pensation for jump tail risk (Bollerslev and Todorov, 2011). More general exploration of asymmetry of stock
returns is provided by |Ghysels et al.| (2016)), who propose a quantile-based measure of conditional asymmetry
and show that stock returns from emerging markets are positively skewed. |Conrad et al.| (2013) use option
price data and find a relation between stock returns and their skewness. Another notable approach uses high
frequency data to define realized semivariance as a measure of downside risk (Barndorfi-Nielsen et al.| 2008]).
From a risk-measure standpoint, dealing with negative events, especially rare events, is highly discussed theme
in both practice and academics. The most prominent example is Value-at-Risk (Adrian and Brunnermeier} 2016;
Engle and Manganelli, 2004)).



Empirical justification is brought by Boons and Tamoni| (2015 and Bandi and Tamoni| (2017))
who show that exposure in long-term returns to innovations in macroeconomic growth and
volatility of matching half-life is significantly priced in variety of asset classes. The results are
based on decomposition of time series into components of different persistence proposed by
Ortu et al| (2013). [Piccotti (2016) further sets portfolio optimization problem into frequency
domain using matching of utility frequency structure and portfolio frequency structure, and
Chaudhuri and Lo (2016]) present approach to constructing mean-variance-frequency optimal
portfolio. This optimization yields mean-variance optimal portfolio for a given frequency band,
and thus optimizes portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by [Epstein and Zin! (1989)) enables to
study frequency aspects of investor’s preferences, and quickly became a standard in the asset
pricing literature. With the important results of Bansal and Yaron| (2004), long-run risk started
to enter asset pricing discussions. |Dew-Becker and Giglio| (2016) investigate frequency-specific
prices of risk for various models and conclude that cycles longer than business cycle are signif-
icantly priced in the market. Other papers utilizes frequency domain and Fourier transform to
facilitate estimation procedures for parameters hard to estimate using conventional approaches.
Berkowitz| (2001) generalizes band spectrum regression and enables to estimate dynamic ratio-
nal expectations models matching data only in particular ways, for example, forcing estimated
residuals to be close to white noise. Dew-Becker| (2016) proposes spectral density estimator of
long-run standard deviation of consumption growth, which is a key component for determining
risk premiums under Epstein-Zin preferences, and shows its superior performance compared to
the previous approaches. (Crouzet et al| (2017) develop model of multi-frequency trade set in
frequency domain and show that restricting trading frequencies reduces price informativeness
at those frequencies, reduces liquidity and increases return volatility.

The debate clearly indicates that the standard assumptions leading to classical asset pricing
models do not correspond with reality. In this paper, we suggest that more general pricing
models have to be defined and they should take into consideration both asymmetry of depen-
dence structure among stock market, and different behavior of investors at various investment
horizons.

The main contribution of this paper is twofold. First, based on the frequency decomposition
of covariance between indicator functions, we define the quantile cross-spectral beta of an asset
capturing tail-specific as well as frequency-specific risks. The newly defined notion of beta can
be viewed as disaggregation of a classical beta to a frequency-, and tail- specific beta. With this
notion, we examine how extreme market risks are priced in the cross-section of asset returns
at various horizons. We define frequency-specific tail market risk that captures dependence
between extremely low market and asset returns, as well as extreme market volatility risk
that is characterized by dependence between extremely high increments of market volatility
and extremely low asset return. Second, based on the quantile cross-spectral betas, we define
five-factor model that provides considerable improvements in explaining cross-section of asset
returns. Results on a 30 Fama-French Industry portfolios, and 25 Fama-French portfolios sorted
on size and book-to-market suggest extreme market risk is priced in cross section of asset returns
and it is differently priced for long and short horizon. This extreme market risk is characterized
by the risk of extremely low returns or extremely high volatility.

The rest of the paper has the following structure. Section [2] introduces concept of quantiles
cross-spectral betas later employed in defining empirical models. Section [3|defines the empirical
models used for testing significance of extreme risks. Section [4] conducts the empirical analysis
of the extreme risks and provides definition of tested robustness checks. Section [5| concludes.
In Appendix we report some robustness checks and give details on estimating quantile cross-



spectral betas.

2 A notion of quantile-frequency risks

Our goal is to show that extreme risk is priced in cross-section of asset returns. Specifically, we
focus on two types of extreme risk: tail market risk, and extreme volatility risk. Further, we
are interested to decompose the tail risks into frequencies to be able to define short- and long-
run extreme risks. We start the discussion with theoretical motivation followed by definition
of quantile risk measure based on covariance between indicator functions, which has natural
economic interpretation in terms of probabilities. Finally, we introduce frequency decomposi-
tion, and combine these two frameworks into quantile cross-spectral risk measure, which is the
building blocks for our empirical model.

2.1 Quantile-specific (tail) risk

We propose to generalize the concept of |Gul (1991) and his rational disappointment aversion
utility function in the way that the strength of investor’s preferences vary through the whole
distribution of future wealth W, thus the utility can be characterized by the following functional
form

n Qi+1
UraV) = 34 [ u(w)dF(w (1)
i=0 i

where U(W) is utility of a random variable W, Q = (—o0, Q1, ..., Qn,0)" is a column vector
of predefined threshold values which characterizes different parts of distribution over which the

preferences vary, A = (1, Ay, ..., A,)" is a column vector of preference weights, u(w) is constant

relative risk aversion utility function in the form u(w) = “{1_;7, F(w) is a distribution function
of wealth random variable W, and K is a standardizing constant obtained as

n—1
K =Pr(w<@) +ZA1'P7”(Q¢ <W <Qit1) + AnPr(W > Qy)
i=2
with 0 < 4; < 1,i=1,...,n. |Gul (1991) considers an investor who posses larger aversion to

losses, relative to her attraction to gains, where losses are defined as future values of wealth
below certainty equivalent and gains as outcomes of future wealth above certainty equivalent.
We further weight the distribution of future wealth with different strength of aversion. Note
that in case the weights are equal to 1, A = 1, the utility U(W) is in the form of classical
expected utility E[U(W)] and is given by CRRA utility function u(ps) where p1f is a certainty
equivalent. On the other hand, it is reasonable to assume that investor is strongly averse to
adverse outcomes of the future wealth, thus the weights she places decrease with the specified
thresholds, i.e. 4; > Ay > ... > A,.

Thresholds Q may be set, for example, that they corresponds to predefined quantiles of the
distribution of a random variable W, or as quantiles of some other reference random variable
such as relative value of market portfolio. If the first threshold value is 7 quantile and its
corresponding weight is equal to 1 and the other weights are zero then we deal with quantile
optimizer of Manski (1988). We can illustrate this notion on an example in which investor puts
the most weight to the worst 5 percents of the cases of tis future wealth, less weight is put to
the outcomes characterized by the 5 percent to 25 percent quantile of the future wealth, etc.



CAPM beta captures an average riskiness of an asset, but the behavior of an asset in extreme
situations to which is an investor particularly averse is not fully captured. Thus if the investor
posses this type of aversion, CAPM beta cannot in cross-section sufficiently explain average
returns by its own. Thus we have to define broader risk measure which can capture behavior
in these extreme situations.

Asset pricing theory assumes that risk premium of an asset or portfolio can be explained by
its dependence structure with some reference economic or financial variable such as consumption
growth or return on market portfolio. As discussed in |Ang et al.| (2006)), if the investor’s
decisions are characterized by the rational disappointment utility function, classical covariance-
based measure of dependence cannot fully explain asset prices. Hence, the most widely used
measure of dependence between two variables r;; and r; ;, cross-covariance,

7;1,73 — Cov (?”t+k,i; ?”t,j) = E{(repr,i — 7i)(re; — 75)], (2)

is due to its averaging nature unable to describe asymmetry features of dependence structure
between two variables unless the variables are jointly normal. If we want to measure dependence
separately in different parts of a distribution - and obtain dependence measure in various parts
of joint distribution, we have to employ more flexible measures. Since we are interested in
pricing extreme negative events, we want to measure dependence and risk in lower quantiles of
the joint distribution. We propose to use quantity of the following form

,Y;iaTj (7_7’1'7 TT]') = COU (I{rtJrk,i S qri (Tri)}v I{Ttmj S qu (T"”j )}) ) (3)
where 7¢; and r;; are two time series of strictly stationary random variables, ¢x(7) is a
quantile function of random variable X, 7, 7; € (0, 1), and I{A} is indicator function of event A.
The measure is given by the covariance between two indicator functions and can fully describe
joint distribution of the pair of random variables r; and r;. If distribution functions of r; and
rj are continuous, the quantity is essentially difference between copula of pair r; and r; and
independent copula, thus the following quantity Pr (rt+k7,~ < @, (1), "tom < Gr,n (Trm)) — Ty Trym.-
Thus, covariance between indicators measures additional information from the copula over
independent copula about how likely is that the series are jointly less or equal to their given
quantiles. It enables to flexibly measure both cross-sectional structure and time-series structure
of the pair of random variables.
The quantity introduced in Eq. [3| can be further generalized in the way that one can replace
quantiles of respective variables by some general threshold values

'YZimj (7—7’177_73) = Cov (I{rt-i-k,i < Qn)}v I{Tt,j < QT]' }) (4)

where Qr; and (), are general threshold values, which do not necessary need to be equal. These
threshold values may be derived from distribution of reference variable. In our model we set
threshold values to be equal and are derived from distribution of market returns, although we
note that it is possible to work with different thresholds.

Since we are interested in explaining risk premiums of assets, we follow the usual setting
and denote returns of some asset or portfolio ¢ as 7;;, and returns of market portfolio denoted
as Tmt-

2.2 Frequency-specific risk

It is natural to think that economic agents care differently about long-, medium-, and short-
term investment horizon in terms of expected returns and associated risk. Investors may instead



be interested in long-term profitability of their portfolio and do not concern with short-term
fluctuations. Frequency-dependent features of an asset return play an important role for an
investor. Bandi and Tamoni| (2017)) argues that covariance between two returns can be decom-
posed into covariance between disaggregated components evolving over different time scales,
and thus the risk on these components can vary. Hence, market beta can be decomposed into
linear combination of betas measuring dependence at various scales, i.e.dependence between
fluctuations with various half-lives. Frequency specific risk at given time plays an important
role for determination of asset prices, and the price of risk in various frequency bands may
differ, i.e. the expected return can be decomposed into linear combination of risks in various
frequency bands.

The most simple and natural way how to decompose covariance between two assets is via
its Fourier and inverse Fourier transform. Frequency domain counterpart of cross-covariance is
obtained as Fourier transform of the cross-covariance functions. Conversely, cross-covariance
can be obtained from inverse Fourier transform of its cross-spectrum in the following way

o0

1 ) .
Ti,"'m —_ Tistm —ikw
S (w) = o § Ve €
k=—o00

Ti,"'m " T5,T ikw
Vi :/ STorm (w)e™ dw

—T

m

where S"""m (w) is cross-spectral density of random variables r; and r,,, ’yZ“T is cross-covariance
function given by equation [2] It is important to note that cross-covariance can be decomposed
into frequencies, more specifically, for k = 0, we can decompose covariance between two time
series into the covariance components at each frequency w

Cov(ri, rm) = STETm (w)dw.

—T

and following the same logic decomposition of variance follows as

™
Var(r;) = / S" (w)dw.
—Tr
where S"(w) is spectrum of r;.
Since we can decompose cross-covariance between two returns into covariances at each fre-
quency, we can disentangle the dependence at short- and long-term components. Then, beta
for an asset ¢ and factor m can be decomposed to as

i _ Covlratm) _ [T ) [T
pim = St [ () St = [ ww)s ) )

where w(w) = % represent weights. The decomposition is important step since it provides
decomposition of classical beta into the weighted frequency-specific betas. Using this approach,
Bandi and Tamoni| (2017) estimate price of risk for different investment horizons and show that
investors posses heterogeneous preferences over various economic cycles instead of looking only
on averaged quantities over the whole frequency spectrum.

2.3 Quantile-frequency specific risk

Since we argue that both tail risk as well as frequency-specific risk are important in explaining
formation of asset returns, we aim to combine the risks into a single model. We start by



defining measure of risk associated with various combinations of quantile and frequency in
order to determine the most important combination priced across assets.

Our measures of risk in the quantile-frequency domain are based on the dependence measures
recently introduced by Barunik and Kley| (2015). To quantify risk premium across frequencies
and across the joint distribution, we use the quantile cross-spectral densities to build a quantile
cross-spectral beta. Both these points are explained in more detail in Section

2.4 Quantile cross-spectral beta

The cornerstone of the new beta representation lies in quantile cross-spectral density kernels
which are defined as

1 = .
f(w; Tr; Trm) = % Z ’VZ“Tm (Tm » Trm )6 the (6)
——

where 7, 7, € [0, 1]. A quantile cross-spectral density kernel is obtained as a Fourier transform
of covariances of indicator functions defined in Equation |3 and will allow us to define beta that
will capture the tail risks as well as frequency specific risks.

A quantile cross-spectral (QS) betas are defined as

Bri,’l“m (W; Trys Tr ) = fri’Tm (w; Tris T’/‘m) = Z202—00 ’Ygimm (Tri’ Trm),e_ikw
’ " me ((A), TTm) 2202700 7£m (Trm)e_lkw

(7)

QS betas for given asset quantify the dependence between asset ¢ and market factor m for a
given frequency w at chosen quantiles 7., and 73, of the joint distribution. We can also construct
beta for a given frequency band, accordingly

fTinm (w7 Tm 9 Trm>

B (s Ty Ty, ) = dw 8
( ) o frm(w,Tr,) ®)

where Q = [wy,ws), wi,ws € [—7, 7|, w1 < we is a frequency band. This definition is important
since it allows to define short-run, or long-run bands covering corresponding frequencies, and
hence disaggregate beta based on the specific demands of a researcher.

2.5 Quantile cross-spectral beta under Gaussianity

Before we continue and use the new beta representation, it is important to note how newly
defined quantity relates to a classical beta under the assumption of Gaussian distribution, as
commonly assumed by many asset pricing models. Assuming that returns of an asset and re-
turns of market portfolio are jointly normal random variables independently distributed through
the time (correlated Gaussian white noises), QS betas would be in the following form

iT'm CGauss (7—7'7,‘ Trms P) — Tri Trm,
N g

where Cgauss 15 Gaussian copula with correlation coefficient p. This stems from the fact that
quantile cross-spectral density corresponds to a difference of probabilities Pr (Ttﬂ' < @, (1), Ttom <
Qr,, (Trm)) — Ty, Trym, Where {7, T, m } are probability levels under Gaussian distribution.

QS betas are constant over frequencies under Gaussian white noise assumption, and depend
only on chosen quantiles and correlation coefficient between asset and market return. Hence
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Figure 1: Quantile-spectral (QS) betas and their 95% confidence bands for 6 F-F portfolios sorted on size and
book-to-market. Horizontal lines represent QS betas under Gaussian white noise assumption corresponding to
CAPM beta.

Eq. [0 provides the quantile cross-spectral counterpart to classical CAPM beta as these are
equivalent. We will use this fact to construct our model later. In the spirit of Ang et al.| (2006])
and Lettau et al.| (2014]), we define relative QS betas which capture additional information not
contained in the classical CAPM beta.

In Figure[I] we illustrate both estimated QS betas and their confidence bands, and estimated
QS betas under Gaussian white noise assumption (horizontal lines) corresponding to the CAPM
beta. The illustration is on 6 Fama-French portfolios sorted on size and book-to-market. In
case the QS betas would be constant over frequencies, and would moreover match the QS betas
under Gaussian distribution corresponding to CAPM, then we could conclude that CAPM is
sufficient model to describe the relation.

For majority of portfolios Gaussian white noise assumption does not hold and its degree
of deviation varies over portfolios, and thus should be taken into consideration when assessing
risk of a given portfolio.

Finally, we note that for serially uncorrelated variables (no matter of their joint or marginal
distributions), the Fre¢het/Hoeffding bounds gives the limits that QS beta can attain

max{7,, + 7, — 1,0} — 7,

Trm(l - T”'m)

min{7,, Tr,, } — Tri Trm

T”"m(]‘ - T”’m)

r .
T BT (W5 Ty T ) <



3 Pricing extreme risks across frequency domain

Quantile cross-spectral betas defined in the previous section will be the cornerstone of the
empirical model defined in this section. Given utility function from Equation [l we assume that
QS betas for low values of threshold values will be significant determinants of risk. Using QS
betas, we define pricing model encompassing tail market risk and extreme volatility risk. Both
these risks are further decomposed into long- and short-term components in order to obtain
their prices of risk separately.

Tail market risk (TR) represents dependence between extreme negative events of both mar-
ket as well as asset return. It differs from downside risk used in |Ang et al.| (2006); |Lettau
et al.| (2014) since downside betas are computed based on covariates of asset return with a
market return being under some threshold value. In contrast, QS betas captures risk that both
market as well as asset return will be extremely unfavorable. In other words, it captures joint
probability that market as well as asset returns will be below some threshold level.

Extreme market volatility risk (EVR) captures unpleasant situations in which extremely
high increments of market volatility are linked to the extremely low asset asset returns. We
argue that both these risks are significant determinants of risk of an asset and thus should be
priced in cross-section of asset returns.

Values of 7,,, percentage value for the quantiles for asset thresholds, are not explicitly fixed to
quantile of their returns because we do not explicitly care about dependence between quantile
values in the cross-section. We rather care about dependence in extreme market situations.
Thus the threshold values for asset returns are given by values of quantile of market returns;
these threshold values are same for all the assets, which corresponds to different quantiles for
each asset. Formally, for each portfolio we obtain threshold values as a 7,, quantile of its
distribution where 7., = F},(qr,,(7r,,)). Let’s consider a model in which we set threshold value
to be equal to 5% quantile of market return. Value of 7, in Equation (7] is equal to 5% but
7r, must be estimated. First, this 5% market quantile must be transformed using empirical
cumulative distribution functions into probability that given asset return is below this value
for each asset, and then the QS betas are computed as " (w; 7}, 7, ) where 77 differs
across assets (for one asset 5% quantile of market return may correspond to 1% quantile of its
distribution, for another asset it may correspond to 8% quantile of its distribution). Same logic
is applied to both tail market risk betas and extreme volatility risk betas. By setting market
return and portfolio threshold equal, we avoid problem of potential data-mining. Potentially
better fit could be obtained by finding threshold values with the best model fit for a specific
dataset, but may not be robust across datasets.

Regarding the frequency decomposition of the risks, we specify our models to include disag-
gregation of risk into two horizons - long and short. Long horizon is defined by corresponding
frequencies of cycles of 1.5 year and longer, and short horizon by frequencies of cycles shorter
than 1.5 year. Procedure how to obtain these betas is explained in Section

In each of the models defined in the paper we control for CAPM beta as a baseline measure
of risk. This ensures that if the QS betas are significant determinants of risk premium, they do
not simply duplicate information contained in CAPM beta. Moreover, in case of tail market
risk, we define relative betas that explicitly capture only the additional information over CAPM
beta. Throughout the paper we impose the restriction that market price of risk is correctly
priced implying that it is equal its average return.



3.1 Tail market risk

We assume that dependence between market return and asset return during extreme negative
events is priced across assets. The stronger the relationship between market and asset during
an extreme events is, the bigger the risk premium investors demand. Tail market risk is a direct
extension of downside risk discussed above. Whereas downside risk captures risk of negative
events, tail risk is connected to negative events with more severe impact.

Because we want to quantify risk which is not captured by CAPM beta, we propose to test
significance of tail market risk via differences of the estimated QS beta and QS beta implied
by the Gaussian white noise assumption. We call this difference relative QS betas. For a given
frequency w and given quantiles 7, and 7, , the relative beta is defined as follows

/B:éfm (Qj; Try TTm) = /Bi(Qj; TrivTT‘m> - z’Gauss(ij T)'

Relative QS betas measure additional information not captured by classical CAPM beta. In
case the CAPM beta captures all information, and returns are Gaussian, the relative QS beta
will be zero at all frequencies and quantiles.

Our first model is a three-factor market model which contains only tail market risk, and is
defined as

2
E[r§) = Y B (5 Tros TN Q3 vy 7o) 4 BEATMANCAPM, (10)
Jj=1

where ; is classical CAPM beta, A\“APM ig price of risk for market risk captured by the classical
beta, and AT#(Q;, ) is price of tail risk (TR) for given quantile and given frequency band. We
impose restriction that market risk is correctly priced, i.e. AAPM is equal to average market
return, and portfolio threshold is the same as market threshold and, 7, = F,, (¢, (7)) If
asset returns do not posses features of deviations from assumptions mentioned above, then
the relative betas will be equal to zero and thus all the information about dependency during
extreme events is captured by CAPM betas. On the other hand, if there is a significant difference
between information captured by CAPM beta and QS betas, then the difference will be nonzero
and may be priced in cross section of asset returns, which will be assessed based on significance
of related prices of risk.

3.2 Extreme volatility risk

Volatility risk is important risk priced across assets. |Ang et al. (2006) document that assets
with high sensitivities to innovations in aggregate volatility have low average returns. Because
of the fact that time of high volatility within the economy is perceived as a time with high
uncertainty, investors are willing to pay more for the assets that yield high returns during
these turmoils and thus positively covary with innovations in market volatility. This drives
the prices of these assets up and decreases expected returns. In addition, decomposition of
volatility into short-run and long-run when determining asset premium was proven to be useful
as well (Adrian and Rosenberg), |2008). Moreover, Bollerslev et al.| (2016) incorporated notion of
downside risk into concept of volatility risk and showed that stocks with high negative realized
semivariance yield higher returns. Farago and Tédongap| (2017)) examine downside volatility
risk in their five-factor model and obtain model with negative prices of risk of volatility downside
factor yielding low returns for assets that positively covary with innovations of market volatility
during disappointing events.

10



We assume that assets that yield highly negative returns during times of large innovations
of volatility are less desirable for investors and thus should be rewarded by holding these assets.
For simplicity reasons, we estimate market volatility using basic GARCH(1,1) model E| and
obtain estimates of squared volatility. Then the changes in squared volatility are calculated as

Ao? =o0? —of ;. (11)

Because of the nature of covariance between indicator functions, we work with negative differ-
ences of the volatility, —Acrf, then the high volatility increments correspond to low quantiles of
distribution of the negative differences. We investigate whether dependence between extreme
market volatility and tail events of assets is priced across assets. Threshold values for port-
folio returns are obtained in the same manner as for tail market risk and are derived from
distribution of market returns, 7., = F;.(gr,,(7r,,)). For example, for model with 7., = 0.05,
extreme market volatility beta is computed using threshold for innovations of market squared
volatility as 5% quantile of its distribution of negative values (corresponding to 95% quantile
of the original distribution), and threshold for portfolio returns is computed as 5% quantile of
distribution of market returns.
Three-factor model containing extreme volatility risk betas solely is defined as

2
. 2
E[r§] = Zﬁn,Aa (Qj§TriaTrm))\EV(Qj§ ToisTo )+ BZCAPMACAPM7 (12)
j=1
where we also impose restriction that market risk is correctly priced, i.e. \¢APM ig equal to

average market return.

3.3 Full five-factor model

Finally, we combine the risks into a single five-factor model that includes both tail market
risk and extreme volatility risk for both short- and long-run horizons, as well as market risk
associated with classical CAPM beta. Model posses the following form

rel

2
E[rf] = S B0 (s Ty T N3 7y Ty ) + BEAPMACAPM
g (13)

2
. 2
+ Z BB (s Ty Tag2 )AEY (5 Ty Tag2)
j=1

where we restrict ACA”M to be equal to the average market return. We remind that the market
threshold is equal to portfolio threshold. This means that 7, , is given and 7,, is computed for
each portfolio from its respective empirical distribution. Threshold value for extreme volatility
risk is given by quantile of distribution of differences of market volatility, and for given model,
tau for extreme volatility risk is the same as tau for tail market risk, 74,2 = 7,,, and portfolio
threshold is the same as for tail market risk.

Throughout the paper we focus on results for 7, equal to 5% and 10%. In addition, we
report various results for additional 1%, 15%, and 25% quantiles. Moreover, root mean squared
pricing error of the fitted models is reported for continuum of quantiles between 1% and 50%
for completeness. The choice of 5% and 10% quantiles is natural and arises in many economic
and finance applications. Probably the most prominent example is Value-at-Risk, which a
benchmark measure of risk widely used in practice and studied among academics.

2As a robustness check, we compute volatility as realized volatility from daily data
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3.4 Simplified three-factor model

As an intermediary step, we define model which contains both tail market risk and extreme
market volatility risk but does not take into consideration frequency decomposition. It posses
the following form

. CAL2
E[r‘e] = ﬁn’rm (77”“ TTm))‘TR<TT‘i7 TT’m) + BiCAPM)‘CAPM + ﬁr“Aa (T"’N TAU2))‘EV (TTi7 TAO'Q) (14)

7 rel

where we define quantile betas as

B’/‘iﬂ"m (7' T ) 762'7” — Cov (I{Tt,i S qr; (7—7’@')}7 I{rt,m S Qrm (TTM)})
Ti 'Tm 77’m Var (I{Tm S Qrm (Trm)})

(15)

where 7, stands either for return on market portfolio, or changes in negative of squared market
volatility. Relative beta in case of TR is defined as difference between quantile beta and beta
defined under normality assumption

B:;}rj (TTi s Trm) = 8700 (Trw Trm) — 58(;2"25 (w; Tri» Trmm) (16)

where beta under normality assumption is the same as in Equation [J] since it does not depend
on frequency. Threshold values are obtained in the same way as in case of 5-factor model.

4 Testing for quantile-frequency specific risk

4.1 Estimation of QS betas

Estimation of QS betas (for both TR and EVR) relies on proper estimation of quantile cross-
spectral densities using rank-based copula cross-periodograms which are then smoothed in order
to obtain consistency of the estimator. Technical details are provided in the Appendix [A]
Betas from the simplified model defined in Equation [14] are simply estimated using empirical
distribution function of the market return distribution.

4.2 Fama-MacBeth regressions

To test our model, we employ procedure of [Fama and MacBeth| (1973)). In the first stage,
we estimate all required QS betas, relative QS betas, and CAPM betas for all portfolios. We
define two non-overlapping horizons: short and long. Horizon is specified by the corresponding
frequency band. We specify long horizon by frequencies with corresponding cycles 1.5 year and
longer, and short horizon by frequencies with corresponding cycles below 1.5 year. QS betas
for these horizons are obtained by averaging QS betas over these frequency bands

N RN
IBTZ,TJ (QL;Tria Tr]-) = FL E BT‘“TJ (wiL;Tri, Tr]-)
i=1 (17)

1 &

IBTiﬂ"j (QS;TTNTTJ') = — Zﬁ"”iﬂ"j (W;S;TT'NTTJ')

s i
where Q, (g) is frequency band for long (short) horizon, and wf € Q (wf € Qg). In the

second stage, we use these betas as explanatory variables and regress average portfolio returns
on them. We assess significance of a given risk by significance of corresponding price of risk.

12



Thus, in the second stage in case of the five-factor full model, we estimate model of the following
form

rel

2
77? _ Z Bm,rm (Qj; TTiaTrm))\TR(QjQ TriaTrm) + B?APMACAPM
= (18)

2
AT 2
+ Z BB ( Qs Ty a2 )AEY (Q5 T, Tag2) + €4
i=1

The same estimation logic applies to the simplified three-factor model.

We compare the results for our model with i) classical CAPM ii) downside risk model by Ang
et al.| (2006 (DR1) iii) GDA3 and GDA5 models by Farago and Tédongap| (2017). Performance
of all models is assessed based on their root mean squared pricing error (RMSPE), which is
widely used metric for assessing model fit in asset pricing literature. All the competing models
are estimated for comparison purposes without any restrictions except that the market price of
risk is correctly priced (equal to the average market return over the observed period) using OLS.
Thus, GDA3 and GDAS5 are despite their theoretical background estimated without setting any
restriction to their coefficients and are also estimated in two stages. If anything, performance
of the competing models can only deteriorate using restricted estimation procedures.

4.3 Data

For illustrating the main findings, we use 30 Fama-French industry portfolios data monthly
sampled between July 1926 and November 2017 (1097 observations). These data satisfy the
need of our model to posses long enough history in order to obtain reliable results. In Appendix
[C] we report also results for 25 Fama-French portfolios sorted on size and book-to-market over
the same time span. Regarding market data, instead of using consumption data, we follow
Campbell (1993) and use data on broad market index to avoid problems connected to the
consumption data. Excess market return is computed using value-weighted average return on
all CRSP stocks and Treasury bill rate from Ibbotson Associates. Data were obtained from
Kenneth French’s online data library.

4.4 Estimation results

As a preliminary investigation, we conduct an analysis in which we examine tail risk and extreme
volatility risk without taking into consideration the frequency aspect. Estimated coefficients
can be found in left panel of Table To take into account multiple hypothesis testing, we
follow Harvey et al. (2016) and report t-statistics of estimated parameters. We can observe
that tail risk is significantly priced across low quantiles with expected positive sign. Extreme
volatility risk is significantly priced for 10%, 15%, and 25% quantiles suggesting that investors
price dependence between assets and market volatility, but focus on more probable market
situations. RMSPE of the model for various market threshold defined as 7 quantile of market
return is depicted in left panel of Figure 3] We can deduce that better fit is obtained for lower
values of thresholds and for very low 7 it can even outperform GDA5 model which is a 5-factor
model. For higher values of 7, RMSPE of our simple model exceeds RMSPE of GDA5 model
suggesting that indeed extreme risks of the assets are priced factor.

Estimated parameters of the full model can be found in the right panel of Table [l We ob-
serve that significant determinants of the risk are short tail risk and long extreme volatility risk,
both significantly priced across portfolios with expected signs. Tail risk is more significant for
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Simple model Full model
T, )\TR )\EVR )\CAP]\I RMSPE )\TR )\TR )\EVR )\SEh\z’r}‘:i )\CAP]W RMSPE

long short long

001 156  0.35 0.66 1557  -012 114 022  0.02 0.66 13.74
(10.96)  (0.80) (-0.71) (7.01) (1.88)  (0.06)

0.05 241 048 0.66 20.78  -045 127 050  -2.93 0.66 15.87
(4.72)  (0.55) (-0.96) (2.49) (2.86) (-2.71)

01 207 161 0.66 19.69  -0.15  0.81 051  -2.23 0.66 15.94
(3.48)  (2.34) (-0.29) (1.25) (3.52) (-1.82)

015  3.67 158 0.66 19.85 061  0.72 046  -3.51 0.66 13.30
(4.80)  (1.88) (1.60)  (1.13) (3.50) (-3.35)

025 450  3.26 0.66 25.44 069  0.71  0.68  -3.86 0.66 15.61
(4.15)  (2.34) (1.35)  (0.85) (4.37) (-2.83)

Table 1: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French equal-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return.

lower values of 7 meaning that dependence between market return and portfolio return during
extremely negative events is a significantly determinant of risk premium. On the other hand,
long-run extreme volatility risk is significantly priced across all values of 7, , but becomes more
prominent for higher values of the quantile. We can deduce that price of long-run risk of Bansal
and Yaron| (2004) is hidden in this coefficient. Coefficients of the prices of risk for long tail risk
and short extreme volatility risk posses negative sign, which may seem counterintuitive. This
may suggests that investors are extremely averse to long-run dependence between extremely
negative returns and high volatility but at the same time exposure to the extreme volatility
risk in the short run is desirable as the prices will adjust to the market turmoil quickly. Tail
risk in the long run for lower quantiles is also negative but the coefficients are not significant.

In Figure 2, we compare performance of our QS models, QS05 (7, = 0.05) and QS10
(7r,, = 0.10), with various other models. It is notable that CAPM, and DR1 model completely
fail to price the portfolios, better fit and lower RMSPE is obtained by GDA3 and GDA5
models. Finally, better fit is provided by our QS model since returns lie closer to the 45 degree
line. Right panel of Figure [3| depicts performance of the QS model against market thresholds
given by 7 quantile of market distribution. We observe better performance of our model in
comparison to GDA5 model for all threshold values below 30% market quantile, and generally
very good performance for low values of threshold suggesting that extreme risks are significant
determinants of risk premium.

4.5 Robustness checks

As a robustness checks, we first report results based on 30 Fama-French industry portfolio data
which are value weighted. Results are summarized in Appendix We report estimated
coefficients for both simple and full model, RMSPE for continuum of 7., and comparison with
competing models. We also conduct the same analysis with volatility being computed from
daily data as a realized volatility for each month in the sample. It is obvious from estimated
simple models that both tail market risk and extreme volatility risk are priced in cross-section.
Estimated full models suggest that short tail risk is the driving force of aggregated tail risk,
and although coefficients for long extreme volatility risk are not significant, they posses the
right sign and are numerically close to their counterparts computed on volatility from GARCH
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model. We argue that this is due to highly non-smoothed nature of the volatility computed as
a sum over respective months.

In Appendix [C] we perform the same analysis on 25 Fama-French portfolios sorted on size
and book-to-market. We report results based on both equal and value weighted portfolios, and
volatility is computed using GARCH model and as a realized volatility from daily data. In case
of models with volatility computed from GARCH model, our model performs comparable to
GDAJ5 model but slightly worse, but outperforms all the other competing models, and moreover
all the features observed in the case of 30 industry portfolios are present in this case also with
values of the coefficients being similar. In case of volatility computed from daily data, our
model outperforms all the competing models including GDA5 model.

5 Conclusion

We have shown that extreme risks are priced in cross-section of asset returns. In the paper, we
distinguish between tail market risk and extreme volatility risk. Tail market risk is characterized
by the dependence between highly negative market and asset events. Extreme volatility risk
is defined as cooccurrence of extremely high increases of market volatility and highly negative
asset returns. Negative events are derived from distribution of market returns and its respective
quantile is used for determining threshold values for computing quantile cross-spectral betas.
We define two empirical models for testing associated risk premium. Simple model, which
does not take into consideration frequency aspect, confirms that investors require premium for
bearing both tail market risk and extreme volatility risk. Full model further identifies that
premium for tail market risk is mostly featured in its short-term component, and premium
for extreme volatility risk is mostly associated with its long-term component. In order to
consistently estimate the model, data with long enough history has to be employed. But if the
data are available, our model is able to outperform competing models and its performance is
best for low threshold values suggesting that investors require risk premium for holding assets
susceptible to extreme risks.
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A Estimation of quantile cross-spectral betas

Estimation of QS betas defined in our paper is based on the smoothed quantile cross-periodograms
studied in Barunik and Kley| (2015)). For a strictly stationary time series Xo j,..., Xpn—1,j, we
define I{F,, ;(X;;) < 7} = [{Ryy; < nr} where F, j(z) = n~ ' 3.0 I{X;; < 2} is the em-
pirical distribution function of X; ; and R, ; denotes the rank of X; ; among Xq;,..., X1 ;.
We have seen that the cornerstone of quantile cross-spectral beta is quantile cross-spectral
density defined in Equation [6] Its population counterpart is called rank-based copula cross-

periodogram, CCR-periodogram, and is defined as

Ifﬁﬁ? (w;Ty,72) = %dﬁR(w;ﬁ)dﬁR(—w;Tg) (19)
where
) n—1 n—1
deR(w; T) = ZI{Fn,j(Xt,j) <1l ™t = Z I{Rp1; <ntle ™" 1€]0,1]. (20)
t=0 t=0

As discussed in Barunik and Kley| (2015)), CCR~periodogram is not a consistent estimator of
quantile cross-spectral density. Consistency can be achieved by smoothing CCR-periodogram
across frequencies. Following Barunik and Kley| (2015)), we employ the following

n—1

Z Wy (w — 27r3/n)I£f}%2(27rs/n, T1,72) (21)
s=0

2T

Gﬁ’él (w;T1,m2) = o

where W, is defined in Section 3 of Barunik and Kley| (2015)). Estimator of quantile cross-
spectral beta is defined as

Afigz (w;T,72) = # (22)

Consistency of the estimator can be proven using exactly same logic as in Theorem 3.4 in
Barunik and Kley| (2015)) by replacing quantile coherency with quantile cross-spectral beta.
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B Robustness checks

B.1 Realized volatility

Simple model Full model

Trm  ATRNPVE\CAPM O RMSPE LR MLEL O NIVEONEVE S \CAPM . RMSPE

001 1.02  0.43 0.66 12.94 -0.08  0.85 0.07 0.55 0.66 12.30
(5.36)  (3.67) (-0.48)  (3.66)  (0.46)  (1.87)

0.05 1.22 057 0.66 18.66 -0.21 140 0.42 0.11 0.66 18.20
(2.12)  (2.67) (-0.38) (2.22) (0.98) (0.17)

01 072 091 0.66 16.28 0.05 0.80 0.25 0.54 0.66 16.43
(1.18)  (4.58) (0.09) (1.01) (0.57) (0.73)

0.15 1.59  0.91 0.66 15.80 0.73 0.70  -0.07  0.87 0.66 15.41
(2.05)  (4.67) (1.64) (0.75) (-0.15) (1.03)

025 132 143 0.66 15.84 0.23 1.02 0.49 0.45 0.66 15.27
(1.65) (7.64) (0.41)  (1.15)  (1.56)  (0.87)

Table 2: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return. Volatility is computed as realized volatility from

daily data.
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RMSPE for simple and full model. Horizontal line represents RMSPE of GDA5 model.
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B.2 Value weighted portfolios

Simple model Full model

Trm  ATENEVE S \CAPM U RMSPE AR, LR, AR ONEVE A9APM RMSPE

0.01 1.36 -0.50 0.66 16.72 -0.03 1.06 0.06  -0.34 0.66 16.52
(9.88)  (-1.01) (-0.15) (6.17) (0.34) (-0.73)

0.05 2.21 0.29 0.66 15.65 -0.12 2.12 0.18 0.62 0.66 14.92
(5.58)  (0.57) (-0.27)  (5.25) (1.22)  (0.67)

0.1  1.69 1.77 0.66 19.84 -0.54 1.93 0.39  -0.57 0.66 18.01
(2.84)  (3.09) (-1.11)  (3.16) (3.51) (-0.37)

0.15 1.79 3.13 0.66 19.56 0.05 1.42 0.36 0.32 0.66 18.09
(3.10)  (4.09) (0.12)  (2.00) (2.95) (0.18)

0.25 237 3.93 0.66 28.48 0.08 1.40 0.57  -2.39 0.66 18.19
(2.33)  (2.52) (0.17)  (1.85) (4.88) (-1.71)

Table 3: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return.
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Simple model Full model

Tr  ATTONEVE\CAPMUURMSPE ALY, AL Mongt Ao A9APM RMSPE

0.01 1.12 0.11 0.66 16.87 0.22 0.33 -0.32 1.09 0.66 15.01
(4.14)  (0.71) (0.81)  (0.99) (-1.41) (2.53)

0.05 231 0.04 0.66 15.73 -0.22 2.15 0.23 0.05 0.66 15.08
(4.87)  (0.21) (-0.44)  (4.23)  (0.69)  (0.10)

0.1 1.36 0.56 0.66 18.91 -0.84 2.44 0.73 -0.42 0.66 17.53
(2.28)  (3.65) (-1.41)  (2.92) (1.42) (-0.46)

0.15 1.40 0.71 0.66 18.35 0.09 1.44 0.22 0.39 0.66 18.07
(2.43)  (4.78) (0.15)  (1.62)  (0.38)  (0.36)

0.25 0.94 1.18 0.66 17.79 -0.10 1.42 0.43 0.41 0.66 17.31
(1.44)  (7.75) (-0.21)  (1.55) (1.10)  (0.60)

Table 4: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return. Volatility is computed as realized volatility from

daily data.
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C Results for 25 F-F portfolios sorted on size and book-to-
market

C.1 Equal weighted

Simple model Full model

T, \TE ABVE - \CAPMRMSPE AR, ALEL NEVE O NEVE  \CAPM RMSPE

0.01 1.81 -0.05 0.66 28.28 -0.25 0.86 0.38 0.20 0.66 22.80
(5.14)  (-0.05) (-0.72)  (1.99) (1.42)  (0.27)

0.05  3.66 0.10 0.66 21.15 -0.30 2.84 0.32 -1.93 0.66 20.60
(5.40)  (0.13) (-0.60)  (1.90) (1.85) (-1.30)

0.1  -0.09 3.52 0.66 21.97 0.53 -0.23 0.21 6.12 0.66 21.25
(-0.10)  (4.59) (0.87) (-0.15) (1.35)  (1.90)

0.15  0.32 4.80 0.66 22.64 -0.39 1.04 0.40 6.58 0.66 22.17
(0.25)  (3.93) (-0.41)  (0.42) (1.80) (2.39)

0.25 -2.46  13.08 0.66 22.16 -1.49 -0.39 0.92 11.29 0.66 19.12
(-1.31)  (4.58) (-1.91) (-0.17) (6.22)  (3.57)

Table 5: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return.
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Simple model Full model

Tr  ATHOAPVENCARMOURMSPE  ADR, AL Monst Ao A9APM RMSPE

0.01 0.58 0.67 0.66 24.41 -0.25 1.18 0.40 -0.19 0.66 22.64
(1.16)  (2.81) (-0.71)  (1.63)  (1.23) (-0.32)

0.05 3.00 0.18 0.66 20.93 -0.16 3.42 0.00 0.73 0.66 20.77
(2.69)  (0.69) -0.26  (2.18)  (0.00)  (0.65)

0.1 -0.32 1.01 0.66 23.55 1.46 -3.41 -0.96 2.43 0.66 22.03
(-0.28)  (3.92) (1.50)  (-1.41) (-1.01)  (1.49)

0.15 1.00 0.91 0.66 23.49 -1.39 4.03 1.46 -1.22 0.66 21.66
(0.83)  (3.56) (-1.47)  (1.63)  (2.07) (-0.89)

0.25 0.54 1.28 0.66 23.88 -1.42 2.79 1.79 -1.75 0.66 20.59
(0.36)  (3.86) (-1.73)  (1.30)  (2.68) (-1.45)

Table 6: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return. Volatility is computed as realized volatility from

daily data.

28



Actual return

Actual return

RMSPE

25

20

15

10

25

20

15

10

24

22

20

18

16

CAPM, RMSPE = 47.75

13
e o
S
°8 o
&, A
°
T T T T
10 15 20 25
Predicted return
GDA5, RMSPE = 23.6
°
o
L4
0 i °
& o
°
o ° ° °
T T T T
10 15 20 25

Predicted return

Figure 12: Predicted returns.

(a) Simple model

Actual return

Actual return

DR1, RMSPE = 25.58

Predicted return

QS05, RMSPE = 20.77

Predicted return

Actual return

Actual return

25

20

15

10

25

20

15

10

GDA3, RMSPE = 24.03

S
0%
g,
oﬁ o
. &
T T T T
10 15 20 25

Predicted return

QS10, RMSPE = 22.03

Predicted return

Plots of predicted versus actual returns for competing models.

(b) Full model
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RMSPE for simple and full model. Horizontal line represents RMSPE of GDA5 model.
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C.2 Value weighted

Simple model Full model

T ATR O \BVE - \CAPM RMSPE  ALE. XLE. AR NEVE A9APM RMSPE

0.01  1.59 0.74 0.66 24.39 -0.45 0.58 0.50 0.41 0.66 18.81
(5.18)  (0.92) (-1.51)  (1.43) (2.44) (0.68)

0.05  2.90 0.84 0.66 21.56 -0.87 0.57 0.59 -2.69 0.66 19.25
(2.38)  (0.70) (-2.02)  (0.40) (3.55) (-1.74)

0.1  -1.55 4.04 0.66 18.40 -0.03  -3.03 0.51 -2.21 0.66 16.89
(-1.93)  (6.67) (-0.05) (-2.54) (4.70) (-0.87)

0.15 -1.89 5.98 0.66 20.02 -0.81 -1.25 0.55 4.87 0.66 19.32
(-1.65)  (5.57) (-1.08) (-0.82) (3.46)  (1.56)

0.25 -0.32 8.54 0.66 24.33 -1.26  -0.58 0.86 3.69 0.66 19.55
(-0.26)  (4.38) (-1.59)  (-0.38) (5.59)  (1.47)

Table 7: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return.
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Figure 14: Predicted returns. Plots of predicted versus actual returns for competing models.
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RMSPE for simple and full model. Horizontal line represents RMSPE of GDA5 model.
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Simple model Full model

Tr  ATHAPVENCAPME U RMSPE  ALR, MO Angt AGLE A9YPM RMSPE

0.01 0.34 0.68 0.66 21.38 -0.68 1.67 0.84 -0.94 0.66 15.49
(0.63) (2.83) (-3.02) (3.23) (4.18) (-2.27)

0.05 1.31 0.49 0.66 20.74 -0.86 0.21 0.52 0.39 0.66 19.83
(0.81)  (1.54) (-1.47)  (0.14)  (1.08)  (0.47)

0.1 -2.53 1.30 0.66 17.72 0.05 -2.96 0.18 0.80 0.66 17.06
(-2.87)  (7.06) (0.07) (-2.31)  (0.29) (0.76)

0.15  -1.47 1.23 0.66 19.44 -1.43 0.52 1.60 -1.47 0.66 16.68
(-1.42)  (5.85) (-2.10)  (0.36) (2.88) (-1.49)

0.25 -1.80 1.59 0.66 18.59 -1.42 -0.37 1.26 -0.57 0.66 15.86
(-1.79)  (7.02) (-2.22)  (-0.29) (2.71) (-0.67)

Table 8: Estimated coefficients. Reported are estimated prices of risk of simple 3-factor and full 5-factor
model on 30 Fama-French value-weighted industry portfolios sampled between July 1927 and November
2017. Model is estimated for various values of thresholds. Market price of risk is not estimated but
imposed to be equal to the average market return. Volatility is computed as realized volatility from
daily data.
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Figure 16: Predicted returns. Plots of predicted versus actual returns for competing models.
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RMSPE for simple and full model. Horizontal line represents RMSPE of GDA5 model.
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