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Abstract

This paper proposes an alternative way to measure high-frequency Tail Risk di-
rectly extracted from stocks returns: A risk-neutral mean-adjusted expected short-
fall. We rely on a non-parametric estimator for the state price density based on
Hellinger’s distance to risk-neutralize returns. Since the measure dispenses op-
tion prices, it can be potentially applied to a broader number of markets than
corresponding option-based measures. Empirically, our tail risk factor extracted
from S&P 500 returns has a 90% correlation with the VIX index. We document a
persistent negative relation between tail risk and one-day ahead returns, for differ-
ent assets. Consistent with the crash-insurance property of put options, tail risk
predicts positive one-day ahead returns for portfolios long out-of-the-money, short
in-the-money put options. An analysis of stock portfolios sorted on exposure to tail
risk reveals a premium for bearing such a risk, even when controlling for known and
established factors related to cross-section variability. The cross-sectional analysis
is also robust to the inclusion of uncertainty indexes, macroeconomic and volatility

measures.
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1 Introduction

Traditionally, since its introduction in 1993, the VIX index became a widespread indi-
cator of investor sentiment, often viewed as a market fear gauge (Bollerslev et al., 2015).
Since then, researchers have been trying to understand the relationship between volatility
and returns (Glosten et al., 1993, Carr and Wu, 2008 and Bekaert and Hoerova, 2013,
among others), its relationship to the cross section of stock returns (Ang et al., 2006),
and the channels through which it affects the real economy (Bloom, 2009). Nonetheless,
the VIX itself is designed to measure the expected volatility of the S&P 500 index over
the next 30 days and abstracts from investors sentiment, market fear or tail risk real-
izations. Most importantly, the methodology on which it is based requires a minimum
cross-section of options quotes such that reliable information can be extracted. There-
fore, its applicability to markets that contain limited option data as well as to individual
assets is compromised.

Following the 2007-2009 financial crisis, a substantial strand of the financial research
community devoted efforts to better understand and disentangle the role of tail risk,
the risk associated with low extreme events, volatility, and systemic risk. In particular,
Bollerslev et al. (2015) rely on a nonparametric estimation of risk neutral tails to perform
a decomposition of the variance risk premium into diffusive and jump components. This
decomposition reveals that the latter is responsible for most of the return predictability.
Given the intrinsic rare nature of extreme events on aggregate data, a second branch
of the literature focused on the information embedded in the cross-section of returns
rather than time series analysis (Almeida et al., 2016, Kelly and Jiang, 2014). With
particular emphasis on the financial sector, motivated by Bear Stearns, Lehman Brothers
and AIG failures (among several others), Allen et al. (2012) and Brownlees and Engle
(2015) adopted VaR and Shortfall like measures to estimate systemic risks. Common to
most of this literature is the fact that estimated measures are calculated on a monthly or
weekly basis rather than daily.

In this paper, we combine three ingredients to come up with a new measure of tail
risk: the use of high-frequency data, a risk neutralization algorithm, and a coherent
measure of risk. We choose as a measure of tail risk, the expected shortfall, a well-known
coherent measure of risk often adopted by practitioners and suggested by the Basel III

agreement. In particular, we calculate a high-frequency version of this measure using



intra-day data on market returns. Finally, we add to these two ingredients, motivated
by Ait-Sahalia and Lo (1998) and Ait-Sahalia and Lo (2000), a non-parametrically risk
neutralization distortion. By proceeding in this fashion, our tail risk measure is coherent,
and is straightforwardly related to downside risk as opposed to the VIX index, which is
based on expected volatility. In addition, it inherits all risk-adjustment properties of the
risk neutralization, including putting more probability weight to extreme returns without
neglecting pricing information coming from Euler equations. Moreover, by adopting a
procedure that is not data intensive, our methodology can be easily applied to different
markets and assets in which intra-day returns, at any frequency, are available.

The methodological aspect of the estimated risk measure builds on Almeida et al.
(2016) who generalize the option-based risk neutral Value at Risk of Ait-Sahalia and Lo
(1998) and Ait-Sahalia and Lo (2000). Considering a risk neutralization method based
on a non-parametric estimation of the state price density using stock returns, Almeida
et al. (2016) showed that is possible to recover risk neutral counterparts of traditional risk
measures without the need of option data. In this paper, we re-interpret their technique
introducing instead of daily returns, intra-day data. Increasing the frequency of data
used in estimation allows us to by-pass the course of dimensionality that many tail risk
procedures face, a trade-off between increasing the time series used for estimation and
using less recent data to extract information. Besides, instead of obtaining a tail risk
measure by investing in broadening the cross-section of assets as in Almeida et al. (2016)
and Kelly and Jiang (2014), the high-frequency data allows us to focus, for each market,
in the left tail dynamics of the unique one-dimensional series of market returns.

In order to offer a better view on the benefits of adopting an option-free measure,
Table 1 provides information on the cross-section of index options for some of the leading
stock markets, worldwide. Not surprisingly, the U.S. market has the richest cross-section,
with a reasonably comprehensive set of liquid options. Surprisingly, however, is the fact
that China, the second economy in the world, does not present an established index option
market. This is also the case for three other economies that we analyze: Argentina, Saudi
Arabia, and Russia. Moreover, even if we focus on other developed countries, the contrast
to the U.S. market remains remarkable. In fact, Japan and Germany, the second and
third largest markets, when size is measured by the availability of cross-sectional index

options, have respectively, less than 30% and 20% of outstanding options relatively to



the S&P 500 options market.

Concerning emerging economies, a first glimpse at the Brazilian IBOVESPA cross-
section of options reveals that it appears to be a reasonably well-developed market. For
instance, the collected cross-section is bigger than the ones from developed economies
such as France, Italy, United Kingdom among others. Still, this figure can be misleading
due to the high absolute value of the IBOVESPA index (around 50.000 points), which
implies that across the moneyness range, options go out of the money quickly. This is
emphasized by Astorino et al. (2015), who in an effort to estimate a Brazilian implied
volatility index, highlight the problems related to the low-liquidity of its index options.

Nonetheless, when available, options contain substantial forward-looking information
about future states of nature. In particular, option-based measures inherit these proper-
ties and allow researchers to disentangle the role of different sources of risk. Comparing
our measure to Bollerslev et al. (2015)- an option-based measure designed to capture
jump tail risk - we find that both co-move in a significant portion of the sample, with
a correlation coefficient of approximately 60%. In a similar analysis for the VIX index,
we find correlations as high as 90% for a smoothed version of our tail risk measure. In
fact, figure 1 reveals that both series co-move in a large portion of the sample, provid-
ing some reassuring evidence on the “fear” nature of the volatility index. This heuristic
evidence indicates that our measure might be capable of replicating at least some charac-
teristics of option-based measures. Indeed, (Almeida et al., 2016) performed an extensive
comparison between a lower-frequency (monthly) version of our Tail risk measure and a
corresponding option-based measure built using Ait-Sahalia and Lo’s (2000) methodology
and found significant similarities concerning its empirical properties.

To assess the empirical relevance of our tail risk measure, we propose an extensive
analysis of its relationship with several market features. First, we document a natural
negative relationship between current tail risk and market returns. This negative rela-
tionship persists for one-day ahead predictive regressions, mean-reverting after two days.
Additionally, we also find that the market implied tail risk is related to a “run to safety”
effect: the contemporaneous relationship with Treasury ETF’s returns is positive and
mean-reverts after two days. In an effort to extract the maximum possible information
from this analysis and to test for robustness of our results, we additionally select as crash

sensitive measures, one macroeconomic (the Aruba, Diebold and Scotti index) and one



representing uncertainty (the Economic Policy Uncertainty index of Baker et al., 2016)
as control variables in the regressions framework. Overall our results are robust to the
inclusion of these, and other alternative explanatory variables, which include the FEAR
factor from Da et al. (2014), the VIX index, and a measure of realized volatility.

As in Bollerslev et al. (2015), we also analyze the relationship between our tail risk
measure and returns from different portfolios. Two salient features arise from this anal-
ysis. First, all one-day ahead predicted betas for the portfolios analyzed were negative
and statistically significant. Nonetheless, taking a closer look at the results for industry
portfolios, a significant heterogeneity among sectors is noted. In particular, financial and
mining sectors suffer the biggest losses after tail risk shocks. Also, while small and big
firms react similarly to tail risk shocks, high minus low portfolios formed on Book to
Market and Momentum reveal that one-day ahead returns for high book to market firms
and looser firms have higher tail risk betas.

Given the fundamental relationship between jumps and tail risk, in particular in a
high-frequency environment, we follow the methodology of Weller (2016) to construct a
time series of realized intra-day jumps for market returns. Using this realized measure
we show not only that tail risk is significantly related to contemporaneous jumps but also
that it can predict realized jumps both one-day and one-week ahead. Again, this effect
persists even when we control for several other explanatory variables. More interestingly,
after controlling with our tail risk factor a regression of jumps on the VIX index, the VIX
carries a negative relationship with realized jumps.

Despite deliberately avoiding the use of option data in the construction of our tail
risk index, we acknowledge that these derivative contracts provide crash insurance against
stock market meltdowns (Kelly and Jiang, 2014, Bollerslev and Todorov, 2011). There-
fore, to investigate the relationship between our measure and option returns, we perform
two separate complementary analysis. First, we construct five portfolios of put options
on the S&P 500 index based on moneyness. Consistent with our conjecture, our tail risk
measure predicts higher returns for deep out-of-the-money options, with monotonic decay
across moneyness. In particular, the return of a portfolio long on deep out-of-the-money
puts and short on deep in-the-money puts has a positive statistically significant beta.
Additionally, we also calculate the alphas from standard Fama-MacBeth regressions con-

trolling for the Fama-French-Cahart factors and document a negative correlation between



portfolios” alphas and the tail risk exposures.

From an asset pricing perspective, theory suggests that assets whose returns co-move
with bad states of nature, work as hedging instruments, making investors require lower
returns to keep those assets in their portfolios (Almeida et al., 2016, Kelly and Jiang,
2014, Yuen, 2015). Our measure is positive and rises when aggregate market returns
are low. Therefore, assets whose returns (payoffs) are high when our tail risk is high,
provide insurance for severe stock market movements and therefore are expected to have
a positive beta with respect to tail risk. Moreover, given the risk neutral characteristic
of our measure, it naturally embeds investors’ crash-aversion and therefore their desire
for insurance. Thus, following the approach of Ang et al. (2006) and complementing the
analysis performed in Almeida et al. (2016), we test this hypothesis by analyzing portfolio
returns sorted on exposures to our tail risk measure. As in Almeida et al. (2016) and
Yuen (2015), we find a positive, statistically significant, return associated with a long-
short portfolio formed on tail risk exposure for all the holding periods analyzed. We
also applied Ang et al. (2006)’s methodology, designed for testing the implications of
VIX’s innovations to the cross-section of stock returns and find similar results. Most
importantly, the excess returns generated by the long-short portfolios are not captured by
the traditional Fama-French-Cahart factors and are robust to several double-sort analysis.

Our paper is also intrinsically related to several branches of the financial literature.
First, we contribute to the growing literature on the estimation of tail risk and systemic
risk measures as in Kelly and Jiang (2014), Allen et al. (2012), Bollerslev et al. (2015),
Siriwardane (2013), Brownlees and Engle (2015), Adrian and Brunnermeier (2014), Bali
et al. (2009), among others. In contrast to these papers, we contribute to the litera-
ture by providing a methodology to compute tail risk on high-frequency environments
that considers measures estimated on a daily frequency (or higher) and that is virtually
applicable to any set of returns.

Our paper is close in spirit to Weller (2016) who developed a real-time tail risk measure
based on intra-day bid and ask quotes. In contrast, however, while Weller focus on the
natural relationship between tail risk and jumps, providing substantial evidence of jumps’
prediction using intra-day data, we focus on the broader relationship between tail risk,
market returns and the cross-sections of both stocks and options. Additionally, while our

aim is to provide a measure that is not data intensive, Weller’s measure on its baseline



one-factor model, considers a panel of 2800 firms.

Aiming at capturing an “investor sentiment component” related to the VIX index,
Da et al. (2014) rely on primary data from Google Trends to develop a daily sentiment
index extracted from a pool of users. They document a negative relationship between
their FEAR index and current market returns, and also a return-reversal feature for this
index. Despite the fact that our measure is based on intra-day market data rather than
investors’ sentiment data, we show that the same qualitative results documented by Da
et al. (2014) hold in our analysis.! With a similar methodology, Baker et al. (2016) extract
information from newspapers to construct an Economic Policy Index (EPU). They find
that their constructed index is positively associated with higher volatility, and expand
results in Bloom (2009) in terms of macroeconomic forecasting ability. Our predictability
results are robust to the inclusion of Baker et al. (2016)’s measure as a control.

Finally, our paper also expands the analysis in Bollerslev et al. (2016) and Yuen (2015).
Bollerslev et al. (2016) considers an extension of the CAPM model that takes into account
in the returns dynamics, not only a linear beta with market returns but also a beta coming
from a jump component.? Using this decomposition Bollerslev, Li and Todorov show that
while there is no premium associated with the market beta the converse is not true for the
jump component. Related to this, Yuen (2015) considers the fear measure of Bollerslev
et al. (2015) coupled with the cross-section analysis of Ang et al. (2006) to extract the tail
risk premium embedded in the cross-section of asset returns. In contrast to these papers,
we offer a new tail risk measure that is not dependent on options data and does not rely
on any parametric dynamics for the market return. While this allows us to expand our
analysis to settings where no option data is available, our proposal, being a reduced-form
measure itself, also comes with some disadvantages. For instance, in contrast to Bollerslev
et al. (2016) and Yuen (2015), we are not able to fully disentangle the effects of jumps
and diffusion components on assets returns. Nonetheless, we are still able to isolate the
effects of tail risk by controlling for additional risky measures that capture the diffusive
component (as they do) and mitigate this issue. Moreover, overall we find that the main
empirical results in Bollerslev et al. (2015) and Yuen (2015) hold when we consider our

tail risk measure in replacement of theirs.

LOur predictive results are also robust to the inclusion of their FEAR measure when considering the
sample where both tail risk measures overlap.

2In fact, their empirical analysis is even more general, since they also consider a beta coming from
an overnight “jump”.



The rest of the paper is organized as follows. Section 2 describes how we construct
a risk-neutralized shortfall measure of tail risk based on the market returns. Section 3
starts with a brief outline of the empirical applications. Section 3.1 describe the high
frequency data we use to estimate tail risk and the data considered in the empirical
applications. Sections 3.2 and 3.3 relate our tail risk measure respectively to the VIX and
to market (price) realized jumps. Section 3.4 and 3.5 analyzes the contemporaneous and
prediction relationship between tail risk and several assets classes. Section 3.6 investigates
the implications of tail risk for option portfolios. Section 3.7 presents results of a risk
premium analysis using a cross-section of stock returns. Finally, section 4 concludes with

a summary of the results.

2 A Nonparametric Tail Risk Measure

2.1 A First Look at the Tail Risk Measure:

In this paper, we aim at building a simple tail risk measure, based on aggregate stock
returns, and being dependent only on the observed returns. Historically the Value-at-Risk
(VaR) became the main benchmark for risk assessment between practitioners (e.g. Basel
IT agreement) and is widespread studied in the finance literature (Basak and Shapiro,
2001). Unfortunately, despite its intuitive interpretation, the simplicity of the VaR does
not come without caveats. Among several criticisms highlighted by the literature (see
also Basel III agreement for a practical discussion), two are relevant for the purpose
of constructing an informative tail risk measure: (i) VaR is a point-wise measure and
therefore ignores the behavior of the tail of the distribution beyond its threshold. (ii) due
to the relative scarcity of tail events on historical time series, VaR modeling is challenging
and can lead to overestimation of risks in calm periods (Berkowitz and OBrien, 2002)
and underestimation during crisis (Jorion, Jorion).

Given the relative scarcity of extreme events in historical samples, one solution pro-
posed in the literature is to look to past events in light of the risk neutral probabilities,
intrinsically taking into account investors risk aversion. Ait-Sahalia and Lo (2000) and

several other papers® lead this literature by proposing the estimation of risky measures

3See in particular Ait-Sahalia and Lo (1998), Breeden and Litzenberger (1978), Bates (1991), Ru-
binstein (1994), Longstaff (1995).



based on the risk neutral distribution extracted from option prices. By doing so, the
implicit probabilities compensate the physical ones towards investor’s attitude towards
risk and, therefore, alleviate the lack of extreme, in sample, events.

Nonetheless, options arguably provide the best environment to estimate risk neutral
densities and risky measures themselves. In fact, Andersen et al. (2016) estimates a left
tail factor, for a panel of international data, that explicitly dependent on the risk neutral
information embed in option prices. Andersen et al. (2016) also highlight that interna-
tional derivative markets are expanding, although their analysis is restricted to seven
well-developed economies. As shown in tablel, aside from the U.S. economy, most of the
markets around do not have a rich derivatives market, with an even more problematic
scenario for emerging markets. To overcome this problem, in a tail risk estimation en-
vironment, recent papers focus on information about tail dynamics extracted from the
cross section of returns, rather than the market returns *.

Here we adopt the methodology explored in Almeida et al. (2016) to risk neutralize
the returns and estimate a daily tail risk measure. Given our interest in the behavior
of the entire tail of the distribution, and aiming at addressing point (i), we follow the
main benchmark measure of Almeida et al. (2016) that is based on a risk neutral, mean
adjusted, expected shortfall.® Differently from Almeida et. al however, we explore the
richness of intraday returns, rather than the cross section of returns®. By increasing the
frequency of the data used in the tail risk estimation, we can not only better characterize
the tail behavior for the market returns but also to overcome the dimensionality problem
faced by their methodology (which will be clear in the next section). We define the

market excess expected shortfall as follows:

TR, = EQ(R)[(VG’RQ<RT> - RT)+] (1)

where t is the day for which we are calculating the tail risk, 7 denotes the possible

states of nature, in this paper defined as the intra-day, realized returns for the main

4The most recent literature includes Kelly and Jiang (2014), Allen et al. (2012), and Adrian and
Brunnermeier (2014) to cite a few.

Relying on an equilibrium analysis,Basak and Shapiro (2001) show that the VaR generates coun-
terintuitive results in terms of risk behavior. In contrast, expected shortfall measures overcome the VaR
problematics. From a practitioner perspective, the Basel 111 agreement also directs to the use of shortfall
measures for risk management.

6 Although nothing prevents us to exactly replicate their methodology.



stock market index (S&P 500 for the U.S. economy), « is the VaR threshold and Q(R)
indicates the risk neutral density. Note that in this design we model Q as a function of
the observable returns. Throughout we calculate the tail risk at daily frequency using
the intra-day realizations of the stock market returns to do so. Therefore there is no
overlapping of data between days which allows the measure to quickly incorporate market

information.

2.2 A Non-Parametric Risk-Neutral Density

Given the proposed measured, we are still missing one of its critical component:
the state price density. As previously highlighted, we want our measure to be option
independent, and thus we must search for alternatives estimation procedures. In a seminal
paper, Hansen and Jagannathan (1991) proposed to estimate the stochastic discount
factor via a minimization of a quadratic loss function given a set of basis assets. While
insightful, this approach fails to explore higher order moments of the underlying returns -
the estimated SDF is a linear combination of the basis assets. Expanding on the Hansen
and Jagannathan idea, Almeida and Garcia (2016) generalized their methodology to
estimators that inherit properties of higher order moments of the base assets returns.

Given a series of assets returns, in an incomplete market where there are more states
of nature than assets, Almeida and Garcia (2016) find a family of SDFs that minimize
convex functions defined in the space of admissible and strictly positive SDFs. These
convex functions measure the distance between an admissible SDF and the constant
SDF of a risk-neutral economy. Assuming a constant short-term rate and homogeneous
physical probabilities, just as in a VaR historical simulation, we can obtain a direct
correspondence between SDFs and RNDs.

Given the extensive analysis in Almeida et al. (2016) and Almeida and Garcia (2016)
with respect to the properties of the nonparametric estimator, here we briefly describe the
methodology adopted to calculate our benchmark measure. For the sake of simplicity, we
specialize the problem of SDF estimation to the Hellinger estimator, a particular case of
the general Cressie-Read family approach of Almeida and Garcia (2016). Let (2, F, P)
be a probability space, and R denote a K-dimensional random vector on this space
representing the returns of K primitive basis assets. In this static setting, an admissible

SDF is a random variable m for which E(mR) is finite and satisfies the Euler equation:



E(mR) = 1k, (2)

where 1 represents a K-dimensional vector of ones.

For a sequence of (m., R;) that satisfy Equation (2) for all ¢, and observing a time
series { R, },—1, r of basis assets returns, we assume that the composite process (m.,, R;)
is sufficiently regular such that a time series version of the law of large numbers applies”.
Therefore, sample moments formed by finite records of measurable functions of data R,
will converge to population counterparts as the sample size T" becomes large.

Given a sample of basis assets returns, the set of admissible SDF's will depend on the
market structure. The usual case is to have an incomplete market, i.e., the number of
states of nature (7') larger than the number of basis assets K. In such case, an infinity
of admissible SDFs will exist, and if there is no in-sample arbitrage on the basis assets
payoff space (see Gospodinov et al. (2016)), there will exist at least one strictly positive
SDF (see Duffie, 2001). For each strictly positive SDF there will be a corresponding risk
neutral density. The fundamental difference between this paper and Almeida et al. (2016)
is that, instead of using daily realizations of R, as the states of nature, we rely on intra-
day realizations of the market returns. By doing so, we can increase the number of states
T by simply increase the frequency of the data used (say, from 1 hour to 15 minutes).
Additionally, for tail risk estimation purposes, we are able to compute an aggregate
market tail risk directly from the observed returns. From a factor model perspective,
with the market return being the only source of risk, our non-parametric SDF approach
resembles the CAPM. However, in contrast to the CAPM, our methodology generates
a stochastic discount factor that is non-linear in the market returns, incorporating its
higher order information.

Given the Hellinger discrepancy function ¢(m) = —4(m!/? —a'/?) the generalized the,
in sample, minimum discrepancy problem proposed by Almeida and Garcia (2016) can

be stated as:

"For instance, stationarity and ergodicity of the process (m, R;) are sufficient (see Hansen and
Richards, 1987). Also, we further assume that all moments of returns R are finite in order to deal with
general entropic measures of distance between pairs of stochastic discount factors.
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In this optimization problem, restrictions to the space of admissible SDFs come di-
rectly from the discrepancy function ¢. The conditions E(m (R — %1 K)) = Og and
E(m) = a must be obeyed by any admissible SDF m with mean a. In addition, whenever
there is a strictly positive solution the implied minimum discrepancy SDF is compatible
with absence of arbitrages in an extended economy that considers derivatives over the
underlying basis assets®. The choice to impose a non-negativity or strict positivity con-
straint in the optimization problem is dictated by the choice of the discrepancy function
¢(.) (see Almeida and Garcia (2016) for a detailed analysis).

Despite the straightforward interpretation of the problem in (3), its solution is not
easy given that the number of unknowns is as large as the size of the sample. Therefore,
Almeida and Garcia (2016) show that one can solve an analogous simpler dual problem:

. 1

T
1

A=argsup ax o+ — “la+ N(R — =1 4

s v g 306 @ N 1) (@)

where A C RX and ¢** denote the convex conjugate of ¢ restricted to the non-negative

(or strictly positive) real line.

PrT = sup 2w — ¢(w) (5)

we[0,00)Ndomain ¢
In this dual problem A can be interpreted as a vector of K Lagrange multipliers that
comes from the Euler equations for the primitive basis assets in (3). For the specific case

of the Hellinger estimation, closed-form formulas are obtained for A\ and mp:

81t is important to note that the homogeneous probability assumption will not affect the key insights
we derive from this methodology and, if desired, one could also consider a kernel density to model the
physical probabilities without additional complications
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To obtain the risk neutral probabilities associated with each observation interpreted

and:

(7)

as a state of nature, we distort the usual 1/7" measure by the computed SDF in (7)

adjusted by the interest rate’
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To understand the effect of the estimated risk neutral density on our tail risk mea-

sure, we derive a Taylor expansion of the expected value of ¢(m) = —4(m!'/? — a'/?)
around the SDF mean a. Noting that ¢(a) = 0, gzﬁ/(m) = —2m!'/2 ¢"(m) = m?®?,
¢"(m) = (=3/2)m>?, ¢""(m) = (=3/2)(=5/2)m .., Taylor expanding ¢ and taking

expectations on both sides we obtain:

q—3/2 _ q-5/2
B(6(m)) = 5= B —a + ~CTT

(15/4)a="/?

E(m—a)®+ 1

E(m—a)*+... (9)

Analyzing this Taylor expansion two important aspects regarding the weights at-
tributed to skewness and kurtosis are notable. First, differently from the Hansen and
Jagannathan (1991) approach, the Hellinger estimator is dependent on higher-order mo-
ments of the underlying returns. In particular, we see that the absolute weight given to
kurtosis is smaller than the one given to skewness. Also, besides the differences in their
magnitude, the weights given to skewness are negative, while the weights assigned to
kurtosis are positive. In other terms, the state price density will be higher when kurtosis
is higher or when skewness is lower, therefore revealing the skewness “preference” and

kurtosis “aversion” characteristic of the implied estimator (which are in line with findings

9This framework is identical to the Entropic estimator for the SDF proposed by Stutzer (1996) with
the only difference being the minimized function. In fact Almeida and Garcia (2016) showed that the
minimum entropy estimator is a special case of the Cressie-Read function estimators.
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on Kraus and Litzenberger (1976),Backus et al. (2011)).

3 Empirical Results

To evaluate our tail risk measure and its relationship to risky assets we perform an
extensive analysis. Before getting into the details of the empirical results, we must point
out the goals and the intuitions behind the empirical applications.

First, given the relative simplicity and the non-data intensive design of our measure
we perform its estimation daily. This allows us to focus on a day-to-day analysis of risk
returns and also extend the results for other time horizons. The empirical application
starts by providing evidence on the relationship between tail risk and realized jumps on
the market returns. Our methodology follows closely Weller (2016) approach using a
daily framework instead of intra-day data.

The cornerstone of the empirical application is to verify the relationship between our
measure and both contemporaneous and expected returns among different asset classes
as in Bollerslev et al. (2015) and Da et al. (2014). To do so, we start by analyzing the
contemporaneous and predictive properties of tail risk with respect to market returns.
Then, we expand this framework to different asset classes and portfolios returns.

Given the natural insurance property of out of the money puts they provide the
natural hedge derivative to tail risk (Kelly and Jiang, 2014). Therefore we expect that
not only that put returns are intimately linked to tail risk but also that the latter provides
additional information on future option returns.

Finally, complementing the cross section analysis of Almeida et al. (2016), Bollerslev

et al. (2016) and Yuen (2015), we also provide evidence on the tail risk premium.

3.1 The Data and Series Construction

For the baseline measure estimated in this paper, we use 15 minutes intra-day data
for the returns on the S&P 500 index, extracted from Bloomberg, from 01/02/2008 to
01/07/2015 similar to Andersen et al. (2016). We set the VaR threshold as oo = 20% so we
can capture the daily dynamics of the tails of the returns distribution. Our sample starts
09:30 and ends at 16:00 every day. Therefore, we consider a total of 27 daily observations

to estimate the tail risk measure. One could argue that the use of higher frequency
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data, say 1 minute, might translate to a more precise measure. We believe that, in line
with Andersen et al. (2016), expanding the frequency of the data used might exacerbate
the market microstructure related problems in the estimated measure.!’ For the sake of
interpretation, all the results presented in the paper will be reported for standardized
variables, including the controls we consider in the regressions framework.

We start our empirical exercises by comparing the Hellinger Tail Risk with realized
jumps on the S&P 500 index. To do so we must then construct a realized measure of
price jumps. We do this by modifying Weller (2016) approach. First, for each day, we
calculate the number of price increments that exceeded 1-5 standard deviations relative
to the previous 50 days mean/volatility. This allows us to control for the “magnitude”
of the jumps across time, providing a simple alternative to parametric jump diffusion
models. Our main jumps measure is, as in Weller (2016), a weighted average of the
intra-day jump counts. Section 3.3 careful describe the computation of the measure.

To evaluate the relationship between tail risk and asset returns, we analyze a variety of
asset classes and portfolio returns. First, given the clear relationship between our market
tail risk measure and the market returns we evaluate it’s contemporaneous and forecasting
properties with the S&P 500 daily returns. However, different portfolio and assets classes
might react differently to changes in risk and risk aversion. Naturally, the first candidate
to expand this risk-return analysis is the returns on “safe” investments. Notably, in
periods of stress, U.S. government bonds provide a safe run for investors. Given that
constant maturity yields are estimated based on fitted data for true bonds, instead of
traded data, we consider iShares U.S. Treasuries ETF, a daily traded fund invested in
treasuries, to analyze the “fly-to-safety” aspect of high tail risk dates. Alternatively, we
explore different portfolios exposure to tail risk by considering the following alternatives:
portfolios formed on Size, Book to Market, Momentum and industry from Kenneth French
library. We also consider portfolios formed on past market beta and volatility from CRSP.

For option data, we collect daily put options bids and asks from OptionMetrics U.S.
Ivy database. As is standard in the literature we calculate option prices as the average
between bid /ask closing values. With this data, we construct daily portfolios of put index
option sorted on moneyness, defined as K/S. Portfolios are rebalanced daily, and the

returns are calculated for a buy and hold strategy for the options. We calculate five

10For the sorting portfolio procedures we re-estimate our measure using one-minute data and provide
some evidence that the overall results hold.
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portfolios formed on moneyness as follows 0.9 < DOTM < 0.94, 0.94 < OTM < 0.97,
097 < ITM < 1.03, 1.03 < ATM < 1.06, 1.06 < DATM < 1.10 for options with
maturity between one and 45 days (results are robust to the maturity range we consider).

We also select individual stock returns from 1228 stocks that composed the S&P 500
and Russel 1000 index during the period of our sample for the intra-day returns't. All the
data relative to these stocks returns are from CRSP, which also provide supplementary
information needed to construct the control variables for the sorting portfolios procedure
(see Appendix A for details on the control variables).

Additionally, for the regressions framework analyzed, we consider a handful amount
of control variables. First, to control for volatility, we calculate a measure of realized
volatility based on the sum of squared intraday returns following Andersen et al. (2016).
For most of the regressions, we also use the CBOE VIX index as an explanatory vari-
able given the forward-looking characteristic embed in the measure. To control for the
macroeconomic business conditions we collect data for the Aruba, Diebold and Scotti
index from the Philadelphia FRB. We also rely on data for economic uncertainty from
the EPU index of Baker et al. (2016). Although we do not report the results, we also
computed additional robustness test using the FEAR measure of Da et al. (2014) as a

control variable for the restricted sample where our measure overlaps with theirs.

3.2 A first look at the tail risk measure over time

Figure 2 plots the daily estimated measure from 01/02/2008 to 01/07/2015 and the
VIX index. These figures illustrate the ability of our tail risk to capture extreme stock
market events as well as the correlation with economic conditions on a daily basis, corrob-
orating the findings on Almeida et al. (2016). Notably, our measure is very volatile and
features various peaks, often coinciding with periods of high expected volatility. More
interestingly, the measure captures both the financial crisis and the European debt crisis,
peaking in both of these events.

Perhaps the most striking feature of the estimated measure is its relationship with
the VIX index. To put it into perspective we estimate our tail risk using only a risk
neutralization procedure and intra-day returns on the S&P 500 index. In contrast, the

VIX index is based on the expected volatility extracted from the hole cross section of

HOur data set is similar to Bollerslev et al. (2016) with additional stocks from the Russel 1000 index
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option prices. Also, while the VIX measure the expected market volatility our measure is
specifically designed to capture extreme movements in the stock market returns. There-
fore, given both their methodological and theoretical differences, it is surprisingly how
these two measures align.

Table 2 present the correlation between the estimated Hellinger Tail Risk, its physical
counterpart and a moving average of the Hellinger Tail risk with several crashes sensitive
measures. As it is evident from figures 2 and 1 the correlation with the VIX is high:
65% for the Hellinger Tail risk and 90% for the moving average. This high correlation is
also noted for Bollerslev et al. (2015) fear measure, another option based tail measure.
Interestingly, while also correlated to a realized variance measure, the Hellinger Moving
average carries only 68% correlation with the realized volatility.

While it is expected for tail measures to co-vary together, we also compute the cor-
relations of the Hellinger Tail Risk with uncertainty and macroeconomic based indexes.
Table 2 reveal that our measure is positively correlated with uncertainty, measure as
the Economic Policy Uncertainty (EPU) index from Baker et al. (2016) and negatively
correlated to the Aruba, Diebold and Scotti (ADS) index, a pro-cyclical business condi-
tion index, from the Philadelphia Federal Reserve Bank. While similar in essence to the
EPU index the correlation of our Hellinger Tail Risk with the FEAR index of Da et al.
(2014) is almost neglectable. Not surprisingly, the correlation between our measure and
an equity-based EPU is also positive and higher than the correlation with the EPU itself.

Finally, we note that the estimated tail risk measure is positively correlated with the
realized jumps measure and several other crash sensitive market measures: Emerging
Markets spread with the spot treasury curve from BofA, the Stock Market Crashes mea-
sure by the Cleveland FRB as the ratio of the current value for the S&P 500 index and
its maximum over the last 365 days, the contribution of the banking sector to overall
stock market volatility from the Cleveland FRB, the spread between Moody’s Seasoned
Baa Corporate Bond and 10-Year Treasury Constant Maturity and the noise measure of

Hu et al. (2013).

3.3 Stock Market Jumps

Taken together, the heuristic results of the previous section provide some preliminary

evidence that our daily tail risk measure capture fluctuations in market risks. In this
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section, we formally establish the relationship between tail risk and stock market jumps.
As stated in section 3.1 we measure aggregate stock market jumps as intra-day de-
viations from the historical, intra-day, mean for price increments. More specifically,
let 0P(r — 1,7) denote the price variation between 7 — 1 and 7 withing each intra-
day price interval. We construct five preliminary downside jump measures as follows:
DJ, (i) =0 Iy —ioy < 6P(1 — 1,7) < py — (i + 1)oy] for i = 1,...,4 and DJ,(5) =
ST I — 5oy < 0P(1 — 1,7)] where gy and o, are the respective mean and standard
deviation of in price increments for the preceding 50 days. The aggregate jump measure
is a weighted average of the five preliminary measures, as in Weller (2016), as follows:
Lz D0 (10)
Do

By letting the both the mean and the standard deviation of the price increments vary

D. Jump, =

over time, we allow our jump measure to capture jumps “conditional” on the volatility.
This also avoids using future data on price increments when construction our realized
jump measures or setting ad hoc thresholds for the jumps calculation.

Our key analysis in this section is a regression that takes the following form:

K

D. Jumth =+ 5TRt + Z")%Xk + €t+h (11)
k=1

Where T'R denotes the Hellinger Tail Risk measure and X indicates additional ex-
planatory variables.

First, we set h = 0 and therefore look at the contemporaneous relationship between
tail risk and jumps. Table 3 show the results of this analysis for the aggregate jump
measure. Panel A present the estimated coefficients for univariate regressions. Except
the ADS index, a business conditions macroeconomic based measure, all other explana-
tory variables have positive, statistically significant, betas. Among the selected set of
explanatory variables, we note that the g with the highest magnitude is the one associ-
ated with tail risk, being almost 60% higher than the one for the realized variance, the
second largest coefficient. More strikingly, while most of the explanatory variables have
relatively small estimated R?, the value associated with tail risk is as high as 16%, more
than 100% higher than the one for the realized variance measure (the second largest).

Panel B of table 3 present the results for multivariate regressions where we add one
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explanatory variable at a time. Four features are notable in this table: first, for all four
regressions, the coefficient on tail risk remains stable when compared to the univariate
regression. Second, while the for the univariate regression the coefficient on the VIX in-
dex was positive and statistically significant, when we control for tail risk the coefficient
becomes negative and statistically significant. We see this as evidence that, when con-
trolled for negative tail realizations, the variance captures the positive “effect” on returns
outcomes. Third, the magnitude of the estimated coefficient for realized variance (EPU
index) is reduced by half (totally) when we control for tail risk. Finally, the estimated R?
are only slightly higher when we add the additional explanatory variables when compared
the tail risk univariate framework.

Table 4 further investigate this results for the multivariate regressions for the five
components of the aggregate jump measure. Overall, we note that the main features
persist for each component, with the tail risk being the main driver of the jump real-
izations. For each component, the univariate R? from tail risk regressions is also high
when compared to the multivariate framework, representing on average more than 75%
of the later. Also, while the tail risk beta is monotonic, being higher for smaller jumps,
all the estimated betas are statistically significant. In fact, if one takes into account that
the average for the DJ,(1) is approximate 2, meaning that for each day we observe on
average two “jumps” between 1 and 2 standard deviations from the last 50 days mean,
and the DJ;(5) average is approximate 0.07 the estimated coefficients for the tail risk
convey additional meaning. That is, an increase of one standard deviation in current tail
risk is associated with 0.26 more DJ;(1) on average, about 13% of the mean value. The
same one standard deviation rise in tail risk is associated with an increase of 0.10 D.Jy(5)
on average, about a 100% increase relative to its average.

Table 5 present the results for one day ahead prediction regressions (h = 1). Similar to
the contemporaneous setup, univariate regressions reveal that the most relevant variables
in terms of prediction are the tail risk and realized variance. We must highlight however
that the relationship between realized variance and future jumps are not surprising given
the rolling window methodology to calculate the jump measure. By construction, in-
creases in volatility imply more harsh jumps threshold on the future. Still, the coefficient
on realized volatility is positive and of the same magnitude as for the tail risk in the

prediction regressions. When comparing the obtained results with the contemporaneous
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regressions, we also find close patterns. In a multivariate setting, the tail risk coefficient
is positive and statistically significant for all regressions, with the magnitude being al-
most unchanged when comparing to the univariate counterpart. As expected, while in
contemporaneous regressions a one standard deviation increase in tail risk was associated
with a 0.11 on average increase in the downside jump measure, the magnitude in the
prediction regressions reduces to 0.02. Again, both the EPU and the ADS does not seem
relevant in terms of jumps prediction.

When we move to the results in table 6 for the segregated jump prediction regression
the picture is slightly different. With the one exception, for the DJ;(4) component, the
tail risk beta is at least 25% higher than the one for the realized variance. Also, out of
five components, three of the estimated betas for the realized variance are not significant,
while all of them are for the tail risk (at a 10% significance level). The patterns for
VIX, ADS and EPU are also stable, being for the most part irrelevant in statistical
terms. Table 6 also reveal that for the jump measure components the R? of univariate
regressions where the sole explanatory variable is the tail risk are relatively high, ranging
from 20% to 50% when compared to the multivariate R?.

Finally, in table 7 we present the results for weekly jump predictions. To avoid
overlapping data, in the first day of each week, we compute all the measures used as
explanatory variables. Then, we aggregate each jump component from the second day of
each week to the first day of the next week. Results for these regressions revealed that, as
before, the R? and the betas for the tail risk maintain their patterns. Interestingly, the
realized volatility loose its explanatory power while the VIX estimates, a forward-looking
measure, becomes statistically significant.

Overall, this section confirms the suggestive evidence in table 2 and figure 1. Our
findings are also comparable to Weller (2016) although we only work with daily jumps
while his analysis can be extended to both daily and intra-day settings. More importantly,
we verify that our measure is intimately related to realized jumps and contribute to its

understanding in ways not spanned by volatility.

3.4 Market Returns

As it is now evident from the tail risk literature, there is a long-term premium re-

lated bearing disaster risk ((Almeida et al., 2016), Kelly and Jiang (2014), Bollerslev
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et al. (2015)). However, while the long-term relationship between risk and returns is
well understood, there is no clear evidence on the relationship between the short-term
relationship between market returns and tail risk. Here, we explore the flexibility of our
measure that allows for daily estimation and present some new evidence on this topic.
Our approach is similar to the one in the previous section. We want to establish the
contemporaneous relationship between tail risk and returns and also analyze the pre-
dictability features of our tail risk measure. To do so we rely on the following regression,

considering the same additional explanatory variables as before:

K
Ry = a+ TR+ Z VeXk + €qn (12)
k=1

Table 8 present the results for this analysis when we take h = 0,1, 2. Not surprisingly,
both tail risk and the VIX index are associate with lower contemporaneous returns for the
S&P 500 index. In contrast with the jump regressions, we note that both EPU and ADS
coefficients are statistically significant for returns regressions. Among all the explanatory
variables, the biggest coefficient in magnitude is the tail risk beta (note that all variables
are standardized, these betas indicate standard deviations from the mean) stating that
a one standard deviation increase in tail risk is associated with a -0.51% drop in the
S&P 500 on average. For contemporaneous regressions, we also note that the R? for a
univariate regression with the tail risk as a sole explanatory variable represents 66% of
the total R2.

In the predictions setting, taking h = 1 (a one day ahead prediction), while the
coefficient for the VIX mean reverts, presenting almost the same magnitude as for h = 0,
the coefficient for the tail risk remains negative and statistically significant. That is,
increases in tail risk are not only associated with current negative returns but also to
future, one day ahead, negative returns. While the realized variance and EPU have a
positive statistically significant coefficient for contemporaneous predictions their effects
are unclear in prediction setups.

Table 8 also reveal that, for h = 2, the effects of tail risk partially mean reverts. This
result is also accompanied by a mean reversion in the coefficients for the ADS measure
that starts one day after the shock and persists two days. Overall, the results presented
in this section are consistent with previous evidence from Da et al. (2014) who estimate a

FEAR measure based on internet searches. However, while Da et al. (2014) find a one-day
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mean reversion, we find that shocks in tail risk take longer to mean revert. Also, while
Bollerslev et al. (2015) and Almeida et al. (2016) find a positive relationship between
tail risk and future returns, a feature that is consistent with the risk-return characteristic
of the market, in a higher frequency environment we note that there is a short-term

persistence in responses to tail risk shocks.

3.5 Expanding the Analysis

Bollerslev et al. (2015) argue that different assets/portfolios might react differently
to changes in risk, especially extreme event related risks. Also, Da et al. (2014) present
some evidence on the various patterns of assets returns to raises in FEAR. To investigate
the heterogeneity among assets concerning tail risk, we follow a similar approach and
select a handful set of different assets/portfolios and re-estimate regression 12.

Complementing the analysis of Da et al. (2014), we start by focusing on the returns
on iShares Treasury ETF. We select a traded ETF instead of returns on fixed maturity
bonds to avoid using fitted data (fixed maturity bonds are constructed based on some
methodology that interpolates observable bond prices/returns). Arguably, treasuries pro-
vide a safe haven in times of economic distress. Therefore, the ETF’s allow us to analyze
the market safety demand increase to shocks on tail risk. Table 9 present the results for
the same set of regressions estimated for the market returns.

Asin Da et al. (2014), we find a positive “fly-to-safety” effect associated with contem-
poraneous rises in tail risk. This is also true for all of the explanatory variables considered
in the multivariate setting. In comparison to the market returns, the contemporaneous
regressions betas for the explanatory variables are all of different signs and statistically
significant. Again, the tail risk holds the one with the biggest magnitude, implying a
0.12% rise on Bond ETF’s returns associated with a one standard deviation increase in
tail risk. Differently from the market regressions are the mean reversion patterns. While
the tail risk still mean reverts, the one day ahead coefficient is near zero. The case for the
VIX is even more surprising, with no mean reversion detected. Additionally the realized
variance, ADS and EPU does not seem to be related to future treasury returns.

To better comprehend the risk returns relationship between market tail risk and other
assets we go forward and select portfolios formed on Size, Book to Market, Momentum,

Market beta and variance and perform additional analysis. We first present the results
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for Market beta and variance sorted portfolios for which we can relate our results to Da
et al. (2014) daily prediction regressions.

Tables 10 show the results for contemporaneous and prediction regressions for the
Market beta. Given the central relationship between beta sorted portfolios and market
returns, we expect that higher beta portfolios will be more exposed to the market tail risk.
Indeed, column 1-10 of table 10, reveal that these portfolios have, both contemporaneous
and prediction, tail risk betas that are negative and higher in magnitude than portfolios
less exposed to the market returns. As an example, the portfolio formed with high market
beta stocks have an average drop of -0.44% one day after a tail risk shock. In contrast,
the same value for the portfolio with low market beta is around -0.11%. In fact, low
beta stocks have a statically zero correlation with contemporaneous tail risk, revealing
that not only these stocks are linearly orthogonal to market returns but also orthogonal
to massive drops on the market’s returns. This monotonic relationship between market
beta portfolios and the estimated beta for the control variables are also verified for all
the explanatory variables, although the coefficients are not statistically significant for
the realized variance and VIX index. For the one day ahead predictions, similar to
the market returns, we verify that the coefficients for the tail risk beta are negative,
statistically significant, and usually the one with the biggest magnitude when compared
to the control variables. This analysis also reveals that portfolios formed on low market
betas minus high market beta have a statistically positive relationship with tail risk, and
thus capable of hedging this risk.

Different from the results for the market beta portfolios, 11 reveals that there is no
clear pattern in the estimated coefficients for the tail risk in the variance sorted portfo-
lios. While the low variance minus the high variance portfolio still presents a positive,
statistically significant, beta with tail risk contemporaneously, the statistical significance
is only marginal for prediction regressions. We also do not find a monotonic relationship
between the variance portfolios and tail risk exposure. Overall, contemporaneously the
estimated beta ranges from -0.08 for the lower variance portfolio to -0.58 for intermediary
portfolios.

As for the market returns, our results contrasts with the finds on Da et al. (2014) for
their fear measure. While they find a significant mean reversion for both market beta

sorted portfolios we find a significant persistence of this portfolio’s returns to tail risk.
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For the sake of brevity, we drop the contemporaneous returns regressions in the next
analysis.

With respect to size-sorted portfolios, a clear distinction emerges. While we still
find a negative relationship between future returns and current tail risk, there is no
clear distinction between small and big firms. The estimated coefficients are of the same
magnitude, around -0.30, for both portfolios, with an analogous magnitude in comparison
to the estimated tail risk beta in S&P 500 index regressions. This is also the case for the
VIX, and ADS index. We do find however, that big firms react more to rises in current
realized variance, although individually the coefficients are not statistically significant
(for the Small and Big portfolios). The results for high and low book to market firms are
also similar, with no distinction between the estimated betas and the S&P 500 results.
While tail risk is associated with more negative returns for both groups of portfolios,
there is only a marginal difference across them.

Momentum portfolios, on the other hand, have a different dynamics. While the mag-
nitude of the tail risk betas is still similar to the S&P 500 index regressions, ranging
from -0.22 to -0.39 the portfolio formed with losers stocks is consistently more exposed
to tail risk. In particular, the winners minus losers (WML) portfolio formed with small
(big) firms have a 0.09 (0.17) beta with respect to a one-day lagged tail risk, both being
statistically significant.

As a final analysis of portfolio returns exposure to tail risk, we select the 49 industry
portfolios available at Kenneth French library and perform the same prediction regres-
sions as before. While the previous analysis focuses on portfolios formed by a fixed firm
characteristic, industry portfolios allow us to understand better how different sectors of
the economy react to sharp declines in the market returns, measured by tail risk. Figure
3 plot the results for each of the 49 portfolios. In black, we present the estimated tail
risk beta, in red the 10% confidence interval, in green the ADS beta and in purple the
VIX beta. Although not presented in the figure we also control for the EPU index and
the realized variance in these regressions. A careful analysis of the results reveal some
interesting features. First, we find a significant heterogeneity on the one day ahead betas
for different sectors. While the Beer sector has the smaller beta in magnitude, -0.11, the
Coal industry have the biggest one, -0.53, followed by the Mining and Financial sector

respectively. Not surprisingly the financial sector (Banks, Insurance and Real State and
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Financial Firms) along with the mining sector (Gold, Mines, Coal and Oil) are the ones

more exposed to tail risk shocks.

3.6 Crash Insurance

The previous sections documented that risky assets are typically negatively correlated
to tail risk. These assets also appear to have a persistent component with respect to tail
risk. On the other hand, we also verified that portfolios formed on low market betas minus
high market betas provide some insurance against extreme market downturns. Moreover,
the relationship between tail risk and Treasury invested ETFs implies a “fly to safety”
reaction to rises in extreme, downside, market movements.

While we abstract from the use of option data in the construction of our tail risk
measure, put index options naturally provide a hedge against negative market outcomes.
Therefore, in this section, we focus on contracts that are explicitly designed to insure
against “bad” scenarios. The following analysis relies on put option portfolios, sorted
according to moneyness (here moneyness is defined as K/S where K is the strike price
and S the spot price of the underlying asset). We form portfolios on a daily basis,
with returns calculated as an equally average. A total of five portfolios are built with
deep out of the money, out of the money, in the money, at the money and deep at the
money options. Moneyness thresholds are defined as follows: 0.9 < DOTM < 0.94,
094 < OTM < 097,097 < ITM < 1.03, 1.03 < ATM < 1.06, 1.06 < DATM < 1.10
for options with maturity between one and 45 days. Although results are robust to the
maturity range adopted, we focus on short-term options since they are more likely to
react to short-term movements of the underlying index. As in the previous sections,
although not reported, we control for the VIX index, realized variance, ADS index, EPU
index and, additionally, to our aggregate downside jump measure. The addition of the
jump measure in this analysis allows us to differentiate, to some extent, the effect of tail
risk between that coming from a pure jump component.

Panel A of table 13 reports the contemporaneous results. In line with our intuition,
given the implicit insurance provided by out of the money put, we find a positive mono-
tonic relationship between tail risk and moneyness. In particular, while estimated the
estimated beta for the deep out of the money portfolios is 0.09, the same value for the

deep in the money options equals 0.04, a more than 50% difference. Also, the estimated
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beta for a portfolio long on deep out of the money options and short on deep in the money
options is positive and statistically significant. In addition to the estimated coefficients,
Panel A also present the values for the R? statistics for both the multivariate setting and
a univariate setting where the sole explanatory variable is the Hellinger Tail Risk. Sur-
prisingly, the tail risk measures explain, on average, approximately 9% of these portfolios
variation. In a comparison to the multivariate setting, this number represents around
40% of the overall R?, indicating a significant contemporaneous relationship between tail
risk and put options returns.

Panel B of table 13 complements the preceding analysis by presenting the results for
one day ahead prediction regressions. The first striking result is that the persistence of
options returns to shocks in tail risk is much stronger in comparison to the market returns
analysis. Indeed, the ratio between prediction and contemporaneous betas exceeds 75%,
a higher number when compared to the 60% ratio for the market regressions. The case
for the portfolios constructed with deep out the money puts options, the portfolio that
provides the greatest insurance to market meltdowns, is, even more, stronger, with the
estimated beta rising from 0.09 to 0.10 from contemporaneous to prediction regressions.
Although smaller when compared to the contemporaneous analysis, the estimated R? for
the univariate regressions remains high, ranging from 1% to 3%, in comparison to the
multivariate R? between 3% to 6%.

The last piece of evidence we provide is an analysis of how tradition factor models
alphas are related to the estimated portfolios tail risk exposure. Panel C report the
estimated alphas for the Fama and French three-factor model and the Fama-French-
Cahart four factor models. First, as previously documented in other papers (Kelly and
Jiang, 2014), we find a negative, statistically significant, alpha for the DOTM portfolio.
That is, selling out of the money puts produce, on average, positive returns that cannot
be explained by traditional factor models. Second, the last column of this panel presents
the correlation between the estimated prediction betas for the tail risk measure and the
alphas for both factor models. Irrespective of the set of factors considered, we find a 72%
correlations between the tail risk beta and portfolio alphas, revealing a strong relationship

between the abnormal returns and tail risk exposure.
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3.7 Portfolios Sorted on Tail Risk

Up until this point, our analysis focused on the contemporaneous and prediction
relationship between tail risk and a set of investment returns. From an asset pricing
perspective, the theory suggests that assets whose returns co-moves with bad states of
nature provide a good hedge and therefore investors typically require low returns for
these assets (Almeida et al. (2016), Kelly and Jiang (2014), Yuen (2015)). Our measure
of tail risk is derived directly from market returns and is designed in such a way that
negative shocks to the aggregate returns imply an increase in tail risk. Therefore, under
this setting, the intuition is that assets whose returns (payoffs) are high when our tail
risk is high provide insurance for severe stock market movements.

To investigate this risk-returns relationship, this section builds in a portfolio sort
analysis using the cross section of returns from 1228 stocks that composed the S&P 500
and Russel 1000 index from 01/02/2008 to 01/07/2015. Altogether, these stocks account
for a significant portion of the total market capitalization of the entire cross section
available in the Center for Research in Securities Prices (CRSP) database. The sample
considered here is comparable to Bollerslev et al. (2016) who selects the components of
the S&P 500 index from 1993-2010.

The following analysis resembles the approach of Ang et al. (2006) , Yuen (2015) and
complements Almeida et al. (2016). Specifically, we test the risk-returns hypothesis by
analyzing returns on portfolios sorted based on tail risk beta. We divide our analysis
into two steps. First, we present results for univariate sorts using both the Fama and
French and Fama-French-Cahart linear factors models to explain the portfolios excess
returns. Later, as in Bollerslev et al. (2016), Ang et al. (2006), Kelly and Jiang (2014),
Yuen (2015) among others, we select several stock characteristics that have been pre-
viously documented in the literature (Appendix A), and perform double sorts on these

characteristics and tail risk beta.

3.7.1 Uni-variate Sorts

To compute the uni-variate portfolio sorts we first need to measure the hedging ca-

pacity (or insurance value) of all stocks in the cross section. Resembling the approach of
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Ang et al. (2006) and van Oordt and Zhou (2013) '?, we estimate the tail risk beta as

follows:

cov(R; 4, TRy)

var(TRy) (13)

Birr =

For all the empirical application that follows we rely on an overlapping, daily, rolling
window regression using the previous 252 trading dates returns to compute the tail risk
beta. Given the estimated tail risk betas, we then assign stocks into ten portfolios from
the lowest hedging portfolio to the highest one. Given the portfolio’s composition, we
compute the post-formation returns associated with them over the next day, week (five
days) and month (21 days).

Table 14 report the results for this procedure. There are three sets of results, each
indicating a different holding period for the post formation portfolio returns. The last
three lines present the High minus Low beta portfolio returns followed by the respective
risk-adjusted returns for this portfolio respectively. We calculate risk-adjusted returns
as the intercept of a time series regression that controls for either the Fama and French
three-factor model or the Fama-Frech-Cahart four factor model.

First, is remarkable that for all three holding periods considered we find a strong
monotonic relationship between the beta sorted portfolios and excess returns. In partic-
ular, the post-formation returns ranges from 3.17% to 3.35% per month for a one week
and one month holding period for the portfolio formed by stocks with more negative tail
risk beta respectively. The returns than decays monotonically reaching approximately
1% per month for all three holding periods for the portfolios less exposed to tail risk (the
insurance portfolios). In fact, the High minus Low portfolio has a, statistically significant,
average return of approximately -2.21% across the different holding periods. Moreover,
while lower than the unadjusted returns, the estimated alphas for both FF3 and FF4
models varies from -0.72 to -1.30 with only the FF3 alpha for one month holding period
not statistically significant.

This first analysis of portfolio sorts is based on raw exposure to tail risk. In a time

series analysis we find that the AR(1) coefficient of our measure equals 0.48 and thus it

12In fact both Ang et al. (2006) and van Oordt and Zhou (2013) estimate conditional beta. While
the first estimate betas conditional on market returns being below the historical average, the later uses
a market VaR threshold. In our procedure, we do not need to condition on market returns given the
downside characteristic of our measure.
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is moderately persistent. Thus, to complement our initial approach and to present some
robustness test, we follow Ang et al. (2006) and also re-calculate the portfolio returns for
sorting on tail risk innovations. We measure innovations as: (i) the difference between
current tail risk and a AR(7) model (the “best” time series model for tail risk). (ii)
with parsimony in mind, we also consider a AR(1) version of the innovations. (iii) tail
risk surprises measured as 1.65 standard deviations from its mean. As an additional
robustness test, providing some evidence for the robustness of the data dimensionality
used in the tail risk estimation, we re-estimate our tail risk measure with one-minute
intra-day data and re-calculate the tail risk beta portfolio returns.

Table 15 present the results for the robustness uni-variate sorting procedure for a one-
day holding period. Overall, irrespective of the measure considered, the main conclusions
are the same as the ones reported for the baseline tail risk measure, reassuring our results.
Concerning the previous literature that links downside risks and the cross-section of
expected returns, we highlight that our results are broadly consistent with (Ang et al.,
2006), Bollerslev et al. (2016), (Almeida et al., 2016) and Yuen (2015) with the high
minus returns being with a similar magnitude.

The results in this section reveal that stocks with lower tail risk betas tend to have
higher returns, in contrast, stocks with higher tail risk betas tend to have lower returns.
Nonetheless, section 3.5 provide evidence that firms with different characteristics react
differently with respect to tail risk. Therefore we must investigate if the variation in
returns across tail risk beta sorted portfolios are related to previous firms characteristics

that have been shown to help explain the cross-section of returns.

3.7.2 Bi-variate Sorts

To investigate the predictive power of our tail risk beta, when simultaneously control-
ling for additional firm-level characteristics, we select a handful of previously document
characteristics that help to explain the cross-section of stock returns. In particular we deal
with the following alternative characteristics: Size, following Fama and French (1993);
Momentum, following Jegadeesh and Titman (1993); Monthly, weekly and daily return
Reversal, following Jegadeesh (1990); [lliquidity, following Amihud (2002); Turnover, fol-
lowing Bali et al. (2016); Coskewness, following Harvey and Siddique (2000); Cokurtosis,
following Ang et al. (2006); Downside Beta, following Ang et al. (2006); Downside Sigma,
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following Da et al. (2014); Idiosyncratic Volatility, following Ang et al. (2006) and Max
Monthly Return, following Bali et al. (2011).

To implement the double sorts, we first sort stocks into five quantiles according to a
given firm characteristics. Then, within each quantile, we sort the firms with respect to
their tail risk beta into additional five quantiles. This procedure generates 25 portfolios
sorted by tail risk beta and a given firm characteristic. To construct portfolios that are
heterogeneous in the characteristic but homogeneous in tail risk beta we average the
returns on the beta sorted quantiles across firms characteristics. By doing this, we are
left with beta-sorted portfolios that have a small variation in the control variable. Again,
we focus our analysis on one-day post formation holding period.

Table 16 present the results for the double sorts, where the last sort is in the tail
risk beta. Each line indicates the control variable adopted while columns indicate the
portfolios returns. The last column present the FF4 risk-adjusted alphas for the High
minus Low portfolio formed on tail risk beta. Similar to the findings for the univariate
sorts, we note a monotonic relationship in the portfolio returns. While this is true for all
the control variables adopted a reasonable heterogeneity in the High minus Low returns
appears. Conspicuously, the lowest value for the risk-adjusted returns is -0.84%, when
we control for momentum, while the highest value is -1.74%, when the additional sorting
variable is daily reversal. Still, all the returns for the High minus Low portfolios are
statistically significant and translate into economically meaningful returns. In fact, at
a 10% significance level, with two exceptions for momentum and turnover, all the risk-
adjusted alphas are negative and statistically significant.

As in Bollerslev et al. (2016) we investigate is the tail risk beta is capable of “ex-
plaining” previously documented anomalies by relying on reverse double sorts. That is,
given that for most of the previously documents characteristics, analyzed in table 16, the
excess returns on tail risk beta remains significant we investigate the converse hypothesis:
can the tail risk beta explain the anomalies previously documented? Table 17 present
these results. Similar to Bollerslev et al. (2016) we find that, when we control for tail
risk beta, several of the anomalies have a statistical zero risk-adjusted return. In fact,
for momentum and turnover - the two characteristics for which the high minus low al-
phas were not significant in table 16 - both the high minus low returns and alphas are

statistically zero. Similar to the results in Bollerslev et al. (2016) we also find a strong
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negative alpha related to the size effect and a high positive alpha related to the illiquidity
effect. Additionally, all the reversals effects are statistically significant, with the monthly
reversal having the same magnitude as in Bollerslev et al. (2016), and both the weekly
and daily reversals presenting higher alphas.

Finally, an interesting result with respect to the downside beta is noted: while the high
minus low alpha for the tail risk beta sorted portfolio remains negative and statistically
significant in the double sorts controlling for downside beta the converse is not true. In
other terms, after controlling for the tail risk beta we find that the downside anomaly
dissipates. We interpret this result as evidence that investors price extreme market

movements in contrast to the below average characteristic of the downside beta.

4 Conclusion

We propose a new measure of tail risk based on high-frequency risk-neutralized mar-
ket returns. This measure presents useful characteristics that contribute to the tail risk
literature: first, it can be estimated on a daily basis, without using overlapping data,
based only on intraday returns. Second, it’s non-parametric approach to risk neutral-
ization offers quick reactions to changes in market conditions. Third, and perhaps most
important, the fact that it does not depend on options data allows for possible exten-
sions of our analysis to individual assets and to any market, which presents a series of
high-frequency returns.

Our Tail risk series computed from 2008 to 2016, captures the 2008 financial crisis, the
2011 European debt crisis, and has a significant correlation with financial, uncertainty,
and macroeconomic measures revealing a clear relationship between market prices and
the real economy.

Our extensive analysis of the relationship between different assets’ returns and tail
risk reveals not only that several asset classes are exposed to market tail risk but also
that some strategies provide a significant hedge against risks of extreme market return
realizations. In particular, we document a strong fly-to-safety and mean reversion feature
of Treasure ETF’s, a strong negative relationship between various risky assets returns
and tail risk, and the tail risk implications to expected returns on the cross section of

assets. Additionally, we also show that tail risk is closely related to put options returns,
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with long-short strategies on deep out-of-the-money puts and deep in-the-money puts

providing a significant hedge against tail risk.

Appendix A:

In this appendix, we give a brief description of the additional control variables we

consider in the double sort procedures.

e SIZE: Following Fama and French (1993) firm size is measured at the end of each
June by its market value, defined as the stock price multiplied by the number of
shares outstanding. We update SIZE annually and use it to explain the following
12 months returns. If a stock is introduced in our dataset after the June cut-off
we define its size as the stock price multiplied by the shares outstanding for the
first day the stock appears in the data set and repeat this value until the next June
breaking point. Following Bollerslev et al. (2016) the final value for SIZE is the

natural logarithm of the firms’ size.

e MOMENTUM: Following Jegadeesh and Titman (1993) we measure momentum as
the gross return of the last 252 trading dates skipping the short term reversal, here
defined as the last 21 trading dates. If, for a given date ¢, we do not have the last
252 days returns for a given stock than we calculate momentum using the maximum
observable returns in our sample. If this is less than 50 trading days, we discard

this stick for date ¢ cross-section.

e REVERSAL: We calculate three reversal variables following Jegadeesh (1990) and
Bali et al. (2016).

— Monthly Reversal: Is defined as the aggregate return of the last 21 trading
days.

— Weekly Reversal: Is defined as the aggregate return of the last 5 trading days.

— Daily Reversal: Is defined as the last trading day return.

e ILLIQUIDITY: Following Amihud (2002) we define illiquidity for each stock ¢ at

date t as follows:
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For each data t we use data for the preceding five trading days to calculate illiquidty.

volume; ; is stock ¢ date ¢ trading volume, price;, is stock ¢ date ¢ closing price.

TURNOVER: Alternatively to illiquidity, following Bali et al. (2016), we define
turnover as the average ratio between daily trades and total shares outstanding for

the past five days.

COSKEWNESS: Following Harvey and Siddique (2000), the daily firm co-skewness
is defined as the f¢g estimate using daily data for the preceding 21 trading dates

for asset ¢ for the following regression:

Rt — Rfi = a+ Burr(Rms — Rf) + Bos((Rimys — Rf))? + €t (15)

Where R;;, Rf; and R,,; denote the asset i date ¢ returns, the risk free rate and

the market return respectively.

COKURTOSIS: Similar to Ang et al. (2006), the daily firm co-kurtosis is defined
as the fok estimate using daily data for the preceding 21 trading dates for asset ¢

for the following regression:

Riy—Rfi = a+ Burr(Rmt— Rfi) + Bos((Rmt — th))2 + ek ((Rmi — th))3 + €t
(16)

Where R;;, Rf; and R,,; denote the asset ¢ date ¢t returns, the risk free rate and

the market return respectively.

DOWNSIDE BETA: Following Ang et al. (2006), the daily downside beta is defined

as follows:

cov(R;, Ryn| R < fim)

b = var(Ry| Ry < fim)

(17)
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Where R;, R,,, [t denote the asset ¢ returns, the market returns and the market
mean. We use the last 252 trading dates returns to calculate the downside beta. As
for MOMENTUM, if, for a given date ¢, we do not have the last 252 days returns for
a given stock than we calculate momentum using the maximum observable returns
in our sample. If this is less than 50 trading days we discard this stick for date ¢

cross-section.

DOWNSIDE SIGMA: Following Da et al. (2014), the daily downside sigma is de-

fined as follows:

o7 = Vvar(Ri| Ry < fim) (18)

Where R;, R, pt,m, denote the asset i returns, the market returns and the market
mean. We use the last 252 trading dates returns to calculate the downside beta. As
for MOMENTUM, if, for a given date ¢, we do not have the last 252 days returns for
a given stock than we calculate momentum using the maximum observable returns
in our sample. If this is less than 50 trading days we discard this stick for date ¢

cross-section.

IVOL: Following Ang et al. (2006), the daily firm idiosyncratic volatility is compute
as the standard deviation for the residuals from the following regression for the last

21 trading days:

Ry — Rfi = a+ Bukr(Rms — Rft) + BsupSMBy + Bupyr HM L, + €, (19)

Where R; ¢, Rfi, Ry, SM B, and HM L denote the asset 7 date ¢ returns, the risk
free rate, the market return, the SM B, and H M L, portfolios of Fama and French

(1993) respectively.

MAX: Following Bali et al. (2011) MAX is defined as the maximum return of a

given firm in the preceding 21 trading days.
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VIX vs. Hellinger Tail Risk Moving Average
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Figure 1: This figure plots a 10 days moving average for the estimated Hellinger Tail Risk
and the daily VIX index.
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Figure 2: This figure plots the estimated, daily, Hellinger Tail Risk and the VIX index.
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Industry Portfolios Betas
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Figure 3: This figure plots the estimated betas for the Hellinger Tail Risk, CBOE VIX
index and the Aruba, Diebold and Scotti Business Conditions Index calculated by the
Philadelphia FRB for multivariate regressions where the endogenous variable are returns
on the 49 Industry Portfolios from Kenneth French library. Results are from multivariate
regressions where the explanatory variables are the Hellinger Tail Risk, the CBOE VIX
index, the realized variance measured as the squared sum of intraday, 15 minutes interval,
S&P 500 returns, the Aruba, Diebold and Scotti Business Conditions Index calculated by
the Philadelphia FRB and the Economic Policy Uncertainty Index for the U.S. economy
from Baker et al. (2016). Red dashed lines indicate the 10% confidence bands for the
Hellinger Tail Risk beta calculated using Newey and West variance matrix with five lags.
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Table 3: Contemporaneous Downside Jump Regres-

sions
Tail Risk VIX RV EPU ADS
Panel A: Univariate Regressions
6] 0.11 0.04 0.07 0.03 -0.01
t — stat. (6.69) (3.55)  (3.41) (2.62)  (-0.78)
R? 0.16 0.03 0.07 0.01 0.00
Panel B: Multivariate Regressions
Tail Risk 0.13 0.12 0.12 0.12
(7.70)  (7.50) (7.45)  (7.58)
VIX -0.04 -0.05 -0.05 -0.03
(-4.18)  (-4.38) (-4.46) (-2.12)
RV 0.03 0.03 0.02
(1.49) (1.49)  (1.42)
EPU 0.00 0.00
(0.37)  (0.29)
ADS 0.00
(0.29)
R? 0.17 0.17 0.17 0.18

This table present the results for contemporaneous regressions where
the endogenous variable is the Downside Jump measure calculated
in 3.1. Panel A present the results for univariate regressions where
the explanatory variables are the Hellinger Tail Risk, the CBOE VIX
index, the realized variance measured as the squared sum of intraday,
15 minutes interval, S&P 500 returns, the Aruba, Diebold and Scotti
Business Conditions Index calculated by the Philadelphia FRB and
the Economic Policy Uncertainty Index for the U.S. economy from
Baker et al. (2016). Panel B present multivariate regressions where
additional to the tail risk measure we also control for the above
mentioned crash sensitive indexes. t-statistics are calculated using
Newey-West variance matrix with five lags.
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Table 4: Contemporaneous Downside Jump Regressions - Segregated

D.Jump1l D.Jump2 D.Jump3 D.Jump4 D.Jumpb Aggregate
Tail Risk 0.26 0.24 0.11 0.07 0.10 0.12
(4.39) (4.99) (5.04) (4.30) (5.75) (7.58)
VIX 0.07 -0.08 -0.04 -0.03 -0.03 -0.03
(0.72) (-1.96) (-2.20) (-1.92) (-2.46) (-2.12)
RV 0.13 0.05 0.02 0.00 0.01 0.02
(2.01) (1.11) (1.10) (0.42) (0.63) (1.42)
EPU 0.04 -0.02 0.01 0.01 0.00 0.00
(0.91) (-0.78) (0.79) (0.70) (-0.43) (0.29)
ADS 0.11 0.04 0.04 0.01 0.03 0.03
(1.23) (1.12) (2.33) (0.51) (2.17) (1.92)
Constant 1.99 0.43 0.12 0.05 0.07 0.25
(35.67) (18.30) (11.79) (9.28) (10.50) (28.67)
R? 0.05 0.08 0.08 0.06 0.09 0.18
R** 0.04 0.06 0.06 0.05 0.07 0.16

This table present the results for contemporaneous regressions where the endogenous variable is the Down-
side Jump measure calculated in 3.1 and its five components. Results are from multivariate regressions
where the explanatory variables are the Hellinger Tail Risk, the CBOE VIX index, the realized variance
measured as the squared sum of intraday, 15 minutes interval, S&P 500 returns, the Aruba, Diebold and
Scotti Business Conditions Index calculated by the Philadelphia FRB and the Economic Policy Uncer-
tainty Index for the U.S. economy from Baker et al. (2016). In the last line we also present the R%x
for univariate regressios where the only explanatory variable is the Hellinger Tail Risk. t¢-statistics are
calculated using Newey-West variance matrix with five lags.
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Table 5: Downside Jump Prediction Regressions

Tail Risk VIX RV EPU ADS

Panel A: Bivariate Regressions

6] 0.02 0.01 0.03 0.01 -0.01
t — stat. (3.03) (1.43) (4.25) (0.88)  (-0.75)
R? 0.22 0.22 0.23 0.22 0.22
Panel B: Multivariate Regressions

Tail Risk 0.03 0.02 0.02 0.02
(3.11) (2.15) (2.14) (2.14)

VIX -0.01 -0.02 -0.02 -0.02
(-1.50)  (-2.69) (-2.77) (-2.29)

RV 0.03 0.03 0.03
(4.37) (4.37) (4.42)

EPU 0.00 0.00
(0.19) (0.19)

ADS 0.00
(-0.08)

R? 0.22 0.23 0.23 0.23

This table present the results for prediction regressions where the
endogenous variable is the Downside Jump measure calculated in
3.1. Panel A present the results for bi-variate regressions where the
explanatory variables are the Hellinger Tail Risk, the CBOE VIX
index, the realized variance measured as the squared sum of intraday,
15 minutes interval, S&P 500 returns, the Aruba, Diebold and Scotti
Business Conditions Index calculated by the Philadelphia FRB and
the Economic Policy Uncertainty Index for the U.S. economy from
Baker et al. (2016) in addition to the lag of the realized jump measure.
Panel B present multivariate regressions where additional to the tail
risk measure we also control for the above mentioned crash sensitive
indexes. t-statistics are calculated using Newey-West variance matrix
with five lags.

44



Table 6: Downside Jump Prediction Regressions - Segregated

D.Jumpl D.Jump2 D.Jump3 D.Jump4 D.Jumpb Aggregate

Tail Risk 0.26 0.07 0.05 0.02 0.04 0.02
(4.49) (3.12) (2.73) (1.69) (2.86) (2.14)
VIX -0.11 -0.03 -0.02 -0.02 -0.03 -0.02
(-1.56) (-0.92) (-1.09) (-1.99) (-2.87) (-2.29)
RV 0.05 0.04 0.03 0.03 0.03 0.03
(1.04) (2.17) (1.22) (1.49) (2.65) (4.42)
EPU 0.05 -0.03 0.00 0.01 0.00 0.00
(1.01) (-1.53) (-0.20) (1.00) (0.13) (0.19)
ADS -0.01 0.01 0.02 0.00 0.01 0.00
(-0.14) (0.21) (1.55) (-0.19) (0.80) (-0.08)
Lag Jump 0.27 0.25 0.14 0.00 0.07 0.42
(11.07) (7.00) (2.26) (0.09) (1.61) (9.94)
Constant 1.45 0.32 0.10 0.05 0.06 0.14
(23.51) (15.46) (11.31) (8.45) (9.99) (14.49)
R? 0.11 0.09 0.05 0.02 0.04 0.23
R« 0.04 0.02 0.02 0.01 0.02 0.07

This table present the results for prediction regressions where the endogenous variable is the Downside
Jump measure calculated in 3.1 and its five components. Results are from multivariate regressions where the
explanatory variables are the Hellinger Tail Risk, the CBOE VIX index, the realized variance measured as
the squared sum of intraday, 15 minutes interval, S&P 500 returns, the Aruba, Diebold and Scotti Business
Conditions Index calculated by the Philadelphia FRB and the Economic Policy Uncertainty Index for the
U.S. economy from Baker et al. (2016). In the last line we also present the R%x for univariate regressios
where the only explanatory variable is the Hellinger Tail Risk. ¢-statistics are calculated using Newey-West
variance matrix with five lags.
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Table 7: Weekly Downside Jump Prediction Regressions - Segregated

D.Jumpl D.Jump2 D.Jump3 D.Jump4 D.Jumpb Aggregate

Tail Risk 1.13 0.51 0.24 0.23 0.12 0.20
(2.92) (2.19) (2.00) (3.52) (2.08) (2.90)
VIX -0.68 -0.49 -0.14 -0.11 -0.15 -0.24
(-1.57) (-2.26) (-1.58) (-1.75) (-2.55) (-3.05)
RV -0.30 -0.06 0.01 0.02 0.03 -0.03
(-2.29) (-0.65) (0.14) (0.38) (1.18) (-1.02)
EPU -0.11 -0.01 0.03 -0.02 0.03 0.02
(-0.29) (-0.07) (0.35) (-0.59) (0.48) (0.29)
ADS -0.31 -0.16 0.05 0.00 -0.02 -0.09
(-0.70) (-0.93) (0.73) (-0.09) (-0.39) (-1.35)
Lag Jump 0.36 0.32 0.19 0.14 0.25 0.51
(6.21) (5.90) (3.27) (1.91) (3.65) (9.61)
Constant 6.07 1.39 0.45 0.21 0.25 0.59
(9.52) (9.19) (7.56) (6.97) (7.13) (8.89)
R? 0.17 0.14 0.08 0.13 0.10 0.31
R2%x 0.04 0.03 0.03 0.09 0.02 0.07

This table present the results for weekly prediction regressions where the endogenous variable is the Down-
side Jump measure calculated in 3.1 and its five components. Results are from multivariate regressions
where the explanatory variables are the Hellinger Tail Risk, the CBOE VIX index, the realized variance
measured as the squared sum of intraday, 15 minutes interval, S&P 500 returns, the Aruba, Diebold and
Scotti Business Conditions Index calculated by the Philadelphia FRB and the Economic Policy Uncertainty
Index for the U.S. economy from Baker et al. (2016). In the last line we also present the R?x for univariate
regressios where the only explanatory variable is the Hellinger Tail Risk. ¢-statistics are calculated using
Newey-West variance matrix with five lags.
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Table 8: S&P 500 Regressions

S&P500, S&P500..;  S&P500;0

TR, -0.51 -0.30 0.15
(-4.62) (-2.42) (1.69)

VIX, -0.17 0.28 -0.05
(-1.60) (3.09) (-0.60)

Variance, 0.29 0.11 0.08
(2.18) (0.86) (1.12)

EPU, 0.13 -0.04 0.01
(2.79) (-0.83) (0.13)

ADS; -0.12 0.16 0.12
(-2.43) (3.05) (2.32)

Cons 0.03 0.03 0.03
(1.02) (1.06) (1.03)

S& P500; -0.13 -0.05
(-3.46) (-0.87)

R? 0.09 0.04 0.02
R%« 0.06 0.00 0.01

This table present the results for contemporaneous and
prediction regressions where the endogenous variable is the
daily return on the S&P 500 index. Results are from mul-
tivariate regressions where the explanatory variables are
the Hellinger Tail Risk, the CBOE VIX index, the real-
ized variance measured as the squared sum of intraday,
15 minutes interval, S&P 500 returns, the Aruba, Diebold
and Scotti Business Conditions Index calculated by the
Philadelphia FRB and the Economic Policy Uncertainty
Index for the U.S. economy from Baker et al. (2016). In the
last line we also present the R?* for univariate regressios
where the only explanatory variable is the Hellinger Tail
Risk. t-statistics are calculated using Newey-West variance
matrix with five lags.
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Table 9: Treasury Regressions

Treasury, Treasury,, Treasury;o

TRy 0.12 0.01 -0.04
(5.45) (0.42) (-2.22)

VIX, 0.05 0.00 0.06
(1.73) (-0.09) (2.70)

Variance; -0.07 -0.01 -0.02
(-2.12) (-0.47) (-1.38)

EPU, -0.04 0.01 0.00
(-3.10) (0.66) (-0.12)

ADS, 0.04 0.00 0.01
(2.64) (0.01) (0.87)

Cons 0.01 0.01 0.01
(1.09) (1.05) (1.04)

Treasury; -0.05 -0.03
(-2.11) (-1.27)

R? 0.04 0.00 0.01
R?x 0.02 0.00 0.00

This table present the results for contemporaneous and pre-
diction regressions where the endogenous variable is the daily
return on the iShares Treasury Bond ETF. Results are from
multivariate regressions where the explanatory variables are
the Hellinger Tail Risk, the CBOE VIX index, the realized
variance measured as the squared sum of intraday, 15 minutes
interval, S&P 500 returns, the Aruba, Diebold and Scotti Busi-
ness Conditions Index calculated by the Philadelphia FRB and
the Economic Policy Uncertainty Index for the U.S. economy
from Baker et al. (2016). In the last line we also present the
R?x for univariate regressios where the only explanatory vari-
able is the Hellinger Tail Risk. t-statistics are calculated using
Newey-West variance matrix with five lags.
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Table 13: Options Portfolios Prediction Regressions

DOTM OTM  ATM IT™M DITM DOTM-DITM  Corr.

Panel A: Contemporaneous

Tail Risk 0.09 008 007  0.05 0.04 0.05
(2.69)  (2.73)  (2.68) (2.70)  (2.68) (2.41)

R? 0.21 021 022  0.22 0.22 0.17

R 0.08 0.08  0.08 0.1 0.12 0.06

Panel B: Prediction

Tail Risk - 0.10 008 006  0.04 0.03 0.06
(2.60)  (2.56) (2.05) (2.08)  (2.11) (2.42)

R? 0.04 003 003  0.04 0.06 0.02

R 0.02 0.02 001  0.02 0.03 0.01

Panel C: Factor Model

FF3 Alpha 0.05  -003 003 004 0.02 -0.07

(-5.31)  (-3.99) (3.87) (11.33) (10.72) (-8.74) -0.72
FF3+MOM Alpha  -0.05  -0.04  0.03  0.04 0.02 -0.07

(-5.40)  (-4.05) (3.91) (11.53) (10.85) (-8.85) -0.72

This table present the results for contemporaneous and one day ahead prediction regressions where the
endogenous variables are portfolios formed on index options according to the options moneyness for put
options with expiration dates between 1 and 45 days from the portfolio formation date. The first three lines
present the estimated beta, t-statistics and R? from multivariate contemporaneous regressions where the
explanatory variables are are the Hellinger Tail Risk, the CBOE VIX index, the realized variance measured
as the squared sum of intraday, 15 minutes interval, S&P 500 returns, the Aruba, Diebold and Scotti Business
Conditions Index calculated by the Philadelphia FRB and the Economic Policy Uncertainty Index for the
U.S. economy from Baker et al. (2016), the Downside Jump measure. The fourth line present the estimated
R? for a regression where the Hellinger Tail Risk is the only explanatory variable. Lines 5-8 present the
same statistics as lines 1-4 for prediction regressions where the lag of the portfolio return is a additional
explanatory variable. Lines 9-12 present the alphas and t-statistics from Fama and French three factors model
and Fama-French-Cahart four factor models respectively. The last column present the correlation between
alphas and multivariate regressions Hellinger Tail Risk betas. t-statistics are calculated using Newey-West
variance matrix with five lags.
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Table 16: Tail Risk Double Sorted Portfolios

Portfolio 1.00 200 3.00 400 500 High-Low FF4
SIZE 263  1.95 170 140  1.08 -1.55 -0.66
(2.64)  (2.52) (2.52) (243) (2.08)  (-2.65)  (-2.00)
MOM 236 171 165 151 152 -0.84 -0.19
(2.58)  (2.28) (247) (248) (2.67)  (-1.94)  (-0.76)
D. Rev. 277 201 166 127  1.03 174 -0.91
(2.82) (2.64) (2.52) (2.17) (1.94)  (-3.15)  (-2.96)
W. Rev. 266 198 158 135  1.18 -1.48 -0.71
(2.73)  (2.58)  (2.39) (2.30) (2.19)  (-273)  (-2.25)
M. Rev. 267 198 162 135  1.13 -1.55 -0.76
(2.76)  (2.60) (2.44) (2.31) (2.06)  (-2.93)  (-2.45)
ILLIQ. 260 1.96 164 142  1.13 -1.47 -0.61
(2.66) (2.52) (2.46) (245) (2.16)  (-2.62)  (-1.89)
Turn. 276 216 170 165  1.58 -1.18 -0.47
(2.89)  (2.77)  (250) (2.69) (277)  (-227)  (-1.36)
COSKEW 271 201 159 134 111 -1.60 0.72
(2.72)  (2.62) (2.38) (2.31) (2.13)  (-2.78)  (-2.30)
IVOL 242 202 159 153 1.20 -1.22 -0.48
(2.65)  (2.62) (2.32) (249) (224)  (-2.61)  (-1.77)
MAX 246  1.95 164 146  1.24 -1.23 -0.57
(2.76)  (2.58) (2.40) (2.35) (221)  (-2.85)  (-2.08)
COKURT 273 190 162 136  1.13 -1.59 -0.73
(2.74)  (247)  (246) (2.34) (218)  (-277)  (-2.29)
D. Beta 247 180 159 147 142 -1.05 -0.67
(2.95) (2.50) (2.37) (2.30) (220)  (-3.24) (-2.59
D. Vol 229 193 165 159  1.29 -1.00 -0.44
(2.69) (2.57) (2.39) (2.48) (225)  (-2.68)  (-1.81)

This table present the returns, Fama and French three factor model alpha and Fama-French-
Cahart four factor model alpha for double sorted portfolios. Each day we first sort stocks
into five groups based on firms characteristics. Within each characteristics group we then
sort stocks according to tail risk beta (we consider a total of 1228 stocks, the constituents
of the S&P 500 and Russel 1000 index, ranging from 01/02/2008 to 11/12/2015) estimated
using returns over the 252 trading days prior to portfolio formation. To form portfolios that
are heterogeneous on the characteristics but homogeneous on tail risk exposure we compute
the means on the beta sorted portfolios across characteristics according to their Hellinger
Tail Risk Beta. For details on the sorting characteristics please see appendix A. For all
models portfolios are re-balanced daily, the holding period equal one day, and the betas are
estimated using a univariate regression. To facilitate comparison we convert daily returns
and alphas into monthly percentages by multiplying them by 21. T-statistics are calculated
using Newey and West variance matrix.
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Table 17: Tail Risk Reverse Double Sorted Portfolios

Portfolio 1.00 2.00 3.00 4.00 5.00  High - Low FF4

SIZE 2.39 1.79 1.73 1.50 1.33 -1.06 -0.93

(2.97)  (249) (2.53) (221) (2.13)  (-3.36)  (-6.34)

MOM 2.05 1.63 1.59 1.54 1.94 -0.11 0.03

(2.44)  (2.33)  (244) (2.38) (272)  (-0.26) (0.17)

D. Rev. 236 210 176 135  1.17 -1.19 -1.05
(3.00) (3.06) (2.67) (2.03) (1.59)  (-3.43)  (-3.10)
W. Rev. 244 190 165 140  1.37 -1.07 -0.88
(3.07) (2.78) (2.49) (2.11) (1.88)  (-3.31)  (-2.77)
M. Rev. 227 1.83 169 154 141 -0.86 -0.68
(2.87)  (2.66) (2.54) (2.31) (1.96)  (-245)  (-1.98)
ILLIQ. 138 150  1.64 184  2.39 1.02 0.84
(2.26) (2.27) (2.33) (2.50) (2.98) (3.13) (5.32)
Turn. 206 196 194 198  1.89 -0.17 -0.43
(2.94) (2.86) (2.76) (2.78) (240)  (-048)  (-1.29)
COSKEW 194 151 160 170  2.00 0.06 0.01
(2.62) (2.28) (2.43) (2.51) (2.60) (0.24) (0.04)
IVOL 143 152 165 187 228 0.86 0.40
(2.50)  (2.42) (2.41) (2.48) (2.60) (2.07) (1.61)
MAX 153 157 164 166 235 0.83 0.29
(2.81)  (2.50) (2.39) (2.16)  (2.64) (1.84) (1.16)
COKURT 197 168 157 169  1.85 -0.12 -0.12
(2.61) (2.51) (2.39) (251) (244)  (-054)  (-0.57)
D. Beta 157 162 158 180 217 0.60 -0.09
(2.97) (2.65) (2.30) (2.37) (2.36) (1.26) (-0.35)
D. Vol 134 148 165 177 251 1.18 0.54
(2.53)  (2.43) (2.38) (2.31) (2.71) (2.34) (1.93)

This table present the returns, Fama and French three factor model alpha and Fama-French-
Cahart four factor model alpha for double sorted portfolios. Each day we first sort stocks
into five groups based on the Hellinger Tail Risk beta, estimated using returns over the
252 trading days prior to portfolio formation. Within each beta group we then sort stocks
according to firms characteristics (we consider a total of 1228 stocks, the constituents of the
S&P 500 and Russel 1000 index, ranging from 01,/02/2008 to 11/12/2015). To form portfo-
lios that are heterogeneous on the tail risk beta but homogeneous on the characteristics we
compute the means on the characteristics portfolios across beta groups. For details on the
sorting characteristics please see appendix A. For all models portfolios are re-balanced daily,
the holding period equal one day, and the betas are estimated using a univariate regression.
To facilitate comparison we convert daily returns and alphas into monthly percentages by
multiplying them by 21. T-statistics are calculated using Newey and West variance matrix.
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