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Abstract

Risk measures such as Expected Shortfall (ES) and Value-at-Risk (VaR) have been

prominent in banking regulation and financial risk management. Motivated by practical

considerations in the assessment and management of risks, including tractability, scenario

relevance and robustness, we consider theoretical properties of scenario-based risk evalu-

ation. We propose several novel scenario-based risk measures, including various versions

of Max-ES and Max-VaR, and study their properties. We establish axiomatic characteri-

zations of scenario-based risk measures that are comonotonic-additive or coherent and an

ES-based representation result is obtained. These results provide a theoretical foundation

for the recent Basel III & IV market risk calculation formulas. We illustrate the theory with

financial data examples.
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1 Introduction

1.1 Background

Risk measures are used in various contexts in banking and insurance, such as regulatory

capital calculation, optimization, decision making, performance analysis, and risk pricing; see

e.g. McNeil et al. (2015) for a general review of quantitative risk management. In practice,

risk measures have to be estimated from data. Therefore, it is often argued that one has to

use a law-based risk measure (or a statistical functional), such as a Value-at-Risk (VaR) or an

Expected Shortfall (ES), both standard risk measures used in banking and insurance.

However, even assuming that the distribution of a risk is accurately obtained, it may not

be able to comprehensively describe the nature of the risk. From the regulatory perspective, a

regulator is more concerned about the behavior of a risk in an adverse environment, e.g. during

a catastrophic financial event; see e.g. Acharya et. al. (2012) for related discussions. Only the

distribution of the risk may not be enough to distinguish a potentially huge loss in a financial

crisis from a potentially huge loss in a common economy but no loss in a financial crisis.1

Therefore, it may be useful to evaluate a risk under different stress scenarios. Summing up

these evaluations in a single number would necessarily lead to a non-law-based risk measure.

Finally, it is usually unrealistic to assume that the distribution of a risk may be accurately

obtained. Model uncertainty is a central component of the current challenges in risk measurement

and regulation, and its importance in practice has been pivotal after the 2007 financial crisis (see

e.g. OCC (2011)) in both the banking (e.g. BCBS (2016)) and the insurance sectors (e.g. IAIS

(2014)). Model uncertainty may be due to statistical/parameter uncertainty or more generally,

structural uncertainty of the model or of the economic system. A robust approach should take

into account the distribution of the underlying risk under several plausible model assumptions.

In the framework of Basel III & IV (BCBS (2016)), the standard risk measure for market

risk is an Expected Shortfall (ESp) at level p = 0.975. Thus, the Basel Committee on Banking

Supervision has opted for a law-based risk measures. However, while ES is the basic building

block for marked risk assessment, the initial ES estimates are subsequently modified, in particu-

lar, two important adjustments are a stress adjustment and a dependence adjustment (p.52 - p.69

of BCBS (2016)), which then leads to the capital charge for modellable risk factors (abbreviated

as IMCC in BCBS (2016)).

The aim of this paper is to present a theoretical approach to the construction of risk

1As another simple example, the profit/loss from a lottery and that from an insurance contract may have

the same distribution, but they represent very different types of risks and can have very different effects on the

decision maker or the society.
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measures that incorporates modifications such as a stress and dependence adjustment of an

initial law-based risk measure into the risk measure itself. We call such risk measures scenario-

based risk measures; see Definition 1. Our approach has the advantage that the final result

of the risk estimation can be understood theoretically and properties such as coherence and

comonotonic additivity can be studied not only for the initial law-invariant risk measure but for

the final risk measure that is the relevant output for further actions and decisions, such as the

IMCC in the Basel III & IV framework.

Before presenting our theoretical framework, let us give some details on the latest regulatory

framework of the Basel Committee on Banking Supervision to illustrate how they deal with the

issues mentioned above.

1.2 The Basel formulas for market risk and other motivating examples

In the framework of Basel III & IV (BCBS (2016)) for market risk, the time horizon is 10

days (two trading weeks), and each risk position (random loss) is modelled as a function of risk

factors, such as equity prices, interest rates, credit spreads, and volatilities. Each risk factor is

adjusted according to their category of liquidity. Let X =
∑n
i=1Xi be the aggregate portfolio

loss at a given day, where X1, . . . , Xn are the corresponding risk factors in the aggregation (with

weights included).

(i) Stress adjustment

(a) Specify a set R of reduced risk factors which has a sufficiently long history of observation

(at least span back to and including 2007), such that the ratio

θ = max

{
ESF (X)

ESR(X)
, 1

}
is less than 4/3, where ESF (X) = ESp(

∑n
i=1Xi) is the current ES value calculated using

all risk factors, and ESR(X) = ESp(
∑
i∈RXi) is the current ES value calculated using the

reduced risk factors. The ratio θ is treated like a constant and only needs to be updated

weekly.

(b) Compute ES for a model with the reduced risk factors, “calibrated to the most severe 12-

month period of stress”, and this is denoted by ESR,S(X). The period of “most severe

stress”, also called the stress scenario corresponds to the rolling window of data of length

one year that leads to the maximum possible value of ES using the reduced risk factor

model (p.6 of BCBS (2017)). Mathematically, ESR,S(X) involves taking a maximum over a

set Q of distributions estimated from sequences of data of length one year (many of them
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overlapping), namely

ESR,S(X) = max
Q∈Q

ESQp

(∑
i∈R

Xi

)
.

(c) Use the formula

ẼS(X) = ESR,S(X)× θ

to get the stress-adjusted ES value.

In particular, if the portfolio loss is modelled by only risk factors of sufficiently long history

(spanning back to 2007), then R = {1, . . . , n} and the adjusted ES value is

ẼS(X) = max
Q∈Q

ESQp

(
n∑
i=1

Xi

)
= max

Q∈Q
ESQp (X).

(ii) Dependence adjustment

(a) Risk factors in the portfolio are grouped into a range of broad regulatory risk classes (interest

rate risk, equity risk, foreign exchange risk, commodity risk and credit spread risk). For the

stress scenario (see (i)(b)), compute the ES of each risk class (according to (i)), and denote

their sum by ẼSC(X). By comonotonic-additivity and subadditivity of ES (see Section 2

for details), this calculation is equivalent to using a model where all classes of risk factors

are comonotonic (“non-diversified”), and it represents the worst-case value of ES among all

possible dependence structures (e.g. Embrechts et al. (2014)).

(b) Use the formula

ES(X) = λẼS(X) + (1− λ)ẼSC(X),

where λ is a constant (right now, λ is chosen as 0.5). The quantity ES(X) is called the

IMCC of the portfolio.

Intuitively, the logic behind adjustment (i) is that risk assessment should be made based on

stressed financial periods, and that behind adjustment (ii) is that the dependence structure

between risk factors is difficult to specify and a worst-case value is combined with the original

model to protect from overly optimistic diversification effects in the model specification. See Em-

brechts et al. (2014, 2015) for discussions on the aggregation of risk measures under dependence

uncertainty2.

In summary, in the framework of Basel III & IV (BCBS (2016)) for market risk, ES of the

same portfolio is estimated under different scenarios and models: stress (stressed, non-stressed),

2In addition to (i) and (ii), the IMCC value will finally be adjusted by using the maximum of its present

calculation and a moving average calculation of 60 days times a constant (currently 1.5).
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and dependence (diversified, non-diversified), and these values are aggregated with mainly two

operations (iteratively): maximum and linear combination. In Theorem 4, we show that these

two operations indeed are the two most crucial operations which lead to a coherent risk measure

in the sense of Artzner et al. (1999) for scenario-based risk measures. Section 5.2 contains a

detailed data analysis for the stress adjustment (i) outlined above.

We briefly mention two other prominent examples of risk evaluation using scenarios. First,

the margin requirements calculation developed by the Chicago Mercantile Exchange (CME

(2010)) relies on the maximum of the portfolio loss over several specified hypothetical scenarios;

see p.63 of McNeil et al. (2015). Our data example in Section 5.1 is similar to this approach.

The second example comes from the practice of credit rating, where a structured finance security

(e.g. a defaultable bond) is rated according to its behavior (conditional distributions) under each

economic stress scenario. This approach, in different specific forms, appear in both the Standard

and Poor’s and Moody’s rating methodologies; see Standard and Poor’s (2009) and Moody’s

(2010).

In this paper, we propose an axiomatic framework of scenario-based risk evaluation, which

has the three merits mentioned above, and is consistent with many existing risk measurement

procedures including the above examples. We shall keep the Basel formulas as our primary

example in mind.

1.3 Our contribution and the structure of the paper

The contributions of our paper are summarized below. In Section 2, we introduce scenario-

based risk measures. They includes classic law-based risk measures, non-law-based risk measures

such as the systemic risk measures CoVaR and CoES (Adrian and Brunnermeier (2016)), and

many practically used risk calculation principles such as the Basel formulas for market risk, the

margin requirements by the Chicago Mercantile Exchange, and the common rating measures

used in credit rating, as mentioned above. We introduce several novel scenario-based measures

of risk in Section 3. In particular, we study the properties of Max-ES and Max-VaR, and

related families of risk measures. Axiomatic characterizations of scenario-based risk measures

are studied in Section 4. In particular, we characterize scenario-based comonotonic-additive as

well as coherent risk measures, in the sense of Artzner et al. (1999) and Kusuoka (2001). Many

surprising mathematical challenges emerge. Data analyses are given in Section 5, highlighting the

broad range of possible interpretations of scenarios. In particular, scenario-based risk measures

can be easily implemented for stress analysis and capital calculation.

Our framework builds upon the axiomatic theory of coherent risk measures as pioneered by

Artzner et al. (1999). A comprehensive review on risk measures can be found in Delbaen (2012)
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and Föllmer and Schied (2016). The class of scenario-based risk measures is quite general. In

addition to classic law-invariant risk measures, it also includes various forms of risk evaluation

procedures such as the ones studied in Delbaen (2002), Cherny and Madan (2009), Adrian and

Brunnermeier (2016), Kou and Peng (2016) and Righi (2018); see Sections 2 and 3 for details.

For recent developments of risk measures, including various practical issues of statistical analysis,

robustness, model uncertainty, and optimization, we refer to Fissler and Ziegel (2016), Cambou

and Filipovic (2017), Krätschmer et al. (2017), Du and Escanciano (2017), Embrechts et al.

(2018) and the references therein.

2 Theory of scenario-based risk measures

2.1 Definitions

Let (Ω,F) be a measurable space and P be the set of all probability measures on (Ω,F).

For any probability measure Q on (Ω,F), write FX,Q for the cumulative distribution function

(cdf) of X under Q, and denote by X ∼Q F if F = FX,Q. For two random variables X and Y

and a probability measure Q, we write X
d
=Q Y if FX,Q = FY,Q. For any cdf F , its generalized

inverse is defined as

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ (0, 1].

Let X be the set of bounded random variables in (Ω,F), and Y be a convex cone of random

variables containing X , representing the set of random variables of interest. We fix X throughout,

whereas Y is specific to the functional considered3. A probability measure P ∈ P shall be chosen

as a reference probability measure in this paper, which may be interpreted as the real-world

probability measure in some applications.

In this paper we use the term scenario for a probability measure Q ∈ P. The reason

behind this choice of terminology is from the perspective of scenario analysis, as in the following

example. This example will be referred to a few times throughout the paper.

Example 1. Let Θ be a random economic factor taking values in a setK andQθ(·) = P(·|Θ = θ),

θ ∈ K, are regular conditional probabilities with reference to Θ. The set {Θ = θ} ∈ F represents

a possible economic event for each θ ∈ K. To analyze the behavior of a risk X under each scenario

Θ = θ, θ ∈ K, the respective distributions of X under the probability measures Qθ are of interest.

Suppose that there is a collection Q of scenarios of interest. As mentioned in the introduc-

tion, there may be different interpretations for the set Q. In what follows, we take a collection of

3For instance, when considering the expectation EQ for some Q ∈ P, its domain Y is often chosen as the

Q-integrable random variables, which depends on the choice of Q. However, it does not hurt to think of Y = X

for the main part of the paper.
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scenarios of interest and we shall not distinguish between the interpretations. If a risk (random

loss) X and another risk Y have the same distribution under all relevant scenarios in Q, then

they should be assigned identical riskiness, whatever sense of riskiness we speak of. This leads

to the following definition of Q-based mappings.

Definition 1. For a non-empty collection of scenarios Q ⊂ P, a mapping ρ : Y → (−∞,∞] is

Q-based if ρ(X) = ρ(Y ) for X,Y ∈ Y whenever X
d
=Q Y for all Q ∈ Q.

To put the above concept into risk management, we focus on Q-based risk measures. A

risk measure is a mapping from Y to (−∞,∞], with ρ(X) < ∞ for bounded X. We use the

term risk measure in a broad sense, as it also includes deviation measures (such as variance) and

other risk functionals4 . In this paper, we adopt the sign convention as in McNeil et al. (2015):

for a risk X ∈ Y, losses are represented by positive values of X and profits are represented by

negative values of X.

An immediate example of a Q-based risk measure is one that depends on the joint law of a

risk and an economic factor Θ as in Example 1. If ρ(X) is determined by the joint distribution

of (X,Θ), then ρ is Q-based where Q = {P(·|Θ = θ) : θ ∈ K}. This includes the systemic

risk measures CoVaR and CoES, which are evaluated based on conditional distributions of risks

given events (see Adrian and Brunnermeier (2016)). For a fixed random variable S (the system)

and p ∈ (0, 1), the systemic risk measure CoVaR is defined as:

CoVaRS
p (X) = VaRP

p(S|X = VaRP
p(X)), X ∈ Y,

and the other systemic risk measure CoES is defined as:

CoESSp (X) = EP[S|S > CoVaRS
p (X)], X ∈ Y.

Since CoVaR and CoES are determined by the joint distribution of (X,S), they are Q-based

risk measures for Q = {P(·|S = s) : s ∈ R}.

Clearly, the Q-based risk measures are generalizations of law-based (single-scenario-based)

risk measures, which are determined by the law of random variables in a given probability space.

Thus, Q-based risk measures bridge law-based ones and generic ones, by noting the relationship

(assuming P ∈ Q)

{P}︸︷︷︸
law-based

⊂ Q︸︷︷︸
Q-based

⊂ P︸︷︷︸
generic

.

Some immediate facts about Q-based risk measures are summarized in the following.

4To keep things precise, our main examples are traditional risk measures such as VaR and ES, although our

framework includes deviation measures. For the latter, see Rockafellar et al. (2006).
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(i) All risk measures on Y are P-based. In fact, if X
d
=Q Y for all Q ∈ P, then X = Y 5.

(ii) If Q1 ⊂ Q2 ⊂ P, then a Q1-based risk measure is also Q2-based.

(iii) For Q1, . . . ,Qn ⊂ P, let Q = ∪ni=1Qi and ρi : Y → R be Qi-based, i = 1, . . . , n. For any

f : Rn → R, the mapping f ◦ (ρ1, . . . , ρn) : Y → R is Q-based.

Next we introduce a special type of collections of probability measures, which fits naturally

into the context of Example 1.

Definition 2. A collection of probability measures Q ⊂ P is mutually singular if there exist

mutually disjoint sets AQ ∈ F , Q ∈ Q, such that Q(AQ) = 1 for Q ∈ Q.

An example of this type would be to take Qi(B) = P(B|Ai) for B ∈ F where A1, . . . , An

is a partition of Ω with P(Ai) > 0 for i = 1, . . . , n. That is, each Qi amplifies the probability of

the events Ai of interest, commonly seen e.g. in importance sampling. In Example 1, Q = {Qθ :

θ ∈ K} is mutually singular.

We also say that a tuple (Q1, . . . , Qn) ∈ Pn is mutually singular if {Q1, . . . , Qn} is mutually

singular, and any two of Q1, . . . , Qn are non-identical.

Remark 1. In this paper, scenarios are treated in a generic sense. They may have different

interpretations in different contexts. In a statistical context, they may represent different values

of an estimated parameter in the model of the risk. In a simulation-based model, they may

represent different parameters in the simulation dynamics, or a simply sets of different weights

on the realized values of the risk in the simulation. In a regulatory framework, they may represent

different economic situations that the regulator is concerned about. In a financial market, to

assess a contingent payoff, one may need to incorporate its distribution under the pricing measure

and under the physical measure, under multiple pricing measures, or with different heterogeneous

opinions about the physical probability measure; these situations naturally require a risk measure

determined by the distribution of the risk under different measures.

2.2 Preliminaries on risk measures

We adapt the terminology in Artzner et al. (1999), Kusuoka (2001) and Föllmer and Schied

(2002). A risk measure ρ is cash-invariant if ρ(X + c) = ρ(X) + c for c ∈ R and X ∈ Y; ρ is

monotone of ρ(X) 6 ρ(Y ) for X,Y ∈ Y, X 6 Y ; ρ is positively homogeneous if ρ(λX) = λρ(X)

for λ ∈ (0,∞) and X ∈ Y, and ρ is subadditive if ρ(X + Y ) 6 ρ(X) + ρ(Y ) for X,Y ∈ Y. A risk

5Let ω ∈ Ω and define Q : F → R, A 7→ I{ω∈A}. One can verify that Q defines a probability measure. The

distributions of X and Y under Q are simply the point mass at X(ω) and Y (ω), respectively. Therefore, X
d
=Q Y

implies that X(ω) = Y (ω).

8



 Electronic copy available at: https://ssrn.com/abstract=3235450 

measure is said to be monetary if it is monotone and cash-invariant. A risk measure is said to

be coherent if it is monetary, positively homogeneous and subadditive.

Two random variables X and Y in (Ω,F) are comonotonic if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0 for all ω, ω′ ∈ Ω.

A risk measure ρ is comonotonic-additive if ρ(X + Y ) = ρ(X) + ρ(Y ) whenever X and Y are

comonotonic.

Let us define some classic risk measures based on a single scenario Q ∈ P. The most

popular risk measures in banking and insurance regulation are the Value-at-Risk (VaR) and the

Expected Shortfall (ES), calculated under a fixed probability measure Q ∈ P. We shall refer to

them as Q-VaR and Q-ES, respectively. For these risk measures, their domain Y can be chosen

as any convex cone of random variables containing X , possibly the entire set of random variables.

For p ∈ (0, 1], VaRQ
p : Y → (∞,∞] is defined as

VaRQ
p (X) = inf{x ∈ R : Q(X 6 x) > p} = F−1

X,Q(p), X ∈ Y, (1)

and for p ∈ (0, 1), ESQp : Y → (∞,∞] is defined as

ESQp (X) =
1

1− p

∫ 1

p

VaRQ
q (X)dq, X ∈ Y. (2)

In addition, we let ESQ1 (X) = VaRQ
1 (X)6.

For a specified scenario Q, Q-VaR and Q-ES belong to the class of distortion risk measures.

Define the following sets of functions7

G = {g : g is an increasing function from [0, 1] to [0, 1] with g(0) = 1− g(1) = 0},

and G+ = {g ∈ G : g is concave}. A Q-distortion risk measure is defined as

ρQg (X) =

∫ 0

−∞
(g ◦Q(X > x)− 1)dx+

∫ ∞
0

g ◦Q(X > x)dx, X ∈ Xg. (3)

where g ∈ G is called the distortion function of ρQg , and Xg is the set of random variables such that

(3) is well-defined8. A Q-spectral risk measure is a Q-distortion risk measure with a concave

distortion function. A Q-distortion risk measure is always monetary, positively homogeneous

and comonotonic-additive. A Q-spectral risk measure is, additionally, coherent. VaRQ
p has

a distortion function g(x) = I{x>1−p}, x ∈ [0, 1] and ESQp has a distortion function g(x) =

1
1−p min{x, 1− p}, x ∈ [0, 1].

6VaRp(X) is always finite if p ∈ (0, 1). If X is not integrable, then ESp(X) may be infinite.
7In this paper, terms “increasing”, “decreasing” and “set inclusion” are in the non-strict sense.
8By “well-defined” we mean at least one of the two integrals in (3) is finite. Xg always contains X .
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3 Scenario-based VaR and ES

Because of the prominent importance of VaR and ES in external regulatory capital calcu-

lation and internal risk management, in this section we investigate several versions of scenario-

based risk measures which can be seen as the natural generalizations VaR and ES in a multi-

scenario framework.

3.1 Max-type Q-based risk measures

Inspired by the BIS ES formula, we introduce a class of Q-based risk measures, which we

refer to as max-type risk measures. We say that a Q-based risk measure ρ is max-type, if

ρ(X) = sup
Q∈Q

ρQ(X), X ∈ Y,

where for each Q ∈ Q, ρQ is a {Q}-based risk measure. Max-type risk measures incorporate

information evaluated under each scenario, and make a conservative capital calculation by taking

the maximum value. Two major examples of max-type risk measures will be the classes of Max-

ES and Max-VaR, which we introduce below. For all risk measures in this section, Y can be

taken as any convex cone of random variables containing X .

Definition 3 (Max-ES and Max-VaR). For a collection of measures Q and p ∈ (0, 1), the

Max-ES (MES) is defined as

MESQp (X) = sup
Q∈Q

ESQp (X), X ∈ Y, (4)

and the Max-VaR (MVaR) is defined as

MVaRQp (X) = sup
Q∈Q

VaRQ
p (X), X ∈ Y. (5)

For specific applications, a Max-ES or Max-VaR may be defined at multiple probability

levels, as

max
i=1,...,n

ESQipi (X) or max
i=1,...,n

VaRQi
pi (X), X ∈ Y

for some p1, . . . , pn ∈ (0, 1) and Q1, . . . , Qn ∈ P. In this paper, for the ease of presentation, and

in view of the BIS formula, we focus on MESQp and VaRQp defined in (4) and (5).

Remark 2. If Q is chosen as a neighborhood (in the sense of some statistical distance) of a

reference scenario P, then (4) and (5) are known as the robust calculations of ESP
p(X) and

VaRP
p(X).

The risk measures MESQp and MVaRQp are both max-type Q-based risk measures. Simi-

larly to the single-scenario-based ES and VaR in (1) and (2), MES and MVaR have different
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mathematical properties. Quite surprisingly, the risk measure MVaRQp satisfies comonotonic-

additivity, whereas MESQp does not. This is sharp contrast to the case of single-scenario-based

risk measures, in which both ESQp and VaRQ
p are comonotonic-additive.

Theorem 1. For a collection of measures Q and p ∈ (0, 1), the following hold.

(i) MESQp is coherent, but generally not comonotonic-additive.

(ii) MVaRQp is comonotonic-additive, positively homogeneous and monetary, but generally not

coherent.

Remark 3. As a classic result (Delbaen (2002)), a coherent risk measure ρ on X with the Fatou

property (see Appendix B.7 for details) has a dual representation

ρ(X) = sup
Q∈Q

EQ[X], X ∈ X , (6)

for some set of probability measures Q. Clearly, ρ is a max-type Q-based risk measure. This in-

cludes, in particular, the methodology for margin requirement calculation developed by Chicago

Mercantile Exchange; see p.63 of McNeil et al. (2015).

3.2 Various formulations of Q-based Expected Shortfalls

Max-type risk measures are arguably one of the simplest Q-based risk measures. Other

than the max-type, using a finite or continuous mixture is also a convenient and simple way

to construct Q-based risk measures. As an example, we take p ∈ (0, 1) and a finite Q =

{Q1, . . . , Qn}, and define the Average-ES (AES) as the average of ES across different scenarios,

that is,

AESQp (X) =
1

n

n∑
i=1

ESQip (X), X ∈ Y. (7)

It is straightforward to see that AESQp is a coherent and comonotonic-additive risk measure.

Certainly, one could choose different weights for each scenario (see Example 5). Here, we take

an equally weighted version for simplicity.

Below we present a few other ways to formulate ES in the framework of Q-based risk

measures. Similarly, one may define the corresponding versions of VaR or any other law-based

risk measure, but we take ES as an example in this section due to its relevance in Basel III &

IV.

Recall that the single-scenario-based ES in (2) is an average of VaR of probability level

beyond p ∈ (0, 1). Utilizing this connection, we define the integral Max-ES (iMES) as the

integral of MVaR, that is,

iMESQp (X) =
1

1− p

∫ 1

p

MVaRQq (X)dq, X ∈ Y. (8)
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One may equivalently write

iMESQp (X) = ESP
p

(
sup
Q∈Q

F−1
X,Q(U)

)
, X ∈ Y, (9)

where U ∼P U[0, 1]. Thus, iMESQp is constructed from an ES and a maximum operator on the

individual quantile functions.

Another way to utilize the ES and a maximum operator is via independent replications of X

under different scenarios. Let p ∈ (0, 1), Q1, . . . , Qn be distinct scenarios and Q = {Q1, . . . , Qn}.

Define a replicated Max-ES (rMES) as the ES of a maximum of independent copies, that is,

rMESQp (X) = ESP
p

(
max

i=1,...,n
Xi

)
, X ∈ Y, (10)

where Xi ∼P FX,Qi , i = 1, . . . , n, and X1, . . . , Xn are independent under P. The risk measure

rMESQp is defined for a finite collection Q so that the maximum in (10) is well-posed9. Note that

iMESQp , and rMESQp are not max-type risk measures.

Each of the Q-based risk measures MESQp , AESQp , iMESQp and rMESQp may be seen as a

natural generalization of the single-scenario-based risk measure ESQp . Although bearing similar

ideas, these risk measures have different properties and values. If Q = {Q}, then the above five

risk measures are all equal. They are generally non-equivalent and satisfy an order summarized

in the following theorem.

Theorem 2. Let Q be a collection of n scenarios and p ∈ (0, 1).

(i) AESQp is comonotonic-additive and coherent.

(ii) iMESQp is comonotonic-additive, but generally not coherent.

(iii) rMESQp is comonotonic-additive and coherent.

(iv) AESQp (X) 6 MESQp (X) 6 iMESQp (X) 6 rMESQp (X) for all X ∈ Y.

(v) If n = 1, then AESQp (X) = MESQp (X) = iMESQp (X) = rMESQp (X) for all X ∈ Y.

The above illustration suggests that the framework of Q-based risk measures is generally

flexible, and it allows for a great variety of risk measures to be formulated, even simply from the

ES and a fixed p.

We note that there is a simple relationship between iMES (resp. MVaR) and ES (resp. VaR)

when the collection of scenarios Q is the economic scenarios in Example 1.

Proposition 1. Let Q = {Qθ : θ ∈ K} as in Example 1. For p ∈ (0, 1), MVaRQp (X) > VaRP
p(X)

and iMESQp (X) > ESP
p(X) for all X ∈ Y.

9The risk measure rMESQp finds some similarity to MINVAR in Cherny and Madan (2009); see Example 4 for

more details.
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Proposition 1 suggests that when using the economic scenarios in Example 1, iMES (MVaR)

is more conservative than ES (VaR) over the unconditional real world probability measure P.

Note that MESQp (X) > ESP
p(X) does not hold in general (see Example 7 in the Appendix for

a counter-example), although this inequality almost always holds empirically, as we shall see in

the data analysis in Section 5.

Before closing this section, we remark that for a finite collection Q, each of MESQp , iMESQp ,

rMESQp and AESQp is easy to (numerically) calculate if one has the distributions of X under each

Q ∈ Q, or one has simulated samples of X under each Q ∈ Q.

Remark 4. The worst-case (e.g. MES) and the weighted risk measures (e.g. AES) were recently

studied in Righi (2018), and they are special cases ofQ-based risk measures. For a finite collection

of scenarios {Q1, . . . , Qn}, these risk measures take the form f(ρQ1 , . . . , ρQn) for some function

f , where ρQi is {Qi}-based, i = 1, . . . , n. As we can see from the example of iMES and rMES,

the framework of scenario-based risk measures is much broader than risk measures of the above

form.

Remark 5. Another example of scenario-based risk measure of the type f(ρQ1 , . . . , ρQn) is given

by Kou and Peng (2016). Let ρQihi , i = 1, . . . , n be Qi-distortion risk measures given by (3), and

W be a subset of the standard simplex {(w1, . . . , wn) ∈ [0, 1]n :
∑n
i=1 wi = 1}. The risk measure

ρ, given by

ρ(X) = sup
(w1,...,wn)∈W

{
n∑
i=1

wiρ
Qi
hi

(X)

}
, X ∈ X ,

is a combination of maximum and weighted averages of Q-distortion risk measures for Q ∈

{Q1, . . . , Qn}.

4 Axiomatic characterizations

In this section, we establish axiomatic characterizations of Q-based comonotonic-additive

risk measures as well as Q-based coherent risk measures. For technical reasons, we focus on a

finite collection Q and the set of bounded random variables, that is, Y = X .

Throughout this section, n is a positive integer, and let Q = (Q1, . . . , Qn) be a vector of

measures, where Q1, . . . , Qn ∈ P are (pre-assigned) probability measures on (Ω,F), and Q =

{Q1, . . . , Qn} is the set of these measures10. Write 0 = (0, . . . , 0) ∈ Rn and 1 = (1, . . . , 1) ∈ Rn.

We say that P ∈ P dominates Q, if Q� P for all Q ∈ Q, that is, if for all Q ∈ Q, Q is absolutely

continuous with respect to P .

10The dimensionality of Q and the cardinality of Q may only differ if some of Q1, . . . , Qn are identical. If

Q1, . . . , Qn are distinct, then the mutual singularity of Q is equivalent to that of Q.
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4.1 Comonotonic-additive risk measures and Choquet integrals

As mentioned in Section 2.2, the most popular class of risk measures in practice are the ones

that are additive for comonotonic risks. We choose this class as the starting point to establish

an axiomatic theory of Q-based risk measures. It is well-known that law-determined monetary

risk measures are closely related to the notion of Choquet integrals; for instance Yaari’s dual

utility functionals (Yaari (1987)) and Kusuoka representations (Kusuoka (2001)) are based on

Choquet integrals. First we recall the notions of Choquet integrals.

Definition 4. A set function c : F → R, is increasing if c(A) 6 c(B) for A ⊂ B, A,B ∈ F , it

is standard if c is increasing and satisfies c(∅) = 0 and c(Ω) = 1, and it is submodular if

c(A ∪B) + c(A ∩B) 6 c(A) + c(B), A,B ∈ F .

Definition 5. For a standard set function c and X ∈ X , the Choquet integral
∫
Xdc is defined

as ∫
Xdc =

∫ 0

−∞
(c(X > x)− 1)dx+

∫ ∞
0

c(X > x)dx. (11)

The integral
∫
Xdc in (11) might also be well-defined on sets larger than the set X of

bounded random variables. Generally, depending on different choices of c, one may choose

different domains for the Choquet integral. A Q-distortion risk measure in (3) is exactly a

Choquet integral by choosing c = g ◦Q.

Now we are ready to present the characterization for comonotonic-additive Q-based risk

measures, which is based on a celebrated result dating back to Schmeidler (1986).

Theorem 3. A risk measure ρ on X is monetary (resp. coherent), comonotonic-additive and

Q-based if and only if

ρ(X) =

∫
Xdψ ◦Q, X ∈ X (12)

for some function ψ : [0, 1]n → [0, 1] such that ψ ◦ Q is standard (resp. ψ ◦ Q is standard and

submodular).

We shall refer to a risk measure in (12) as a Q-distortion risk measure, which is, by Theorem

3, precisely a monetary, comonotonic-additive and Q-based risk measure. Coherent Q-distortion

risk measures are referred to as Q-spectral risk measures. For the Q-distortion risk measure ρ in

(12), ψ is called its Q-distortion function11, and it is unique on the range of Q, by noting that

ρ(IA) = ψ ◦ Q(A) for all A ∈ F . The classes of Q-distortion and Q-spectral risk measures will

be the building blocks of the theory of Q-based risk measures.

11The reliance on Q is essential. For instance, taking P,Q ∈ P, if ρ(X) = 1
3
EP [X] + 2

3
EQ[X], X ∈ X , then ρ

has a (P,Q)-distortion function and a (Q,P )-distortion function, which are different.
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Clearly, if n = 1, then the concepts of a Q-distortion risk measure, a Q-spectral risk measure

and a Q-distortion function coincide with those defined for a single scenario in Section 2.2. In

that case, the representation in (12) reduces to

ρ(X) =

∫
Xdψ ◦Q1, X ∈ X (13)

where ψ ∈ G (and ψ ∈ G+ if ρ is coherent).

The condition that ψ ◦ Q is standard or ψ ◦ Q is submodular may not be easy to verify

in general, as it involves the joint properties of ψ and Q. Below we establish some sufficient

conditions based on solely ψ. Furthermore, these conditions are necessary and sufficient if Q is

mutually singular.

Proposition 2. Let ψ : [0, 1]n → [0, 1] be a function satisfying ψ(0) = 1 − ψ(1) = 0, and ρ be

defined as in (12).

(i) If ψ is componentwise increasing, then ρ is a Q-distortion risk measure.

(ii) If ψ is componentwise increasing, componentwise concave, and submodular, then ρ is a

Q-spectral risk measure.

(iii) The converse statements of (i) and (ii) are also true if Q is mutually singular.

Proposition 2 suggests that it is straightforward to design various comonotonic-additive

Q-based risk measures by choosing some componentwise increasing functions ψ. We remark

that, if Q is not mutually singular, in order for ψ ◦ Q to be standard (resp. submodular), it is

generally not necessary for ψ to be componentwise increasing (resp. componentwise concave and

submodular). See Example 8 in the Appendix for a counter-example.

4.2 Integral representation and examples

Recall that in Section 2.2, for a single scenario Q, a Q-distortion risk measure ρQg is defined

as

ρQg (X) =

∫ 0

−∞
(g ◦Q(X > x)− 1)dx+

∫ ∞
0

g ◦Q(X > x)dx, X ∈ X . (14)

If g is left-continuous, ρQg has a Lebesgue integral formulation via an argument of integration by

parts (see e.g. Theorem 6 of Dhaene et al. (2012)), that is,

ρQg (X) =

∫ 1

0

VaRQ
p (X)dḡ(p), X ∈ X , (15)

where ḡ(t) = 1 − g(1 − t) for t ∈ [0, 1]. Note that in this case, ḡ is right-continuous with

g(0) = 1 − g(1) = 0; thus g is a distribution function on [0, 1]. This property is key to the
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integral representation in (15). Next we establish an analogous integral formulation for the case

of multiple scenarios under a similar assumption. For a function ψ : [0, 1]n → [0, 1], denote by

ψ̄(u) = 1− ψ(1− u), u ∈ [0, 1]n.

Proposition 3. Let ψ̄ be a distribution function on [0, 1]n, and ρψ : X → R be given by

ρψ(X) =

∫
[0,1]n

max{VaRQ1
u1

(X), . . . ,VaRQn
un (X)}dψ̄(u1, . . . , un). (16)

Then ρψ(X) is a Q-distortion risk measure with Q-distortion function ψ. Moreover, if ψ̄ is

componentwise convex, then ρψ is a Q-spectral risk measure.

Proposition 3 provides a convenient way to construct variousQ-distortion risk measures. For

instance, one may choose ψ̄ as an n-copula (see Joe (2014)). A direct consequence of Proposition

3 is that any Q-distortion risk measure with Q-distortion function ψ has a representation (16)

if ψ̄ is a distribution function. Below we present some examples, including MVaRQp and iMESQp

in Section 3 and MINVAR in Cherny and Madan (2009) in the case of a single scenario.

Example 2 (MVaRQp ). For p ∈ (0, 1), by choosing ψ̄ as the distribution on the point mass

(p, . . . , p) ∈ (0, 1)n, we obtain a special case of (16), defined as

ρ(X) = max{VaRQ1
p (X), . . . ,VaRQn

p (X)}, X ∈ X . (17)

The risk measure ρ is a Q-distortion risk measure with Q-distortion function ψ(x1, . . . , xn) =

1− I{x1,...,xn61−p}, (x1, . . . , xn) ∈ [0, 1]n, and it is precisely MVaRQp in Section 3.1. Hence, this

representation also verifies that MVaRQp is comonotonic-additive for a finite Q. Note that, as

we have seen previously, MESQp is not comonotonic-additive, and as such, it does not admit a

representation as in Proposition 3.

Example 3 (iMESQp ). For p ∈ [0, 1), by choosing ψ̄ as a uniform distribution over the diagonal

line segment {(u1, . . . , un) ∈ [p, 1]n : u1 = u2 = · · · = un}, we obtain a special case of (16),

defined as

ρ(X) =
1

1− p

∫ 1

p

max{VaRQ1
u (X), . . . ,VaRQn

u (X)}du, X ∈ X . (18)

The risk measure ρ is a Q-distortion risk measure with Q-distortion function ψ(x1, . . . , xn) =

min{ 1
1−p max{x1, . . . , xn}, 1}, (x1, . . . , xn) ∈ [0, 1]n. If p ∈ (0, 1), ρ is precisely iMESQp in Section

3.2. This also verifies that iMESQp is comonotonic-additive. However, ψ is not componentwise

concave, which implies that iMESQp is not a coherent risk measure for mutually singular Q by

Proposition 2.

Example 4 (Scenario-based MINVAR). By choosing ψ̄(u) =
∏n
i=1 ui for u ∈ [0, 1]n in (16), we

obtain

ρ(X) = EP[max{X1, . . . , Xn}], X ∈ X , (19)
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where for i = 1, . . . , n, FXi,P = FX,Qi , and X1, . . . , Xn are independent under P. Then ρ is a Q-

spectral risk measure with Q-distortion function ψ(x1, . . . , xn) = 1−
∏n
i=1(1−xi), (x1, . . . , xn) ∈

[0, 1]n. The risk measure ρ is coherent. The single-scenario-based risk measure MINVAR (Cherny

and Madan (2009)), defined as

MINVAR(X) = EP[max{X1, . . . , Xn}], X ∈ X ,

where X1, . . . , Xn are iid copies of X under P, is a special case of ρ by choosing Q1 = · · · =

Qn = P.

For a single scenario Q, the distortion function g of a Q-spectral risk measure ρQg in (14) is

concave, implying that ḡ is automatically a distribution function, and hence ρQg always admits

a representation in (15). This property does not carry through to the case of Q-distortion risk

measures in general. More precisely, the Q-distortion function of a Q-spectral risk measure

is not necessarily always a distribution function, because all distribution functions on [0, 1]n

are supermodular but not vice versa. As a consequence, not all Q-spectral risk measure have

representation (16). This is sharp contrast to the case of a single scenario.

Example 5 (Average-ES). For some a = (a1, . . . , an) ∈ [0, 1]n with a · 1 = 1, let

ψ(x1, . . . , xn) =
1

1− p

n∑
i=1

ai min{xi, 1− p}, (x1, . . . , xn) ∈ [0, 1]n.

One can easily verify that ψ is componentwise increasing, componentwise concave and submod-

ular. By Proposition 2, ρ(X) =
∫
Xdψ ◦ Q, X ∈ X defines a Q-spectral risk measure, which

can be simplified as

ρ(X) =

n∑
i=1

aiESQip (X), X ∈ X . (20)

If a1 = · · · = an, then the risk measure ρ is precisely AESQp in Section 3.2. Note that ψ̄ is not a

distribution function, and hence Proposition 3 does not apply.

4.3 Coherent risk measures

As a classic result in the theory of risk measures, the Kusuoka representation (Kusuoka

(2001)) states that any single-scenario-based coherent risk measure admits a representation as

the supremum over a collection of spectral risk measures.

It is of great interest to see whether a similar result holds true for Q-based coherent risk

measures. First, it is straightforward to notice that a supremum over a collection of Q-spectral

risk measure is always a Q-based coherent risk measure. For the converse direction, we shall show

that, if Q is mutually singular, then a Q-based coherent risk measure admits a representation

17



 Electronic copy available at: https://ssrn.com/abstract=3235450 

as the supremum of a collection of mixtures of Q-ES for Q ∈ Q. More precisely, let W0 =

{(w1, . . . , wn) ∈ [0, 1]n :
∑n
i=1 wi = 1} be the standard simplex. A mixture of Q-ES for Q ∈ Q

is a risk measure ρw defined by

ρw(X) =

n∑
i=1

wi

∫ 1

0

ESQip (X)dhwi (p), X ∈ X , (21)

for some w = (w1, . . . , wn) ∈ W0 and hw1 , . . . , h
w
n are distribution functions on [0, 1]. Clearly, ρw

is a Q-spectral risk measure, as each Q-ES is a Q-spectral risk measure. In the next theorem,

we establish that, if Q is mutually singular, then any Q-based coherent risk measure ρ can be

written as

ρ(X) = sup
w∈W

ρw(X), X ∈ X , (22)

for some set W ⊂W0 and ρw is a mixture of Q-ES given by (21).

Theorem 4. (i) If ρ is the supremum of some Q-spectral risk measures, then it is a Q-based

coherent risk measure.

(ii) If Q is mutually singular, then a Q-based coherent risk measure admits a representation as

the supremum of mixtures of Q-ES for Q ∈ Q as in (22).

Remark 6. Theorem 4 is one of the most technical results of this paper. The mutual singularity

of Q is used repetitively in the proof (see Appendix B.7) and it does not seem to be dispensable.

An immediate example of risk measure of the type (22) is MESQp in Section 3.1, where each

hwi for i = 1, . . . , n and w ∈ W is a point mass at p ∈ (0, 1), and W =W0.

Theorem 4 resembles the ideas in the Basel formula; see Section 1. Indeed, it is remarkable

that only using maximum and linear combinations of Q-ES, as done in BCBS (2016), one arrives

at all possible Q-based coherent risk measures, if Q is mutually singular.

5 Data analysis for Q-based risk measures

In this section, we discuss two examples of data analysis for Q-based risk measures. The

two examples are conceptually different with the aim to illustrate the broad spectrum of possible

interpretations for the collection Q of scenarios; cf. Remark 1. Many interesting questions can

arise from the following subsections, as the examples we consider cover fundamentally different

possible applications of Q-based risk measures. Various versions of the Q-based Expected Short-

falls as in Section 3 are chosen to illustrate the main ideas; clearly the analysis may be applied

to other scenario-based risk measures.
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5.1 Q-based Expected Shortfalls for economic scenarios

Taking up Example 1, we consider Qi = P(·|Θ = θi), i = 1, . . . , n, where Θ is an economic

factor taking values in a finite set {θ1, . . . , θn} of cardinality n, where P can be interpreted as the

real-world probability measure. While the Q-based Expected Shortfalls of X are clearly defined

mathematical quantities, it is not completely obvious how to estimate them. The approach we

describe can be justified under suitable assumptions on the data generating processes. However,

we leave a detailed study of the proposed estimator for future work.

In order to estimate Q-based Expected Shortfalls of X, we assume that we have n sequences

of data D1 = {XQ1

1 , . . . , XQ1

N1
}, . . . , Dn = {XQn

1 , . . . , XQn
Nn
} such that the empirical distribution

of Di is a reasonable estimate of FX,Qi . Then, we estimate the risk measures ESp, MESp, iMESp,

and rMESp given at (4), (7), (8), and (10), respectively, by their empirical counterparts.

Given a series of returns (Xt)t∈N, for each trading day, we would like to compute Q-based

expected shortfalls of Xt. We will use data on a rolling window of length w ∈ {250, 500} for the

estimation. We considered n = 4 scenarios which can be interpreted as

{θ1, . . . , θ4} = {high volatility, low volatility} × {good economy,bad economy}.

The value of Θ is based on the values of VIX (high volatility/low volatility) and S&P 500 (good

economy/bad economy). To be precise, for day t0 we use the time window t0 − w, . . . , t0 − 1

of length w ∈ {250, 500}. Then, we use the VIX to split the time period into two categories

depending on whether the VIX is higher or lower than its empirical median in the time window.

We removed a log-linear trend from the S&P 500 since 1950, and then we subdivide the w/2

days with high volatility in the current time window into two categories of (almost) equal size

according to whether the S&P 500 residuals are above or below their median during those w/2

days. The same is then done for the w/2 days with low volatility. This results in a split of the

time window into four scenarios of (almost) equal size w/4.

The sets D1, . . . , D4 now consist of the values of Xt for t = t0 − w, . . . , t0 − 1 depending

on which scenario the respective day has been assigned. We considered return data from the

NASDAQ Composite Index, the DAX Index, Apple Inc. stock, Walmart stock, BMW stock and

Siemens stock12. The considered time periods are 1991–2018. We do not consider data from

before 1990 because there is no VIX data available. We chose the confidence level p = 0.9 for

simplicity. For each series of return data, we also computed the empirical ESp using a rolling

windows the same size w. The results of the analysis are summarized in Figures 1 and 2.

The risk measures MESp and iMESp generally yield similar values. One can observe that

during times of financial stress, the risk measures MESp and ESp deviate substantially, whereas

12The data were obtained from https://finance.yahoo.com.
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they are close during an economically stable period. For the indices (NASDAQ and DAX) MESp

and rMESp are closer than for the stock returns (Apple, Walmart, BMW and Siemens). This

may be explained by the fact that the indices are more closely related to the quantities defining

the economic scenarios (VIX and S&P 500). During economically stable periods, the ratio

between rMESp and MESp is generally larger than during financial stress. The ratio between

MESp and ESp qualitatively distinguishes the early 2000s recession from the 2008 financial crisis

being larger during the latter event, except for the Apple stock. Apple seems to have been

more influenced by the dot-com crash in 2000 than the other stocks and indices. The results are

qualitatively similar for both considered lengths w for the time windows.

5.2 The Basel stress-adjustment for Expected Shortfall

In this section, we calculate the stress-adjustment for Expected Shortfall in the Basel market

risk evaluation as outlined in Section 1.2. Suppose that there are n securities in a portfolio, and

let P it , i = 1, . . . , n, t ∈ N denote the time-t price of security i. Let Xi
t = −(P it /P

i
t−1 − 1) be

its daily negative return. Construct a portfolio with price process Vt =
∑n
i=1 αiP

i
t where αi is

the unit of shares invested in security i, which we assume to be fixed throughout the investment

period. At time t − 1, we need to to calculate the empirical ES of the next day loss of this

portfolio. Note that the daily loss is

Vt−1 − Vt =

n∑
i=1

αi(Pt−1 − Pt) =

n∑
i=1

Xi
tαiP

i
t−1.

At time t−1, the numbers αi and P it−1 are known, and the random risk factors are (X1
t , . . . , X

n
t ).

To calculate the ES over the data of the past 12-month of data, we need to evaluate the quantity,

given the number αiP
i
t−1,

ESPp (Vt−1 − Vt) = ESPp

(
n∑
i=1

Xi
tαiP

i
t−1

)
,

where p = 0.975 as specified by BCBS (2016). For this purpose, the scenario P is modelled

such that the distribution of (X1
t , . . . , X

n
t ) is according to its empirical version over the past 250

observations, i.e. over the period [t− 250, t− 1].

ES should be calibrated to the most severe 12-month period of stress over a long observation

horizon, which has to span back to 2007, specified by BCBS (2016). To mimic this adjustment

for the period before the introduction of Basel III, it seems fair for everyday evaluation to look

back 10 years, and find the maximum ES over a 12-month period. For this purpose, we evaluate,

while treating αiP
i
t−1 as a constant,

MESQp (Vt−1 − Vt) = MESQp

(
n∑
i=1

Xi
tαiP

i
t−1

)
= max
j=1,...,N

ESQjp

(
n∑
i=1

Xi
tαiP

i
t−1

)
,
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Figure 1: Q-based risk measures estimated for data based on economic scenarios with w = 500.
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Figure 2: Q-based risk measures estimated for data based on economic scenarios with w = 250.
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where N = 2251, Q = {Qj}j=1,...,N , and under Qj , (X1
t , . . . , X

n
t ) is distributed according to

its empirical distribution over the time period [t − j − 249, t − j]. We choose α1, . . . , αn such

that each αiP
t
i starts from $1. We construct a US stocks portfolio (Apple and Walmart) and a

German stocks portfolio (BMW and Siemens).

In Figure 3, we report for both portfolios, the regular ES (ESPp (Vt−1 − Vt)), the stress-

adjusted ES (MESQp (Vt−1 − Vt)), the percentage of ES (
ESPp (Vt−1−Vt)

Vt−1
), and the percentage of

stress-adjusted ES (
MESQp (Vt−1−Vt)

Vt−1
). We can see from the results that the percentage MES is

relatively stable (always between 6% and 9%), and the ES is changing drastically (between

2% and 9%), very much depending on the performance of the individual stocks over the past

year. This suggests that MES have the advantage of being more robust since it uses data for

a much longer period of time. Moreover, the US portfolio has a quite high percentage MES

till 1998 and this is due to the effect of the Black Monday (Oct 19, 1987) wears out after 10

years. If regulatory capital for the market risk is calculated via ES, then both portfolio exhibit

serious under-capitalization right before the 2007 financial crisis, and their ES values increased

drastically when the financial crisis took place. On the other hand, if MES is used for regulatory

capital calculation, then the requirement of capital for both portfolios only increased moderately

during the financial crisis.

6 Concluding remarks

In this paper, we proposed a framework for scenario-based risk evaluation, where different

scenarios (probability measures or models) are incorporated into the procedure of risk calculation.

Our framework allows for flexible interpretation of the scenarios and it is in particular motivated

by the Basel calculation procedures for the Expected Shortfall, the Chicago board, and the

credit ratings. Several theoretical contributions are made. We introduced the new classes of

risk measures including Max-ES, Max-VaR and their variants, and studied their theoretical

properties. Axiomatic characterization of scenario-based comonotonic additive and coherent

classes of risk measures are obtained, and they are well connected to the Basel formulas for

market risk. Finally, we presented data analyses to illustrate how scenario-based risk measures

can be estimated, computed, and interpreted.

Given the pivotal importance of model uncertainty and scenario analysis in modern risk

management, scenario-based risk measures can be useful in many disciplines of risk assessment,

not limited to financial risk management.

We remark that for various interpretations of the scenarios, the estimation procedures of

a scenario-based risk measure may exhibit different properties, as illustrated in Section 5. This
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Figure 3: The MES and ES of the US and German portfolios. Left panel: MES and ES of the

portfolio. Right panel: the percentage of MES and ES in the value of the portfolio.
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calls for future research in statistical theory for scenario-based risk functionals.
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Appendix

A Examples and counter-examples

Example 6 (MESQp is not comonotonic-additive). Take p ∈ (0, 1), Q1, Q2 ∈ P and A1, A2 ∈ F

such that A1 ⊂ A2, Q1(A1) > Q2(A1) and Q1(A2) < Q2(A2) < 1 − p. The existence of such

Q1, Q2, A1, A2 can be justified by taking (Ω,F , Q1) and (Ω,F , Q2) as atomless probability spaces.

Let Q = {Q1, Q2}, X = IA1 and Y = IA2 . It is clear that X and Y are comonotonic. Note that

ESQ1
p (X + Y ) = ESQ1

p (X) + ESQ1
p (Y )

=
1

1− p
(Q1(A1) +Q1(A2))

<
1

1− p
(Q1(A1) +Q2(A2)) = max

Q∈Q
ESQp (X) + max

Q∈Q
ESQp (Y ),

and similarly,

ESQ2
p (X + Y ) < max

Q∈Q
ESQp (X) + max

Q∈Q
ESQp (Y ) = MESQp (X) + MESQp (Y ).

Then we have

MESQp (X + Y ) = max{ESQ1
p (X + Y ),ESQ2

p (X + Y )} < MESQp (X) + MESQp (Y ).

Thus, MESQp is not comonotonic-additive.

Example 7 (MESQp (X) < ESP
p(X) for Q in Example 1). Let Ω = {ω1, . . . , ω8} and P be a

uniform probability measure on Ω. Write Ω1 = {ω1, . . . , ω4} and Θ = IΩ1
. Let Q1(·) = P(·|Θ =

1), Q2(·) = P(·|Θ = 0) and X = IΩ1 + 2 × I{ω8}. It is easy to see that ESP
p(X) = 1.25 and

ESQ1
p (X) = ESQ2

p (X) = 1. Thus, MESQp (X) < ESP
p(X).

Example 8 (A Q-increasing function that is not component-wise increasing). Let Ω = [0, 1],

F = B([0, 1]) and λ be the Lebesgue measure. Define measures Q1 and Q2 via

dQ1

dλ
(t) =

2

3
(1 + I{t>1/2}) and

dQ2

dλ
(t) =

2

3
(1 + I{t<1/2}),
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for t ∈ [0, 1]. One can easily verify 1/2 6 dQ2/dQ1 6 2, and

{(Q1(A), Q2(A)) : A ∈ F} =

{
(s, t) ∈ [0, 1]2 :

1

2
6
s

t
6 2,

1

2
6

1− s
1− t

6 2

}
.

Let

ψ(s, t) = 2s− t s, t ∈ [0, 1].

Clearly, ψ is not component-wise increasing on the convex set RQ = {(Q1(A), Q2(A)) : A ∈ F},

and hence ψ|RQ cannot be extended to a componentwise increasing function on [0, 1]2. However,

ψ ◦ Q is increasing. Indeed, take A,B ∈ F such that A ⊂ B. Write Q1(A) = p1, Q2(A) = p2,

Q1(B) = q1 and Q2(B) = q2. Note that

q2 − p2

q1 − p1
=
Q2(B \A)

Q1(B \A)
6 2,

implying

ψ ◦ (Q1, Q2)(A) = 2p1 − p2 6 2q1 − q2 = ψ ◦ (Q1, Q2)(B).

Thus ψ ◦Q is increasing. One also easily see that ψ ◦Q is standard.

B Proofs of the main results

B.1 Proof of Theorem 1

Proof. (i) Note that ESQp is coherent for Q ∈ Q. Since MESQp can be written as a supremum

of coherent risk measures, and taking a supremum preserves all properties of coherent risk

measures, MESQp is also coherent. An example showing that MESQp is not comonotonic-

additive is given in Example 6.

(ii) Note that VaRQ
p is monetary for Q ∈ Q, and hence MVaRQp , as a supremum of monetary

risk measures, is monetary. It remains to show that MVaRQp is a comonotonic-additive risk

measure. Using Denneberg’s lemma (Denneberg (1994)), for comonotonic random variables

X and Y , there exist increasing continuous functions f and g such that X = f(X + Y )

and Y = g(X + Y ). Therefore, for any Q ∈ Q, we have

MVaRQp (X) = sup
Q∈Q

VaRQ
p (f(X+Y )) = sup

Q∈Q
f(VaRQ

p (X+Y )) = f

(
sup
Q∈Q

VaRQ
p (X + Y ))

)
,

and similarly,

MVaRQp (Y ) = g

(
sup
Q∈Q

VaRQ
p (X + Y ))

)
.
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Noting that f(z) + g(z) = z for z in the range of X + Y , we have

MVaRQp (X + Y ) = sup
Q∈Q

VaRQ
p (X + Y )

= f

(
sup
Q∈Q

VaRQ
p (X + Y )

)
+ g

(
sup
Q∈Q

VaRQ
p (X + Y )

)
= MVaRQp (X) + MVaRQp (Y ).

The statement that MVaRQp is not necessarily coherent comes from the well-known fact

that VaRQ
p is not coherent for any Q ∈ P such that (Ω,F , Q) is atomless.

B.2 Proof of Theorem 2

Proof. (i) This is straightforward as an average of coherent and comonotonic-additive risk

measures is still coherent and comonotonic-additive.

(ii) By (8), iMESQp is a mixture of comonotonic-additive risk measures, and hence it is comonotonic-

additive. The fact that iMESQp is not a coherent risk measure in general is shown in Example

3.

(iii) For each i = 1, . . . , n, let the distribution (Xi, Yi) under P be that of (X,Y ) under Qi, and

(X1, Y1), . . . , (Xn, Yn) are independent. We have

rMESQp (X + Y ) = ESP
p

(
max

i=1,...,n
(Xi + Yi)

)
6 ESP

p

(
max

i=1,...,n
Xi + max

i=1,...,n
Yi

)
6 rMESQp (X) + rMESQp (Y ). (23)

Therefore, rMESQp is subadditive. It is straightforward to verify that rMESQp is monetary

and positively homogeneous, and hence a coherent risk measure. Moreover, if X and Y are

comonotonic, then the two inequalities in (23) are equalities. As a consequence, rMESQp is

also comonotonic-additive.

(iv) Take an arbitrary X ∈ Y. AESQp (X) 6 MESQp (X) is trivial. For U which is uniform[0, 1]

under P, we have

ESQp (X) = ESP
p(F

−1
X,Q(U)). (24)

By (24), for each Q ∈ Q, ESQp (X) 6 iMESQp (X). Consequently, MESQp (X) 6 iMESQp (X).

To show iMESQp (X) 6 rMESQp (X), note that, for x ∈ R,

P
(

max
i=1,...,n

F−1
X,Qi

(U) 6 x

)
= min
i=1,...,n

FX,Qi(x) >
n∏
i=1

FX,Qi(x) = P
(

max
i=1,...,n

Xi 6 x

)
.
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Therefore, maxi=1,...,n F
−1
X,Qi

(U) is first-order stochastically dominated by maxi=1,...,nXi

under P (see e.g. Müller and Stoyan (2002)). As a consequence,

ESP
p

(
max

i=1,...,n
F−1
X,Qi

(U)

)
6 ESP

p

(
max

i=1,...,n
Xi

)
.

In summary, AESQp (X) 6 MESQp (X) 6 iMESQp (X) 6 rMESQp (X) for all X ∈ X .

(v) If Q = {Q}, we can check directly by (24) that ESQp (X) = AESQp (X) = MESQp (X) =

iMESQp (X) = rMESQp (X).

B.3 Proof of Proposition 1

Proof. We only need to show MVaRQp (X) > VaRP
p(X), which implies iMESQp (X) > ESP

p(X).

Take x < VaRP
p(X), which implies P(X 6 x) < p. As P is a convex combination of Qθ, θ ∈ K,

for some θ ∈ K, we have Qθ(X 6 x) < p, implying x 6 VaRQθ
p (X) 6 MVaRQp (X). Therefore,

MVaRQp (X) > sup{x ∈ R : x < VaRP
p(X)} = VaRP

p(X).

B.4 Proof of Theorem 3

Proof. Summarizing Theorems 4.88 and 4.94 of Föllmer and Schied (2011), a risk measure ρ on

X is monetary and comonotonic-additive if and only if

ρ(X) =

∫
Xdc, X ∈ X (25)

for a standard set function c. In addition, ρ in (25) is coherent if and only if c is submodular.

This result resembles the Choquet-integral representation of Schmeidler (1986) in the framework

of risk measures. First we discuss the case in which ρ is not necessarily coherent.

(i) ⇐: Note that for a Q-standard function ψ, ψ ◦Q : F → R is a standard set function, and

hence X 7→
∫
Xdψ ◦Q is a Choquet integral. As a consequence of the above representation

result, ρ is comonotonic-additive and monetary. From the definition of
∫
Xdψ ◦Q,

ρ(X) =

∫ 0

−∞
(ψ ◦Q(X > x)− 1)dx+

∫ ∞
0

ψ ◦Q(X > x)dx

and hence ρ is Q-based.

(ii) ⇒: By the above representation result, ρ can be written as a Choquet integral. There

exists a standard set function c such that ρ(X) =
∫
Xdc for X ∈ X . By taking X = IA,

A ∈ F , we have c(A) = ρ(IA). Since ρ is Q-based, ρ(IA) is determined by the distribution

of IA under Q1, . . . , Qn, namely, there exists a function ψ : [0, 1]n → R such that c(A) =

ρ(IA) = ψ ◦Q(A) for all A ∈ F . As c = ψ ◦Q is standard, we have that ψ is Q-standard.

To show that coherence of ρ is equivalent to Q-submodular of ψ, one uses again the representation

result, and noting that, by definition, ψ ◦Q is submodular if and only if ψ is Q-submodular.
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B.5 Proof of Proposition 2

In order to show Proposition 2, we collect some auxiliary results below, which might are of

independent interest. The proof of Proposition 2 follows directly from Theorem 3 and Proposi-

tions 4 and 5 below.

Lemma 1. A measurable function f : Rn → R is componentwise concave and submodular if and

only if for all x,y,w, z ∈ Rn with w 6 x,y 6 z and w + z = x + y, we have

f(x) + f(y) > f(w) + f(z). (26)

In addition, if f is two times continuously differentiable, then (26) holds if and only if the entries

of its Hessian are all non-positive.

Proof. It is not difficult to see that the stated property (26) implies both the componentwise

concavity and the submodularity of f . We prove the converse by induction over n. A continuous

function f : R → R is concave if and only if for all x, y, w, z ∈ R with w 6 x, y 6 z and

x+ y = w + z we have

f(x) + f(y) > f(w) + f(z). (27)

Let x,y,w, z ∈ Rn with w 6 x,y 6 z and w + z = x + y. Applying (26) to the first n − 1

components and (27) to the last component, we obtain

f(y1, . . . , yn−1, xn) >
1

2

(
f(w1, . . . , wn−1, xn) + f(z1, . . . , zn−1, xn)− f(x1, . . . , xn−1, xn)

+ f(y1, . . . , yn−1, wn) + f(y1, . . . , yn−1, zn)− f(y1, . . . , yn−1, yn)
)

>
1

2

(
f(w) + 2f(y1, . . . , yn−1, xn) + f(z)− f(x)− f(y)

)
,

where the second step follows from the submodularity of f . Therefore (26) holds. The conclusion

on the Hessian matrix is an elementary exercise.

Proposition 4. If ψ : [0, 1]n → [0, 1] is componentwise increasing, then ψ ◦Q is increasing. If

ψ is componentwise concave and submodular, then ψ ◦Q is submodular.

Proof. The first statement is trivial, and we only show the second statement. For A,B ∈ F , we

have Q(A ∪B) +Q(A ∩B) = Q(A) +Q(B) for Q ∈ Q. Therefore, from (26), we have

ψ ◦Q(A ∪B) + ψ ◦Q(A ∩B) 6 ψ ◦Q(A) + ψ ◦Q(B)

which gives the submodularity of ψ ◦Q.

Proposition 5. Suppose that Q is mutually singular and ψ : [0, 1]n → [0, 1].

(i) The mapping Q : F → [0, 1]n is surjective.
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(ii) ψ ◦Q is increasing if and only if ψ is componentwise increasing.

(iii) ψ ◦Q is submodular if and only if ψ is componentwise concave and submodular.

Proof. Let A1, . . . , An ∈ F be disjoint sets such that Qi(Ai) = 1 for each i = 1, . . . , n. The

conclusion (i) is straightforward. To show (ii) and (iii), we only need to show that the Q-specific

conditions in (ii) and (iii) imply the non-Q-specific conditions, respectively. For (ii), suppose that

x, y ∈ [0, 1]n with x1 6 y1 and x2 = y2, . . . , xn = yn. Let B ∈ F with x = (Q1(B), . . . , Qn(B)).

As (A1,F , Q1) is an atomless probability space, there exists a set C with (B ∩ A1) ⊂ C ⊂ A1

and Q1(C) = y1 (Delbaen, 2002, Theorem 1). We have y = (Q1(C ∪ B), . . . , Qn(C ∪ B)),

which yields the claim. Next we show (iii) for the case n = 1, and the general case follows

easily due to the fact that Q is mutually singular. Let x, y, w, z ∈ R with w 6 x, y 6 z and

w + z = x + y. Take B,C ∈ F|A1
with Q1(B) = x and Q1(C) = y. If Q1(B ∩ C) > w, take

B′ ⊂ (B\C) with Q1(B′) = Q1(B ∩ C) − w and C ′ ⊂ (C\B) with Q1(C ′) = Q1(B ∩ C) − w.

Then, C̄ = (C\C ′) ∪ B′ fulfils Q1(C̄) = y and Q1(B ∩ C̄) = w. If Q1(B ∩ C) < w, take

B′ ⊂ (B ∪ C)c with Q1(B′) = w −Q1(B ∩ C) and C ′ ⊂ C ∩ B with Q1(C ′) = w −Q1(C ∩ B).

Then, C̄ = (C\C ′) ∪ B′ fulfills Q1(C̄) = y and Q1(B ∩ C̄) = w. The equation w + z = x+ y =

Q1(B) + Q1(C̄) = Q1(B ∩ C̄) + Q1(B ∪ C̄), hence z = Q1(B ∪ C̄). Now, the submodularity of

ψ ◦Q implies (26).

B.6 Proof of Proposition 3

Proof. Let Y = max{F−1
X,Q1

(U1), . . . , F−1
X,Q2

(Un)} where (U1, . . . , Un) ∼P ψ̄. By definition,

ρψ(X) =

∫
[0,1]n

max{F−1
X,Q1

(u1), . . . , F−1
X,Q2

(un)}dψ̄(u1, . . . , un) = EP[Y ].

For almost every x ∈ R,

P(Y 6 x) = P(F−1
X,Q1

(U1) 6 x, . . . , F−1
X,Q2

(Un) 6 x)

= P(U1 6 FX,Q1(x), . . . , Un 6 FX,Q2(x))

= ψ̄(Q1(X 6 x), . . . , Qn(X 6 x)) = 1− ψ ◦Q(X > x).

It follows that

ρψ(X) = EP[Y ] =

∫ 0

−∞
(P(Y > x)− 1)dx+

∫ ∞
0

P(Y > x)dx

=

∫ 0

−∞

(
ψ ◦Q(X > x)− 1

)
dx+

∫ ∞
0

ψ ◦Q(X > x)dx =

∫
Xdψ ◦Q.

Note that any distribution function ψ̄ is componentwise increasing and supermodular. Hence, ψ

is componentwise increasing and submodular, and further by Theorem 3 and Proposition 2 we

obtain the desired results.
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B.7 Proof of Theorem 4

Before proving Theorem 4, we need to establish some auxiliary results, which might be of

independent interest.

First, we discuss a popular property related to coherent risk measures, the Fatou property

(see Delbaen (2002, 2012)), which we shall define with respect to a scenario dominating Q. Such

a dominating scenario may be conveniently chosen as Q = 1
n

∑n
i=1Qi. Formally, a risk measure

ρ is said to satisfy the Q-Fatou property if for a uniformly bounded sequence X1, X2, · · · ∈ X ,

Xk
Q→ X ∈ X implies ρ(X) 6 lim infk→∞ ρ(Xk). We also introduce a norm || · ||Q on the Q-

equivalent classes of X , defined as || · ||Q = sup{x > 0 : Q(|X| > x) > 0}, which is the usual L∞

norm for essentially bounded random variables in (Ω,F , Q). Note that in the definitions of the

Q-Fatou property and the norm || · ||Q, the dominating measure Q can be chosen equivalently as

any probability measure dominating Q. It is straightforward to check that all Q-based monetary

risk measures are continuous with respect to || · ||Q. In what follows, a quasi-convex risk measure

ρ is one that satisfies ρ(λX + (1− λ)Y ) 6 max{ρ(X), ρ(Y )} for all λ ∈ [0, 1] and X,Y ∈ X .

Lemma 2. If Q is mutually singular, then a Q-based quasi-convex risk measure that is contin-

uous with respect to || · ||Q satisfies the Q-Fatou property.

Proof. Write Q = 1
n

∑n
i=1Qi, and note that Xk

Q→ X ∈ X implies Xk
Qi→ X for each i = 1, . . . , n.

We shall show the lemma in a similar way to Theorem 30 of Delbaen (2012), which states that

a {Q}-based, || · ||{Q}-continuous and quasi-convex functional satisfies the {Q}-Fatou property

(first shown by Jouini et al. (2006) with a minor extra condition). The main difference here is

that our Q-based risk measure is not necessarily {Q}-based, and hence the above result does

not directly apply. Nevertheless, we shall utilize Lemma 11 of Delbaen (2012), which gives

that for each i = 1, . . . , n and k ∈ N, there exist a natural number Nk and random variables

Zik,1, Z
i
k,2, . . . , Z

i
k,Nk

having the same distribution as Xk under Qi, such that

lim
k→∞

1

Nk

Nk∑
j=1

Zik,j = X in || · ||{Qi}.

The numbers Nk can be chosen independently of i, as explained in Remark 40 of Delbaen (2012).

Define for k ∈ N and j = 1, . . . , Nk, let Yk,j =
∑n
i=1 Z

i
k,jIAi where A1, . . . , An ∈ F are disjoint

sets such that Qi(Ai) = 1 for each i = 1, . . . , n. It is clear that for each choice of (i, j, k), Yk,j

has the same distribution as Xk under Qi, and

lim
k→∞

1

Nk

Nk∑
j=1

Yk,j = X in || · ||Q.

Therefore, ρ(Yk,j) = ρ(Xk). Finally, as ρ is || · ||Q-continuous, quasi-convex and Q-based, we
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have

ρ(X) = lim
k→∞

ρ

 1

Nk

Nk∑
j=1

Yk,j

 6 lim inf
k→∞

max
j=1,...,Nk

{ρ(Yk,j)} = lim inf
k→∞

ρ(Xk).

Thus, ρ satisfies the Q-Fatou property.

A direct consequence of Lemma 2 is that, if Q is mutually singular, then any Q-based

coherent risk measure, such as a Q-spectral risk measure, satisfies the Q-Fatou property.

Next we present lemma which serves as a building block for the proof of Theorem 4. For

X ∈ X , let

LX(Q) = {Y ∈ X : Y
d
=Q X for all Q ∈ Q}.

That is, LX(Q) is the set of all random variables identically distributed as X under each measure

in Q. Clearly X ∈ LX(Q) and hence LX(Q) is not empty.

Lemma 3. Suppose that Q is mutually singular, and the probability measure P � 1
n

∑n
i=1Qi.

The functional ρ : X → R, ρ(X) = supY ∈LX(Q) EP [Y ] is a mixture of Q-ES for Q ∈ Q.

Proof. Let A1, . . . , An ∈ F be disjoint sets such that Qi(Ai) = 1 for each i = 1, . . . , n. Write

Q = 1
n

∑n
i=1Qi and Z = dP/dQ. For each i = 1, . . . , n, let Ui be, under Qi, a uniform random

variable on [0, 1] such that Z = F−1
Z,Qi

(Ui) Qi-almost surely. The existence of such a random

variable Ui can be guaranteed by, for instance, Lemma A.32 of Föllmer and Schied (2016). By

the Fréchet-Hoeffding inequality (see e.g. Remark 3.25 of Rüschendorf (2013)), for Y ∈ X , we

have EQi [ZY ] 6 EQi [ZF−1
Y,Qi

(Ui)]. It follows that, for Y ∈ LX(Q),

EP [Y ] =

n∑
i=1

EP [Y IAi ] =

n∑
i=1

EQ
[

dP

dQ
Y IAi

]

=

n∑
i=1

1

n
EQi

[
dP

dQ
Y

]
6

n∑
i=1

1

n
EQi

[
ZF−1

X,Qi
(Ui)

]
.

On the other hand, it is easy to verify that
∑n
i=1 F

−1
X,Qi

(Ui)IAi ∈ LX(Q), and

EP
[

n∑
i=1

F−1
X,Qi

(Ui)IAi

]
=

n∑
i=1

1

n
EQi

[
ZF−1

X,Qi
(Ui)

]
.

Therefore,

sup
Y ∈LX(Q)

EP [Y ] =

n∑
i=1

1

n
EQi

[
ZF−1

X,Qi
(Ui)

]
.

Note that

EQi
[
ZF−1

X,Qi
(Ui)

]
=

∫ 1

0

F−1
Z,Qi

(u)F−1
X,Qi

(u)du,

and the function ḡ : [0, 1] → [0, 1], t 7→
∫ t

0
F−1
Z,Qi

(u)du is in G and is convex. It follows that the

mapping X 7→ EQi [ZF−1
X,Qi

(Ui)] is a spectral risk measure in the form of (15). Therefore, ρ is a
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linear combination of Q-spectral risk measures, Q ∈ Q. Note that each Q-spectral risk measure

is a mixture of Q-ES (Theorem 4 of Kusuoka (2001)), and hence ρ is a mixture of Q-ES for

Q ∈ Q.

Proof of Theorem 4. (i) Q-spectral risk measures are coherent. It is straightforward that a

supremum of Q-based coherent risk measures is also a Q-based coherent risk measure.

(ii) Since ρ is coherent, by Lemma 2, it has the Q-Fatou property. From the classic coherent

risk measure representation (e.g. Delbaen (2002)), there exists a set R ⊂ P of probability

measures which are absolutely continuous with respect to Q, such that

ρ(X) = sup
P∈R

EP [X], X ∈ X . (28)

Now fix X ∈ X . As ρ is Q-based, ρ(Y ) = ρ(X) for all Y ∈ LX(Q). It follows that

ρ(X) = sup
Y ∈LX(Q)

sup
P∈R

EP [Y ] = sup
P∈R

sup
Y ∈LX(Q)

EP [Y ].

By Lemma 3, for each P ∈ R, the mapping X → R, X 7→ supY ∈LX(Q) EP [Y ] is a mixture

of Q-ES for Q ∈ Q. Therefore, ρ is the supremum of mixtures of Q-ES for Q ∈ Q.
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