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Abstract

In this article we introduce a new framework for counterparty risk model back-
testing based on Bayesian methods. This provides a conceptually sound approach
for analyzing model performance which is also straightforward to implement. We
show that our methodology provides important advantages over a typical, classical,
backtesting set-up. In particular, we �nd that the Bayesian approach outperforms
the classical one in identifying whether a model is correctly speci�ed which is the
principal aim of any backtesting framework. The power of the methodology is due
to its ability to test individual model parameters and hence identify which aspects
of a model are misspeci�ed as well as the degree of misspeci�cation. This greatly
facilitates the impact assessment of model issues as well as their remediation.

1 Introduction

Models are imperfect representations of reality and model testing is thus a vital com-
ponent of model development. Backtesting is a principal method for evaluating the
accuracy of model outputs and is used extensively in �nance to test predictive models
on historical data. In risk management, two prominent areas of focus are value-at-risk
(VaR) as well as counterparty credit risk (CCR) models.

A comprehensive backtesting framework is part of the regulatory requirements for
risk models. The guidance for market risk VaR models, as prescribed by the Basel
Committee (BIS [1996]), is detailed and relies on null hypothesis signi�cance test-
ing using �red-amber-green tra�c light� evaluation criteria. For CCR backtesting,
regulators provide only high level guidance with the key success criterion de�ned as
the consistency of the observed realizations of risk factors with those forecast by the
model (BIS [2010]).

This means that for CCR, �rms have considerable freedom in the choice of their
backtesting approach and there are a number of discussions in the literature on how
this can be designed optimally, see e.g. Ruiz [2014] and Anfuso et al. [2014]. The
methods typically lean heavily on the regulatory market risk framework and are based
on standard, frequentist, hypothesis testing.
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However, it is well known that there are serious shortcomings with the frequentist
approach both from a conceptual and practical point of view. A good overview is
provided by Wasserstein et al. [2019] and references therein. One alternative is to
adopt Bayesian methods. This is widely used in �elds as diverse as criminology and
medicine but has, to our knowledge, not been applied to counterparty credit model
backtesting in �nance. This paper aims to �ll this gap by presenting a Bayesian
framework that provides a more powerful as well as more coherent testing regime
while at the same time being straightforward to implement in practice.

1.1 Issues with p-values

Backtesting aims to test how well a model predicted distribution compares to real-
izations of a particular modeled variable. In the typical frequentist approach this is
done by calculating the probability of obtaining results that are at least as extreme as
the ones observed assuming that the model being tested is correct. This probability
is the so-called p-value. We can write this symbolically as p = p(data|model). The
assumption that the model is correct is often referred to as the �null hypothesis�. The
p-value is then compared to pre-de�ned thresholds to determine whether the model
should be rejected. The Basel VaR framework recommends that models should be
rated �red� for p-values below 0.01%, �amber" for 0.01% < p < 5% and �green� oth-
erwise. In other words a model should be rejected if the observed outcomes are less
than 0.01% likely under the given model.

While this provides a practical and seemingly sensible recipe, there are numerous
issues that arise.

• The most immediate question is whether the framework outlined above is able to
determine whether a given model is satisfactory. The null hypothesis signi�cance
testing is designed to avoid incorrectly rejecting a model if it is correct, i.e. to
avoid a type I error or false positive. Therefore, by design, it acts as a safeguard
against reporting insigni�cant �ndings in scienti�c applications. While this is
certainly a desirable feature, it does not provide con�dence that the model is not
misspeci�ed. For this we need to ensure that the type II error rate is controlled
and that incorrect models are �agged as de�cient. The ability of the backtesting
to achieve this is referred to as the �power� of the test. Unfortunately, CCR
backtesting fundamentally su�ers from the limited availability of observations.
This means that the power of backtesting is typically low (c.f. e.g. Clayton
[2019]).

• One obvious approach to overcome the lack of data in any given observation
window is to combine the results of repeated backtesting experiments over time
and to group risk factors and portfolios. However, a well-known issue with p-
values is that it is very di�cult combine and aggregate these in a rigorous way
which makes the assessments of true error rates impractical (Lindley [2000]).

• Another common misconception is that the p-value itself is a measure of how
well-speci�ed a model is, i.e. that a lower p-value indicates a worse model. In
general, however, this is not the case. The p-value only refers to the probability
of a particular observation assuming the model is correct. As such, it does not tell
us how likely it is that the model is correct or to what degree it is misspeci�ed.
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This is related to the practical di�culty of translating the p-value into an error
metric de�ned in terms of the ultimate outputs of our model or in terms of actual
�nancial loss.

• Fundamentally, all the issues above stem from the fact that the p-value is the
answer to the wrong question. It tells us the probability of the data given
the model P (data|model), but what we need is the probability that the model
is correct given the observational data, i.e.: P (model|data). The p-value can
only indicate evidence against the null hypothesis but it cannot be used to
demonstrate that our model is valid.

In summary and as expressed cogently in Wasserstein et al. [2019]: �no p-value can re-
veal the plausibility, presence, truth, or importance of an association or e�ect. There-
fore, a label of statistical signi�cance does not mean or imply that an association or
e�ect is highly probable, real, true, or important�.

1.2 A Bayesian Approach

A solution to the issues above is o�ered by the Bayesian paradigm which provides an
internally consistent approach for model testing. At a basic level the idea is that if
we want to study P (model|data) then we can make use of Bayes rule which tells us
that

P (model|data) =
P (data|model)P (model)

P (data)
. (1.1)

Here P (data|model) is referred to as the likelihood and P (model) as the prior. The
result P (model|data) is the posterior distribution which encodes all the information
about the model that we can ascertain from the data and prior knowledge.

The symbolic relationship above makes clear that the di�erence between the frequen-
tist hypothesis testing approach is that in a Bayesian framework we do not assume
that our model is correct but instead consider all possible model choices weighted by
their prior probabilities. This leads to the following advantages:

• In a Bayesian framework we work directly with P (model|data) which is the
quantity of interest. Because this is a probability distribution it allows us for
internally consistent inference and does not su�er from the conceptual issues
inherent in hypothesis testing (Lindley [2000]).

• The posterior distribution allows for a very intuitive presentation of results.
Success criteria can be imposed directly on the probability of the model being
correctly speci�ed given the observed data. In addition, a Bayesian framework
provides a direct link between backtesting results and the impact on end-usage
metrics such as expected exposure or potential future exposure. This greatly
facilitates the decision making process that is the ultimate aim of any backtesting
framework.

• Working with probabilities also allows for a coherent way to consistently combine
results across time and, in principle, also aggregate results across risk factors
or portfolios. This is important given the lack of observed data in any given
quarter. A key concept in this regard is that the prior probability distribution
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can be continuously updated given new information. This is captured by the
Bayesian notion that �today's posterior is tomorrow's prior�. In the context of a
quarterly CCR backtesting program that means that the prior distribution will
become more and more informative over time allowing greater ability to test a
model's performance.

• Another important feature of the proposed framework is that it allows to isolate
and test particular features of a model. For example, if we are interested in the
predicted risk factor distribution we may be particularly focused on testing the
model volatility of risk factor, the drift or the tail behaviour of the distribution.
Using the Bayesian approach we can not only determine whether a model per-
forms adequately overall but also speci�cally ask which model parameters are
less well supported by the data than others.

There are two key issues that are raised in the context of Bayesian statistics. One
is that the required modeling can be very complex. The second, more fundamental,
criticism is that a prior distribution is by construction subjective and, in principle,
unknown. This subjectivity is often viewed as undesirable in a testing framework.

In the context of CCR backtesting the �rst issue does not arise. As we will see below
the modeling involved in the Bayesian backtesting is basic and straightforward. The
issue regarding the choice of prior is also well-mitigated for two reasons. Firstly,
as we have discussed above (and is also argued by Harvey [2017]), we bene�t from
the accumulation of market data over time which results in continually increasing
understanding of �nancial markets and, consequently, certainty in our prior beliefs.
Secondly, the main parameters of interest in a model will be subject to extensive
governance and controls. This means that there will be signi�cant prior information
regarding any parameter uncertainty.

In summary, as we will show in this article, Bayesian statistics provide a powerful
framework for CCR backtesting that is both intuitive and practical.

2 Classical Backtesting

A typical counterparty credit risk exposure model consists of a system of risk factor
di�usions implemented via a high-dimensional Monte Carlo simulation. The risk
factor processes are used to calculate counterparty portfolio level quantities such as the
future value (also referred to as the mark-to-market or MtM), the expected exposure
(EE) or tail metrics such as the potential future exposure1 (PFE). The aim of CCR
backtesting (BT) is to test whether the predicted risk factor distributions are a good
approximation of the real-world dynamics. A typical BT framework will consist of
tests at the risk factor level as well as tests for the aggregate quantities such as
portfolio exposure.

Backtesting will be conducted over a testing window ∆W , which needs to be long
enough to include su�cient data but also short enough to re�ect the current model
speci�cation and market regime. A typical window period will be between one quarter

1The PFE, also referred to as peak exposure, at a future time is typically de�ned as a quantile or
expected shortfall of the simulated MtM distribution.
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and one year. Within a chosen window we observe risk factor returns over di�erent
forecasting horizons ∆H . This means that the observation window is sub-divided into
a set of n+ 1 observation dates t0, ..., tn such that tn − t0 = ∆W , ti − ti−1 = ∆H and
n = ∆W /∆H .

The risk factor return over the future period [ti−1, ti] is a random variable denoted
by Ri. The actual, real-world, distribution of Ri is not known. We denote the real-
world cumulative distribution function (CDF) by FRi (x) ≡ PR(Ri 6 x) and the
corresponding density by fR(x). The risk factor model will assume a distribution
for Ri which may not be the same as fRi . We denote the model CDF by FM (x) ≡
PM (Ri 6 x) and the density by fM (x). The aim of the backtesting framework is to
assess how close fMi is to fRi .

One of the complications of testing CCR models is that models and markets are
not static and observations depend on the state of the market at the start of the
observation window. This means that the model distributions fMi (x) can be di�erent
at each observation date. In the classical framework this issue is addressed by making
use of the �probability integral transform� (PIT) of the observed data. This acts as
a standardization of observations by removing the dependence on market state and
model changes.

Given a set of observations of realized risk-factor returns ri over the periods [ti−1, ti] we
de�ne the probability integral transform as the set of transformed variables {FMi (ri)}
obtained by applying the model CDF FM to all observations ri:

FMi (ri) =

∫ ri

−∞
fMi (x)dx. (2.1)

A fundamental result is that the set {FMi (ri)} will be uniformly distributed if and
only if the model distributions fMi correspond to the actual distributions of ri over
each period, i.e. fMi (x) = fRi (x) (the idea dating back to Rosenblatt [1952], see
also Diebold et al. [1998]). Therefore the discrepancy of the distribution of fMi (ri)
compared to a uniform distribution can be used as a measure of the di�erence between
the probability densities underlying the model and real-world dynamics.

In practice the PIT is calculated using the Monte-Carlo risk factor simulation. At
each observation date ti we simulate N estimates of the risk factor return under the
distribution fMi . This results in a set of modeled values rMi,j with 0 < j 6 N . The

empirical cumulative distribution F̂Mi is then constructed from the realized values as
follows:

yi ≡ F̂Mi (ri) =
1

N

N∑
j=1

I{rMi,j6ri}. (2.2)

Standard distributional tests of uniformity can then be performed on the transformed
data. Some of the most commonly used tests are the binomial, multinomial or chi-
squared (χ2) goodness-of-�t tests. The discretized versions of the Anderson-Darling,
Cramer-Von-Mises and Kolmogorov-Smirnov tests are also cited in the counterparty
credit risk backtesting literature (Anfuso et al. [2014], Clayton [2019]). The choice of
the test statistic depends on the speci�c part of the distribution we wish to analyse.

Given a test statistic for a set of observed data, one can de�ne the p-value as the
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probability of the statistic being as or more extreme than the one observed. The p-
value is then compared to pre-de�ned thresholds to determine any remediation action.
More details will be provided in later sections.

3 Bayesian Backtesting Framework

The Bayesian backtesting framework we introduce here assumes the same test set-up
as in the classical case. As before, we are interested in the performance of a simulated
risk factor for which we have a set of n return observations ri. Using the PIT these
are transformed into the data set y ≡ {yi}ni=1. Our aim is to calculate the probability
that our model speci�cation is correct given the data y.

To do this we �rst assume that the model implied risk factor distributions are fully
parameterized at each time point ti by a set of m model parameters βi ≡ {βji }mj=1.
This means we can write

fMi (x) = fi(x;βi) (3.1)

for some parametric distribution fi. Similarly, we assume that the actual, real-world,
distribution fRi is of the same form2 but with potentially di�erent and unknown

parameters γi = {γji }mj=1, i.e.:

fRi (x) = fi(x;γi). (3.2)

The choice and complexity of the parameterization used in practice will depend on
which aspects of the risk factor distribution we wish to analyze.

We would like to calculate the posterior distributions P (γi|yi). Bayes theorem tells
us that these can be calculated as

P (γi|yi) =
P (yi|γi)π(γi)

P (yi)
, (3.3)

where π is a prior distribution on the parameters γi which we assume does not depend
on the period i for simplicity. The likelihood function P (yi|γi) can, in principle, be
calculated by noting that

P (Y 6 yi|γi) = P (FMi (Ri) 6 yi;γi) (3.4)

= P (Fi(Ri;βi) 6 yi;γi) (3.5)

= P (Ri 6 F−1i (yi;βi);γi) (3.6)

= Fi(F
−1
i (yi;βi);γi) (3.7)

and hence:
P (yi|γi) = F ′i (F

−1
i (yi;βi);γi), (3.8)

where Fi(·) denotes the cumulative distribution function of fi(·) and F ′i is the deriva-
tive of Fi with respect to yi.

2Note that for any two distributions it is always possible to de�ne a more general distribution that
contains both distributions as special cases.

6

Electronic copy available at: https://ssrn.com/abstract=4026491



It is convenient to remove the dependency on the model parameters βi and work
instead in terms of a relative misspeci�cation θji of βji vs. γji . This is important
because estimating the model parameters is expensive if they are not known explic-
itly and also because we will need variables that are time-invariant. In general, the
misspeci�cations θi = {θji }mj=1 can be de�ned implicitly with respect to a �xed and

time-independent set of base parameters α = {αj}mj=1 by demanding

Fi(F
−1
i (yi;α);θi) = Fi(F

−1
i (yi;βi);γi) (3.9)

for all yi. In practice, the above equation does not always lead to an explicit relation-
ship and the parametric distribution needs to be chosen carefully. Two key examples
are provided below where we will see that the base parameter is 1 or 0 and the result-
ing misspeci�cation is the ratio or the di�erence of the real-world parameter to the
model parameter.

We can express the posterior distribution at time ti in terms of the misspeci�cation
as

P (θi|yi) =
P (yi|θi)π(θi)

P (yi)
=

P (yi|θi)π(θi)∫
θi
P (yi|θi)π(θi)dθi

(3.10)

with

P (yi|θi) = F ′i (zi;θi) =
fi(zi;θi)

fi(zi;α)
(3.11)

and
zi = F−1i (yi;α). (3.12)

To specify the prior distribution we will make the simplifying assumption that the
individual parameters are independent and hence

π(θi) =
m∏
j=1

πj(θji ), (3.13)

where the individual priors πj are an input to the backtesting as will be discussed in
the next section.

In order to extend this to multiple periods we assume that the misspeci�cations are
the same across our observation window and hence θi = θ for all i. We should think
of the misspeci�cations as the long run average relationship between the model and
real-world parameters. Assuming in addition that returns are independent over each
horizon allows us to de�ne the total likelihood for the observation window as

P (y|θ) =

n∏
i=1

P (yi|θ). (3.14)

The posterior distribution for the entire observation window is then given by

P (θ|y) =
P (y|θ)π(θ)

P (y)
=

P (y|θ)π(θ)∫
θ P (y|θ)π(θ)dθ

. (3.15)

We note that this can also be interpreted as an experiment where we perform repeated
observations and for each subsequent observation take the new prior to be the posterior
estimated previously.

We now discuss the key terms in the above expression in more detail.
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3.1 The Likelihood

The main computational e�ort in the Bayesian backtesting approach is the calculation
of the likelihood function. Here we provide two basic examples which will be used in
our empirical analysis later on.

3.1.1 Gaussian Example

The simplest example is when we assume that the model and real-world distributions
can be parameterized by Gaussian distributions. We also assume for simplicity that
the distributions are the same across time windows. In this case we have

fM (x) =
1

σM
φ

(
x− µM

σM

)
(3.16)

and

fR(x) =
1

σR
φ

(
x− µR

σR

)
, (3.17)

where φ(·) is the standard normal density and σM , σR, µM , µR are the model and real-
world volatilities and mean levels. According to equation (3.8) we can then express
the likelihood as:

P (yi|µR, σR, µM , σM ) =
1

σR
σM

φ(Φ−1(yi))
φ

(
σMΦ−1(yi)− (µR − µM )

σR

)
(3.18)

with the cumulative normal distribution denoted by Φ(·). It is hence natural to de�ne
the misspeci�cation parameters as

θσ =
σR

σM
and θµ =

µR − µM

σM
(3.19)

which represent the relative volatilities and mean levels and corresponds to choosing
ασ = 1 and αµ = 0. With this we have:

P (yi|θµ, θσ) =
1

θσφ(Φ−1(yi))
φ

(
Φ−1(yi)− θµ

θσ

)
. (3.20)

3.1.2 Student-t Example

In order to study the tails of the risk factor distributions we need to resort to more
complex distribution parameterizations. Here we provide the likelihood in the case
where the real-world realizations follow a Student-t distribution while the model as-
sumes a Gaussian distribution. Hence we have

fM (x) =
1

σM
φ

(
x− µM

σM

)
(3.21)

and

fR(x) =
1

σ̂R
tνR

(
x− µR

σ̂R

)
, (3.22)
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where tνR(·) is the standard Student-t distribution with νR degrees of freedom. The
standard deviation σR of fR is related to σ̂R by

σR = σ̂R

√
νR

νR − 2
(3.23)

which is de�ned for νR > 2.

As in our previous example, the likelihood is then derived as

P (yi|µR, σ̂R, νR, µM , σM ) =
1

σ̂R
σM

φ(Φ−1(yi))
tνR

(
σMΦ−1(yi)− (µR − µM )

σ̂R

)
. (3.24)

We can de�ne the misspeci�cations for the mean and volatility as before:

θσ =
σ̂R

σM
and θµ =

µR − µM

σM
, (3.25)

but we note that there is no equivalent expression for the degrees of freedom parameter
since we have assumed that the model uses a Gaussian distribution which can be
thought of as a Student-t distribution with in�nite degrees of freedom. Hence we set
θν = νR which leads to our �nal expression for the likelihood:

P (yi|θµ, θσ, θν) =
1

θσφ(Φ−1(yi))
tθν

(
Φ−1(yi)− θµ

θσ

)
. (3.26)

This example can be generalized to more complex distributions but that is out of the
scope of this article.

3.2 The Prior

The prior acts as a �weighting� of the likelihood function for di�erent values of the
model parameters. It represents our prior knowledge (or lack of it) and is a key dis-
tinguishing feature of Bayesian analysis that facilitates the estimation of the densities
of parameter misspeci�cations. The choice of prior distribution depends on the pa-
rameter type and our con�dence in the model speci�cation. For parameters like the
mean level, which can take on any negative or positive value, we can use a Gaussian
distribution as a prior. For parameters like volatility, which are positive, a typical
choice of prior is the Gamma distribution.

The initial mean of the prior is set to our best guess of the true parameter value and
the width of the distribution re�ects our uncertainty. In the backtesting context, for
example, we should have high con�dence in our model parameters when we are valuing
standard instruments on highly liquid assets since market observability will be good.
Conversely, when dealing with highly exotic products in illiquid markets con�dence
will be lower. In absence of any prior knowledge we can choose a distribution that
gives roughly equal weight to all parameter values. The parameters that govern the
prior distribution shape are referred to as hyperparameters.

A powerful feature of our backtesting approach is that the prior distribution can be
naturally updated over time. In particular, we can use the posterior of one obser-
vation window as the prior for the next window. This provides a consistent way of
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incorporating all available historical information in our analysis and partially resolves
the problem of lack of observations. Given that backtesting is an ongoing requirement
this means also that any choice of initial prior will become irrelevant over time. This
will be examined in detail in later sections.

We can also accommodate the fact that historical results should have less weight
than the current ones by weighting the likelihood of the historical data to arrive at a
modi�ed prior, e.g. by de�ning the prior in the nth observation window as

πn(θ) ∝
n−1∏
k=1

P (yn−k|θ)ω
k
π0(θ),

where P (yn−k|θ) is the likelihood from observation window n − k and π0(·) is the
initial prior. The weights ωk with 0 6 ω 6 1 determine how much importance we
place on the historical data.

Finally, we note that unless prior and posterior distributions are conjugate, the func-
tional form of the prior and posterior distributions for each observation window will
be di�erent. To retain the same functional form of the priors, one can �t the prior to
the posterior via moment matching.

3.3 The Posterior

The posterior distribution incorporates all the information that can be used to evaluate
the performance of our model given the available data and our prior knowledge. In
particular, the posterior allows us to infer the best estimates for our model parameters.
This is a key di�erence to the classical approach which only assesses the overall validity
of the model without providing any information about which aspects of the model may
be misspeci�ed.

To analyze individual parameters we need to estimate the marginal posterior distri-
butions for each parameter of interest which can be done by marginalizing over all
other parameters. For example, in the Gaussian case the posterior distribution for the
volatility misspeci�cation θσ is obtained by integrating over the mean misspeci�cation
θµ:

P (θσ|y) ≡
∫ ∞
−∞

P (θσ, θµ|y)dθµ. (3.27)

Typical measures that are used in analyzing the posterior distribution are:

• The mean or median of the distribution. This provides the best estimate of each
model parameter.

• The standard deviation or highest posterior density interval (HPD) of the dis-
tribution. These are measures of the uncertainty in our parameter estimates.
For a con�dence level p and a parameter θ, the HPD is de�ned as the smallest
interval [a, b] such that P (a < θ < b|y) = p.

A main goal of any backtesting framework is to determine whether the model under
consideration performs satisfactorily. This requires a criteria to accept or reject the
model, similarly to what we have in the classical framework. The advantage of the
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Bayesian framework is that we can base decisions directly on the probability of the
model being correct. In addition, we can determine the size of any misspeci�cation.

The posterior distribution allows us to de�ne many possible criteria depending on the
desired use case. In this article we consider the probability of model parameters being
correct up to a certain tolerance. More speci�cally, for each parameter θ and chosen
tolerance ε we can calculate the probability of the parameter being correct as

P (θ̄ − ε < θ < θ̄ + ε|y),

where θ̄ corresponds the non-misspeci�ed value of the parameter. To accept our model
we can then demand that this probability exceeds a chosen threshold, e.g. 95%. The
error tolerance ε and the probability threshold need to be chosen based on the accuracy
requirements for our model. It is worth re-emphasizing the following points:

• The probability threshold is on the probability of the model being correct. Ac-
cepting the model means that there is a high probability that the model is not
misspeci�ed. This is in contrast to the classical approach where the thresh-
old is on the probability of observing the data assuming the model is correct.
Accepting the model in this case does not mean that the model is correct.

• The tolerance range for the misspeci�cation can be directly related to the amount
of loss incurred as a function of the model misspeci�cation. Typically, sensitivi-
ties of end-usage metrics to the main model parameters will be available to do
this. More generally, we can asses any quantity that is a function of the model
parameters in terms of our posterior distribution. This could be, for example,
the counterparty level expected exposure or potential future exposure.

We will compare the performance of the Bayesian and classical approaches in the next
section.

4 Testing Framework

We now look at the practical implementation of the framework laid out in the previous
section and compare this to a traditional backtesting approach. This will demonstrate
that, in a backtesting context, Bayesian techniques can be applied naturally and can
provide important bene�ts as compared to the classical set-up.

The model we wish to backtest is a risk factor simulation model. We assume that the
model distribution over each observation window is a standard normal distribution
N(0, 1). Our aim is then to identify misspeci�cations in this model with respect to a
simulated data set of risk factor realizations. We will explore examples of increasing
complexity to show how di�erent aspects of the model distribution can be tested.

In our test set-up, we will consider two consecutive observation windows consisting
of 50 independent observations corresponding roughly to a year of weekly returns.
While 50 observations is fairly high and not always available in practical settings for
long forecasting horizons, e.g. when backtesting is performed quarterly, the power
of classical tests with less than 50 observations is very low which would make any
comparison to the Bayesian approach less informative. The consideration of two
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observation windows will allow us to examine the e�ect of the sequential updating of
priors in the Bayesian framework.

At each observation date we simulate a realization of the risk factor. We will consider
di�erent distributions for the realizations in order to test how well the backtesting can
identify di�erent types of model misspeci�cation. The simulated risk factor returns
are PIT transformed to arrive at the simulated data set y. The data set is then
analyzed using our Bayesian framework as well as the classical approach, which will
form our benchmark comparison.

Our testing consists of two main parts. First we analyze how well the Bayesian
framework performs in inferring the model parameters. We do this by assessing the
means and standard deviations of the posterior distributions and comparing those
to the real-world parameters in the given scenario. Parameter inference is not part
of the standard classical backtesting approach and hence a direct comparison is not
provided here.

In the second part we analyze how well the the Bayesian and classical approaches
perform in identifying model misspeci�cations, i.e. in model acceptance and rejection.
To do this we de�ne Bayesian success criteria and then compare type I and type II
errors when evaluating our model in the various scenarios.

4.1 Misspeci�cation Scenarios

Our testing will be performed across the following three risk factor scenarios:

Scenario 1: Vol misspeci�cation The real-world risk factor distribution is Gaus-
sian with mean 0 and volatility 1.2. This is the simplest example and aims to
test a typical case where model volatilities are misspeci�ed. The volatilities are
usually the main drivers of the risk factor dynamics in exposure models.

Scenario 2: Mean misspeci�cation The real-world risk factor distribution is Gaus-
sian with mean 0.4 and volatility 1. Here we test whether we can detect a mean
level misspeci�cation which is typically more di�cult than identifying issues with
the volatility. This is particularly relevant in the context of CCR backtesting as
the exposure models will often be de�ned in a risk-neutral measure and hence
the model drift will di�er from the real-world one.

Scenario 3: Tail and vol misspeci�cation The real-world risk factor distribution
is generalized Student-t with mean 0, volatility 0.6 and 6 degrees of freedom.
This is a more complex scenario where we explore whether we can identify the
misspeci�cation of more subtle aspects of the distribution shape. Here we con-
sider o�setting e�ects of a low volatility combined with a heavy tail. This is
relevant as model volatilities may be set conservatively which will mask issues
with tail modeling.
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4.2 Bayesian Approach

In the Bayesian approach we aim to calculate a marginal posterior distribution for all
our parameters given the (simulated) real-world data. This will be analyzed in order
to infer the best estimate for the model parameters and also to assess whether the
model passes our chosen acceptance criteria.

To calculate the posterior we need to specify parameterized forms for the real-world
distributions of our risk factor as well as priors for all parameters. Given the likelihood
and prior, the posterior can then be calculated following equation (3.15). Depending
on the scenario under investigation we will either choose a normal or Student-t distri-
bution as the basis for our likelihood calculation. Initial priors for the �rst observation
window will be uninformative or weakly-informative and centered around the model
parameter values. In the subsequent observation windows we will use the previous
posterior distribution to inform our new prior.

More details on the risk factor distribution parameterizations are provided below.

4.2.1 Normal Distribution

If we are mainly interested in testing the mean and volatility speci�cation of our model
then it is simplest to assume that the true generating process is normally distributed
with mean µR and volatility σR.

Since the model is given by a standard normal distribution, it follows that the mis-
speci�cation parameters are equal to the real-world ones, i.e. θµ = µR and θσ = σR.
The likelihood function P (y|θµ, θσ) is hence given by equation (3.18) which can be
computed in closed form.

The initial prior distributions are chosen to be weakly informative and are de�ned by

π(θµ) = N(m, s2), (4.1)

π(θσ) = Γ(aσ, bσ), (4.2)

where Γ(a, b) denotes the Gamma distribution with mean a/b and variance a/b2.

In the �rst observation window, the hyperparameters m, s, a and b are set as follows:

• Mean θµ: m = 0, s = 0.2 which implies that the mean misspeci�cation is
centered around 0 with standard deviation of 0.2.

• Volatility θσ: aσ = bσ = 10, which implies that the volatility misspeci�cation is
centered around 1 (i.e. no misspeci�cation) and standard deviation is ≈ 0.32.

For subsequent observation windows we update the prior by moment matching the
posterior distribution of the previous window. In �gures 1a and 1b we show how
the volatility and mean priors are updated over four consecutive observation windows
in the case that the real-world risk factor distribution is Gaussian with mean 0 and
volatility 1.2. We can see clearly how the prior becomes more informative and centered
around the correct parameter values with each update.

In order to analyze the sensitivity to our prior choice we also specify the following
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four test priors for the volatility:

Prior A: Uninformative prior with mean 1 and standard deviation of 32.

Prior B: Weakly-informative prior with mean 1 and standard deviation of 0.32. This
corresponds to our default prior.

Prior C: Stronger prior with mean 1 and standard deviation of 0.16.

Prior D: Stronger prior with mean 1.2 and standard deviation of 0.17.

4.2.2 Student-t Distribution

To test the tail behaviour of our risk factor dynamics we can use a generalized Student-
t distribution with mean µR, volatility σR and degrees of freedom νR. Again, we know
that the misspeci�cations are equal to the real world parameters, i.e. θµ = µR, θσ = σR

and θν = νR. The likelihood P (y|θµ, θσ, θν) is given by equation (3.26).

The prior for the mean level and volatility are as described in the previous section.
Gamma prior is chosen for the degrees of freedom parameter:

π(θν) = Γ(aν , bν) (4.3)

with hyperparameters aν = 2 and bν = 0.1, which implies a mean for θν of 20 and
standard deviation of 14 (see Juárez and Steel [2010] for a discussion of why this is a
suitable uninformative prior). For θν � 20 the Student-t distribution is approximately
Gaussian and hence close to the model speci�cation.

As before, the posterior distribution is derived according to equation (3.15).

4.3 Benchmark Approach

In the classical benchmark approach we de�ne a model rejection criterion based on the
probability of the observed data given the model speci�cation as described in section 2.
In our testing we will use a three-bin chi-square (χ2) test in order to analyze the data.

Given N observations of our (PIT transformed) data y the χ2 test is based on a
partition of the unit interval into a number of bins b = {(0, k1], (k1, k2], . . . , (kn−1, 1]}.
The T statistic is then de�ned as

T̂χ2 ≡
k∑
i=1

(Obi − Ebi)2

Ebi
, (4.4)

where Obi is the realized number of observations in the bin bi = [ki−1, ki] and Ebi =
N(ki−ki−1) is the expected number of observations given the model. It is well-known
that the statistic tends to a χ2 distribution with k − 1 degrees of freedom, i.e. Tχ2 ∼
χ2
k−1. This allows us to calculate the p-value p which is the probability of observing
Tχ2 values as or more extreme than those predicted under the null hypothesis H0 that
the model is correct, i.e.:

p ≡ P (Tχ2 > T̂χ2 |H0).
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Under the classical framework, the model is �agged if the p-value falls below the
speci�ed type I error level (a typical choice being 5%). The power of the test (i.e. the
probability of �agging the model when it is in fact misspeci�ed) is sensitive to to the
size of model misspeci�cation as well as the number of observations as can be seen in
�gure 2a for the case of a volatility misspeci�cation.

The chi-square test is also sensitive to the choice of bins and there is no optimal
choice for the bin width since it depends on the type of misspeci�cation (e.g. mean
versus volatility). Most reasonable choices should produce similar, but not identical,
results. In �gure 2b we show how the power of the benchmark test depends on
the bin choice. We can see that a choice of three bins is optimal in the volatility
misspeci�cation case. Figure 2c shows how the power varies with the bin sizes in
the three-bin case. We see that the choice of [0.05, 0.95, 0.05] is close to optimal.
This is hence the choice we use when considering scenarios one and three. When
considering the mean misspeci�cation, the optimal bin con�guration has narrower
bin sizes around the center of the distribution. Hence in the following we use the bin
speci�cation [0.1, 0.8, 0.1] in scenario two.

5 Test Results

5.1 Inference Tests

In this set of tests we investigate to what extent our Bayesian approach is able to
estimate the size of individual parameter misspeci�cations in our three test scenarios.
In each scenario we simulate the risk factors for two subsequent observation windows
with 50 independent observations each. Given the simulated data and a parameterized
form for the risk factor dynamics, we calculate the marginal posterior distributions for
each relevant parameter. In scenarios one and two we assume Gaussian dynamics and
in scenario three we use the student-t distribution. The prior choice is as described
in the previous section.

We analyze the posterior distributions by calculating the mean as well the 68% and
95% HPDs of the posterior. The further the bulk of the posterior distribution is
away from the model parameter value, the more likely it is that the parameter is
misspeci�ed.

The simulated examples represent a typical output from a Bayesian backtest. To
demonstrate how representative these single examples are, we also examine the dis-
tribution of the posterior mean using ten thousand simulations. We show how the
sample standard mean and sample standard deviation relate to the single example
posterior distribution.

5.1.1 Scenario 1. Volatility Misspeci�cation: θµ = 0, θσ = 1.2

The prior and posterior distributions for the volatility in the �rst window are shown
in �gure 3a. We can see that the posterior distribution is clearly shifted towards the
correct level of volatility and is also more informative than the initial prior. The mean
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of the posterior is around 1.3, the 68% HPD interval is [1.15, 1.4] and the 95% HPD
interval is [1.1, 1.55]. We hence see in this example the actual volatility falls within
the 68% HPD and the model volatility outside the 95% HPD which provides strong
evidence that the model volatility is misspeci�ed.

In �gure 5a we show the result of repeating the analysis over 10k simulations. We
see that the sample mean (of posterior mean estimates) is close to the sampling dis-
tribution volatility of 1.2. We also see that the standard deviation of the sample
distribution is close to the average of the standard deviations of the posterior dis-
tributions (with the proximity increasing in the second window). This suggests that
the posterior distribution provides a reliable inference of the volatility as well as the
uncertainty around the estimation.

In �gures 3b and 5b we see how the posterior evolves in the second window where the
prior is taken to be the (moment-matched) posterior of the �rst window. We can see
clearly that the uncertainty in the volatility estimate has reduced with the 68% HPD
interval now being [1.25, 1.4].

We repeat this analysis for the estimation of the mean which is not misspeci�ed in
this scenario. Figures 3c and 3d show the prior and posterior distributions for the
�rst and second window examples, and the histograms of the sample distribution of
the posterior means over 10k simulations are shown in �gures 5c and 5d. We see that
the mean is correctly estimated at 0 with a sample standard deviation of 0.07 in the
second window.

In �gure 4 we examine the sensitivity of the posterior distribution to the prior choice
for the volatility parameter misspeci�cation. We consider three sets of 50 risk factor
simulations drawn from the normal distribution with volatility misspeci�cation size
1.2. In particular, we choose a sample (a) with high standard deviation (1.35); (b)
with standard deviation in line with the risk factor volatility (1.2) and (c) with low
standard deviation (1.15). Unsurprisingly, the uninformative prior (A) tends to adapt
quickly to the observed evidence and results in estimates very close to the standard
deviations of the samples. The strong priors produce narrow posteriors with mean
levels which remain closer to the initial prior means. The weekly informative default
prior provides a balance between these extremes in terms of weighting the data and
prior knowledge.

We conclude that our Bayesian approach is able to estimate the misspeci�cation of
both the mean and volatility together with the associated uncertainty in this scenario.

5.1.2 Scenario 2. Mean misspeci�cation: θµ = 0.4, θσ = 1.0

In this scenario the risk factors still follow a Gaussian distribution. However it is now
the mean that is misspeci�ed and not the volatility.

The prior and posterior distributions for the volatility in the representative sample
are shown 6a and 6b. We note that, in contrast to scenario one, the posterior mean
is now closer to the actual level σR = 1, particularly in the second window. This is
seen more clearly when considering the distribution of the posterior mean over 10k
simulations as shown in �gures 7a and 7b. The sample mean in the second window is
given by 1.03. We also note that the sample standard deviation is close to the average
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standard deviation of the posterior across the 10k simulations, which demonstrates
that the posterior distribution provides a good estimate of the parameter level as well
as the estimation uncertainty.

The prior and posterior distributions for the mean are given in �gures 6c and 6d.
We see that the posterior shows a clear shift towards the mean level of the sampling
distribution µR = 0.4.

The histograms of the posterior means are shown in �gures 7c and 7d. We observe
that the sample mean moves closer to the true value over consecutive observation
windows. In the second window the sample mean is 0.31+/- 0.08 and hence the true
value is at just around one standard deviation from the sample mean. We expect this
to improve in subsequent observation windows. More data is needed for an accurate
parameter estimation since the initial prior is centered at µ = 0 with a standard
deviation of 0.2. This means that the model misspeci�cation is large with respect to
the prior con�dence and hence more information will be needed to shift the posterior.
Finally, we note that, as before, the sample standard deviation and the average of the
posterior standard deviations are close.

5.1.3 Scenario 3. Tail and volatility misspeci�cation: θµ = 0, θσ = 0.6,
θν = 6

We now analyze the more complex scenario where the risk factor is distributed accord-
ing to a Student-t distribution with mean 0, volatility 0.6 and 6 degrees of freedom.
The actual volatility is thus low compared to the model speci�cation, however, the
tails of the distribution are heavier. These are two compensating e�ects which are
typically hard to disentangle.

In �gures 8a and 8b we see the posterior distributions for the volatility misspeci�ca-
tion. The mean of the posterior is close the the correct level of 0.6 even in the �rst
observation window.

Figures 8c and 8d show the priors and posteriors for the degrees of freedom. This is
more di�cult to estimate (partially due to the choice of uninformative prior) but we
see that in the second window the posterior mean has shifted signi�cantly and is close
to the correct level of 6.

This result demonstrates that the Bayesian approach is able to identify the source of
a model misspeci�cation even in the presence of multiple e�ects. Another way to see
this is by analyzing the posterior distributions for the expected exposure and potential
future exposure. Here we assume that the risk factor distributions represent the value
(MtM) of a portfolio. A priori it is not clear whether the model misspeci�cation will
result in a lower or higher EE or PFE than what the real-world distribution would
predict.

In �gure 9 we see that the Bayesian approach is able to clearly identify that that
the actual EE and PFE should be lower than what is implied by the model. The
inference becomes stronger in the second window, as expected, and the model EE and
PFE lie outside the 95% HPD. We also note that the misspeci�cation has a stronger
impact on the PFE which is to be expected given that the tail of the distribution is
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directly impacted via both volatility and degrees of freedom parameters in the scenario
misspeci�cation.

5.2 Power Tests

To benchmark the performance of Bayesian framework against classical null hypothe-
sis signi�cance testing, we consider a simulation study across two observation windows
with the same set-up as before: 50 observations per window, 10k simulations in sce-
narios one and two and 2K simulations in scenario three. In each of our three misspec-
i�cation scenarios we will then compare the rates of model rejection and acceptance
given suitable performance criteria.

Flagging model misspeci�cations requires an assessment of the accuracy and precision
of our testing procedure, which commonly relies on the concepts of the type I and
type II errors as well as the test power. The type I error corresponds to �agging a
misspeci�cation when the model is not misspeci�ed whereas the type II error corre-
sponds to not �agging a misspeci�cation when the model is misspeci�ed. The power
is de�ned as the complement of the type II error, i.e. the probability of correctly
�agging a misspeci�cation when the model is misspeci�ed. Stricter �agging criteria
will naturally lead to a higher power at the expense of a higher type I error. The
challenge for any testing framework is hence to increase power while keeping the type
I error �xed.

5.2.1 Classical Power

In the classical approach a model is �agged if the chi-square p-value falls below a
chosen threshold. In the limit of in�nite repeated experiments, the type I error is
equal to this �agging threshold. However, in our analysis we have a �nite set of
simulations in each scenario and the equivalence does not hold exactly. Hence, for a
set of simulated risk factors, we calibrate the p-value threshold so that the �agging
rate for a correctly speci�ed model is equal to the target type I error rate.

Given a p-value threshold and a set of risk factor simulations, the test power is de-
termined by the �agging rate of the misspeci�ed model. The type II error is one
minus the power. We note that in the classical approach we can only �ag the entire
model in aggregate. There is no ability to identify the misspeci�cation of individual
parameters.

When analyzing the test power in the second observation window we need to choose
how data from the �rst window is used. In the classical case we consider two ap-
proaches. In the �rst approach we estimate the p-value in the second window on a
stand-alone basis without taking any previous data into account. This corresponds
most closely to what would happen in a typical backtesting set-up. The model is
then �agged overall if it is �agged in either the �rst or the second window. In the
second approach we calculate a single p-value for the entire data across both windows
consisting of a total of 100 observations. This makes use of the maximum information
available in the simulated data and is hence expected to lead to a higher power.
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5.2.2 Bayesian Power

While under the classical framework the concept of power is well-established, the same
does not exist in Bayesian analysis. However, in order to compare approaches, we can
de�ne equivalent performance criteria as described below.

We �rst look at how we can �ag the misspeci�cation of individual parameters which
is possible in the Bayesian approach. For each parameter we set an acceptable error
tolerance level ε for the misspeci�cation. Given a posterior distribution for the pa-
rameter, we can calculate the probability pε that the misspeci�cation lies in the the
range [θ̄ − ε, θ̄ + ε] where θ̄ corresponds to no misspeci�cation. We can now �ag a
parameter misspeci�cation if pε falls below a desired con�dence threshold which in
the following we �x at 95%.

With this criterion we can de�ne type I and type II error rates as usual. For a given
set of simulated risk factors we will calibrate to a chosen type I error rate target by
adjusting the error range ε.

While we do consider the power of �agging each parameter separately, for a fair
comparison with the power of the classical hypothesis test we also de�ne an aggregate
power measure. To do this we �rst note that a model is misspeci�ed in aggregate if
at least one parameter is misspeci�ed. We deem a test to have correctly �agged an
overall misspeci�cation if at least one misspeci�ed parameter is �agged and no correct
parameter is �agged.

Di�erent combinations of individual parameter tolerance levels can result in the the
same type I error and there is hence no unique calibration. For a given type I error we
will thus choose the tolerance level combination that leads to the maximum power3.

When considering the second observation window we use the prior updating described
in previous sections, i.e. the prior of the second window is the (moment-matched)
posterior of the �rst one for each model parameter. Hence we are making use of the
entire set of data across both windows.

In the following we present a comparison of the Bayesian and classical approaches in
our three misspeci�cation scenarios.

5.2.3 Scenario 1. Volatility Misspeci�cation: θµ = 0, θσ = 1.2

In �gures 10a and 10b we show how the type I error and power depend on the tolerance
interval for both the risk factor volatility and mean. We note that the type I error
for the volatility and the mean decreases as the interval increases, as expected. A 5%
type I error corresponds roughly to a tolerance level of 0.34 for the volatility and 0.39
for the mean in the �rst window. In the second window this reduces to 0.25 for the
volatility and 0.31 for the mean.

3Given that the number of tolerance intervals is �nite, this result in non-continuous power function.
To overcome this we a) calculate a rolling average of the power across a small interval of type I error
(+/− 0.01) and b) use a cubic spline interpolation with knots every 0.02 steps (with not-a-knot boundary
condition for the �rst and last two polynomials).
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The power for the identi�cation of the volatility misspeci�cation also decreases as the
tolerance increases. Again, this re�ects the fact that a larger interval implies that we
�ag an incorrect model less often and hence increase the type II error.

Given that the mean is correctly speci�ed in this scenario, the power of testing the
mean misspeci�cation is de�ned as the probability of not �agging the mean. This
increases with increasing interval size.

In order to compare the Bayesian and classical approaches we plot the power of the
chi-square test as well as the Bayesian backtest as a function of the type I error in
�gures 10c and 10d.

We see clearly that the Bayesian estimation outperforms the classical one. In the �rst
window the power for a 5% type I error rate is around 37% in the classical case but
58% and 97% for the Bayesian volatility and mean estimation, respectively, and 60%
for both parameters combined. In the second window the Bayesian power is increased
further to 80% (volatility), 98% (mean) and 80% (both parameters combined). Using
the combined data for classical testing (100 observations) leads to an increase in power
to 55% which is expected given that the power of hypothesis testing should increase
with the amount of data available. We note, however, that it would not be feasible in
practice to use ever increasing sets of data whereas prior updating is always possible.

Finally, we note that the power of the combined �agging in the Bayesian case is close
to the power of the �agging of the volatility on its own. This is because the power is
de�ned as �agging the volatility and not �agging the mean. The power of the mean
test however is very high, i.e. the probability of not �agging the correctly speci�ed
mean is close to 1.

We also consider the impact of prior choice on the power. We see in �gure 11 that the
power as a function of type I error is fairly close across all priors and hence sensitivity
to the prior choice is low overall. As expected, the informative prior (D), which is
centered on the misspeci�ed value, results in a slightly higher power.

In summary, we observe that the Bayesian approach not only has greater power but
is also able to evaluate the accuracy of individual model parameters which is not
possible in the classical approach.

5.2.4 Scenario 2. Mean misspeci�cation: θµ = 0.4, θσ = 1.0

Here we compare the power in �agging a misspeci�cation of the mean level. In this
scenario the volatility is correctly speci�ed. The power as a function of the tolerance
level is shown in �gures 12a and 12b for windows one and two respectively. As before,
we see that the type I error and power decreases with increasing interval size. To
achieve a 5% type I error rate we need an error tolerance for the mean of about 0.39
in the �rst window and 0.31 in the second. Given that volatility is speci�ed correctly,
we we �nd that, as expected, the power of the volatility test increases with increasing
tolerance level.

The power of our test as a function of the type I error for both the Bayesian and
classical approach is given in �gures 12c and 12d. We note that overall the power for
mean misspeci�cation �agging is higher than in the previous case where the volatil-
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ity was misspeci�ed. This re�ects the fact that the misspeci�cation of the mean in
scenario two is larger than the misspeci�cation of the volatility in scenario one, as
re�ected in a higher Kullback-Leibler divergence for the former (80 vs 30)4.

The power of the Bayesian approach is notably higher than in the classical case in both
observation windows. At 5% type I error the Bayesian power for mean estimation is
at 77% in the �rst window and over 95% in the second. The power for the volatility
test (which is correctly speci�ed) is also high at around 92% in the second window.
As observed in scenario one, the aggregate power of model �agging in the Bayesian
case is close to the power of the mean �agging on its own and hence over 95% in
the second window. This should be compared to the classical power of 83% for the
combined data case and 51% for the split case which are both signi�cantly lower.

Hence we conclude that the Bayesian approach outperforms the classical one in the
scenario two also.

5.2.5 Scenario 3. Tail and volatility misspeci�cation: θµ = 0, θσ = 0.6,
θν = 6

In our �nal scenario we investigate the ability of backtesting to identify misspeci-
�cations of the tails of our risk factor distribution. The analysis is based on 2000
simulations from a Student-t distribution. The model distribution, which is standard
Gaussian, can be thought of a Student-t distribution with νM >> 20 degrees of free-
dom. The tolerance interval we use for the degrees of freedom is directional, i.e. the
interval for model parameter νM with tolerance ε is [20 + ε,∞).

We �rst examine how the type I error varies with the tolerance for the degrees of
freedom. This is shown in �gures 13a and 13b for windows one and two. We see
that for a type I error of 5% we need a tolerance of ε = −15 in the �rst window and
ε = −14 in the second. These ε levels results in rather wide tolerance intervals which
can be attributed to the use of uninformative prior for degrees of freedom parameter,
thus making posterior convergence to the misspeci�cation value slow - see �gure 1c for
the convergence towards 20 degrees of freedom in four windows that indicates little
impact on the width of the prior/posterior distribution in the second window.

The power in the Bayesian and classical case is shown in �gures 13c and 13d. The
plots are less smooth than in the previous cases due to the fact that we use a reduced
set of samples in this scenario leading to increased Monte Carlo noise. Nevertheless,
we can draw several conclusions. Firstly, we note that the power of the classical test
is lower in this scenario than in previous ones. At 5% type I error it is close to 0 in
the �rst window and only increases by using combined data in the second window to
around 40% which indicates that the test is not satisfactory. This is to be expected
given the fact that we have two competing e�ects: a thinner tail but higher volatility
in the model vs. the real-world distribution.

In the Bayesian case we see that the power of identifying the misspeci�cation in
the degrees of freedom on its own is also low at 30% in the �rst window and just

4The Kullback-Leibler divergence, also known as the relative entropy, is a common measure of the
distance between two distributions. It is a generalization of the squared distance and aims to quantify the
di�erence in information between two distributions.
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above 40% in the second for a type I error of 5%. However the power of identifying
the volatility misspeci�cation and the mean non-misspeci�cation remain very high.
Given that in this scenario we accept the model as being correctly �agged if either
volatility or degrees of freedom misspeci�cation is �agged and mean misspeci�cation
is not �agged, this results in a high power in �agging the model overall which is at
95% in the �rst window and close to 100% in the second.

This is a remarkable result and shows that the Bayesian approach is able to distinguish
the e�ect of volatility and the degrees-of-freedom. Hence in this case the Bayesian
approach is superior both qualitatively and quantitatively to the classical one.

6 Conclusion

In this article we have introduced a general Bayesian framework for backtesting coun-
terparty risk models. This has clear bene�ts in terms of performance in comparison
to the standard classical approach while also having a �rm conceptual basis and being
straightforward to implement.

The main outputs of our framework are the posterior distributions of the parameter
misspeci�cation in our model conditional on the observed data. These directly encode
the probability of the model being correctly speci�ed which should be the focus of
backtesting. By contrast, in classical hypothesis testing we can only determine the
probability of the observed data conditional on a chosen model speci�cation being
correct and do not have any evidence for model correctness itself.

A key distinguishing feature of Bayesian statistics is the need to specify prior distri-
butions of the model parameters. These encode any prior knowledge that we may
have regarding the level and uncertainty for a given parameter and can be chosen
naturally in a backtesting context. Priors can be based on expert judgment (e.g. re-
garding parameter liquidity) but, more importantly, they will re�ect the information
gathered in previous testing cycles. Thus the Bayesian framework incorporates all the
information gathered over the course of the ongoing backtesting process.

An important feature of our Bayesian approach is that we are able to analyze the
source of model issues by estimating all relevant model parameter misspeci�cations
given the data and our prior knowledge. Thus we not only can determine whether
a model is correctly speci�ed in aggregate, as is done in the classical case, but also
which aspects of the model may be misspeci�ed. This allows for rapid diagnosis and
remediation of problems �agged in backtesting.

The fact that we can directly estimate the level of an individual parameter misspeci�-
cation also allows us to express the results of the backtesting in terms of the end-usage
metrics of the model, e.g. expected exposure or potential future exposure. This means
that we can assign loss estimates to any identi�ed issues which allows for an economic
assessment of their impact and an optimal prioritization of any follow-up action.

In a direct comparison of our framework with a classical backtesting set-up, we have
shown that the Bayesian approach has greater power in rejecting or accepting a given
model. This is a key success criterion of any backtesting framework and is particularly
important in the counterparty risk context as the lack of observational data means
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that the power of testing is typically low in the classical case.

The outperformance of the Bayesian framework is due to several factors. Firstly,
we fully take any prior knowledge into consideration via the prior distributions of the
parameters. This will augment the information gathered through multiple observation
windows. Secondly, the Bayesian approach is able to disentangle the a�ect of di�erent
parameters on the model output which may be o�setting. This allows us to more
accurately determine overall model performance.

Finally, we note that whilst we designed the Bayesian approach with counterparty risk
backtesting in mind, the framework is far more general. In particular, the framework
can be adapted to the backtesting of any predictive time-series or forecasting model
that is sensitive to distributional assumptions. It is thus well suited to be a key tool
at the heart of risk modeling.
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(a) Volatility prior (b) Mean prior

(c) Degrees of freedom prior

Figure 1: The impact of prior updating given four quarters with 50 observations (annual frequency) each
where volatility is misspeci�ed by 1.2. Note the shrinkage of the priors as well as convergence towards the
true misspeci�cation level.

(a) Power of χ2 closed form tests across di�erent sizes of
volatility misspeci�caton, with [0.05, 0.9, 0.05] bins. Here by
�closed form" test we mean assuming χ2 distribution for test
statistics versus those arrived via simulation.

(b) Power of χ2 closed form tests across di�erent number of
bins

(c) Power of χ2 closed form tests for di�erent bin size speci�-
cations for 3 bins
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(a) Volatility - 1st window (b) Volatility - 2nd window

(c) Mean - 1st window (d) Mean - 2nd window

Figure 3: Inference for parameters - scenario 1: volatility misspeci�cation

(a) Standard deviation of a sample = 1.35 (b) Standard deviation of a sample = 1.2

(c) Standard deviation of a sample = 1.15

Figure 4: The impact of prior choices for inference where volatility is misspeci�ed by 1.2 for varying
sample standard deviation levels (50 observations). Priors: A - mean=1, std=32, B - mean=1, std=0.32,
C - mean=1, std=0.16, D - mean=1.2, std=0.17.
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(a) Volatility - 1st window (b) Volatility - 2nd window

(c) Mean - 1st window (d) Mean - 2nd window

Figure 5: Posterior std - scenario 1: volatility misspeci�cation

(a) Volatility - 1st window (b) Volatility - 2nd window

(c) Mean - 1st window (d) Mean - 2nd window

Figure 6: Inference for parameters - scenario 2: mean misspeci�cation
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(a) Volatility - 1st window (b) Volatility - 2nd window

(c) Mean - 1st window (d) Mean - 2nd window

Figure 7: Posterior std - scenario 2: mean misspeci�cation

(a) Volatility - 1st window (b) Volatility - 2nd window

(c) Tail (degrees of freedom) - 1st window (d) Tail (degrees of freedom) - 2nd window

Figure 8: Inference for parameters - scenario 3: volatility and tail misspeci�cation
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(a) Expected Exposure (EE) - 1st window (b) Expected Exposure (EE) - 2nd window

(c) Potential Future Exposure (PFE) - 1st window (d) Potential Future Exposure (PFE) - 2nd window

Figure 9: Inference for exposure metrics - scenario 3: volatility and tail misspeci�cation

(a) Tolerance - 1st window (b) Tolerance - 2nd window

(c) Power - 1st window (d) Power - 2nd window

Figure 10: Power - scenario 1: volatility misspeci�cation
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(a) Tolerance - 1st window (b) Tolerance - 2nd window

(c) Power - 1st window (d) Power - 2nd window

Figure 11: The impact of prior choices for power where volatility is misspeci�ed by 1.2 (50 observations).
Priors: A - mean=1, std=32, B - mean=1, std=0.32, C - mean=1, std=0.16, D - mean=1.2, std=0.17.

(a) Tolerance - 1st window (b) Tolerance - 2nd window

(c) Power - 1st window (d) Power - 2nd window

Figure 12: Power - scenario 2: mean misspeci�cation
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(a) Tolerance - 1st window (b) Tolerance - 2nd window

(c) Power - 1st window (d) Power - 2nd window

Figure 13: Power - scenario 3: tail and volatility misspeci�cation
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