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Abstract 

Forecasts of stock market volatility is an important input for market participants in measuring 

and managing investment risks. Thus, understanding the most appropriate methods to generate 

accurate is key. This paper examines the ability of Machine Learning methods, and specifically 

Artificial Neural Network (ANN) models to forecast volatility. The ANN models are compared 

against traditional econometric models for ten Asian markets across 24 years of daily data. The 

empirical results for ANN models are promising. Out-of-sample forecast evaluation reveals 

that ANN models are superior for each index compared to benchmark GARCH and EGARCH 

models. In addition to standard statistics forecast metrics, we consider risk management 

measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the 

Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. 

The findings again provide general support for the ANN and suggest that this may be afruitfull 

approach for risk management. 

 

Keywords: Volatility, Forecasting, Neural Networks, Machine Learning, VaR, ES 

JEL Codes: C22, C58, C63, G12, G17 

 

 

 

 

 

 

 

 

 

 

Address for Correspondence: Professor David McMillan, 

Accounting and Finance Division, University of Stirling, FK9 4LA 

Telephone: +44(0)1786-467309 

Fax: +44(0)1786-467308 

E-mail: david.mcmillan@stir.ac.uk 
  

Electronic copy available at: https://ssrn.com/abstract=3989873



1 

 

1. Introduction. 

Stock market volatility remains a core issue in the empirical finance literature. While impetus 

to earlier work began with the stock market crash of October 1987 (known as Black Monday), 

where twenty-three major world markets experienced substantial single day collapses.1 

Repeated market events serve to highlight the importance of understanding volatility. This 

includes the global financial crisis (GFC) that began in 2007, where the S&P500 saw its then 

worst weekly drop of more than 20% and, most recently, the Covid-19 pandemic where March 

2020 which saw global stock markets fall dramatically. The DJIA index slumped more than 

26% in four trading days, while the price of WTI crude oil fell into negative territory for the 

first time in recorded history. The global stock markets lost over US$16 trillion within 52 days. 

This history indicates the need to forecast market swings and to develop models that can be 

applied to mitigate risk and understand crises, tail events and systematic risks.  

The first general approach for this task within the academic literature is the genre of 

GARCH models (Engle, 1982; Bollerslev, 1986), while from the practitioner viewpoint the 

RiskMetrics variance model (also known as Exponential Smoother) is introduced by JP 

Morgan in 1989. Subsequent to this, the volatility index (VIX) is developed (in 1993) by the 

Chicago Board Options Exchange (CBOE) to measure stock market expectations and based on 

S&P 500 index options. The VIX index often referred as a fear gauge by market participants, 

while similar indexes have been developed for a range of markets. 

These noted models, and their extensions, receive notable attention by both financial 

academics and practitioners with a large amount of related published work. Nevertheless, 

combined with the characteristic constraints on historical volatility models and the growing 

technological transformation of financial markets, this suggests that similarly new technologies 

might be needed to improve volatility modelling. Machine learning models based on Artificial 

Intelligence (AI) technology has significantly improved in recent years and provides fertile 

ground to examine the accuracy of AI based volatility models against those traditionally 

considered. 

 Brav and Heaton (2002) argue that traditional market theories and methods are 

incompatible and inadequate with the sophistication of modern financial analysis. In recent 

years, Machine Learning methods have been used broadly for stock market forecasting given 

their flexibility and feasibility (Bebarta et al., 2012). As these models are capable of learning 

non-linear patterns and functions, they have also been demonstrated as universal function 

 
1 According to Schaede (1991), the total estimated worldwide loss was US$1.71 trillion. 

Electronic copy available at: https://ssrn.com/abstract=3989873



2 

 

approximators (Hornik et al., 1989; Kasko and Toms 1993). Therefore, this paper aims to 

contribute to the literature by applying neural network and deep learning techniques to Asian 

stock market volatility and considering the volatility forecasts, including economic-based 

implications, against traditional benchmark econometric models. Data from ten emerging and 

developed Asian stock markets over 24 years of daily data frequency is utilised. Several ANN 

(artificial neural network) models are chosen among the broad range of AI family, including 

those based on static, dynamic and supervised learning techniques. These models are compared 

against GARCH models in a volatility forecasting exercise. 

 

2. Literature Review. 

Volatility forecasting is an important area of empirical finance research and is one that have 

been extensively analysed. This review focuses on work that include AI models, while a review 

of the econometric models can be found in Bollerslev et al. (1994).  

Yoon and Swales (1991) examine the stock market data of 58 widely followed 

companies in Fortune 500 and reveal that a neural network model is able to provide accurate 

forecasts for returns. Wong et al. (1992) note weakness in the neural network approach and 

study fuzzy neural systems to predict stock market returns as well as assessing country risk and 

rating stocks. Donaldson and Kamstra (1996) examine the applicability of the ANN approach 

using time series data on four developed stock markets. They conduct out-of-sample forecasts 

and revealed that ANN is superior compared to traditional linear models given its flexibility 

with complex nonlinear dynamics. Ormoneit and Neuneier (1996) study the German DAX 

index using minute data for the month of November 1994. They compare the Multilayer 

Perceptron method (MLP) with the Conditional Density Estimating Neural Network (CDENN) 

and reported that CDENN outperforms MLP for the high-frequency data. Jasic and Wood 

(2004) analyse the statistical significance and potential profitability of one-step-ahead forecasts 

for DAX, FTSE, S&P 500 and TOPIX indices using univariate neural network methods on 

daily closing prices. The results reveal that neural network methods are more successful in 

terms of predictability compared to a benchmark AR(1) model. Kim and Lee (2004) propose 

the feature transformation method based on the Genetic Algorithm (GA) model and compare 

it with two conventional neural network methods. The results indicate that the GA method 

improves prediction capability for financial market forecasting. Altay and Satman (2005) 

implement ANN methods on the Istanbul Stock Exchange using daily, weekly and monthly 

data. They compare out-of-sample forecasting results with linear regression models and report 

that ANN is superior only for weekly forecast results, while underperforming for daily and 
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monthly data. Cao et al. (2005) studied ANN methods to predict firm-level stock prices that 

trade on the Shanghai stock exchange. They compare univariate and multivariate ANN models 

with linear models, with the results indicating superiority of the neural network models in 

predicting future price changes. On the other hand, Mantri et al. (2014) investigate the two 

Indian benchmark indices (BSE SENSEX and NIFTY) from 1995 to 2008 by comparing 

GARCH, EGARCH, GJR-GARCH, IGARCH and ANN models. The authors report that the 

prediction ability of the ANN model offers no improvement over the statistical forecast models. 

Dhar et al. (2010) construct an ANN model to predict National Stock Exchange of India (NSEI) 

and the results indicate supportive prediction results.  

Fernandez-Rodriguez et al. (2000) investigate the potential profitability of the ANN 

model for the Madrid Stock Exchange. Out-of-sample forecasts are conducted for three 

different periods that represents bear, stable and bull markets. The empirical results revealed 

that, in absence of trading costs, the ANN model provides superior predictions for stable and 

bear markets, although underperforms during bull markets. Perez-Rodriguez et al. (2005) 

analyse daily returns for the Ibex-25 index from 1989 to 2000. One-step and multi-step ahead 

forecasts are conducted for six competing models, including linear and non-linear as well as 

AI models. The results suggest that ANN models provide better fit for the one-step-ahead 

forecasts but not multi-step.  

A number of studies also investigate the performance of different class of ANN models 

and hybrid models. Roh (2007) proposes a hybrid model between ANN and time series models 

for KOSPI Index, with forecast results supporting the accuracy of the hybrid model for 

volatility forecasting. Unlike Roh (2007), Guresen et al. (2011) analyses daily NASDAQ return 

but finds that hybrid models are not as successful as standard ANN models. Kristjanpoller et 

al. (2014) propose ANN-GARCH hybrid models to predict three emerging Latin American 

stock markets and conclude that hybrid models improve prediction ability over conventional 

time series models. Further studies related to hybrid models are undertaken by Leigh et al. 

(2002), Chakravarty and Dash (2009), Wei et al. (2011), Rather et al. (2015), Mingyue et al. 

(2016), Kim and Won (2018), and Hao and Gao (2020). Adebiyi et al. (2012) combine technical 

and fundamental analysis with ANN and provide results suggesting that this improves 

prediction, consistent with the findings of Yao et al. (1999) and Sezer et al. (2017). However, 

Lam (2004) reports mixed results in terms of forecasting ability of integrated ANN with 

fundamental and technical analysis models. Although, the results show that the integrated 

model works well when the economy is in recession.  
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Several researchers experiment with neuro fuzzy and neuro evolutionary methods in 

stock market forecasting exercises. Quah (2007) used DJIA index data spanning from 1994 to 

2005 to compare the applicability of MLP, ANFIS and GGAP-RBF models. Using several 

benchmark metrics, including generalize rate, recall rate, confusion metrics and appreciation, 

the study shows that ANFIS provide more accurate results while GGAP-RBF underperforms 

in all selected criteria. In similar work, Yang et al. (2012) find a fuzzy reasoning system can 

be used to predict stock market trends. Li and Xiong (2005) argue that neural networks have 

limitations in dealing with qualitative information and suffers from the ‘black box’ syndrome 

and propose a neuro fuzzy inference system to overcome these drawbacks. The Shanghai stock 

market is chosen for prediction where they find the suggested fuzzy NN is superior to standard 

NN methods. Mandziuk and Jaruszewicz (2007) present a neuro-evolutionary method to 

predict the change of closing price on the DAX index for the next day. The results reveal that 

the proposed model produces high accuracy for the market in both directions. Garcia et al. 

(2018) implement a hybrid neuro fuzzy model to predict one-day ahead direction of the DAX 

Index. They conclude that the integration of traditional indicators with ANN may enhance 

predictive accuracy of the model, although may also generate noise in the prediction model. 

Further discussion on this issue is considered by Gholamreza et al. (2010), D’Urso et al. (2013), 

Vlasenko et al. (2018) and Chandar (2019). 

 The above discussion demonstrates that the present state of the literature does not 

suggest a clear superiority either within the different ANN models, or over conventional 

forecasting methods. However, as discussed in Ravichandra and Thingom (2016) Chopra and 

Sharma (2021), AI models do possess superior capabilities and the potential for more accurate 

volatility forecast and thus, worthy of further research. Furthermore, to the best of our 

knowledge, there are few studies that compare across standard NN, Neuro-Fuzzy, and Deep 

Learning techniques with a wide range of emerging and developed markets. Moreover, in 

contrast to previous studies, this paper adopts and builds advanced neural network architectures 

for each selected model with improved learning rule and optimized hyperparameters. 

Moreover, we also not only conduct a comprehensive comparison between traditional 

forecasting methods and ANN models, but also examine the economic implications of these 

models by assessing measures relevant for risk management practice. 

 

3. Empirical Methodology. 

3.1. Benchmark Models 

Naïve Forecast 

Electronic copy available at: https://ssrn.com/abstract=3989873



5 

 

Naïve forecasts are the most basic and cost-effective forecasting models that provide a 

benchmark against more complex models. This technique is widely used in empirical finance, 

especially for time series that have difficult to predict patterns. Forecasts are calculated based 

on the last observed value. Hence, for time 𝑡, the value of observation in time 𝑡 − 1 are 

considered the best forecast: 

 �̂�𝑡 = 𝑦𝑡−1 (1) 

 

The Moving Average Convergence Divergence Indicator (MACD) 

MACD is a technical indicator designed by Gerald Appel in the late 1970s to reveal changes 

in the strength, momentum and trend of stock prices. The standard MACD is calculated by 

subtracting the 26 period Exponential Moving Average (EMA) from the 12 period EMA as: 

 𝑀𝐴𝐶𝐷 = 12 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 − 26 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 (2) 

 𝑆𝑖𝑔𝑛𝑎𝑙 𝐿𝑖𝑛𝑒 = 9 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐴𝐶𝐷  (3) 

When MACD falls below the signal line, it is a bearish signal and indicates a sell. Conversely, 

when MACD rises above the signal line, the indicator gives a bullish signal and indicates a 

buy. 

 

GARCH Family Models 

The GARCH approach forms the baseline models for this study. While there are over 300 

GARCH-type models, we consider two of the most widely used, the GARCH and EGARCH 

(Nelson, 1991) models. Moreover, as these are widely known, we provide only a brief 

description. The return specification is given by: 

 𝑟𝑡 =  𝜇 +  𝜀𝑡  (4) 

where rt is the return series, 𝜇 is the constant mean and 𝜀𝑡 = ℎ𝑡𝑧𝑡 refers the returns of residual 

with 0 mean and 1 variance (i.i.d.). The conditional variance specifications of the chosen 

models are as follow: 

 GARCH:  ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽 h𝑡−1
2  (5) 

 
EGARCH:  ln ( ℎ𝑡

2) = 𝑎0 +  𝛽1 ln(ℎ𝑡−1
2 ) + 𝑎1 {|

𝜀𝑡−1

ℎ𝑡−1
| − √

2

𝜋
} − 𝛾

𝜀𝑡−1

ℎ𝑡−1
 (6) 

where ℎ𝑡
2 is the time-dependent conditional variance and 𝛼0, 𝑎1, 𝛽 and 𝛾 are the parameters 

estimated using the maximum likelihood method.  

 

3.2. Artificial Neural Networks 
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Artificial Neural Networks (ANNs) are one of the most widespread applications in machine 

learning. ANN is a brain-inspired model which imitate the network of neurons in biological 

brain so that the computer will be able to learn and make decisions in a human-like manner. 

 

Multi-Layer Perceptron (MLP) 

A multi-layer perceptron (MLP) is a feed-forward (where the information moves forward from 

input to output nodes) artificial neural network (ANN) and one of the most known and used 

neural network architectures in financial applications according to Bishop (1995). The basic 

feed-forward ANN model with a one hidden layer is given as follow: 

 

𝑛𝑘,𝑡 = 𝑤𝑘,0 + ∑ 𝑤𝑘,𝑖𝑥𝑖,𝑡

𝑖

𝑖=1

 (7) 

 
𝑁𝑘,𝑡 = 𝐿(𝑛𝑘,𝑡) =

1

1 + 𝑒−𝑛𝑘,𝑡
 (8) 

 

𝑌𝑡 = 𝜆0 + ∑ 𝜆𝑘𝑁𝑘,𝑡

𝑘

𝑘=1

 (9) 

where 𝑖 shows the number of input data (𝑥) and 𝑘 represents the number of nodes (neurons). 

The activation (transfer) function is chosen as logistic sigmoid function due to its convenience 

and popularity which is represented by 𝐿(𝑛𝑘,𝑡) and defined as 1 1 + 𝑒−𝑛𝑘,𝑡⁄ .  

The training process starts with the input vector 𝑥𝑖,𝑡, weight vector 𝑤𝑘,𝑖, and the 

coefficient variable 𝑤𝑘,0. Combining these input vectors with the squashing function log-

sigmoid, forms the neuron 𝑁𝑘,𝑡, which then serves as an exogenous variable with the coefficient 

𝜆𝑘 and the constant 𝜆0 to forecast output 𝑌𝑡. This network architecture with the logarithmic 

sigmoid transfer function is one of the most popular method to forecast financial time series 

data (Dawson and Wilby, 1998; Zhang, 2003). 

 

Recurrent Neural Network (RNN) 

A Recurrent Neural Network (RNN) is a class of artificial neural network that allows the 

process of sequential information. In the RNN architecture, previous outputs can be used as 

inputs while having hidden states. The main difference between basic feedforward networks 

and RNN is that RNNs can impact on the process of future inputs. In other words, feedforward 

networks can only ‘remember’ things that they learnt during training, while RNNs can learn 

during training, in addition, they remember things learnt from prior input while generating 

output. As in the moving average model where endogenous variable 𝑌 is a function of 
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exogenous variable 𝑋 and error term 𝜀 in the equation; likewise, nodes in the RNN are a 

function of input data and its previous value from 𝑡 − 1. The equation of RNN is given as 

follow:  

 

𝑛𝑘,𝑡 = 𝑤𝑘,0 + ∑ 𝑤𝑘,𝑖𝑥𝑖,𝑡

𝑖

𝑖=1

+ ∑ 𝜑𝑘𝑛𝑘,𝑡−1

𝑘

𝑘=1

 (10) 

 
𝑁𝑘,𝑡 =

1

1 + 𝑒−𝑛𝑖,𝑡
 (11) 

 

𝑌𝑡 = 𝜆0 + ∑ 𝜆𝑘𝑁𝑘,𝑡

𝑘

𝑘=1

 (12) 

The advantages of RNNs, which include having short term ‘memory’ and the ability to process 

sequential datasets, has attracted broad attention among financial researchers and various 

applications have been conducted (Rather et al., 2015; Gao 2016, Samarawickrama and 

Fernando, 2017; and Pang et al., 2020). However, the difficulty of training and the requirement 

of additional connections are major drawbacks for RNN architectures. RNNs are also prone to 

the problem of gradient vanishing, which is the phenomena of difficulty in capturing long term 

dependencies. It occurs when more layers using certain activation functions are added to 

network, which causes the gradients of the loss function to approach zero, making the network 

hard to train. To overcome of this issue Hochreiter and Schmidhuber (1997) proposed the Long 

Short-Term Memory (LSTM) networks. LSTMs are proficient in training about long-term 

dependencies. They are not a different variant of RNNs, yet improved transformation with 

additional gates and a cell state. 

The structure of LSTMs are slightly different than conventional RNNs where RNNs have 

standard neural network architecture with a feedback loop, LSTMs contain three memory gates 

namely input gate, output gate and forget gate as well as a cell. The purpose of these gates are: 

• The input gate states which information to add to the memory (cell) 

• The output gate specifies which information from the memory (cell) to use as output 

• The forget gate describes which information to remove from the memory (cell) 

LSTMs are considered ‘state of the art’ systems in forecasting time series data, pattern 

recognition and sequence learning.  

 

Modular Feedforward Networks (MFNs) 

Modular Feedforward Networks (MFNs) are an extension of typical feedforward NN 

architectures that are designed to reduce complexity and enhance robustness. The issues of 
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learning weights and slow convergence in standard NN designing motivated researchers to 

study new designs to generate more efficient results.  

The MFNs have a number of different networks that function independently and 

perform sub-tasks. These different networks do not interact with or signal each other during 

the computation process. They work independently towards achieving the output (see 

Tahmasebi and Hezarkhani, 2011). 

 

Generalized Feedforward Networks (GFNs) 

Generalized Feedforward Networks (GFNs) are a subclass of Multi-layer Perceptron (MLP) 

networks that enable connections to jump over one or more than one layers. The direct 

connections between two separate layers provide raw information for the output layer along 

with the usual connection via the hidden layer.  

The most prominent feature of GFN is providing capability to send linear connections 

if the underlying elements consist of linear component. But, if the underlying elements require 

non-linear connectivity, then the jump function is not needed. Theoretically, MLP can provide 

solutions to every task that GFN architecture can overcome. However, practically GFNs offer 

more accurate and efficient solutions compared to standard MLP networks. The GFNs are 

applied in many areas, including time series forecasting, data processing, pattern recognition 

and complex engineering problems. For further information, see Arulampalam and 

Bouzerdoum (2003), Teschl et al. (2007), Celik and Kolhe (2013). 

 

Radial Basis Function Networks (RBFNs) 

Radial Basis Function Networks (RBFNs) are a three-layered feedforward network that use 

radial basis function as activation function. The architecture was developed by Broomhead and 

Lowe (1988) to increase speed and efficiency of Multi-Layer Perceptron Networks as well as 

reducing the parameterization difficulty. 

The standard RBFN process is given by McNelis (2005) as follow:  

 

𝑀𝑖𝑛<𝜔,𝜇,𝜏> ∑( 𝑦𝑡−�̂�𝑡 )2

𝑇

𝑡=0

 (13) 

 

𝑛𝑡 =  𝑤0 + ∑ 𝑤𝑖𝑥𝑖,𝑡

𝑖∗

𝑖=1

 (14) 

 𝑅𝑘,𝑡 = 𝜙(𝑛𝑡; 𝜇𝑘) (15) 
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=  

1

√2𝜋𝜎𝑛−𝜇𝑘

𝑒𝑥𝑝 (
−[𝑛𝑡 − 𝜇𝑘]

𝜎𝑛−𝜇𝑘

)

2

 (16) 

 

�̂�𝑡 = 𝜆0 + ∑ 𝜆𝑘𝑁𝑘,𝑡

𝑘∗

𝑘=1

 (17) 

where: 

 𝑥 = the set of input variables 

 𝑛 = the linear transformation of the input variables 

 𝑤 = weights. 

The parameter 𝑘∗ shows the number of centres for the transformation function of radial basis 

𝜇𝑘, 𝑘 = 1,2, … 𝑘∗ compute the error function generated by the separate centres 𝜇𝑘, and obtains 

the 𝑘∗ separate radial basis function, 𝑅𝑘. These parameters are then estimate the output �̂�𝑡 with 

weights 𝜆 via the linear transformation. Finally, the RBFN optimization occurs, which includes 

determination of parameters 𝑤, 𝜆 with 𝑘∗ and 𝜇.  

 

Probabilistic Neural Networks (PNNs) 

Probabilistic Neural Networks (PNNs) developed by Specht (1990) to overcome the 

classification issue caused by the applications of directional prediction. The structure of PNNs 

is formed of four layers which are the input layer, the pattern layer, the summation layer and 

the output layer.  

The linear and adaptive linear prediction designs of PNNs are the most popular 

functions in forecasting exercises of time series. The main advantages of PNNs compared to 

MLPs are requiring less training time, providing more accuracy and being relatively less 

sensitive to outliers. The main disadvantage of the PNNs is requirement of more memory space 

to store the model.  

 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a subclass of ANNs introduced by Jang 

(1993). According to Yager and Zadeh (1994), the model is considered one of the most 

powerful hybrid models, since it is based on two different estimators, namely Fuzzy Logic (FL) 

and ANN, which are designed to produce accurate and reliable results by justifying the noise 

and ambiguities in complex datasets. The ANFIS architecture is based on the Takagi-Sugeno 

inference system, which generates a real number as output. The structure of the model is similar 
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to a MLP network with the difference on flow direction of signals between nodes and exclusion 

of weights.  

The simulation of the ANFIS model and the function of each layers is presented as 

follow: 

 

Layer 1: Selection of input data and process of fuzzification 

In this step input parameters are chosen and the fuzzification is initialized by transforming crisp 

sets into fuzzy sets. This process is defined as follow: 

 𝑂1𝑖 = 𝜇𝐴𝑖(𝑥1),           𝑂2𝑖 = 𝜇𝐵𝑖(𝑥2),      𝑓𝑜𝑟  𝑖 = 1,2 (18) 

where 𝑥1 and 𝑥2 are input parameters, 𝐴𝑖 and 𝐵𝑖 are linguistic labels of input parameters, 𝑂1𝑖 

and 𝑂2𝑖 are membership grades of fuzzy set 𝐴𝑖 and 𝐵𝑖. 

 

Layer 2: Computation of firing strength 

This layer is also called as rule layer and the outcome of this layer is known as firing strength. 

The nodes in this layer are fixed and represented by Π. These nodes are responsible for 

receiving information from previous layer and the output of this nodes is obtained by the 

following equation:  

 𝑤𝑖 = 𝜇𝐴𝑖(𝑥1)𝜇𝐵𝑖(𝑥2)      𝑓𝑜𝑟  𝑖 = 1,2 (19) 

 

Layer 3: Normalization of firing strength 

Each node is fixed in the 3rd layer and defined as Ν. The nodes in this layer receive signals 

from each nodes in previous layer and calculate the normalized firing strength by given rule: 

 �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
                  𝑓𝑜𝑟  𝑖 = 1,2 (20) 

 

Layer 4: Consequent Parameters 

The nodes in this layer are adaptive and process the information from 3rd layer by a given rule 

as follow: 

 �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖)             𝑓𝑜𝑟  𝑖 = 1,2 (21) 

where �̅�𝑖 is the normalized firing strength and 𝑝𝑖, 𝑞𝑖, 𝑟𝑖 are the parameter(s) set that can be 

determined by the method of least squares. 

 

Layer 5: Computation of overall output 
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This layer is labeled as Σ and contains only a single node which calculates the overall ANFIS 

output by aggregating all the information received from 4th layer: 

 
𝑦 = ∑ �̅�𝑖𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 (22) 

The mathematical details of ANFIS training procedure can be obtained in the studies of Jang 

(1993), Jang et.al. (1997), Nayak et al (2004), and Tahmasebi and Hezarkhani (2011). 

 

Co-Active Neuro-Fuzzy Inference System (CANFIS) 

The Co-Active Neuro-Fuzzy Inference System (CANFIS) is an extended version of ANFIS 

architecture and was introduced by Jang et al. (1997). The main advantage of CANFIS is the 

ability to deal with any number of input-output datasets by incorporating the merits of both 

neural network (NN) and fuzzy inference system (FIS) (Mizutani and Jang, 1995; Aytek, 

2009). The main distinctive elements of CANFIS are the fuzzy axon (a) which applies 

membership functions (all the information in fuzzy set) to the inputs and a modular network 

and (b) that applies functional rules to the inputs (Heydari and Talaee, 2011). 

As in the ANFIS system, the CANFIS system is also based on Sageno function. The 

main contribution of CANFIS model is to provide multiple outputs, while the two biggest 

drawbacks of the system are (a) problem with dealing extreme values and (b) requirement of 

large dataset to train the model.  

 

Forecast Combination 

The combination of forecasts is generally considered a useful tool to improve performance of 

individual forecasts. The arithmetic average method can be used with various forecasting 

models, which provides robustness and accuracy to the overall results. This method is applied 

as follows: 

 𝐶𝑓𝑡
𝑁𝑁 = (𝑓𝑡

𝑁𝑁1 + 𝑓𝑡
𝑁𝑁2 + ⋯ + 𝑓𝑡

𝑁𝑁𝑚)/𝑚 (23) 

where 𝐶𝑓 is the forecast combination, 𝑓𝑡
𝑁𝑁is the Neural Network forecast at time 𝑡 and 𝑚 is 

the number of forecasts. 

 

4. Data 

The sample period covers 25 years, with Table 1 reporting the selected markets (and indices) 

and sample sizes (including out-of-sample forecast period) for each market, respectively. Table 

2 presents the key descriptive statistics of total data sample for each index. The mean fluctuates 
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between 0.004651 and 0.044841 for daily returns. Indonesia outperforms other markets while 

the Thai stock market performs worst. The return distribution is not symmetrical, with the 

series exhibiting skewness. The values in Table 2 suggest that half the markets present negative 

skewness, while the other half indicate positive skewness.2 The results also suggest the 

presence of excess kurtosis, which suggests a larger number of extreme shocks (of either sign) 

than under a normal distribution. Of further note, China has the highest maximum value, while 

Singapore and Taiwan have the lowest maximum values. The greatest single-day increase is in 

China’s SSE of 26.99% and the biggest drop occurs in Malaysia’s KLCI with -24.15%. 

Singapore’s STI and Taiwan’s TAIEX Indices have the smallest gap between daily minimum 

and maximum values of -8.70% and 7.53% and, -6.98% and 6.52% respectively. This result 

indicates lower volatility compared to others, which is also seen in the standard deviation 

values.3 

 

5. Neural Network Methodology and Forecast Evaluation. 

5.1 Neural Network Implementation  

In implementing neural network estimation, several additional considerations are required. 

 

Hidden Layers 

The learning process of a neural network is performed with layers and where the hidden layer(s) 

plays a key role in connecting input and output layers. Theoretically, a single hidden layer with 

sufficient neurons is considered capable of approximating any continuous function. Practically, 

single or two hidden layers network is commonly applied and provides good performance 

(Thomas et al., 2017). Therefore, this study follows the maximum of two hidden layers 

approach for each NN model.  

 

Epochs 

The number of epochs is a hyperparameter that defines the number times that the learning 

algorithm will work through the entire training dataset (Brownlee, 2018). The default number 

of 1000 epochs is used for training the data, but early stopping is applied if there is no 

improvement after 100 epochs to prevent overfitting (Prechelt, 2012).  

 

 
2 Eastman and Lucey (2008) suggest that in the event of negative skewness, most returns will be higher than 

average return, therefore market participants would prefer to invest in negatively skewed equities. 
3 The Jarque-Bera statistic is significant at the 1% level for all series. Unit root rests support stationarity for 

returns. 
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Weights 

Weights are the parameters in a neural network system that transforms input data within the 

network’s hidden layers. A weight decides how much influence the input will have on the 

output. Negative weights reduce the value of an output. The reproduction phase of the models 

are performed based on two modes of weight update, which are online weighting and batch 

weighting. In batch mode, changes to the weight matrix are accumulated over an entire 

presentation of the training data set, while online training updates the weight after presentation 

of each vector comprising the training set.  

 

Activation Function 

The activation function (also known as the transfer function) determines the output of a neural 

network by a given input or set of inputs. The use of the activation function is to limit the 

bounds of the output values which can “paralyze” the network and the prevent training process. 

The activation functions can be divided into two groups of linear and non-linear activation 

functions. As Hsieh (1995) and Franses and Van Dijk (2000) state, the fact that financial 

markets are non-linear and exhibit memory, non-linear activation functions are more suitable 

for forecast tasks. While there are various types of non-linear transfer functions, this study 

adopts the tanh activation function as such: 

 𝑦𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡), 𝑤𝑖) (24) 

where 𝑦𝑖(𝑡) is the output, 𝑥𝑖(𝑡) is the accumulation of input activity from other components 

and 𝑤𝑖 is the weight, with: 

 

tanh(𝑥) = 𝑓(𝑥𝑖 , 𝑤,) = {

−1   𝑥𝑖 < −1
1     𝑥𝑖 > 1
𝑥𝑖      𝑒𝑙𝑠𝑒

} (25) 

The tanh function is extensively used in time series forecasting as it delivers robust 

performance for feedforward neural networks, see Gomes et al. (2011), Zhang (2015) and 

Farzad et al. (2019). 

 

Learning Rule 

The learning rule in neural network is a mathematical method to improve ANN performance 

via helping neural network to learn from the existing conditions. The Levenberg-Marquardt 

(LM) algorithm, used in this study, is designed to work specifically with loss functions. This 

method, developed separately by Levenberg (1944) and Marquardt (1963), provides a 

numerical solution to the problem of minimizing a non-linear function (Yu and Wilamowski, 
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2011). It is one of the faster methods to train a network and has stable convergence, making it 

one of the more suitable higher-order adaptive algorithms for minimizing error functions.  

 

5.2. Forecast Evaluation 

We utilise a range of well-known forecast evaluation metrics. This includes the mean absolute 

error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root mean 

squared error (RMSE) and Quasi-Likelihood Loss Function (QLIKE): 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝜎𝑡

2 − �̂�𝑡
2|

𝑛

𝑡=1

                           (26) 
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1

𝑛
∑

|𝜎𝑡
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𝜎𝑡
2

𝑛

𝑡=1

                              (27) 
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𝑛
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                  (28) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜎𝑡

2 − �̂�𝑡
2)2

𝑛

𝑡=1

                    (29) 

 
𝑄𝐿𝐼𝐾𝐸 =

1

𝑛
∑ (log(�̂�𝑡

2) + (
𝜎𝑡

2

�̂�𝑡
2))

𝑛

𝑡=1

           (30) 

In each case where n denotes the number of forecasted data points, 𝜎𝑡
2 is the true volatility 

series which is obtained by the squared return series and �̂�𝑡
2 is the forecasted conditional 

variance series at time 𝑡. Of note, Patton and Sheppard (2009), Patton (2011), and Conrad and 

Kleen (2018) argue that the MSE and QLIKE are more reliable in volatility forecasting. 

 

Value at Risk (VaR) and Expected Shortfall (ES) 

We also consider economic loss functions. Value at Risk (VaR) measures and quantifies the 

level of risk over a specific interval of time. Jorion (1996) defines VaR as the worst expected 

loss over a target horizon under normal market conditions at a given level of confidence. Due 

to its relative simplicity and ease of interpretation, it has become one of the most commonly 

used risk management metrics. However, VaR has several drawbacks including the issue that 

it does not measure any loss beyond the VaR level, which is also referred to as ‘tail risk’ 

(Alexander, 2009; Danielsson et al., 2012). To overcome this, Artzner et al. (1999) introduce 

Expected Shortfall (ES), which is also known as conditional Value at Risk (CVaR), average 
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value at risk (AVaR), and expected tail loss (ETL). Expected Shortfall measures the conditional 

expectation of loss exceeding the Value at Risk level. Where VaR asks the question of “How 

bad can things get?”, ES asks “If things get bad, what is our expected loss?”. We evaluate he 

forecast models using both of these metrics.  

VaR is defined as:  

 𝑉𝑎𝑅 =  𝜇𝑡 + 𝜎𝑡𝑁(𝛼) (31) 

where 𝜇𝑡 is the mean of the logarithmic transformation of daily return series at time t, 𝜎𝑡 is 

predicted volatility, and 𝑁(𝛼) is the quantile of the standard normal distribution that 

corresponds to the VaR probability.  

The Expected Shortfall (ES) equation is given as:  

 
𝐸𝑆 =  𝜇𝑡 + 𝜎𝑡

𝑓(𝑁(𝛼))

1 − 𝛼
  (32) 

where 𝜇𝑡 and 𝜎𝑡 are defined as above and 𝑓(𝑁(𝛼)) is the density function of the 𝛼𝑡ℎ quantile 

of the standard normal distribution. For further discussion see, Hendricks (1996), Scaillet 

(2004), Alexander (2009), Hull (2012), Fissler and Ziegel (2016), Taylor (2019). 

To test the accuracy and effectiveness of the VaR model, we use three appropriate tests, 

the Kupiec, Christoffersen and Dynamic Quantile (DQ) tests. The Kupiec (1995) unconditional 

coverage test is a likelihood ratio test (𝐿𝑅𝑈𝐶) designed to assess whether the theoretical VaR 

failure rate given by the confidence level is statistically consistent with the empirical failure 

rate and is given by: 

 𝐿𝑅𝑈𝐶 = 2log (1 − 𝑁0 𝑁1⁄ )𝑁1−𝑁0(𝑁0 𝑁1⁄ )𝑁0 − 2log (1 − 𝜙)𝑁1−𝑁0𝜙𝑁0 (33) 

where 𝑝 = 𝐸(𝑁0 𝑁1)⁄  is the expected ratio of VaR violations obtained by dividing the number 

of violations 𝑁0 to forecasting sample size 𝑁1 and, 𝜙 is the prescribed VaR level. The Kupiec 

test is asymptomatically distributed (~𝑋2(1)) with one degree of freedom.  

Although the Kupiec test is widely used, one of its disadvantages is that it only focuses 

on the number of violations, i.e., when the loss in the return of an asset exceeds the expected 

value of the VaR model. However, it is often observed that these violations occur in clusters. 

Clustering of violations (and hence, losses) is something that risk managers would ideally like 

to be able to determine. Thus, the conditional coverage test of Christoffersen (1998) is proposed 

to examine not only the frequency of VaR failures but also the time and duration between two 

violations. The model adopts the similar theoretical framework to Kupiec, with the extension 

of and additional statistic for the independence of exceptions, as such:  

 𝐿𝑅𝐶𝐶 = 2log ((1 − 𝑝01)𝑛00 𝑝01
𝑛01(1 − 𝑝11)𝑛10𝑝11

𝑛11) − 2log ((1 − 𝑝0)𝑛00+𝑛10𝑝0
𝑛01+𝑛11) (34) 
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where 𝑝𝑖𝑗 is the expected ratio of violations on state 𝑖, while 𝑗 occurs on the previous period, 

and 𝑛𝑖𝑗 is defined as the number of days 𝑓𝑜𝑟 (𝑖, 𝑗 = 0,1). For the detailed procedure and further 

information see; Christoffersen (1998), Jorion (2002), Campbell (2005), and Dowd (2006). 

In addition to the Kupiec and Christoffersen tests, we use the Dynamic Quantile (DQ) 

test proposed by Engle and Manganelli (2004). The DQ test is based on a linear regression 

model to measure whether the current violations are linked to the past violations. The authors 

define a demeaned process of violation as: 

 
𝐻𝑖𝑡𝑡(𝑎) = 𝐼𝑡(𝑎) − 𝑎 = {

1 − 𝑎,    𝑖𝑓 𝑥𝑡 < 𝑉𝑎𝑅𝑡(𝑎),
−𝑎,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (35) 

where 𝐻𝑖𝑡𝑡(𝑎) is the conditional expectation and equal to 1 − 𝑎 if the observed return series is 

less than the VaR quantile, and −𝑎 otherwise. The sequence assumes that the conditional 

expectation of 𝐻𝑖𝑡𝑡(𝑎) must be zero at time 𝑡 − 1 (see Giot and Laurent, 2004). The test 

statistic for the DQ is given as follow: 

 
𝐷𝑄 =

�̂�′𝑄′𝑄�̂�

𝑎(1 − 𝑎)
, (36) 

where 𝑄 denotes the matrix of explanatory variables and �̂� indicates the OLS estimator. The 

proposed test statistic follows a chi-squared distribution 𝑋𝑞
2, in which 𝑞 = 𝑟𝑎𝑛𝑘(𝑋𝑡). 

 

6. Empirical Results. 

Table 3 demonstrates the forecasting performance for daily return series based on the 

calculation of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root 

Mean Squared Error (RMSE), Quasi-Likelihood (QLIKE) and Mean Squared Error (MSE). 

The out-of-sample forecasts are obtained using the ten ANN models and four benchmark 

models as discussed above.  

The overall results suggest that the benchmark models provide superior forecasts based 

on the MAE criterion for seven of the ten indices, with the only exception of STI, KLCI and 

JCI indices. The result for the KLCI index is consistent with the study of Yao et al. (1999). 

According to the MAPE criterion, ANN models clearly outperform the benchmark models. 

Notably, the RNN, RBFN and PNN models provide the lowest MAPE values across multiple 

indices. In terms of the RMSE loss function, the EGARCH model achieves the best results in 

KLCI and TAIEX indices, whereas the GARCH model performs the worst among all. LSTM 

model tends to provide more accurate forecast result compared to other models. This contrasts 

with the work of Selvin et al. (2017), although supports the findings of Chen et al. (2015) and 

Nelson and Pareira (2017). The QLIKE and MSE error criteria find substantial support for the 
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prediction power of ANN based models with the exception of STI, KLCI and TAIEX indices, 

for which they provide either mixed results or favour traditional forecasting models. The 

adaptive and coactive network based hybrid models of ANFIS and CANFIS indicate lowest 

prediction errors specifically in HANG SENG, TAIEX and PSE indices, which supports Chang 

et al. (2008), Boyacioglu and Avci (2010), and Kristjanpoller and Michell (2018).  

The comparative predictive performance of standard NN, neuro-fuzzy and deep 

learning models indicate robust results compared to conventional methods for more occasions 

than the reverse. More specifically, the LSTM provides superior forecasts for six of the ten 

markets based on the MSE criterion, which justifies its favoured role in long term time series 

predictions given its memory cell properties (Kim and Kang, 2019). Other deep learning 

models, such as RNN, MLP and RBFN, are superior in three, three and four occasions 

respectively. In addition to the findings of Yap et al. (2021) on using deep learning models for 

predicting short-term movements and market trends in Asian tiger countries, the present results 

show that deep learning models are preferred in forecasting a wider range of markets. 

Furthermore, neuro-fuzzy models are favoured specifically for the NIKKEI, HANG SENG, 

SSE, TAIEX and PSE indices, although clearly underperforming for the remaining markets. 

Although Atsalakis et al. (2016) state that Neuro-fuzzy models are more preferred for turbulent 

times and shorter term predictions given their rapid learning capabilities, these results show 

that neuro-fuzzy models also offer promising results over longer term periods. GFN, MFN and 

PNN models indicate outperformance in seven, five and two occasions respectively. Notably, 

the MFN is clearly preferred for KLCI index where four out of five loss functions indicate 

preference. The GFN model reports lowest errors based on RMSE, QLIKE and MSE for JCI 

index. The PNN model is the weakest among all ANN models with it only preferable based on 

MAPE criterion for TAIEX and HANG SENG indices. This result supports the view of Chen 

et al. (2003) for Taiex index where PNN also produces enhanced predictive power compared 

to parametric benchmark models. However, as indicated by Wang and Wu (2017), the overall 

weaker performance of PNN might be due to its high computational complexity in the standard 

architecture that causes difficulties in the estimation of parameters.  

Table 4 below presents the daily VaR and Expected Shortfall statistics as well as the 

corresponding test results. Examining Table 4, the lowest average VaR failure rate at the 1% 

level is mainly achieved by the hybrid models of ANFIS and CANFIS, while the benchmark 

models of GARCH and EGARCH report lowest values in KLCI and SET indices. The PNN 

model provides the preferred average failure rate for KOSPI index, while the RBFN and PNN 

models are preferred for the SSE index. In contrast, the LSTM, RNN and MLP models fail to 
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provide minimum VaR rates for any of the selected indices and for which they tend to 

underestimate potential risks. As recently proposed by Basel Committee in 2017, there is a 

move regarding quantitative risk measures from VaR to ES (Expected Shortfall). In forecasting 

ES, the MLP model is preferred at 1% and 5% levels for the SSE, PSE, STI and HANG SENG 

indices. Furthermore, the RBFN, MFN and PNN models are preferred in both confidence levels 

for NIKKEI, KLCI and KOSPI indices. Accordingly, it can be inferred that the ANN models 

are the most suitable across all competing models in terms of Expected Shortfall at all selected 

confidence levels. The accuracy and reliability of the VaR forecasts are also tested as proposed 

by Basel Ι and Basel ΙΙ . On the basis of the testing results of Kupiec, Christoffersen and DQ, 

the results report that none of the models reject the null hypothesis of expected VaR violation 

(Kupiec’s unconditional coverage test), the independence exceptions of VaR (Christoffersen’s 

conditional coverage test), and violations of VaR occurred correlated (Dynamic Quantile).  

Overall, the results highlight the accuracy of the ANN class of models for volatility 

forecasting both in terms of statistical measures and economic, VaR and ES, metrics across a 

range of Asian stock markets. Notably, while there are exceptions, the results, similar to Zhang 

et al. (1998) and Cao and Wang (2020), suggests that the class of ANN models outperforms 

traditional forecasting methods across the statistical and economic measures.  

 

7. Summary and Conclusion. 

Stock volatility forecasting is highly important for both practitioners and policymakers, and 

which can allow for improved decision making and portfolio building, especially during 

periods of financial turbulence. This paper evaluates different Machine Learning methods to 

forecast the volatility of ten Asian stock market indices, with the results compared against 

benchmark models. The empirical results of the ANN models are promising. Out-of-sample 

forecast evaluation results show that ANN models are superior in each index compared to the 

GARCH and EGARCH models. Notably, the results show that neural network prediction 

models exhibit improved forecasting accuracy across both statistical and economic based 

metrics and offer new insights for market participants, academics and policymakers.  

The contribution of this paper to the field of empirical finance and existing literature is 

three-fold. First and foremost, this study explores all key relevant machine learning models to 

address the problem of financial volatility forecasting. Previous studies tend to evaluate small 

sets of neural network methods. Using a wider range of ANN architectures has different 

advantages. For example, in stock market prediction exercises, the recurrent ANNs are 

recommended due to their memory component features that increase prediction accuracy. 
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Second, comprehensive performance measures for model evaluation are utilized, namely, both 

a range of statistical measures (RMSE, MAE, MAPE, MSE and QLIKE) and economic based 

ones (VaR and ES). Third, a wide range of Asian markets are studied in order to have an in-

depth examination for an extended set of volatility models across markets that are less studied.  

 To extend the study, it could explore a further diverse set of ANN architectures. For 

example, according to Partaourides and Chatzis (2017), further regularizations methods may 

increase the capacity of the machine learning systems. Moreover, hidden layers can be 

extended over two, more data frequencies can be added, and alternative input variables and 

activation functions can be studied. The value of such novel developments remains to be 

examined in future research endeavours.  
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Table 1: Sample Sizes and Out-of-sample Forecasting Period for Daily Return Series in Selected Markets  

Country Estimation Period Estimation Size Forecast Period Forecast Size Full Sample Size 

Japan 12/09/1994 - 8/11/2006 2874 8/14/2006 - 5/02/2018 2876 5750 

Singapore 8/31/1999 - 12/30/2008 2344 12/31/2008 - 5/02/2018 2346 4690 

Hong Kong 1/10/1995 - 8/29/2006 2874 8/30/2006 - 5/03/2018 2877 5751 

Malaysia 1/10/1995 - 9/04/2006 2871 9/05/2006 - 4/30/2018 2869 5740 

Indonesia 1/11/1995 - 8/25/2006 2847 8/28/2006 - 4/26/2018 2841 5688 

Thailand 1/11/1995 - 8/24/2006 2855 8/25/2006 - 4/25/2018 2848 5703 

China 1/10/1995 - 9/11/2006 2828 9/12/2006 - 5/03/2018 2829 5657 

Taiwan 1/11/1995 - 3/23/2006 2997 3/24/2006 - 5/02/2018 2895 5892 

South Korea 1/10/1995 - 5/02/2006 2970 5/03/2006 - 5/02/2018 2973 5943 

Philippines 1/11/1995 - 7/17/2006 2875 7/18/2006 - 5/02/2018 2853 5728 
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Table 2: Summary of Descriptive Statistics for Daily Return Series 
 

 
NIKKEI STRAITS 

TIMES 

INDEX 

HANG SENG 

INDEX 

KUALA 

LUMPUR 

COMPOSITE 

INDEX 

JAKARTA 

COMPOSITE 

INDEX 

SET INDEX SSE INDEX TAIEX KOSPI PSE INDEX 

 Mean 0.0294 0.0105 0.024194 0.012354 0.044841 0.004651 0.028739 0.015257 0.015445 0.015835 

 Median 0.030928 0.02846 0.0511 0.025455 0.090305 0.015914 0.065357 0.043451 0.050211 0.021669 

 Maximum 13.23458 7.531083 17.2471 20.81737 13.12768 11.34953 26.99277 6.52462 11.28435 16.1776 

 Minimum -12.11103 -8.695982 -14.73468 -24.15339 -12.73214 -16.06325 -17.90509 -6.975741 -12.8047 -13.08869 

 Std. Dev. 1.504108 1.141326 1.60473 1.267938 1.52564 1.526721 1.761533 1.36745 1.66492 1.393054 

 Skewness -0.300663 -0.266133 0.064089 0.502157 -0.19832 0.049086 0.195354 -0.182956 -0.291322 0.162169 

 Kurtosis 8.540723 8.37642 13.32528 65.37193 11.58383 10.95738 18.86232 5.815682 8.152126 14.21301 

 Probability 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Observations 5748 4689 5750 5740 5688 5703 5656 5892 5942 5728 

Sample 12/09/1994 
5/03/2018 

 8/31/1999 
5/03/2018 

 1/10/1995 
5/03/2018 

 1/10/1995 
5/03/2018 

 1/11/1995 
5/03/2018 

 1/11/1995 
5/03/2018 

 1/10/1995 
5/03/2018 

 1/10/1995 
5/03/2018 

 1/10/1995 5/03/2018  1/10/1995 
5/03/2018 
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Table 3:  Comparison of Forecast Performance Measures for Daily Return Series  

NIKKEI INDEX HANG SENG INDEX 

Model MAE MAPE RMSE QLIKE MSE Model MAE MAPE 
RMS

E 
QLIKE MSE 

LSTM 0.32 6.66 0.46 0.18 0.21 LSTM 0.29 7.10 0.44 0.15 0.19 

RNN 0.31 5.69 0.47 0.22 0.22 RNN 0.30 5.44 0.46 NA 0.21 

MLP 0.35 6.63 0.51 0.55 0.26 MLP 0.37 9.48 0.54 1.31 0.29 

RBFN 0.32 6.56 0.48 0.21 0.23 RBFN 0.34 10.93 0.46 0.45 0.21 

ANFIS 0.27 5.43 0.51 0.11 0.28 ANFIS 0.33 6.76 0.39 0.19 0.28 

CANFIS 0.33 5.44 0.46 0.13 0.21 CANFIS 0.37 6.55 0.38 0.22 0.33 

PNN 0.40 6.54 0.60 5.74 0.36 PNN 0.39 5.42 0.61 6.83 0.37 

GFN 0.32 7.06 0.46 0.18 0.21 GFN 0.30 7.38 0.45 0.15 0.20 

MFN 0.32 6.53 0.45 0.18 0.21 MFN 0.34 9.71 0.46 0.16 0.21 

ANN Fc 0.33 6.28 0.49 0.83 0.24 ANN Fc 0.34 7.64 0.47 1.18 0.25 

GARCH(1,1) 0.34 10.49 0.69 1.56 0.48 GARCH(1,1) 0.26 10.32 0.73 1.46 0.53 

EGARCH(1,1) 0.25 10.56 0.69 1.54 0.47 EGARCH(1,1) 0.25 10.23 0.70 1.46 0.48 

MACD 0.55 13.50 1.27 1.56 0.59 MACD 0.91 9.80 1.01 1.91 0.29 

NAIVE 0.41 6.59 0.73 5.71 0.34 NAIVE 0.42 7.81 0.56 6.89 0.38 

STRAITS TIMES INDEX SET INDEX 

Model MAE MAPE RMSE QLIKE MSE Model MAE MAPE 
RMS

E 
QLIKE MSE 

LSTM 0.19 4.81 0.26 0.33 0.07 LSTM 0.37 0.60 0.46 0.06 0.21 

RNN 0.19 4.82 0.26 0.32 0.07 RNN 0.24 0.80 0.38 0.17 0.15 

MLP 0.23 6.66 0.28 0.26 0.08 MLP 0.31 0.15 0.43 0.84 0.18 

RBFN 0.19 4.34 0.26 1.66 0.07 RBFN 0.25 0.80 0.38 0.55 0.15 

ANFIS 0.44 4.57 0.35 0.44 0.13 ANFIS 0.24 0.33 0.54 0.47 0.19 

CANFIS 0.29 5.33 0.28 0.52 0.11 CANFIS 0.27 0.28 0.57 0.41 0.22 

PNN 0.24 4.90 0.35 3.65 0.13 PNN 0.34 4.51 0.51 3.34 0.26 

GFN 0.21 6.12 0.27 0.29 0.07 GFN 0.27 0.60 0.38 0.07 0.15 

MFN 0.20 5.32 0.26 0.31 0.07 MFN 0.26 0.61 0.38 0.08 0.15 

ANN Fc 0.24 5.21 0.29 0.86 0.09 ANN Fc 0.28 0.96 0.45 0.67 0.18 

GARCH(1,1) 0.91 9.68 0.20 0.50 0.04 GARCH(1,1) 0.19 10.53 0.67 1.21 0.45 

EGARCH(1,1) 0.91 9.50 0.20 0.49 0.04 EGARCH(1,1) 0.19 10.51 0.67 1.15 0.45 

MACD 0.80 10.20 0.44 1.94 0.26 MACD 0.55 9.80 0.67 2.03 0.67 

NAIVE 0.30 5.94 0.09 4.77 0.19 NAIVE 0.39 4.50 0.47 3.55 0.34 

KUALA LUMPUR COMPOSITE INDEX JAKARTA COMPOSITE INDEX 

Model MAE MAPE RMSE QLIKE MSE Model MAE MAPE 
RMS

E 
QLIKE MSE 

LSTM 0.18 5.77 0.23 0.54 0.05 LSTM 0.29 6.37 0.40 0.01 0.16 

RNN 0.14 6.11 0.23 0.52 0.05 RNN 0.30 6.68 0.41 0.01 0.17 

MLP 0.24 4.53 0.31 0.58 0.09 MLP 0.33 6.09 0.47 0.80 0.22 

RBFN 0.21 6.28 0.28 0.32 0.08 RBFN 0.27 4.35 0.40 1.06 0.16 

ANFIS 0.17 3.33 0.29 0.42 0.09 ANFIS 0.37 7.43 0.57 0.26 0.24 

CANFIS 0.18 3.89 0.37 0.45 0.10 CANFIS 0.48 8.55 0.41 0.18 0.23 

PNN 0.19 4.04 0.29 2.39 0.09 PNN 0.35 3.95 0.54 7.65 0.29 

GFN 0.16 6.07 0.23 1.21 0.05 GFN 0.28 6.23 0.40 0.01 0.16 

MFN 0.15 1.42 0.22 0.84 0.05 MFN 0.29 6.60 0.41 0.02 0.17 

ANN Fc 0.18 4.60 0.27 0.81 0.07 ANN Fc 0.33 6.25 0.45 1.11 0.20 

GARCH(1,1) 0.68 10.00 0.23 0.06 0.05 GARCH(1,1) 0.29 10.94 0.42 0.72 0.24 

EGARCH(1,1) 0.67 10.05 0.22 0.05 0.05 EGARCH(1,1) 0.29 10.99 0.42 0.76 0.23 

MACD 0.44 10.21 0.57 1.92 2.40 MACD 0.37 10.75 0.93 2.03 6.62 

NAIVE 0.27 4.42 0.66 3.04 0.22 NAIVE 0.38 3.59 0.80 2.64 0.35 

SSE INDEX TAIEX INDEX 
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Model MAE MAPE RMSE QLIKE MSE Model MAE MAPE 
RMS

E 
QLIKE MSE 

LSTM 0.40 6.50 0.53 0.29 0.28 LSTM 0.25 4.89 0.34 0.11 0.12 

RNN 0.40 6.44 0.52 0.27 0.27 RNN 0.26 5.17 0.35 0.08 0.12 

MLP 0.40 4.90 0.58 0.31 0.34 MLP 0.30 6.44 0.38 0.01 0.15 

RBFN 0.34 4.29 0.51 0.33 0.26 RBFN 0.25 4.52 0.35 0.54 0.12 

ANFIS 0.37 8.43 0.49 0.25 0.29 ANFIS 0.36 4.77 0.31 0.29 0.12 

CANFIS 0.36 7.56 0.57 0.28 0.26 CANFIS 0.48 6.49 0.37 0.43 0.10 

PNN 0.45 4.90 0.66 5.36 0.43 PNN 0.33 4.34 0.47 8.15 0.22 

GFN 0.34 4.04 0.51 0.30 0.26 GFN 0.26 5.37 0.35 0.09 0.12 

MFN 0.38 5.91 0.52 0.25 0.27 MFN 0.26 5.53 0.35 0.08 0.12 

ANN Fc 0.38 5.89 0.54 0.85 0.30 ANN Fc 0.31 5.28 0.36 1.09 0.13 

GARCH(1,1) 0.34 10.47 0.69 1.70 0.48 GARCH(1,1) 0.16 9.98 0.32 1.03 0.10 

EGARCH(1,1) 0.33 10.52 0.69 1.69 0.48 EGARCH(1,1) 0.16 9.84 0.31 1.02 0.10 

MACD 1.12 1.29 0.97 1.74 1.33 MACD 0.64 10.25 0.68 1.75 0.17 

NAIVE 0.47 7.51 0.36 6.64 0.52 NAIVE 0.39 5.89 0.71 4.09 0.30 

KOSPI INDEX PSE INDEX 

Model MAE MAPE RMSE QLIKE MSE Model MAE MAPE 
RMS

E 
QLIKE MSE 

LSTM 0.24 9.12 0.36 0.03 0.13 LSTM 0.25 9.53 0.37 0.01 0.13 

RNN 0.28 5.97 0.38 0.07 0.14 RNN 0.27 10.27 0.38 0.03 0.14 

MLP 0.27 12.97 0.40 1.23 0.16 MLP 0.27 9.80 0.40 0.07 0.16 

RBFN 0.39 6.14 0.46 0.07 0.21 RBFN 0.27 5.44 0.41 0.03 0.17 

ANFIS 0.76 9.76 0.56 0.28 0.31 ANFIS 0.18 5.54 0.18 0.07 0.19 

CANFIS 0.63 10.19 0.74 0.44 0.34 CANFIS 0.19 5.61 0.12 0.09 0.13 

PNN 0.34 7.23 0.50 0.14 0.25 PNN 0.34 8.41 0.50 0.06 0.25 

GFN 0.26 6.24 0.37 0.09 0.14 GFN 0.26 10.11 0.37 0.01 0.14 

MFN 0.25 6.49 0.36 0.10 0.13 MFN 0.28 11.81 0.38 0.03 0.15 

ANN Fc 0.38 8.23 0.46 0.27 0.20 ANN Fc 0.26 8.50 0.35 0.04 0.16 

GARCH(1,1) 0.18 10.06 0.49 1.01 0.24 GARCH(1,1) 0.18 9.82 0.51 1.24 0.26 

EGARCH(1,1) 0.18 10.09 0.48 1.00 0.23 EGARCH(1,1) 0.18 9.73 0.50 1.22 0.25 

MACD 0.73 10.20 1.44 1.70 0.24 MACD 0.41 10.42 0.88 1.63 0.24 

NAIVE 0.45 4.62 0.35 3.71 0.43 NAIVE 0.36 5.42 0.12 4.47 0.30 
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Table 4: Summary of Risk Management Analysis and Backtesting Results for Daily Return Series 

NIKKEI INDEX HANG SENG INDEX 

  Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%)   Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%) 

LSTM 0.0289 ALL ALL ALL 0.2503 0.2660 LSTM 0.0290 ALL ALL ALL 0.1619 0.1899 

RNN 0.0287 ALL ALL ALL 0.1923 0.2216 RNN 0.0290 ALL ALL ALL 0.1085 0.1463 

MLP 0.0290 ALL ALL ALL 0.0266 0.1105 MLP 0.0303 ALL ALL ALL -0.5117 -0.2608 

RBFN 0.0271 ALL ALL ALL -0.0367 0.0058 RBFN 0.0288 ALL ALL ALL 0.0511 0.1019 

ANFIS 0.0211 ALL ALL ALL 0.0313 0.0424 ANFIS 0.0254 ALL ALL ALL 0.0448 0.0822 

CANFIS 0.0124 ALL ALL ALL 0.0114 0.0193 CANFIS 0.0258 ALL ALL ALL 0.0535 0.0998 

PNN 0.0271 ALL ALL ALL -0.0367 0.0058 PNN 0.0288 ALL ALL ALL 0.0511 0.1019 

GFN 0.0290 ALL ALL ALL  0.2278 0.2594 GFN 0.0294 ALL ALL ALL 0.1444 0.1817 

MFN 0.0308 ALL ALL ALL 0.2748 0.3143 MFN 0.0308 ALL ALL ALL  0.2386 0.2724 

GARCH(1,1) 0.0269 ALL ALL ALL 0.0916 0.0983 GARCH(1,1) 0.0313 ALL ALL ALL 0.0568 0.0634 

EGARCH(1,1) 0.0262 ALL ALL ALL 0.0783 0.0900 EGARCH(1,1) 0.0314 ALL ALL ALL 0.0241 0.0293 

STRAITS TIMES INDEX SET INDEX 

  Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%)   Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%) 

LSTM 0.0277 ALL ALL ALL 0.2526 0.2618 LSTM 0.0291 ALL ALL ALL 0.3235 0.3341 

RNN 0.0279 ALL ALL ALL 0.1608 0.1854 RNN 0.0293 ALL ALL ALL 0.1908 0.2216 

MLP 0.0265 ALL ALL ALL -0.0213 0.0269 MLP 0.0301 ALL ALL ALL -0.1459 0.0803 

RBFN 0.0276 ALL ALL ALL 0.1051 0.1358 RBFN 0.0291 ALL ALL ALL 0.1702 0.2003 

ANFIS 0.0277 ALL ALL ALL 0.1148 0.1225 ANFIS 0.0258 ALL ALL ALL 0.1445 0.1839 

CANFIS 0.0270 ALL ALL ALL 0.1053 0.1090 CANFIS 0.0270 ALL ALL ALL 0.1735 0.2998 

PNN 0.0276 ALL ALL ALL 0.1051 0.1358 PNN 0.0291 ALL ALL ALL 0.1702 0.2003 

GFN 0.0270 ALL ALL ALL 0.1467 0.1660 GFN 0.0284 ALL ALL ALL 0.2142 0.2328 

MFN 0.0272 ALL ALL ALL 0.1078 0.1360 MFN 0.0297 ALL ALL ALL 0.2528 0.2770 

GARCH(1,1) 0.0241 ALL ALL ALL 0.0352 0.0384 GARCH(1,1) 0.0258 ALL ALL ALL 0.0698 0.0753 

EGARCH(1,1) 0.0242 ALL ALL ALL 0.0313 0.0349 EGARCH(1,1) 0.0258 ALL ALL ALL 0.0669 0.0759 

KUALA LUMPUR COMPOSITE INDEX JAKARTA COMPOSITE INDEX 

  Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%)   Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%) 

LSTM 0.0256 ALL ALL ALL 0.0534 0.0668 LSTM 0.0282 ALL ALL ALL 0.2712 0.2811 

RNN 0.0256 ALL ALL ALL -0.0282 0.0091 RNN 0.0287 ALL ALL ALL 0.1276 0.1646 

MLP 0.0288 ALL ALL ALL 0.0423 0.1834 MLP 0.0288 ALL ALL ALL -0.0162 0.1190 

RBFN 0.0270 ALL ALL ALL 0.0321 0.0880 RBFN 0.0297 ALL ALL ALL 0.1536 0.2131 

ANFIS 0.0263 ALL ALL ALL 0.0422 0.0624 ANFIS 0.0255 ALL ALL ALL 0.2213 0.2464 

CANFIS 0.0275 ALL ALL ALL 0.0375 0.0524 CANFIS 0.0249 ALL ALL ALL 0.1745 0.1930 

PNN 0.0270 ALL ALL ALL 0.0321 0.0880 PNN 0.0297 ALL ALL ALL 0.1536 0.2131 

GFN 0.0280 ALL ALL ALL 0.2437 0.2574 GFN 0.0289 ALL ALL ALL 0.1979 0.2298 

MFN 0.0246 ALL ALL ALL -0.1234 -0.0736 MFN 0.0286 ALL ALL ALL 0.2169 0.2427 

GARCH(1,1) 0.0241 ALL ALL ALL 0.0255 0.0280 GARCH(1,1) 0.0266 ALL ALL ALL 0.0687 0.0735 

EGARCH(1,1) 0.0241 ALL ALL ALL 0.0205 0.0243 EGARCH(1,1) 0.0265 ALL ALL ALL 0.0503 0.0595 

SSE INDEX TAIEX INDEX 

  Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%)   Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%) 

LSTM 0.0320 ALL ALL ALL 0.5068 0.5175 LSTM 0.0287 ALL ALL ALL 0.2679 0.2827 

RNN 0.0280 ALL ALL ALL 0.0475 0.0866 RNN 0.0286 ALL ALL ALL 0.2473 0.2686 

MLP 0.0295 ALL ALL ALL -0.5657 -0.3355 MLP 0.0283 ALL ALL ALL 0.0608 0.1483 

RBFN 0.0264 ALL ALL ALL -0.1772 -0.1306 RBFN 0.0278 ALL ALL ALL 0.0484 0.0895 

ANFIS 0.0284 ALL ALL ALL 0.1945 0.2675 ANFIS 0.0228 ALL ALL ALL 0.1124 0.1639 

CANFIS 0.0293 ALL ALL ALL 0.1424 0.1505 CANFIS 0.0247 ALL ALL ALL 0.1336 0.1469 

PNN 0.0264 ALL ALL ALL -0.1772 -0.1306 PNN 0.0278 ALL ALL ALL 0.0484 0.0895 

GFN 0.0286 ALL ALL ALL 0.1222 0.1504 GFN 0.0285 ALL ALL ALL 0.1938 0.2184 

MFN 0.0275 ALL ALL ALL  -0.0416 0.0011 MFN 0.0276 ALL ALL ALL 0.1582 0.1846 

GARCH(1,1) 0.0282 ALL ALL ALL 0.0875 0.0930 GARCH(1,1) 0.0254 ALL ALL ALL 0.0927 0.0980 

EGARCH(1,1) 0.0286 ALL ALL ALL 0.0817 0.0924 EGARCH(1,1) 0.0253 ALL ALL ALL 0.0770 0.0846 

KOSPI INDEX PSE INDEX 

  Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%)   Avg.FR (1%) Sig. LRcc Sig. LRuc Sig. DQ Test ES (1%) ES (5%) 
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LSTM 0.0283 ALL ALL ALL 0.1768 0.1915 LSTM 0.0284 ALL ALL ALL 0.2154 0.2363 

RNN 0.0282 ALL ALL ALL 0.2137 0.2343 RNN 0.0298 ALL ALL ALL 0.2344 0.2892 

MLP 0.0288 ALL ALL ALL -0.0790 0.0801 MLP 0.0296 ALL ALL ALL -0.3932 -0.1490 

RBFN 0.0280 ALL ALL ALL 0.1519 0.1794 RBFN 0.0254 ALL ALL ALL -0.1084 -0.0704 

ANFIS 0.0274 ALL ALL ALL 0.0327 0.0744 ANFIS 0.0249 ALL ALL ALL -0.0233 -0.0361 

CANFIS 0.0269 ALL ALL ALL 0.0459 0.0844 CANFIS 0.0244 ALL ALL ALL -0.0124 -0.0487 

PNN 0.0150 ALL ALL ALL -1.9910 -1.9910 PNN 0.0254 ALL ALL ALL -0.1084 -0.0704 

GFN 0.0292 ALL ALL ALL 0.1974 0.2260 GFN 0.0270 ALL ALL ALL 0.0539 0.1022 

MFN 0.0298 ALL ALL ALL 0.2767 0.2995 MFN 0.0301 ALL ALL ALL 0.3178 0.3458 

GARCH(1,1) 0.0261 ALL ALL ALL 0.0772 0.0825 GARCH(1,1) 0.0271 ALL ALL ALL  0.0653 0.0722 

EGARCH(1,1) 0.0260 ALL ALL ALL 0.0683 0.0807 EGARCH(1,1) 0.0259 ALL ALL ALL 0.0440 0.0580 

Notes: Avg.FR indicates the failure rate of VaR at 1% significance level. LRcc and LRuc show the signifance of the conditional (Christoffersen) and 

unconditional (Kupiec) coverage tests at 1%level of siginifance, respectively. Sig. DQ Test denotes the signifance of the Dynamic Quantile and ES 

shows the Expected Shortfall at 1% and 5% confidence levels for the selected index. 
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