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Abstract

In this paper, we create machine learning (ML) models to forecast home equity credit risk
for individuals using a real-world dataset, and demonstrate methods to explain the output of
these ML models to make them more accessible to the end user. We analyze the explainability
of these models for various stakeholders: loan companies, regulators, loan applicants, and
data scientists, incorporating their different requirements with respect to explanations. For
loan companies, we generate explanations for every model prediction of creditworthiness. For
regulators, we perform a stress test for extreme scenarios. For loan applicants, we generate
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for data scientists, we generate simple rules that accurately explain 70-72% of the dataset.
Our work is intended to accelerate the adoption of ML techniques in domains that would
benefit from explanations of their predictions.
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1 Introduction

The total U.S. household debt at the end of the fourth quarter of 2020 is estimated to be

$14.56 trillion, with 189.6 million new credit accounts opened within the prior 12 months.1

Given this massive amount of household debt, even a low delinquency rate can significantly

affect the operation of the financial system. This potential impact makes the study of credit

default risk an important real-world classification task.

Lenders generally use consumer credit ratings to grant and structure the terms of credit

to consumers. To compute these credit ratings, a variety of factors that gauge the credit-

worthiness of individuals have been described in the literature, which extends as far back as

the 1940s (Chapman, 1940).

Recent advances in computing, innovative algorithms, and an explosion in the quantity of

data have contributed to the growing success of complex nonlinear machine learning models,

sometimes known as “deep” learning models. Unlike traditional machine learning techniques

such as logistic regression and decision trees, deep learning models may have an extraordinary

number of parameters. They are able to automatically learn nonlinear representations and

interactions of input features from large datasets, a process that helps them to achieve

superior performance compared to other machine learning methods. ML models have been

explored for diverse applications in economics and finance (Gogas and Papadimitriou, 2021).

They are widely used for a variety of different credit risk applications, including peer-to-peer

lending (Ma et al., 2018; Duan, 2019), mortgage risk (Sirignano, Sadhwani, and Giesecke,

2016; Kvamme et al., 2018; Chen, Guo, and Zhao, 2021), credit card risk (Butaru et al.,

2016), consumer credit risk (Jiang et al., 2021), and fair credit allocation (Tantri, 2021).

However, regulatory compliance is a major obstacle in the adoption of black-box mod-

els for credit risk modeling. In the United States, the Fair Credit Reporting Act of 1970

mandates that lenders must be able to disclose up to four key factors that adversely affected

the credit score of a rejected consumer. More recently, the European Union’s General Data

Protect Regulation (2018) created a right to explanation, whereby a user may ask for an

explanation of an algorithmic decision that was made about them (Goodman and Flaxman,

2017).

1Source: New York Fed Consumer Credit Panel/Equifax
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Apart from regulatory compliance, different stakeholders have different requirements for

explanation and transparency. For example, a loan applicant might like to know the possible

steps that she could follow to make her creditworthy. Similarly, loan companies may need to

provide explanations for their decisions regarding creditworthiness of applicants, while sys-

tem developers may need to understand the specific features and relationships that underpin

their models.

In this work, we first model a credit risk forecast on a real-world home equity line of credit

(HELOC) dataset released by the Fair Isaac Corporation (FICO). We developed a wide range

of ML models, including interpretable rule-based models (e.g., inductive logic programming

and optimal trees) and black-box ML models (e.g., neural networks and random forests). We

compare these models and find that neural networks outperform other linear and nonlinear

models, reaching 74.75% accuracy. We also find that simple rules can explain 70-72% of the

dataset.

The “explainability” of a model means the ability to give answers to the different stake-

holders involved in the decision-making process (Croxson, Bracke, and Jung, 2019). In this

work, we identify the different stakeholders involved in credit risk management—loan com-

panies, regulators, loan applicants, and data scientists—and provide explanations of the

models according to their needs.

For loan companies, we generate interpretable explanations for every prediction using two

post hoc explainability tools, Local Interpretable Model-Agnostic Explanations (LIME) and

SHapley Additive exPlanations (SHAP), that are able to provide reasons for a loan denial.

We modify the methodology of the LIME algorithm to incorporate the constraints on our

data. The ability to generate explanations makes a model transparent about its functionality,

in this case, informing loan companies about the relationships it has learned. For example,

we identify that having a higher average age of line of credit leads to a decrease in the

probability of default. These explanations also assist in finding representative borrowers

from the past, for example, to find an accurate applicant from past to aid loan officers.

For regulators, we suggest a method of investigating potential regarding fairness of these

models. Regulators may also be involved in investigating the model’s functionality in extreme

scenarios. In anticipation of this issue, we provide a methodology to perform stress tests to

help the regulators analyze the model’s behavior in extreme scenarios.
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Since loan applicants are interested in getting approval for a loan, we generate a diverse

set of suggestions that can help individuals deemed non-creditworthy become creditworthy.

For individuals who already have been approved for loans, we are able to generate suggestions

that can help them remain creditworthy. These counterfactual suggestions are generated by

incorporating constraints based on specific items of domain knowledge, which makes these

suggestions more usable in practice. We generated suggestions successfully for 99% of the

individuals in our testing dataset.

Finally, for data scientists, we are able to summarize the dataset using a few simple rules

that can help them understand the relationships and structure in the dataset. Understanding

these relationships may provide a data scientist with the insights to develop better models

in the future. Using inductive logic programming, we are able to explain 70% of the dataset

using a single rule, and can explain up to 72% of the dataset using two simple rules.

Our work demonstrates that the functionality of black-box ML models can be explained

to a range of different stakeholders, if the right tools are applied to the task, unlocking

the future potential of applying AI to improve credit modeling. New explainable AI tools

will be able to help stakeholders make counterfactual predictions and explain a model’s

output, leading to the ability to answer many “what-if” questions. This includes stress

tests for extreme scenarios, and informing applicants about the factors which will improve

their creditworthiness. More generally, it demonstrates the importance and potential of

explainable AI to affect traditional fields like credit modeling significantly.

The remainder of this paper is structured as follows. Section 2 discusses the relevant lit-

erature. Section 3 describes the different models used in our paper, while Section 4 describes

the dataset used in the analysis. Section 5 evaluates and compares different models. The

explainability for various stakeholders is discussed in Section 6. Section 7 summarizes our

findings and concludes the paper.

2 Literature Review

A range of statistical and operational research methods has been used over the long history

of credit scoring models (Thomas, 1999). Most recently, machine learning techniques have

been adopted for credit risk models. Lessmann et al. (2015), Thomas (1999), Breeden (2020),
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and Gogas and Papadimitriou (2021) give detailed surveys of ML methods for credit risk

forecasting. However, Gogas and Papadimitriou (2021) also highlight the shortcomings of

ML with regard to the explainability of the models for fintech applications.

An extensive literature has been developed about explainable AI for models in health-

care, computer vision, and natural language processing (Molnar, 2020). Even though these

techniques were developed for other domains, some have been adopted for explaining credit

risk forecast models.

A variety of solutions have been proposed to deal with the shortcomings of ML models

used in credit risk forecasting. Interpretable ML models have been used by Khandani, Kim,

and Lo (2010) (decision trees for a consumer credit risk model), and Obermann and Waack

(2016) (a multiclass rule-based model for corporate credit ratings). Similarly, Dumitrescu

et al. (2021) propose an interpretable penalized logistic tree regression model for credit

scoring, while Chen et al. (2018) use an interpretable two-layer additive risk model for

a home equity line of credit dataset. A two-layer additive risk model is the award-winning

model in the recent FICO data science challenge. For these models, interpretability generally

comes at the cost of performance compared to black-box models. For example, Caruana and

Niculescu-Mizil (2006) found that random forests outperform decision tree classifiers. In

this paper, we show that a neural network outperforms the two-layer additive risk model

proposed in Chen et al. (2018).

Another category of solutions includes post hoc methods. Bussmann et al. (2020) use

Shapley values to explain tree-based ensemble models and apply correlation networks to

group the borrowing companies using the derived explanations. Similarly, Hadji Misheva

et al. (2021) use the post hoc methods of Local Interpretable Model-agnostic Explanations

(LIME) and SHapley Additive exPlanations (SHAP) to obtain local and global explanations

for models trained on a Lending Club dataset. Albanesi and Vamossy (2019) propose a

deep learning-based approach that combines the outputs of tree-based ensemble models and

neural networks to predict consumer default, and use SHAP to provide model explanations.

Other methods that use SHAP for explaining credit risk models include Ariza-Garzón et al.

(2020) and Bracke et al. (2019). More recently, Qadi et al. (2021) propose a human-in-the-

loop ML method that combines a post hoc explanation from SHAP with explanations from

credit risk experts. Other methods of post hoc interpretability include layerwise relevance
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propagation and activation analysis of hidden units of a neural network (Ponomareva and

Caenazzo, 2019). Rudin and Shaposhnik (2019) propose a minimum set cover problem to

generate a rule-based summary of a machine learning model on the home equity line of credit

dataset. Similarly, Martens et al. (2007) propose a rule extraction method from a trained

support-vector machine (SVM) model for credit scoring.

While these methods generate explanations of model outcomes, they are not tailored

specifically for the different stakeholders involved in the credit risk pipeline. In addition,

they do not embed the specific constraints of the dataset in their methodology of generating

explanations, which may lead to explanations that are not practical or useful. Interpretability

for different stakeholders has been introduced in a demo by IBM2, but it remains incomplete,

and does not use the state-of-the-art methods that we employ in this work.

In this paper, we present a methodology of generating explanations of black-box models

for different stakeholders, a direction that has not been well explored previously. In the

process of generating these explanations, we embed constraints to ensure that explanations

and suggestions are meaningful and can be adopted for real-world use.

3 Machine Learning Methods

The fundamental goal of credit scoring is to determine the creditworthiness of an individual.

Simply put, it is a binary classification task that labels credit applicants as creditworthy or

non-creditworthy. A creditworthy applicant is likely to repay their financial obligation, while

a non-creditworthy applicant is not.

We frame the consumer credit risk classification problem as predicting the probability of

default for a borrower. More specifically, given a set of features, x1, x2, ...xk, for a borrower

i, the task is to predict a variable yi, that is, the probability of default, Pr(Default). The

features xi describes the borrower’s credit history, for example, the number of lines of credit

and the number of times the borrower defaulted in the past, among others. In practice, yi

is determined by long-standing credit scoring models, which are characterized by decisions

such as whether the applicant had 90+ days delinquency in the two years after the opening

of a new line of credit.

2https://aix360.mybluemix.net/data
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We frame the classification as a supervised learning problem in which we train a function

f that can approximate the relationship yi = f(x1, x2..xk). To train the function f , we use

variety of ML models, including optimal classification trees, random forests, inductive logic

programming, and neural networks. We describe these models next.

3.1 Random Forests

Random forests are an ensemble supervised learning technique. This technique aggregates

multiple outputs from a set of predictors, in this case, multiple decision trees, in the belief

that this will produce a more accurate classifier.

The key idea behind random forests is that a high-performing classifier can be constructed

from a set of non-expert classifiers which are decision trees. A single decision tree is a

supervised learning method that predicts the value of a target variable by learning simple

if-then decision rules. It is constructed using the Classification And Regression Tree (CART)

algorithm (Breiman et al., 1984). Each node in the decision tree is a condition on the value

of a single feature that splits the data into two subsequent branches. CART recursively

identifies the feature-value pair that best minimizes the tree’s Gini impurity, a metric of the

disorderliness of the labels of a set of data points.

Random forests are trained via a method called bootstrap aggregation, or bagging. The

training data points are first randomly assigned into n groups with replacement, where

n corresponds to the number of decision trees. Individual decision trees are fitted to a

randomly chosen set of features in each group. To classify a new data point, the random

forest aggregates the predictions from each of its constituent decision trees, and uses the

majority vote as its classification. The random sampling of data points and features ensures

that the resulting decision trees are uncorrelated. Thus, by aggregating their independent

predictions, random forests are able to reduce variance and improve generalizability.

Random forests are difficult to interpret. For individual data points, each decision tree

gives its if-else conditions that lead to a classification, but when these conditions are combined

over the many trees of an ensemble, interpreting these conditions is impossible. This makes

random forests effectively a black-box model.

6

Electronic copy available at: https://ssrn.com/abstract=4006840



3.2 Inductive Logic Programming

Inductive logic programming (ILP) (Muggleton, 1991) involves using first-order logic to

represent and explain data. The dataset can be represented by a finite set of rules or

clauses.

ILP requires that we specify the number of rules N , a given maximum rule size R, and the

dimensional n binary input vector X. We construct Π, a N × R × 2n tensor, and interpret

softmax(Π[i, j]) as a probability distribution for the jth term in the ith rule; that is, we

obtain a 2n-sized discrete probability distribution over the n features and their negations.

The rules are learned in a disjunctive normal form that consists of clauses with ∧̂ (AND)

and ∨̂ (OR) conditions. The AND and OR operators require binary operands. However,

these operators must be extended to continuous operands to learn clauses from data. We use

the product as a continuous extension of ∧̂, while a continuous extension of ∨̂ is obtained

from DeMorgan’s Law, ∨̂(x) = 1−A(1−x), where A is the continuous extension of ∧̂. From

parametrization and using these continuous extensions of ∨̂ and ∧̂ on [0, 1], we can compute

an approximated label ŷ for an input vector X by concatenating X with its 1−X to get a

2n-vector X∗:

ŷ =
∨̂
i

∧̂
j

(X∗ · softmax(Π[i, j]))

where i ranges over the number of rules and j ranges over the size of a rule.

The binary cross-entropy loss between ŷ and ground truth y can be minimized using

stochastic gradient descent in order to learn the probability distributions in Π. Once the

model is trained, we use the probability distribution Π to obtain a set of logical rules in

disjunctive normal form, for all n from 1 to N and r from 1 to R, using the following

expression:

target←
N∨

n=1

(
R∧

r=1

argmaxk(Π[n, r, k])

)

In our work, X is a numerical vector with each dimension corresponding to a different feature

value. We first rank-normalize it to change its range to [0, 1], and use the transformation
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T to binarize it: T (x) = σ(a(X − b)), where σ is the sigmoid function, a is the fixed scale

parameter, and b is the parameter learned during optimization.

Using the inductive logic programming model, we can thus learn simple interpretable

rules that can be used for classification and summarizing datasets.

3.3 Optimal Classification Trees

Decision trees are constructed in a top-down greedy way using the CART algorithm (Breiman

et al., 1984) as described in Section 3.1. At every node, the split is decided locally without

the knowledge of other nodes. This makes decision trees only one-step optimal, leading to

poor performance when classifying unseen points.

Optimal trees (Bertsimas and Dunn, 2017) are a variant of decision trees that are learned

in a globally optimal manner. Optimal trees decide their split in one step, with knowledge

of all other splits. The tree learning process is modeled as a mixed-integer optimization

problem, which can be solved using fast available optimizers. Because optimal trees are

constructed in a globally optimal fashion, they perform better than decision trees, and have

all the advantages of other decision trees in terms of explainability. However, optimal trees

become difficult to explain if they are very deep, and the rules learned at every node are

complex. In addition, the number of variables involved in optimization for creation of optimal

tree model is a linear function of dataset size and an exponential function of maximum depth.

In general, mixed integer optimization does not scale well with a large number of variables.

As a result, deeper optimal trees take a longer time to train on large datasets compared to

decision trees, which limits their use for Big Data problems.

3.4 Neural Networks

Neural networks (NN) are supervised learning models loosely inspired by the biological net-

works of the human brain.

A NN is composed of three types of layers: an input layer, a number of hidden layers, and

an output layer. An input layer relays the input features into the model, the hidden layers

act as the computational engine, and the output layer generates the final model prediction.

The input to each hidden unit is a linear combination of the units of the preceding layer. The

hidden unit then computes its output by mapping its input through an activation function.

8

Electronic copy available at: https://ssrn.com/abstract=4006840



A nonlinear activation function is commonly used to create nonlinear interactions between

the units of the neural network. It is worth noting that logistic regression is a special case of

a NN, with one hidden layer containing one hidden unit with a sigmoid activation function.

In NNs, the value of each hidden unit can be computed as:

hj(x) = f(wj +
n∑

i=0

wij · xi).

Here, wij is the weight from input xi to hidden unit hj. The weights wij can be learned by

minimizing the loss function using optimizers like stochastic gradient descent.

The weights of the neural network create complex and nonlinear interactions between

input features, which do not have human-interpretable meanings. However, the complex

nonlinear interactions learned by NNs lead in general to better model performance. More-

over, the decision boundaries learned by NNs can be both high-dimensional and extremely

nonlinear. Thus, learned features may have varying significance at different points of the

feature space.

4 Data

For our task, we used a home equity line of credit (HELOC) dataset provided by FICO. A

HELOC is a revolving loan in which the collateral is the borrower’s equity in their house.

Like a credit card, a HELOC is available for a set time frame during which a borrower can

withdraw money as needed.

The FICO dataset contains 10,459 borrowers who were granted HELOCs during a two-

year application window from March 2000 to March 2002. In March 2003, a year after the

application window had closed, a performance snapshot was captured, and the risks of the

borrowers were evaluated. In this dataset, an applicant might have used their HELOC for a

duration between one and three years, depending on the time of their approval. The dataset

contained 5,459 non-creditworthy records, while the remaining 5,000 records were deemed

creditworthy. In addition to the binary target variable of credit risk classification, each credit

applicant is characterized by 23 predictor features, 21 continuous and 2 categorical. Further

information about these features, and important terms relevant to the dataset, are provided
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in Appendix B.2.

The records in our dataset contain special values, which require a careful approach. We

deal with special values by discretizing continuous features into bins. The advantage of

binning is that special values can be treated as a separate bin, and any outliers can be

consolidated. Once a binning schema has been decided, a feature can be represented using

one-hot encoding and weight of evidence (WoE) encoding.

In one-hot encoding, a feature that contains n bins can be represented as an n-dimensional

vector f . If a feature value belongs to bini then the value of its kth dimension fk = 1 if k = i

and 0 otherwise, for k ∈ [0, n). The drawbacks of one-hot encoding are that bins are treated

as unordered categories, and sparsity is introduced. Sparse features can result in overfitting

and biased parameters in a model if the training dataset is small. In addition, for continuous

variables, there is no clear-cut formula to define the binning schema, and choosing it manually

can be sub-optimal.

Weight of evidence (WoE) encoding is a popular statistical technique used in the credit

rating industry (Siddiqi, 2012). It is used to automatically recode the values of continuous

and categorical predictor variables into discrete bins, and to assign each bin a WoE value.

The bins are determined such that they will produce the largest differences with respect to

the WoE values. Additionally, monotonicity constraints can be specified to ensure that WoE

values are strictly increasing or decreasing in feature values.

The formula for WoE encoding is derived from entropy theory and the information value.

For bini, the WoE value can be computed as follows:

WoEi = [ln (
Relative Frequency of Goods

Relative Frequency of Bads
)] ∗ 100 (1)

where the relative frequency of goods is defined as the ratio of the number of creditworthy

individuals in bini to the total number of creditworthy individuals, and the relative frequency

of bads is defined as the ratio of the number of non-creditworthy individuals in bini to the

total number of non-creditworthy individuals.

Intuitively, the WoE value of a bin provides a measure of its predictive ability to separate

creditworthy and non-creditworthy applicants. An important benefit of WoE encoding is
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that it can be used to treat missing values and outliers without introducing sparsity. As

WoE values are on the same scale, we can use them to compare the univariate effects of bins

on the target variable within a feature or across all features. Its drawback, like most binning

techniques, is that it results in a loss of information. As we will see in Section 5, models

trained on WoE encoded data have a better performance than other methods.

5 Evaluation

In this section, we evaluate the different models described in Section 3. These machine

learning models, including optimal trees, random forests, and neural networks, are trained by

recoding all the features using weight of evidence encoding. An inductive logic programming

model is trained using the methodology described in section 3.2. We also evaluate the neural

network model trained on one-hot encoding version of the dataset. The details of these

implementations and best-performing models are included in Appendix C for reproducibility.

We include the two-layer additive risk model in our evaluation (Chen et al., 2018), which

was the best performing model of the FICO Data Challenge3. It partitions features into

different subgroups, combining scores from different subgroups into a global model score. Its

feature subgroups are generally interpretable, as they are created through the intervention of

an expert in the field. The model resembles a two-layer sparse neural network. This model

serves as a baseline for the other black-box models.

We evaluate these models using K-fold cross-validation. In K-fold cross-validation, the

input dataset is randomly partitioned into K equal subsets. In each run, one of the subsets

is chosen as the test set and the remaining as the training set. For this analysis, we choose

K = 5, i.e., in each run of cross-validation, the training set contains 80% of the dataset (7, 898

points), and the test set contains the remaining 20% (1, 973 points). The class distributions

of the train-test sets are included in Table C.1 in the appendix.

We evaluate the models using different metrics: accuracy, area under the curve (AUC),

false positive rate (Type I error) and false negative rate (Type II error). The metrics are

averaged across all five cross-validation datasets. The AUC measures the ability of a classifier

to distinguish between the classes. Our dataset is fairly balanced, as is illustrated in Table

3http://dukedatasciencefico.cs.duke.edu/
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C.1, hence the accuracy is also a good measure of goodness of fit along with the AUC. All

models predict the Pr(Default) values for every sample. To classify the different samples,

we used a threshold of 0.5.

As Table 1 illustrates, we find that the NN model trained on WoE data has the best

performance, with an accuracy of 74.75%. It outperforms the NN trained on one-hot encoded

data, implying that the WoE encoded features have more information than one-hot encoded

features. The two-layer additive risk model performs second best, with an accuracy of

74.12%. This model is easy to interpret; however, it requires the input and involvement

of experts who know about the constraints in the dataset and the relationship between its

different features (in order to divide features into different subgroups) that might not always

be available for various applications.

On the other hand, the rule-based models, optimal trees (black box) and random forests

suffer from the problem of explainability. For random forests, analyzing the ensemble of

140 trees at a time is intractable. Similarly, the optimal trees (black box) model has a

single deep tree with multiple features deciding every split, which is difficult to interpret.

If we train a shallow optimal tree, its accuracy drops to 72.28%, but the model is easy to

interpret and analyze. We also obtain a small set (1 or 2) of simple rules from inductive

logic programming that are easy to understand, but they come at the cost of a decrease in

accuracy. Even though interpretable rule-based models do not perform as well as NN model,

we will see in Section 6 that they are useful for explainability for the different stakeholders

involved.

Using ILP, we obtain a single simple rule, that is, “if ExternalRiskEstimate is smaller

than 72, then classify borrowers as non-creditworthy,” achieves an accuracy of 70.65%.

ExternalRiskEstimate is a condensed version of the borrower’s credit risk, a metric similar

to the FICO score. In general, companies use the credit score and a threshold associated with

it to decide an individual’s creditworthiness; in our case, it is the ExternalRiskEstimate

with a threshold of 72. We observe that the use of machine learning models using differ-

ent features about a borrower’s credit history can increase the accuracy of the delinquency

forecast by 4 percentage points compared to the näıve use of credit scores.

Credit companies are naturally interested in using models with the best performance.

If credit companies give loans to borrowers by misclassifying defaulters as non-defaulters
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(that is, false negatives), they will suffer losses. Similarly, if credit companies deny loans

to borrowers who can repay (that is, false positives), they will lose business. Given the

enormous size of the mortgage business in the United States, even a small increase in model

performance can create a substantial impact. However, regulatory practice and the black-

box nature of the models prevent them from harnessing these benefits. This motivates us to

analyze the explainability of these different models.

Models Test Accu-
racy

Test AUC False Posi-
tive Rate

False Nega-
tive Rate

ILP (1 rule) 70.65 70.60 30.37 28.41

ILP (2 rules) 71.01 70.84 33.02 25.28

Optimal Trees (Interpretable) 72.28 74.18 28.25 27.21

Optimal Trees (Black Box) 74.12 74.46 29.16 22.85

Random Forest (140 Trees) 73.77 79.82 29.71 23.01

Two Layer Additive Risk 74.12 81.01 30.31 21.77

NN (one-hot) 74.10 80.59 25.16 26.60

NN (WoE) 74.75 81.40 28.31 22.42

Table 1: 5-Fold cross-validation performance of ML models. The NN trained on WoE
data performs the best with a mean test accuracy of 74.7% and AUC of 81.4%. A higher
AUC implies the NN model is better able to distinguish between the creditworthy and non-
creditworthy classes compared to other models. All rule-based classifiers have smaller values
of AUC compared to the others. The NN (one-hot) has the minimum false positive rate, while
the two-layer additive risk model has the minimum false negative rate when the threshold
used to classify the model’s output is 0.5. All the reported values are in percentages.

6 Explaining Machine Learning Models

We have shown in Section 5 that the neural network model outperforms every other model

tested. However, the non-interpretable nature of neural networks limits its adoption. In this

section, we analyze the explainability of models in order to help their wider adoption for
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different applications.

The multiple parties involved in credit risk management require different explanations

for different purposes. For instance, loan applicants who are denied loans are interested in

finding the reason for the denials and suggestions that can make them more creditworthy.

Data scientists, on the other hand, are more interested in understanding the data, while

regulators demand fairness from the models and analyze the model’s behavior in extreme

scenarios. We characterize the kinds of explanation that are appropriate for the following

end users: loan companies, data scientists, loan applicants, and regulators.

6.1 Interpretability for Loan Companies: Opening the Black Box

Loan companies use machine learning models to evaluate the creditworthiness of a borrower.

Regulations require the loan companies to give a set of reasons for every denial of the ap-

plication. Consequently, loan companies are interested in finding the factors that contribute

to the creditworthiness of the individual. In addition, they require explanations for every

prediction of the model. These explanations make the model transparent, and they assist in

finding the most representative samples (borrowers from the past) for a data point (a new

borrower). We use state-of-the-art methods to generate explanations for our model predic-

tions, including LIME (Ribeiro, Singh, and Guestrin, 2016) and SHAP (Lundberg and Lee,

2017). We generate explanations for the best performing NN model.

LIME

LIME is a model-agnostic technique that approximates the decision boundary of a model

at a particular data point using a linear approximation4. This linearity makes the LIME

model interpretable. The approximation is constructed by training a locally-weighted linear

regression model in the neighborhood of the data point of interest. The coefficients of the

regression can be used to justify the data point’s classification.

Constructing a locally-weighted linear regression model involves sampling and perturbing

the data points that are used for training. One of the shortcomings of LIME is that the

perturbed data points sampled by LIME may be invalid. For example, imagine a dataset

4The key idea behind LIME is that every segment of the decision boundary begins to look linear at
increasingly smaller scales.
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with two features A and B, with a constraint that A < B. Sampling each feature’s value

independently, as is done in LIME’s original algorithm, may produce perturbed data points

where this constraint is violated. We address this shortcoming of LIME by modifying the

algorithm to take into account potential interdependencies of different input features.

This modification changes the methodology of sampling a data point of the LIME algo-

rithm. In its original implementation, a data point with n features is sampled by indepen-

dently sampling each of its n features from univariate normal distributions. In our modified

implementation, a data point is sampled directly from a joint multivariate normal distri-

bution across all features. This allows perturbations to be informed by the correlation of

features. The multivariate normal distribution is still centered on the mean of each feature

value, but the standard deviation along each feature is determined by the correlation matrix

of the input data.

We first evaluate our modified LIME with respect to the validity of the perturbed data

points. As noted, LIME samples perturbed points in the neighborhood of the input data

point. We generate a set of 5, 000 perturbed data points from several univariate normal

distributions centered on the feature means and a single multivariate normal distribution

centered similarly. We measure the quality of the sampled points by two metrics.

Correlation. The correlation between features of the perturbed data points should be

similar to that of the features in the training dataset. We compute the mean-squared er-

ror (MSE) between the correlation matrix of the training data and that of the perturbed

points generated by both implementations of LIME. Let us call these values MSEoriginal

and MSEmodified, respectively. We find that MSEmodified is much smaller than MSEoriginal

(0.000 vs 0.053). This is expected because the correlation matrix of the training data is an

input to the multivariate normal distribution that samples perturbed points in our modi-

fied implementation. Our perturbed data more closely resembles the characteristics of the

original dataset.

Constraint Violation. There are 12 constraints relevant to the HELOC dataset (6 rela-

tional constraints and 6 value constraints). We determined these via discussion with FICO

personnel. Some examples of these constraints are, “All feature values with percentage units
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should be smaller than 100,” and “The number of lines of credit not delinquent must be

less than the total number of lines of credits.” The 5,000 perturbed data points are scanned

for violations of these constraints. The results for all constraints are shown in Table 2. We

see that the modified implementation of LIME produces fewer violations than the original

implementation in 7 out of the 12 constraints. Moreover, a perturbed point sampled by

the modified implementation has on average 1.954 constraint violations, versus 2.627 for the

original implementation. Hence, we conclude that we use more realistic data in our modified

LIME for generating LIME approximations.

In the remainder of the paper, we use this modified LIME for our analysis. Also, whenever

we use the term LIME, we refer to our modified LIME.

Index Constraint Original
LIME
Violations

Modified
LIME
Violations

1 All feature values interpreted quantitatively
must be non-negative

4383 4024

2 PercentLOCNeverDelq ≤ 100 1198 1183
3 PercentInstLOC ≤ 100 1 2
4 PercentLOCWBalance ≤ 100 340 296
5 FracRevLOCLimitUse ≤ 100 62 75
6 FracInstLOCUse ≤ 100 509 506
7 NumLOC90PlusDaysDelq ≤ Num-

LOC60PlusDaysDelq
1656 655

8 NumLOCReqLast6MExPastWeek ≤ Num-
LOCReqLast6M

2095 388

9 NumLOC60PlusDaysDelq ≤ NumTotalLOC 191 239
10 NumLOC90PlusDaysDelq ≤ NumTotalLOC 192 233
11 NumLOCNotDelq ≤ NumTotalLOC 2257 1915
12 NumLOCInLast12M ≤ NumTotalLOC 249 255

Table 2: Comparison of constraint violations among 5,000 perturbed points sampled from
the original and modified implementations of LIME. The points sampled from the modified
implementation of LIME have fewer violations in 7 out of the 12 constraints.

Explaining Model Predictions (LIME)

LIME learns a linear surrogate model. As a result, for each data point, the coefficients of its

linear regression can be interpreted as the change in the output produced by a unit change
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Figure 1: The LIME model approximation for a random data point. A unit increase in
features with a red horizontal line will increase the probability of default. Similarly, a unit
increase in features with a blue horizontal line will decrease the probability of default. The
contribution of each feature in the model explanation can be obtained by multiplying each
feature coefficient by the feature value.

in the corresponding feature value, given that other feature values are held constant. Figure

1 shows an example of a LIME explanation. A unit increase in the values of features with

coefficients shown in red lines will increase the probability of default, while a unit increase

in the values of features with coefficients shown in blue lines will decrease the probability of

default.

After obtaining the feature importance for all the data points, they can be aggregated to

find the overall feature importance. In Figure 2, we look at the global feature importance

for the model. The top three most significant features are the months since the newest

request for a new line of credit (excluding those requested in the past week), the external

risk estimate, and the fraction of all revolving line of credit limits in use. From Figure 2a,

we can observe the nonlinear nature of the classifier. For example, for the feature “months

since the newest request for a new line of credit (excluding those requested in the past

week),” having small and large values both contribute to a decrease in the probability of

default, while having values around the median contributes to an increase in the probability

of default. Hence, by aggregating the feature importance, we are able to find the relationship

learned by the model. These generated explanations and the overall feature importance also
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aid in discovering biases in the model.

(a) Feature contribution for all sample in test
set

(b) Average feature contribution (absolute
value) for all samples

Figure 2: Feature importance obtained by aggregating LIME explanations for all samples in
the test set. In Figure (a), the color-coding (blue-red) represents the value of the feature. For
example, for external risk estimate, the larger values (in red) contribute to the decreasing
probability of default, while the smaller values (in blue) contribute to the increasing proba-
bility of default. Figure (b) is obtained by aggregating the feature importance as obtained
for all points. Figure (b) illustrates that the three foremost significant features are months
since the newest request for a new line of credit (excluding those requested in the past week),
the external risk estimate, and the fraction of all revolving line of credit limits in use.

The quality of LIME explanations depends on the fidelity of the LIME model. We

evaluate the fidelity of the approximations produced by our modified implementation of

LIME for the best-performing NN. We do this by constructing an approximation at each of

the 1973 points in the test dataset and computing the fraction of times the NN and the LIME

approximations produce the same classification. We find that out of 1973 data points, 1935

points have the same classification for the linear LIME approximation and the NN model

being analyzed. The high fidelity of the LIME approximations shows that LIME is able to

generate valid linear approximations that can be trusted for a large number of data points.

However, for the few cases where the classification of the NN model and LIME do not

match and are different significantly, the linear approximation cannot be trusted. In order

to generate explanations for these points, we discuss another method.
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SHapley Additive exPlanations (SHAP)

SHAP is an explainable AI method with an economic foundation. It performs the Shapley

value decomposition of the model output, giving the contributions of every feature at a data

point. Like LIME, it is also a model-agnostic method.

Shapley values have several good properties that satisfy a number of important criteria,

including local accuracy (i.e., the model explanation matches the original prediction), han-

dling of missing data (i.e., if the feature is absent, its contribution to the model prediction

will be zero), and consistency (i.e., if the model changes in a way that leads to larger marginal

contributions for a feature, the Shapley values also increase). Shapley values also incorporate

the interactions between features in the process of calculating feature importance, making

SHAP a more reliable method for interpretability than LIME.

We use the Kernel SHAP implementation from Lundberg and Lee (2017). The Kernel

SHAP procedure computes the Shapley values by running a weighted-least-squares regression

whose solution is the Shapley values of features. To explain a point xi, the different points

used in the linear regression are obtained by selecting a subset of features from xi, and the

remaining subset of features not selected are replaced with values from background data

points (that is, from training data). The weights of the linear regression are decided by the

size of the sampled subset. For example, a subset of one feature has the maximum weight

because it provides the maximum information about that feature contribution. Using the

described weighted-least-squares regression, we obtain Shapley values for the data point xi.

It is worth highlighting that the Kernel SHAP implementation relies on taking subsets of

features, that is, 2Numberoffeatures. As a result, Kernel SHAP does not scale well.

Using SHAP, we obtain explanations for the classification of all the data points in the test

set. Similar to LIME, the Shapley values for features can be aggregated for all test points

to find the overall impact of a feature on the model. We present the feature importance for

all the points in the test sample in Figure 3, which shows that the months since the newest

request for a new line of credit (excluding those requested in the past week), the fraction of

all revolving lines of credit limits in use, and the average age of lines of credit are the top

three most important features for the model. We observe a minor difference in the feature

contribution obtained from the LIME and SHAP. This may be due to the fact that not all
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LIME approximations are locally accurate.

(a) Feature contribution for all samples in test
set.

(b) Average feature contribution (absolute
value) for all samples.

Figure 3: Feature importance (Shapley values) obtained by aggregating Kernel SHAP ex-
planations for all the samples in the test set. In Figure (a), the color coding (blue-red)
represents the value of the feature. For instance, the larger values (in red) for the external
risk estimate contribute to the decreasing probability of default, while the smaller values
(in blue) contribute to the increasing probability of default. We obtain the overall feature
importance (as illustrated in Figure (b)) by aggregating Shapley values for all test points.
The most important features are the months since the newest request for a new line of credit
(excluding those requested in the past week), the fraction of all revolving lines of credit
limits in use, and the average age of lines of credit. These are largely consistent with the
LIME feature importance. Small discrepancies can be attributed to the inaccurate local
approximations of LIME.

Both LIME and SHAP have their weaknesses. For example, in addition to feature im-

portance, we can obtain locally linear approximations using LIME (as obtained in Figure 1),

which are not available in SHAP. These local approximations of the decision boundary are

necessary for other applications, as will become clear in the next section. On the other hand,

the explanations using LIME might not satisfy important properties like local accuracy and

consistency that Shapley values allow.

From the computational perspective, different runs of LIME produce slightly different

explanations because of the randomness in sampling local data points. Consequently, it can

potentially suffer from instability issues. On the other hand, computing Shapley values is not
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scalable for datasets with a large number of features. In such scenarios, LIME approximations

can be computed efficiently. Therefore, both methods (SHAP and LIME) should be used in

practice depending on the use case, carefully and judiciously.

Finding Representative Samples

Another application of model explanations is to find the most representative data point

for a particular data point analyzed. It can be useful in scenarios where loan companies

might require representative data points from the past to explain the model prediction of a

particular loan candidate. For example, the borrower xi might default in the future because

it is similar to xj and xk who defaulted in past.

The k-nearest neighbors algorithm (kNN) applied to the data naively can generate the

most similar points in the sample. However, if we apply kNN to the original feature space,

the less significant features will end up contributing to the distance calculations between

the data points. To avoid this problem, every data point can be represented by a feature

importance vector (for instance, a vector of Shapley values), and kNN can be applied to

the feature importance vector. Using SHAP will ensure that less important features have

smaller feature contributions (that is, smaller Shapley values). Hence, the contributions

of less important features to the distance calculation in the kNN will be minimal. This

modification leads to finding a more representative data point for each new data point being

analyzed.

6.2 Interpretability for Regulators: Model Fairness and Stress
Testing

In the previous subsection, we generated explanations for model predictions. Apart from

concerns about the transparency of the credit approval algorithm, government regulations

mandate that these algorithms must be fair. Concerns about the fairness of a model arise

when the model gives importance to features like race, religion, or gender that are specified

in law. Our HELOC dataset does not contain any such features overtly. Nevertheless, the

fairness of a black box model can be examined (if features were present) using the individual

and overall feature contributions that are obtained from LIME and SHAP.

Another important aspect of interpretability for regulators is stress-testing the models.
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The credit risk models used by companies need to withstand appropriate stress testing. This

involves simulating extreme scenarios and analyzing the model’s behavior in response to

generally extreme macroeconomic conditions.

Extreme macroeconomic conditions cannot be simulated in our model due to its lack of

macroeconomic features. However, we demonstrate how the interpretability methods can

help in stress testing a black-box model for extreme customers. The same methodology can

be generalized for extreme macroeconomic conditions. We use two extreme customers in our

stress testing. In the first case, an extreme customer is obtained by sampling points from a

multivariate normal distribution with extreme values. While sampling, some feature values

may no longer satisfy the feature-specific constraints; for them, we manually truncated the

feature values. In the second case, we use a customer whose feature values are all -9, that

is, there is no bureau record or investigation on file about this customer. We have multiple

such data points in the dataset that are not included for training or testing purposes. The

extreme points used in our analysis are included in Table 3.

Regulators are interested in verifying the validity of the model’s output and analyzing

its behavior. We preprocessed features for these extreme customers using weight of ev-

idence encoding, which leads to extreme values being assigned to one of the bins. Due

to this binning, the model was able to produce valid predictions. For case 1, the output is

Pr(default) = 0.53, which implies that the person may or may not default with almost equal

probability. Since this data point is sampled randomly, we cannot comment on the accuracy

of the prediction. For case 2, the model’s prediction is Pr(default) = 0.75, which implies

that, when there is no information about the person on file, the person is likely to default,

hence preventing lenders from approving credit for such individuals with no information in

their credit file.

To understand the behavior of the model in the proximity of extreme points, we use

the LIME model approximation. For cases 1 and 2, we present the LIME approximation in

Figure 4. In both cases, the LIME model approximation prediction is close to the original

model prediction. Hence, we conclude that the approximations can be trusted. This model

approximation can be used by regulators to learn more about the model’s behavior in an

extreme scenario.

In this section, we demonstrated the use of explainable AI methods for generating expla-
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Feature Data Pt 1 Data Pt 2

ExternalRiskEstimate 131 -9
MSinceFirstLOC 935 -9
MSinceNewestLOC 99 -9
AvgAgeOfLOC 467 -9
NumLOCNotDelq 89 -9
NumLOC60PlusDaysDelq 6 -9
NumLOC90PlusDaysDelq 5 -9
PercentLOCNeverDelq 100 -9
MSinceMRecentDelq 115 -9
MaxDelqLast12M 16 -9
MaxDelqEver 13 -9
NumTotalLOC 125 -9
NumLOCInLast12M 6 -9
PercentInstLOC 88 -9
MSinceNewLOCReqExPastWeek 35 -9
NumLOCReqLast6M 13 -9
NumLOCReqLast6MExPastWeek 12 -9
FracRevLOCLimitUse 71 -9
FracInstLOCUse 100 -9
NumRevLOCWBalance 23 -9
NumInstLOCWBalance 25 -9
NumBankOrNatlLoansWHighUtil 21 -9
PercentLOCWBalance 100 -9
Model Prediction 0.53 0.75

Table 3: Extreme Customers (data points). The first point is sampled, assuming features
are multivariate Gaussian. The second point is obtained by setting all feature values to -9
(no bureau record or investigation).

nations in model fairness testing and stress testing that may be able to assist regulators in

their duties. Next, we discuss the use of model interpretability for loan applicants.

6.3 Interpretability for Loan Applicants: Counterfactual Sugges-
tions

Loan applicants are interested in two major aspects of model interpretability. The first is

to learn the reason behind their denial or approval, and the second is how to modify the

features that might change their classification in the future. Explanations for the reason

behind a denial or approval can be obtained from the techniques discussed in the previous
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(a) Case 1: Feature Contribution. (b) Case 1: LIME Model

(c) Case 2: Feature Contribution (d) Case 2: LIME Model

Figure 4: LIME explanations for the two extreme scenarios (case 1: an extreme sample, case
2: no information in file). The regulators obtain the linear approximation using the LIME
model in the proximity of an extreme sample. In both cases, the LIME approximation is
close to the model’s output. Hence, we conclude the linear model approximations are reliable.
The LIME models are Σ(FeatureV alue) ∗ (LIME − Coefficient). The LIME coefficients
are represented by horizontal lines. We can observe that for extreme case 1, the model gives
its maximum importance to the percentage of lines of credit that are installment lines of
credit, while for extreme case 2, the model gives its highest importance to the months since
the newest request for a new line of credit excluding those requested in the past week. The
above analysis can be extended to different extreme conditions.
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sections. In this section, we discuss the methodology of generating instructions for reversing

the model’s classification.

Applicants are interested in counterfactuals that provide information about the steps that

might change the decision of the model. Consequently, the counterfactuals being generated

should have the following properties: reverse classification (that is, the model prediction

for the counterfactual should be reversed from the original decision), proximity (that is, the

counterfactual should be close to the original data point), and diversity (that is, there should

be multiple different counterfactuals from which an individual be able to choose).

We generate counterfactuals using the state-of-the-art method, Diverse Counterfactual

Explanations (DiCE) (Mothilal, Sharma, and Tan, 2020). This method learns the counter-

factuals ci for a data point y optimizing over the requirements of the counterfactual. In

particular, it learns the ci’s by minimizing the following loss:

L =
k∑

i=1

loss(f(ci), y) + λ1

k∑
i=1

dist(ci, y)− λ2 ∗ diversity(c1, c2...ck)

where the first part is the reverse classification loss, the second part is the proximity to the

original data point, and the third part is the diversity component. λ1 and λ2 are the weights

for proximity and diversity components, respectively.

We study a few illustrative examples and analyze the properties of the counterfactuals

generated using DiCE.5

Applicants classified as non-creditworthy are interested in the steps that can make them

creditworthy. The steps suggested must be practical enough for an applicant to implement.

Some features are inherently impossible for individuals who are deemed non-creditworthy to

improve. For example, the maximum delinquency ever in days cannot be decreased: it is

an event that happened in the past, and cannot be changed. Likewise, the total number of

lines of credit established cannot be increased, since the person has been turned down from

opening a new line of credit.

In our system, the features that are impossible to modify are incorporated as constraints

in the optimization of loss L. Table 4 shows an example of the set of suggestions to become

5We use the publicly available implementation of the DiCE algorithm, found at https://github.com/

interpretml/DiCE.
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creditworthy for an individual who is deemed non-creditworthy. All of the suggestions are

possible to implement, though some might be difficult. In cases where it is hard for an

individual to implement certain changes, he or she may be able to choose from a diverse set

of counterfactuals to reverse the classification.

In Table 4, the first counterfactual suggests increasing the months since the applicant’s

most recent delinquency to more than four years. However, this requires an individual

to wait for four years while making payments for all his lines of credit. In this case, the

individual may instead choose to follow another set of steps, as suggested by the third

counterfactual: increasing the percent of lines of credit never delinquent (by decreasing the

total lines of credit), along with decreasing the number of lines of credit requests made in

the six months prior to applying for a new line of credit. Similarly, diversity-constrained

counterfactual suggestions can be made for all individuals who are deemed non-creditworthy,

and individuals can follow the steps which are most convenient to their circumstances.

Likewise, the people who are classified as creditworthy would like to maintain their cred-

itworthy status. Hence, they would like to know which actions to avoid that might make

them non-creditworthy. Table 5 presents one such example. The applicant in Table 5 might

face a credit denial if he or she takes steps such as opening up new lines of credit, decreasing

the lines of credit that are not currently delinquent, increasing the fraction of revolving lines

of credit, and making new requests for line of credit in the six months prior to applying for a

line of credit. These steps result in the probability of default as suggested by the model in-

creasing from 0.09 to 0.58, which may lead to a denial of credit. From these counterfactuals,

the applicant thus knows the steps not to take that may decrease their creditworthiness.

To gauge the ability of DiCE to generate counterfactuals, we run it for all test data

points (total: 1973) and count the number of points for which the counterfactuals were

successfully found. In Table 6, we show that increasing the proximity constraint leads to

a decrease in the average number of feature changes in the counterfactuals obtained. We

also observe that increasing the proximity constraint leads to a decrease in the number of

successfully generated counterfactuals. An optimal algorithm to generate counterfactuals

for an individual thus is to start with a high value for the proximity constraint and slowly

decrease it until a counterfactual is found.

Using DiCE and related counterfactual generating methods, we can generate suggestions
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Feature Original Value New Value

MSinceMRecentDelq 0− 4 48−
NumLOCReqLast6M 2− 4 1− 2
Pr(Default) 0.63 0.44

AvgAgeOfLOC 75− 98 98−
NumTotalLOC 9− 14 0− 1
NumLOCReqLast6M 2− 4 1− 2
Pr(Default) 0.63 0.43

PercentLOCNeverDelq 0− 82 98−
NumLOCReqLast6M 2− 4 1− 2
Pr(Default) 0.63 0.31

Table 4: The steps toward creditworthiness suggested to an individual deemed non-
creditworthy. Following these steps, an individual should be able to decrease the probability
of default predicted by the machine learning model. We present three diverse counterfac-
tuals. In the first, it suggests changing the months since most recent delinquency from the
value of 0-4 months to greater than 48 months, which means that person should not be delin-
quent for the next 4 years. In the second counterfactual, one of the suggestions is to decrease
the total number of lines of credit to 0-1 (by closing accounts). Because some suggestions
may be difficult for an individual to follow, we provide multiple diverse counterfactuals. The
individual can follow the third counterfactual, which suggests decreasing the number of lines
of credits to increase the percentage of lines of credit never delinquent, and decrease the
number of lines of credit requests in the most recent six months prior to applying for a new
line of credit. Providing multiple diverse counterfactuals allows the option of selecting the
most convenient option to an individual.

for the loan applicants, as discussed above. One limitation of the counterfactual generation

algorithm is the inability to take feature relationships into consideration. For example, if

one of the generated counterfactuals suggests decreasing the number of the total lines of

credit, then decreasing number of lines of credit also leads to the changes in the features

that depend on the total number of lines of credit. However, this type of relationship is

ignored in the present method. Solving this problem would involve the intervention of an

expert who is familiar with the relationship between the model’s features, and can encode

them as constraints in the counterfactual generation optimization process. We leave this for

future studies.
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Feature Original Value New Value

AvgAgeOfLOC 60− 75 4− 29
NumLOCNotDelq 12− 17 4− 6
NumLOCReqLast6M 0− 1 1− 2
FracRevLOCLimitUse 13− 29 77−
Pr(Default) 0.09 0.58

Table 5: The steps that can make a creditworthy-deemed individual non-creditworthy, as
suggested by the algorithm. In simple English, if the individual decreases the number of
lines of credit not currently delinquent, opens up multiple new lines of credit leading to a
decrease in the average age of their lines of credit, made multiple requests for lines of credit
in the past six months, and increases the fraction of their revolving line of credit, then the
individual will be deemed non-creditworthy.

Proximity
Constraint(λ1)

Mean # of Feature
Changes

Loss Value (Dis-
tance)

# of success counter-
factual found

0.5 3.96 0.054 1961
1.5 3.35 0.045 1909
5.0 2.66 0.035 1854

Table 6: Proximity Analysis. On increasing the proximity constraint (λ1), the number of
changes required for generating a successful counterfactual decreases, and the number of
data points for which successful counterfactuals are generated also decreases. An optimal
algorithm to generate counterfactuals for an individual is to start with a larger proximity
constraint and slowly decrease it until a counterfactual is found.

6.4 Interpretability for Researchers and Data Scientists: Simple
Rules to Summarize the Dataset

One property of interpretability of particular interest to data scientists is the summarization

of the data and the model. A global view of the data and the model is able to give the

researcher an idea about any possible problems with the model. It can additionally help

them to present a summary of the model to managers or regulators. In this section, we

discuss methods that may help data scientists to demystify these black box models for their

particular needs.

We have already discussed the first aspect of interpretability, the summarization of the

model. A good summary of the model includes determining the most important features that

contribute to the model’s prediction. Using the methods described in the previous section
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(LIME and SHAP), data scientists can obtain the most important features and know their

contribution to the model’s overall prediction. For example, Figure 3 illustrates that the

feature, “months since the newest request for a new line of credit (excluding those requested

in past week),” is the most important feature in the model. The model summary also includes

information about the relationship between the input and output of the model. Additionally,

from Figure 3a, we can observe that higher values of the fraction of all revolving line of credit

limits in use increases the probability of default.

Another important aspect for researchers is the summarization of the dataset. It involves

discovering the intrinsic relationships within the dataset. To this end, we aim to learn a set

of simple rules that can summarize the dataset. Tree-based classification approaches can be

used to learn such rules. A tree classifier is a set of if-else statements that determines the

classification of a data point. As illustrated in Table 1, the best optimal tree classifier with

our dataset achieves an accuracy of 74.12%. However, the complexity of rules obtained from

the best optimal trees classifier makes these rules difficult to analyze and interpret.

To obtain rules that are simple to understand, the decision tree must be constrained to

a smaller depth, with fewer features at every node. Consequently, we use a simpler and

interpretable optimal tree to obtain more easily analyzed rules. This simple optimal tree is

shown in Figure 5. Here we show two simple rules that can achieve an accuracy of 72.28%.

The rules state that a person will default on a loan (that is, be classified as non-creditworthy)

if the number of months since a new line of credit has been requested (excluding those

requested in the past week) is greater than 1, and the external risk estimate is less than 75,

or if the number of months since a new line of credit has been requested (excluding those

requested in the past week) is less than or equal to 1, and the external risk estimate is less

than 68.

We use inductive logic programming to learn an even simpler set of rules with a small

decrease in accuracy compared to the rules generated from the optimal trees model. As

discussed earlier, ILP generates rules that are composed of a single condition: for example,

using the rule ExternalRiskEstimate < 72 to classify people into non-creditworthy and

creditworthy groups is able to achieve an accuracy of 70.65%.

In addition to ILP, there exist multiple other rule-finding methods in the literature. How-

ever, the ILP approach stands out in terms of its simplicity and ability to learn more effective
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Figure 5: Explainable Optimal Tree Model used to learn simple rules summarizing the
dataset. The rules states that a person will default on a loan (that is, be classified as
non-creditworthy) if the number of months since a new line of credit has been requested
(excluding the past week) is greater than 1 and the external risk estimate is less than 75,
or the number of months since a new line of credit has been requested (excluding the past
week) is less than or equal to 1 and the external risk estimate is less than 68.

rules. For example, the logistic rule regression/generalized linear rule model described in Wei

et al. (2019) is another rule-based model, but it leads to multiple rules that are difficult to

analyze together. Similarly, the Boolean rule column generation (BRCG) method described

in Dash, Günlük, and Wei (2018) gives a set of rules to describe a dataset, but it requires

dividing feature values into different bins before learning the rules. Data-binning limits the

quality of the generated rules, since the algorithm might not select the threshold for the

binning of features that is the optimal threshold for the rule.

Using the methods discussed above, data scientists should be more able to summarize

datasets and demystify models. Obtaining a good summary of the dataset and understanding

of the model will help in the creation of better classifiers.
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7 Conclusion

In this paper, we have examined several different machine learning models, and used suitable

tools to create explanations of their function according to the different needs of stakeholders

involved in credit risk management. We have used state-of-the-art interpretable machine

learning techniques, including Local Interpretable Model-Agnostic Explanations (LIME),

SHapley Additive exPlanations (SHAP), and Diverse Counterfactual Explanations (DiCE),

adapting them to our use case. We demonstrate the importance of domain-specific knowledge

in order to explain these black-box models. These domain-specific constraints must be

obtained from experts in the field, but can produce pragmatically valid suggestions and

explanations.

In our results, we demonstrated that with the right tools, even black-box machine learning

models are able to answer a series of important questions for credit risk modeling. These

questions include: why does the model classify a data point in a certain way? What small

changes in feature values could reverse the model’s classification of an individual? How does

the model behave in extreme scenarios? What relationships did the model learn? Are the

models biased? What is the minimal summary of the dataset?

Answering these questions not only fulfills the legal requirements specified by regulators

for the use of machine learning models in credit risk management, but also provides borrow-

ers, lenders, and data scientists with answers to questions that they may desire from ML

models.

Interpretable models have the additional benefit of being convincing and easy to accept.

Interpretable models may also help domain experts troubleshoot the inner workings of a

complex model, which in turn will make it more accurate and tailored to its domain.

Many problems in finance and economics have a common mathematical representation

and internal statistical structure, and may therefore benefit from our framework to interpret

the black-box machine learning models used to analyze them. These include loan defaults,

mortgage prepayments, Federal Reserve rate decisions, corporate merger and acquisition

decisions, asset return maximization, and insurance claims, among others. Our work is a

step in the direction of bridging the gap between these black-box models and their use in a

real world setting.
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Future work along these lines should extend this explanability analysis by incorporating

second-order effects into the explainability algorithms (LIME and DiCE), in order to generate

more practical counterfactual suggestions and explanations. It may also be of interest to

compare the insights derived from these explanability tools to the traditional factors used for

credit risk forecast by involving an expert in the process. Finally, large real-world datasets,

in particular those including macroeconomic and demographic features and the size of loan

requests, should be used to extend this model’s capabilities, in order to help quantify the

model’s overall fairness, response to stress testing, and the monetary impact due to the

superior performance of black-box machine learning models.
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A Household Debt Statistics

Figure A.1a shows the total household debt balance in the United States and its composition

over time. We observe that the household debt balance reached an all-time high at the end

of the fourth quarter of 2020, with a value of $14.56 trillion. The overall trend line of the

debt balance is increasing. Figure A.1b shows the total number of new accounts opened

over time, along with the number of inquiries and number of accounts closed. The total

number of accounts opened in the last single-year period measured is 189.6 million. This

enormous debt balance and number of new accounts opened shows the importance of credit

risk management. The data and the Figure A.1 were obtained from the New York Fed

Consumer Credit Panel/Equifax.

(a) (b)

Figure A.1: Household Debt. The plots were obtained from the quarterly report on household
debt and credit released by the New York Fed.

B Dataset

B.1 Glossary of Relevant Credit Modeling Terms

The following definitions provide helpful context for the description of the dataset’s features.

1. Line of Credit: An agreement to provide credit.

2. Revolving Line of Credit: A line of credit with a maximum amount that the borrower

can choose to use each month. The most common example is a credit card.
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3. Installment Line of Credit: A line of credit with a fixed loan amount and a fixed

monthly payment. A mortgage is a common example.

4. Delinquent: A line of credit is delinquent if its payments are not made in a timely

manner.

5. Utilization: The amount still owed divided by the total amount borrowed; the fraction

of available credit currently in use.

B.2 Explanation of Predictor Features

In addition to the binary target variable (Risk Classification), each credit applicant is char-

acterized by 23 predictor features, 21 continuous and 2 categorical. These are:

1. A condensed version of the borrower’s credit risk computed by FICO using all credit

bureau information (ExternalRiskEstimate)

2. Months since the very first line of credit was established (MSinceFirstLOC)

3. Months since the newest line of credit was established (MSinceNewestLOC)

4. Average age in months of all existing lines of credit (AvgAgeOfLOC)

5. Number of lines of credit not currently delinquent (NumLOCNotDelq)

6. Number of lines of credit ever been 60 or more days delinquent (NumLOC60PlusDaysDelq)

7. Number of lines of credit ever been 90 or more days delinquent (NumLOC90PlusDaysDelq)

8. Percentage of lines of credit never been delinquent (PercentLOCNeverDelq)

9. Number of months since the most recent delinquency (MSinceMRecentDelq)

10. Maximum delinquency in days in the past year (MaxDelqLast12M)

11. Maximum delinquency ever in days (MaxDelqEver)

12. Total number of lines of credit established (NumTotalLOC)

13. Number of lines of credit established in the past year (NumLOCInLast12M)
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14. Percentage of lines of credit that are installment lines of credit (PercentInstLOC)

15. Months since the newest request for a new line of credit excluding those requested in

the past week (MSinceNewLOCReqExPastWeek)

16. Number of requests for new lines of credit in the last 6 months (NumLOCReqLast6M)

17. Number of requests for new lines of credit in the last 6 months excluding those requested

in the past week (NumLOCReqLast6MExPastWeek)

18. Fraction of all revolving credit limits in use (FracRevLOCLimitUse)

19. Fraction of all installment lines of credit in use (FracInstLOCUse)

20. Number of revolving lines of credit with outstanding balances (NumRevLOCWBal-

ance)

21. Number of installment lines of credit with outstanding balances (NumInstLOCWBal-

ance)

22. Number of bank loans and national loans (a subset of all revolving trades) with an out-

standing balance of at least 75% of the credit limit (NumBank/NatlLoansWHighUtil)

23. Percentage of lines of credit with outstanding balances (PercentLOCWBalance)

B.3 Data Cleaning

Our dataset contains special values, negative integers that are interpreted symbolically and

do not hold any numeric significance. As a result, we cannot directly feed them into our

machine learning models. We either have to drop them or encode them appropriately. A

large fraction of the data points in our HELOC dataset contains at least one special value

(7,957 of the 10,459 data points). Hence, dropping all such data points is infeasible.

In addition, the dataset has 588 records that solely contain the special value -9 for

all feature values. 331 of these data points are labeled as non-creditworthy, and 266 as

creditworthy. This is a problem for any model because the same input vector will produce

opposite target labels. This happens because a borrower will receive a special value if they

40

Electronic copy available at: https://ssrn.com/abstract=4006840



are either a VIP and do not need to be investigated, or if they have no bureau record at all,

i.e., they have no credit history. Such data points are dropped in our analysis.

We find special values are concentrated in 9 of our 23 input features. A standard technique

for dealing with special values is to replace them with the mean values of the respective

feature. A simple example illustrates that this is not a meaningful approach for our dataset.

If a borrower has never had a delinquency, she will have the -7 (Condition not met) special

value for the feature “months since most recent delinquency.” Clearly, replacing the feature

value with the mean is not correct, since she will be moved from a desirable value of the

feature to a less desirable one. To handle these special values, we used binning techniques.

B.4 Data Visualization

Before using the dataset to train machine learning models, we analyze its properties using a

few exploratory data visualization techniques.

Figure B.1 visualizes the 23x23 correlation matrix of our dataset, identifying higher

correlation values with lighter shades. We find three pairs of features with correlations

greater than 0.8.

1. The total number of lines of credit (NumTotalLOC) and the number of lines of credit

that are not currently delinquent (NumLOCNotDelq)

2. The number of lines of credit that have been 60+ days delinquent (NumLOC60PlusDaysDelq)

and the number of lines of credit that have been 90+ days delinquent (NumLOC90PlusDaysDelq)

3. The number of request for new lines of credit in the past 6 months (NumLOCRe-

qLast6M) and the number of request for new lines of credit in the past 6 months

excluding the past week (NumLOCReqLast6MExPastWeek)

C Model Implementation Details

The class distribution of the dataset in the five-fold cross-validation is presented in Table

C.1. By visual inspection, it illustrates that the dataset is reasonably balanced.

We give details of the implementation for the different ML models used in our evaluation.
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Figure B.1: 23 x 23 Correlation Matrix. The lighter shades represents highly correlated
feature pairs. As expected, the diagonal has the lightest shade because it represents the
correlation of a feature with itself.

For optimal trees, we used the Julia implementation available from the Interpretable

AI website 6. We performed a grid search over a depth from 1 to 10, and the number of

features used for the deciding split at each node from the set 1,2,3,4,5,10,15,20,23. The

optimal tree (black box) is the best-performing model of all the parameter combinations. Its

parameters are depth=2 and the number of features=10. The optimal tree (interpretable)

model corresponds to a model depth=2 and a number of features=1.

We used the scikit-learn implementation of the random forest classifier7. A grid search

was performed on the number of estimators (trees) from 1 to 150. The best performing

model consisted of 140 trees. Other parameters were set to the provided default values.

The neural network (WoE) model was implemented using the scikit-learn implementation

of MLPClassifier. We performed a grid search over the different architectures and the L2-

6https://docs.interpretable.ai/v1.0/
7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Fold
Number

Count of yi = 1
(Train)

Count of yi = 0
(Train)

Count of yi = 1
(Test)

Count of yi = 0
(Test)

1 4118 3770 1010 963

2 4088 3801 1040 932

3 4094 3795 1034 938

4 4111 3778 1017 955

5 4101 3788 1027 945

Table C.1: Five-fold cross-validation data distribution. yi = 1 corresponds to the data point
(i.e., individual) who defaulted. The dataset is fairly balanced.

regularization constant. The best-performing model had three hidden layers consisting of 5

units each, and a L2-regularization penalty constant of 0.5. Other parameters were set to

the default values.

The neural network (one-hot) model was implemented using tensorflow-keras. This was

done to ensure the availability of gradients from the model for the counterfactual generating

algorithm (DiCE). The best-performing model had one hidden layer, with the number of

nodes=20. It was trained using the Adam optimizer with a learning rate of 0.01. The

activation type used was the Rectified Linear Unit (ReLU), and a L1-regularization penalty

of 0.001 was used.

43

Electronic copy available at: https://ssrn.com/abstract=4006840


	Introduction
	Literature Review
	Machine Learning Methods
	Random Forests
	Inductive Logic Programming
	Optimal Classification Trees
	Neural Networks

	Data
	Evaluation
	Explaining Machine Learning Models
	Interpretability for Loan Companies: Opening the Black Box
	Interpretability for Regulators: Model Fairness and Stress Testing
	Interpretability for Loan Applicants: Counterfactual Suggestions
	Interpretability for Researchers and Data Scientists: Simple Rules to Summarize the Dataset

	Conclusion
	Household Debt Statistics
	Dataset
	Glossary of Relevant Credit Modeling Terms
	Explanation of Predictor Features
	Data Cleaning
	Data Visualization

	Model Implementation Details

