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Abstract

In pricing extreme mortality risk, it is commonly assumed that the interest rate
and mortality rate are independent. However, the recent COVID-19 outbreak calls
this assumption into question. We propose a bivariate affine jump-diffusion structure
to jointly model the interest rate and excess mortality, allowing for both correlated
diffusions and joint jumps. Utilizing the latest US mortality and interest rate data, we
find a strong negative correlation between the jump sizes of interest rate and excess
mortality, and a much higher jump intensity when the pandemic data is included.
Moreover, we construct a risk-neutral pricing measure that accounts for both a diffusion
risk premium and a jump risk premium. We then solve for the market prices of risk
based on mortality bond prices. Our results show that the pandemic experience can
drastically change investors’ risk perception and will likely reshape the post-pandemic
mortality risk market.
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1 Introduction

Mortality is a primary source of risk to life insurers. Shocks that lead to large-scale losses

of life, commonly referred to as extreme mortality risk, can put life insurers’ profitability

and solvency under pressure. Nonetheless, it is perhaps not until the recent outbreak of the

COVID-19 pandemic that the impacts of extreme mortality beyond the insurance industry

and its capacity to change the landscape of the world economy are recognized. There is

an urgent need to achieve a quantitative understanding of the impacts of the pandemic. In

this paper, we tackle this issue from pricing of extreme mortality risk amid the COVID-19

pandemic.

Traditionally, insurance companies mitigate and manage extreme mortality risk by means

of reinsurance. In recent decades, insurers have also used insurance-linked securities (ILS)

for additional protection against solvency-threatening losses. As an innovative solution to

mitigate and transfer insurance risk, ILS have formed a sizable market and have shown a

very strong growth, with a current outstanding capital of around US$50 billion.1 This great

success can partly be attributed to a belief that catastrophe risk is uncorrelated with the

other risks in a financial market and as such ILS bring diversification benefits. Their high

returns also appeal to investors. Some recent reviews and studies of ILS can be found in

Cummins (2008), Barrieu and Albertini (2009), Braun et al. (2019), Tang and Yuan (2019),

and Liu et al. (2021), among others.

Along with the rapid development of the ILS market, various mortality-linked securities

(MLS), and in particular mortality catastrophe (CAT) bonds, have proven to be an early

success. In December 2003, Swiss Re issued the first mortality CAT bond of size US$400m

via Vita Capital. During the risk period of the bond, if the underlying mortality index

exceeds a certain threshold, the bond is triggered and the principal will be reduced or

wiped out to compensate for insurance losses. Since then, numerous MLS have been issued,

examples including Swiss Re Vita Capital II of size US$362m, Swiss Re Vita Capital III of

size US$705m, Atlas IX Capital of size US$180m, and AXA Benu Capital of size EUR285m.

See Lin and Cox (2008), Deng et al. (2012), Bauer and Kramer (2016), and Li and Tang

(2019) for related discussions and see Blake and Cairns (2021) for a comprehensive review.

Pricing MLS requires accurate modeling of extreme mortality risk, as well as its in-

teraction with other risks in the market. In the literature, a long-standing assumption in

modeling, managing, and especially pricing mortality risk is the independence between the

interest rate and mortality rate; see, e.g., Biffis (2005), Lin and Cox (2008), Bayraktar et al.

(2009), Chen et al. (2015), and Menoncin and Regis (2020). However, as we have witnessed,

the COVID-19 outbreak has triggered concurrent jumps, upward in mortality via a health

shock and downward in interest rate via a financial shock, which calls the aforementioned

independence assumption into question.

1For more detail, see https://www.artemis.bm/dashboard/.
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In fact, the pandemic has already spawned a viewpoint among practitioners that extreme

mortality and the performance of financial markets can be highly correlated.2 We note that

this correlation could be strong enough to distort the financial market and challenge some

traditional views on market behavior and have profound implications for the future mortality

risk market. In particular, if the low-correlation sentiment shifts, the demand in MLS may

decline. This motivates us to examine the dependence between interest rate and mortality

rate and address the issue in pricing MLS. As MLS are usually linked to an underlying

mortality index in extreme mortality scenarios, we choose to model excess mortality rather

than mortality rate itself.3

In this paper, we propose a bivariate affine jump-diffusion (AJD) structure to jointly

model the interest rate and excess mortality so that we have an integrated setting to ac-

count for the frequency of joint jumps and the correlations between the two jump components

and between the diffusions. It has been a common practice in asset pricing to incorporate

infrequent but substantial jumps into the modeling framework. For example, Bates (1996)

develops an exchange rate model for pricing American options on combined stochastic volatil-

ity jump-diffusion processes. Duffie et al. (2000) introduce the AJD structure for dynamic

asset pricing models and provide a comprehensive analytical treatment to show its tractabil-

ity in pricing financial securities. Since then AJD models have been widely used in finance,

with early works including Kou (2002), Pan (2002), Eraker (2004), and Duffie (2005). In

line with this trend, many studies on pricing life insurance products and mortality/longevity

linked securities employ (affine) jump-diffusion models; see, e.g., Biffis (2005), Deng et al.

(2012), and Lin et al. (2013).

The calibration of the proposed continuous-time AJD model requires mortality data of a

higher frequency than annual, which has previously been difficult to acquire. Our empirical

studies are possible thanks to the recent decision by the US Centers for Disease Control

and Prevention (CDC) to collect and compile provisional death counts on a weekly basis,

in response to COVID-19. Estimates of weekly excess deaths since January 2017 have also

been published by CDC to provide information on the burden of mortality imposed by the

pandemic. We are amongst the first to utilize this weekly mortality data to calibrate such a

sophisticated model.

Utilizing the most up-to-date US mortality and interest rate data from 2017 to 2020, we

conduct empirical studies to investigate the dynamics of interest rate and excess mortality

processes. We calibrate the bivariate AJD model using the Markov Chain Monte Carlo

(MCMC) method, based on an approximation of the transition density function proposed

2See, e.g., https://www.cnbc.com/2020/03/18/coronavirus-world-bank-pandemic-bond
-investors-face-big-losses.html and https://www.insurancejournal.com/news/inte
rnational/2020/12/10/593490.htm.

3Throughout this research, in a given time period, excess mortality is defined as the difference between
the observed number of deaths and expected number of deaths, divided by the corresponding population
exposure.
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by Pienaar and Varughese (2016). Utilizing the full dataset which includes the pandemic

data, we detect a significant number of joint jumps and find a strong negative correlation

between the two jump components, while the two diffusions seem close to independent. When

we only consider the pre-pandemic data, namely, data from 2017 to 2019, we detect much

fewer joint jumps, but the estimated correlation coefficients for both jump and diffusion

components almost remain unchanged.

We follow arbitrage pricing theory to develop a risk-neutral pricing measure that accounts

for both diffusion risk and jump risk premia.4 The diffusion risk premium is realized via a

drift adjustment of the bivariate Brownian motion underlying the dynamics. Note that the

jump risk is captured by multiple compound Poisson processes. To realize the jump risk

premium, we follow Chapter 9 of Cont and Tankov (2004), and let each jump process remain

a compound Poisson process under the pricing measure but with both the intensity and

jump-size distribution adjusted, so that the jump risk premium applies to both the intensity

and the size.

To gain better insights into the mortality risk market, we find the risk premia demanded

by the MLS investors. To this end, we design a hypothetical mortality CAT bond that closely

resembles the 2013 Atlas IX Capital Ltd. bond (hereafter, the Atlas bond). By assuming

that the hypothetical bond would have been traded at the same prices as the Atlas bond

if issued under the then market conditions, we solve for the market prices of risk (MPRs)

based on the calibrated AJD model and by utilizing the price data of the Atlas bond. To

understand the impact of the COVID-19 pandemic experience, we derive the investors’ MPRs

again, but instead assume a misalignment between the risk modeling agent’s model and the

actual model governing the risk processes—the former calibrated with pre-pandemic data

only and the latter calibrated also with the pandemic data. We observe that the investors

are earning much lower MPRs than in the previous case. In fact, the investors end up paying

premia in this case due to overlooking the extreme mortality risk. Our analysis demonstrates

the importance for market participants to use models that have properly accounted for the

pandemic risk.

In addition, based on the estimated prices of the hypothetical bond, we conduct sensi-

tivity analyses against the MPR parameters. As expected, an increase in any of the risk

premia, ceteris paribus, will reduce the bond price. We find that the price is much more

sensitive to changes in the jump risk premium than to the diffusion risk premium, which

reaffirms the importance of incorporating the jump risk in our model.

4Tang and Yuan (2019) give a short review of various approaches to pricing ILS. In particular, the
actuarial pricing approach takes the expectation under the physical measure of the sum of the discounted
payoffs to get the expected present value and then applies a usually exogenous safety loading coefficient
to produce the actuarial price of the ILS. This approach was prevailing in early times; see Galeotti et al.
(2013) and references therein. However, in view of the rapid growth of the ILS market, it is important to
estimate and incorporate the market price of (extreme) mortality risk to more accurately reflect investors’
risk appetite.
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The contribution of our research is twofold. First, we employ a bivariate AJD structure

to jointly model the interest rate and excess mortality and calibrate the model by utilizing

a newly compiled US mortality dataset that includes observations during the pandemic. We

find that the joint jumps of the interest rate and excess mortality occur at a high frequency

and lead to a strong negative instantaneous correlation between them. If the pandemic

experience is excluded from the data, we observe less frequent joint jumps and a weakened

instantaneous correlation. Second, building on the calibrated AJD model, we develop a

risk-neutral pricing measure that accounts for both a diffusion risk premium and a jump

risk premium. We then solve for the MPRs using second-market indicative mortality bond

prices. Our results shed light on the mortality risk market in the post-pandemic era: the

pandemic experience can shake the long-standing belief of independence between mortality

risk and financial risk, and is likely to reshape the market.

The rest of the paper is organized as follows: Section 2 depicts the bivariate AJD model;

Section 3 discusses the modeling and pricing frameworks of MLS; Section 4 illustrates our

empirical results; Section 5 computes the implied MPRs under the AJD model calibrated for

various scenarios, investigates the implications for the post-pandemic mortality risk market,

and conducts sensitivity tests against the MPRs; Section 6 concludes the paper; the Ap-

pendix collects long proofs, derivations, and descriptions required for establishing our theory

and sampling algorithm.

1.1 Connection to the World Bank pandemic bonds

It is interesting to notice that the insurance industry’s innovation in extreme risk mitigation

has recently been applied to disaster relief and post-event recovery by governments and in-

ternational organizations. We end this section with a connection of our research to the World

Bank’s pandemic bonds. In 2017, drawing on lessons from the Ebola outbreak, the World

Bank launched first-of-their-kind pandemic bonds to support a US$500 million pandemic

emergency financing facility (PEF), with the intention to help the world’s poorest countries

to fight against cross-border, large-scale pandemic outbreaks. At issuance, the bonds were

oversubscribed by 200%, indicating a strong demand from investors and great potential for

health organizations to transfer pandemic risk to the capital market. The bonds matured in

July 2020 and were triggered by the COVID-19 outbreak. However, the PEF has received a

significant amount of criticism, mostly on its delayed payouts during the pandemic. Despite

the World Bank’s decision to scrap plans for a second issue of the pandemic bond, similar

types of financial instruments will likely be developed in the future.

While mortality CAT bonds and pandemic bonds are essentially different financial in-

struments, we point out that our research on MLS sheds light on future pandemic bond

pricing and design. First, the two types of bonds share similarities in triggering mecha-

nisms, potential diversification benefits, and high coupon rates. Second, our results show

that the COVID-19 experience can make a huge difference in the prices of mortality CAT
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bonds. The World Bank’s Class A pandemic bonds offered a 6.5% coupon rate, and the

Class B pandemic bonds offered a 11.1% coupon rate, both notably higher than securities

traded in the financial market. However, the investors’ perception and appetite for future

pandemic bonds are likely to change after this once-in-a-century pandemic and therefore fu-

ture pandemic bond issuance should take into account the new information gathered during

the COVID-19 pandemic. Third, taking a closer look at their respective stages of develop-

ment, we anticipate further growth of the pandemic bond market. Issuers of future pandemic

bonds may learn from the successful experience of mortality CAT bonds.

2 The affine jump-diffusion model

Throughout the paper, we use
(
Ω,F , {Ft}0≤t≤T , P

)
to denote a filtered probability space

that accommodates all sources of randomness, where 0 < T <∞ denotes the time horizon.

Let {rt}0≤t≤T be the interest rate process and {µt}0≤t≤T be a mortality-linked reference

process. The latter, unless otherwise stated, is specified as an excess mortality process

to quantify extreme mortality risk. Denote by {F1
t }0≤t≤T and {F2

t }0≤t≤T the augmented

natural filtrations generated by {rt}0≤t≤T and {µt}0≤t≤T , respectively, and assume without

loss of generality that Ft = F1
t ∨ F2

t for 0 ≤ t ≤ T .

We will introduce a pricing measureQ. Then EQ
t [·] represents the conditional expectation

under Q given the information up to time t; that is, EQ
t [·] = EQ [ ·| Ft]. Nevertheless, when

an operation is under the physical probability measure P , we usually omit the superscript P

for simplicity. Thus, Cov, V ar, and Corr denote the covariance, variance, and correlation

under P , respectively.

2.1 Dynamics under P

Assume that the bivariate process {Yt = (rt, µt)
ᵀ}0≤t≤T follows an affine jump-diffusion

(AJD) process. Precisely, for 0 ≤ t ≤ T ,

dYt = Kt(θt −Yt)dt+ Σt

√
StdWt +

m∑
i=1

dJi,t, (2.1)

where

• the elements of Kt,Σt ∈ R2×2, and θt ∈ R2 are all deterministic functions of t;

• Wt = (W1,t,W2,t)
ᵀ for 0 ≤ t ≤ T is a standard bivariate Brownian motion;

• St is a diagonal matrix with the ith diagonal element given by [St]ii = αi,t + βᵀ
i,tYt

with αi,t ∈ R and βi,t ∈ R2 being deterministic functions of t;

• Ji,t =
∑Ni,t

k=1 Xi,k for 0 ≤ t ≤ T is a bivariate compound Poisson process with intensity

λi > 0 and jump-size distribution Gi defined on R2.
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Note that, automatically, the Brownian motion {Wt}0≤t≤T and the compound Poisson

processes {Ji,t}0≤t≤T , i = 1, . . . ,m, are mutually independent. See Corollary 11.5.3 of Shreve

(2004) for this result or see Lemma 13.6 of Kallenberg (1997) in a more general version. A

feature of this model is that it gives consideration to multiple exogenous events/shocks,

realized by the bivariate compound Poisson processes {Ji,t}0≤t≤T , i = 1, . . . ,m, which feed

into all dimensions of the joint process {Yt}0≤t≤T .

In the sequel, we will always assume for simplicity that certain conditions are already

imposed on the coefficient functions Kt, θt, Σt, αi,t, βi,t, and the distributions Gi, i =

1, . . . ,m, to ensure that the SDE (2.1) has a unique strong solution. See Theorem 1.19 of

Øksendal and Sulem (2005) for a general result on this; see also Subsection 2.1 of Duffie et

al. (2000) and the references therein for related discussions.

2.2 The pricing measure Q

In what follows, we introduce our structure of risk premia by following Subsection 3.1 of

Duffie et al. (2000). Other closely related works include Dai and Singleton (2000), Duffee

(2002), Jarrow et al. (2005), and Lando (2009).

In the terminology of Schönbucher (1998), for the diffusion risk captured by {Wt}0≤t≤T ,

the risk premium in the economy is assumed to be determined by the market price of diffusion

risk

Γt =
√

Stγt, (2.2)

where γt = (γ1,t, γ2,t)
ᵀ ∈ R2 is a bivariate deterministic functions of t. Define

Z1,t = exp

{∫ t

0

Γᵀ
sdWs −

1

2

∫ t

0

Γᵀ
sΓsds

}
, 0 ≤ t ≤ T. (2.3)

We assume that the process {Γt}0≤t≤T satisfies a certain integrability condition so that

{Z1,t}0≤t≤T is a martingale under P .

Define

dWQ
t = dWt − Γtdt, 0 ≤ t ≤ T, (2.4)

which we will show later is a standard bivariate Brownian motion under the measure Q we

construct. Then rewrite dYt as

dYt = Kt(θt −Yt)dt+ Σt

√
St

(
dWQ

t +
√

Stγtdt
)

+
m∑
i=1

dJi,t

= K∗t (θ
∗
t −Yt)dt+ Σt

√
StdW

Q
t +

m∑
i=1

dJi,t,

where K∗t = Kt − ΣtΦt, θ
∗
t = (K∗t )

−1(Ktθt + Σtψt), the ith row of Φt ∈ R2×2 is given by

γi,tβ
ᵀ
i,t, and ψt = (γ1,tα1,t, γ2,tα2,t)

ᵀ ∈ R2.
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The jump part in (2.1) consists of multiple independent compound Poisson processes

under P . When introducing the market price of jump risk, we consider both the jump-

frequency risk and the jump-size risk, but we still restrict our study to structure-preserving

equivalent changes of measures, which retain the mathematical tractability of the model.

Mimicking Proposition 9.6 of Cont and Tankov (2004), we perform a change of measure but

require that under the changed measure {Ji,t}0≤t≤T , i = 1, . . . ,m, remain to be independent

compound Poisson processes. To be precise, for each i, we change the intensity from λi to

λ∗i > 0, with the ratio χi =
λ∗i
λi
> 0 reflecting the market price of jump-frequency risk. Also,

we change the common jump-size distribution from Gi to G∗i which shares the support of Gi.

Denote by Di ⊂ R2 the common support of Gi and G∗i . By the Radon–Nikodym theorem,

there is a positive measurable function gi(x) such that

dG∗i
dGi

(x) = gi(x), x ∈ Di, (2.5)

in which the market price of jump-size risk is embedded. Then define

Z2,t =
m∏
i=1

e−(λ∗i−λi)t
Ni,t∏
k=1

(
λ∗i
λi
gi (Xi,k)

)
, 0 ≤ t ≤ T, (2.6)

which is a martingale under P .

Building on (2.3) and (2.6), we define the pricing measure Q by

dQ

dP
= Z1,TZ2,T . (2.7)

Proposition 2.1 below, the proof of which is postponed to Appendix A.1, shows that the

AJD structure is preserved under the pricing measure Q:5

Proposition 2.1 Under the pricing measure Q,

• {WQ
t }0≤t≤T defined by (2.4) is a standard bivariate Brownian motion;

• for each i = 1, . . . ,m, {Ji,t}0≤t≤T is a bivariate compound Poisson process with inten-

sity λ∗i and common jump-size distribution G∗i ;

• {WQ
t }0≤t≤T and {Ji,t}0≤t≤T , i = 1, . . . ,m, are mutually independent.

5Note that our construction of the Radon–Nikodym derivative and hence the equivalent martingale mea-
sure Q is restricted to a finite-time horizon. While this suffices for our study, we would like to point out that
the extension to the infinite-time horizon, which is needed when pricing, e.g., perpetuities, is not straight-
forward. Following the martingale convergence theorem, a sufficient condition to ensure the existence of
an equivalent martingale measure Q on F is that the constructed Radon–Nikodym derivatives ZT = dQT

dPT
,

0 ≤ T ≤ ∞, are uniformly integrable under P ; see, e.g., Theorem I.10 of Protter (2005). This however does
not hold in general in the current context. See Example 7.3 of Klebaner (2012) for a special case. For the
infinite-time horizon, the construction of an equivalent martingale measure Q on F =

⋃
t>0 Ft can be found

in, for example, Björk et al. (1997). Provided the existence of this Q, Theorem III.3.4 of Jacod and Shiryaev
(2003) shows that there exists a P martingale density {Zt}0≤t≤T such that dQt = ZtdPt for all 0 ≤ t ≤ T ,
where Pt and Qt are the restrictions of P and Q on Ft, respectively.
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2.3 An important special case

Now consider an important special case in which the dynamics, under the P measure, of the

interest rate process and the excess mortality process are modeled by
drt = (m1 − d1rt)dt+ σ1dW1,t + d

Nt∑
i=1

X1,i,

dµt = (m2 − d2µt)dt+ σ2

(
ρ1dW1,t +

√
1− ρ2

1dW2,t

)
+ d

Nt∑
i=1

X2,i,

(2.8)

where, under P ,

• mi ∈ R, di 6= 0, σi > 0, for i = 1, 2, and ρ1 ∈ [−1, 1] are constants;

• {(W1,t,W2,t)}0≤t≤T is a standard bivariate Brownian motion;

• {Nt}0≤t≤T is a Poisson process with intensity λ > 0;

• {Xj = (X1,j, X2,j)
ᵀ}j∈N is a sequence of independent and identically distributed (i.i.d.)

bivariate random vectors such that the generic vector X is normally distributed with

marginal means ν1 and ν2, standard deviations φ1 and φ2, and correlation coefficient

ρ2, denoted by X ∼ N (ν1, ν2;φ1, φ2; ρ2);

• {Nt}0≤t≤T and {Xj}j∈N are independent.

Note that the model captures the dependence between the interest rate and excess mor-

tality via the diffusion correlation ρ1, the jumps that occur jointly, and the jump correlation

ρ2.

Rewritten in the form of (2.1), the joint dynamics for {Yt = (rt, µt)
ᵀ}0≤t≤T is

dYt = Kt(θt −Yt)dt+ ΣtdWt + d
Nt∑
i=1

Xi,

with

Kt =

(
d1 0
0 d2

)
, θt =

( m1

d1
m2

d2

)
, Σt =

(
σ1 0

σ2ρ1 σ2

√
1− ρ2

1

)
.

For the latter use, let us take a look at the instantaneous correlation between rt and µt.

Note that

Cov(drt, dµt) = E [(drt − E[drt]) (dµt − E[dµt])]

= E

[
ρ1σ1σ2dt+ d

Nt∑
i=1

X1,iX2,i

]
= ρ1σ1σ2dt+ λ(ρ2φ1φ2 + ν1ν2)dt.

Similarly,

V ar(drt) = σ2
1dt+ λ(φ2

1 + ν2
1)dt, V ar(dµt) = σ2

2dt+ λ(φ2
2 + ν2

2)dt.
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The instantaneous correlation between rt and µt is

Corr(drt, dµt) =
ρ1σ1σ2 + λ(ρ2φ1φ2 + ν1ν2)√

(σ2
1 + λ(φ2

1 + ν2
1)) (σ2

2 + λ(φ2
2 + ν2

2))
. (2.9)

Now we look at the Q version of this special case. We take the simplest choice for the

market price of diffusion risk (2.2) that Γt = (γ1, γ2)ᵀ ∈ R2. Then with dWi,t = dWQ
i,t + γidt

for i = 1, 2, we can rewrite the dynamics as{
drt = (m∗1 − d1rt)dt+ σ1dW

Q
1,t + d

∑Nt
i=1 X1,i,

dµt = (m∗2 − d2µt) dt+ σ2

(
ρ1dW

Q
1,t +

√
1− ρ2

1dW
Q
2,t

)
+ d

∑Nt
i=1 X2,i,

(2.10)

with

m∗1 = m1 + γ1σ1, m∗2 = m2 + γ1σ2ρ1 + γ2σ2

√
1− ρ2

1.

We follow Subsection 2.2 to specify the market prices of the jump-frequency risk and jump-

size risk. In summary, we have the following, under Q :

• {(WQ
1,t,W

Q
2,t)}0≤t≤T is a standard bivariate Brownian motion;

• {Nt}0≤t≤T is a Poisson process with intensity λ∗ > 0, with the ratio χ = λ∗

λ
> 0

reflecting the market price of jump-frequency risk;

• {Xj}j∈N is a sequence of i.i.d. bivariate random vectors with common distribution

function G∗ on R2;

• {Nt}0≤t≤T and {Xj}j∈N are independent.

Example 2.1 Now we employ the normalized multivariate exponential tilting to construct

the common distribution G∗ of {Xj}j∈N under Q. See Section 5 of Wang (2007) for more

details about this distortion approach; see also Cox et al. (2006) and Lin et al. (2013), who

apply this approach, in a somewhat simplified situation, to price mortality/longevity linked

securities.

Assume that under P , the generic vector X = (X1, X2)ᵀ is bivariate normal with marginal

means ν1 and ν2, standard deviations φ1 and φ2, and correlation coefficient ρ2, as specified

before. Let the market prices of jump-size risk be κ1 and κ2, respectively. Then the common

distribution G∗ is constructed by specifying the measurable function (2.5) to

dG∗

dG
(x) = g(x) = ϕE

[
exp

{
2∑

k=1

ηkVk

}∣∣∣∣∣X = x

]
, x ∈ R2,

where

• the vector (X1, X2, V1, V2) is jointly normal with V1 and V2, called the reference vari-

ables, specified to be standard normal for simplicity;

• the constants η1 and η2 satisfy κi = −
∑2

j=1 ρ̂i,jηj, i = 1, 2, with each ρ̂i,j being the

correlation of Xi and Vj;
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• ϕ is a normalizing constant to ensure that g(x) is a proper Radon–Nikodym derivative

over R2.

It is easy to see that under Q the vector X remains bivariate normal with marginal means

ν∗1 = ν1 +φ1κ1 and ν∗2 = ν2 +φ2κ2, standard deviations φ1 and φ2, and correlation coefficient

ρ2; that is, only the marginal means are changed.

In this case, the Radon–Nikodym derivative (2.7) is explicated as

dQ

dP
= exp

{
γ1W1,T + γ2W2,T −

1

2

(
γ2

1 + γ2
2

)
T − (λ∗ − λ)T

} NT∏
k=1

(
λ∗

λ
g (Xk)

)

= exp

{
γ1W1,T + γ2W2,T −

1

2

(
γ2

1 + γ2
2

)
T − λ(χ− 1)T

}
χNT

NT∏
k=1

g (Xk) . (2.11)

3 Modeling mortality-linked securities

Consider a general structure of an MLS, which makes payments at time points

0 < t1 < t2 < · · · < tn = T <∞,

where 0 and T represent the issuance date and the maturity date, respectively. Each payment

ξtk made at time tk is linked to a certain mortality index. Technically, for each k = 1, . . . , n,

we assume that ξtk is measurable with respect to F2
tk

. Given the pricing measure Q specified

in Section 2, the risk-neutral price of this MLS is

Pt = EQ
t

[ ∑
t<tk≤T

exp

{
−
∫ tk

t

rsds

}
ξtk

]
, 0 ≤ t < T. (3.1)

We use the following examples to illustrate the wide applicability of our pricing frame-

work. As one of the simplest cases, the first example makes a connection of our framework

to the CoRI Retirement Indexes.

Example 3.1 The CoRI Retirement Indexes are introduced by BlackRock to help deter-

mine, in today’s dollars, the estimated cost of purchasing lifetime retirement income at age

65 or later for 20 cohorts in the US.6 This lifetime income includes $1 annual inflation-

adjusted payments from the retirement age T ′ = 65 until age T = 115, where the maximum

age is fixed to 115 under the belief that no one will survive beyond this age. We consider

a specific cohort i aged x + t at time t. When applying the pricing formula (3.1) to com-

pute the CoRI Index I i,xt at time t, it is important to keep in mind the following. First, to

match the annual inflation-adjusted payments, a real interest rate {rs}t≤s≤T that removes

the effects of inflation should be used to discount the cash flows. Second, the $1 annual

6See more details at https://www.blackrock.com/cori-retirement-income-planning/li
terature/whitepaper/cori-index-whitepaper-revised.pdf .
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payments are contingent on the survival of a representing individual whose mortality rate

follows {µi,xs }t≤s≤T . To capture this contingency, when computing I i,xt , the annual payments

need to be adjusted to

ξtk =

{
0, tk ≤ T ′ − x,
exp

{
−
∫ tk
t
µi,xs ds

}
, T ′ − x < tk ≤ T − x.

Putting together, by (3.1) we have

I i,xt = EQ
t

 ∑
max {t,T ′−x}<tk≤T−x

exp

{
−
∫ tk

t

(
rs + µi,xs

)
ds

} ,
which is similar to Proposition 5.1 of Biffis (2005) and formula (14) of Xu et al. (2020).

Next, we consider a more sophisticated longevity/mortality trend bond, with the Swiss

Re Kortis bond as a prototype, which is understood to be useful to hedge systematic

longevity/mortality risk.

Example 3.2 In this bond, the payoff is linked to the associated divergence index (DI)

that is used to quantify the discrepancy between the mortality trends of two or multiple

populations. Suppose a principal K at the issuance date 0. Using the DI as the trigger,

assume the attachment level a and the exhaustion level b for 1 < a < b < ∞. At any time

t ≤ T , if the bond is triggered, that is, DIt > a, then the bond is depreciated accordingly,

for which case following (4) of Hunt and Blake (2015) or (2.4) of Li and Tang (2019) we

introduce the principal reduction factor (PRF) equal to

PRFt =
(DIt − a)+ − (DIt − b)+

b− a
.

Thus, the remaining principal at maturity is

D = K

(
1−

∑
0<tk≤T

PRFtk

)
+

≈ K

(
1− max

0<tk≤T
PRFtk

)
= K

(
1−

(DI∗ − a)+ − (DI∗ − b)+

b− a

)
,

where DI∗ = max0<tk≤T DItk , and the approximation is justified by the reasoning that the

probability of having two or more mortality catastrophes within the risk period [0, T ) is

negligible. Without going into its detailed structure, we denote by Ctk the coupon payment

for the period of (tk−1, tk], where t0 = 0. The coupon Ctk may be linked to the varying
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principal of the bond, or, for simplicity, set to be Ctk = cK(tk − tk−1) for some constant

coupon rate c. In this example, we have{
ξtk = Ctk , 0 < tk < T,
ξT = CT +D.

Then the pricing formula (3.1) becomes applicable.

Our last and working example in this paper is a hypothetical bond which closely resembles

the Atlas bond. In September 2013, the Atlas IX Capital launched a CAT bond to provide

extreme mortality protection.7 The risk period was from 1 January 2013 to 31 December

2018 and the bond received a class B - ‘BB’ rating from Standard and Poor’s. The PRF of

the Atlas bond is determined by an underlying mortality index which represents the age- and

gender-weighted death probability across the US. Initially, there were two tranches offered,

Class A notes with lower risk and Class B notes with higher risk. In fact, the Class A notes

was pulled out from the market due to lack of demand. Nevertheless, Class B notes were

marketed at US$50m but ended up at US$180m in size, indicating a strong risk appetite of

investors in the market. The Class B tranche had an attachment probability of 1.16% and

exhaustion probability of 0.74%. The expected loss of the Atlas bond was 0.92% and the

coupon rate was 3.25%.

The constructed hypothetical bond is described as follows:

Example 3.3 Denote by t0 = 0 the bond issuance date 30 September 2013, by K the bond

principal, and thus the bond maturity date 31 December 2018 is T = 51
4
. Suppose an annual

coupon rate of c = 3.25% payable quarterly. Thus, we have 21 coupon dates, with the first

coupon date t1 = 1
4

corresponding to 31 December 2013, the second coupon date t2 = 2
4

corresponding to 30 March 2014, and so on, until the last coupon date, also the maturity

date, t21 = T = 51
4
, corresponding to 31 December 2018.

Suppose an attachment point a and an exhaustion point b are determined based on a

given dataset, with 0 < a < b <∞. As in Example 3.2, if the bond is triggered by time T ,

that is, if µ∗ = max0<tk≤T µtk > a, then with the PRF defined to be

PRF =
(µ∗ − a)+ − (µ∗ − b)+

b− a
,

the remaining principal at maturity is

D = K

(
1− (µ∗ − a)+ − (µ∗ − b)+

b− a

)
.

Recall the constant coupon rate c assumed at the beginning. Putting together, we have the

payoff structure {
ξtk = c

4
K, 0 < tk < T,

ξT = c
4
K +D.

7 For more details of the deal, please refer to https://www.artemis.bm/deal-directory/atla
s-ix-capital-limited-series-2013-1.
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The (full) price, with accrued interest included, of the bond at time 0 ≤ t ≤ T is

Pt =
c

4
K

∑
t<tk≤T

P (t, tk) +KP (t, T )−KEQ
t

[
e−

∫ T
t rsds

(µ∗ − a)+ − (µ∗ − b)+

b− a

]
, (3.2)

where P (t, s), for 0 ≤ t ≤ s < ∞, is the time t price of a risk-free zero-coupon bond with

maturity date s.

4 Empirical studies

4.1 Data description

Our empirical studies focus on the US experience. To calibrate the bivariate AJD model

described in Section 2.3, we consider the US weekly mortality and interest rate data for the

period of 2017–2020, which are collected from three sources as follows:

CDC COVID-19 Death Data. In response to the COVID-19 pandemic, the CDC is

providing weekly updates on national estimates of excess deaths to reflect the burden of

mortality potentially associated with the pandemic.8 This excess death dataset is avail-

able from January 2017 onwards. We collect national-level weekly observed deaths and the

expected deaths for the period January 2017 – January 2021.

CDC WONDER Database. The CDC WONDER online database provides a rich query

system for the analysis of public health data and vital statistics. We collect population data

for 2017–2019 via the online query “Bridged-Race Population Estimates 1990–2019 Request”,

and collect the population estimate for 2020 via the online query “National Population

Projections 2014–2060 Request”.

Federal Reserve Economic Data (FRED). The weekly interest rate data comes from the

3-month treasury bill rates, collected at the same frequency and for the same period as the

mortality data.

As we focus on extreme mortality experience, instead of mortality rate, we choose to

examine excess mortality defined as

µt =
dt − E(dt)

et
× 100,

where dt is the observed number of deaths during a time period ending at t, and E(dt) and et

are, respectively, the expected number of deaths and the population exposure for the same

period. While the excess mortality in the literature is usually defined through death counts

per annum, the more granular mortality data allows for a more refined definition based on

weekly death counts. Since weekly population exposures are unavailable, for simplicity, we

approximate them based on the annual population data assuming equal exposures across

weeks in a calendar year.

8For more information, please refer to https://www.cdc.gov/nchs/nvss/vsrr/covid19/exces
s deaths.htm.
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Figure 4.1. This figure plots weekly interest rate and excess mortality for the US. Note that
from 6 March 2020, we introduce a three-week lag in the interest rate data to synchronize
the first emergency rate cut by the Federal Reserve and the first observed surge in excess
mortality.

As one of the most devastating global events since World War II, the COVID-19 pan-

demic has resulted in a substantial level of excess mortality for most countries. According

to the New York Times, there were 574,000 more deaths than usual in the 12-month period

from March 2020 to March 2021.9 To combat the COVID-19 pandemic, on 3 March 2020,

the Federal Reserve cut the base rate by 50 basis points. As the COVID-19 fear grew, on

15 March 2020, the Federal Reserve further cut the base rate down to near zero. Obviously,

the “higher than usual” mortality rate and the “lower than usual” interest rate are not a co-

incidence, but both resulted from the shock imposed by the COVID-19 pandemic. However,

it should be noted that only toward the end of March did the national death tolls start to

climb, which then led to a sharp increase in excess mortality. Although the jumps in interest

rate and excess mortality came from the same source, there was a time lag in the responses

of the two processes. In other words, the Federal Reserve proactively adjusted its monetary

policy, foreseeing the devastating impacts of COVID-19 on population health and the econ-

omy. To reflect upon this, we argue that from the week ending 6 March 2020, a three-week

lag in the interest rate data should be introduced to synchronize the first emergency rate

cut by the Federal Reserve and the first observed surge in excess mortality. The adjusted

series are shown in Figure 4.1.

9See full news article at https://www.nytimes.com/interactive/2021/01/14/us/covid-19
-death-toll.html.
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4.2 Model calibration including the pandemic experience

We first fit the AJD model (2.8) introduced in Section 2.3 to the entire dataset from 2017–

2020, particularly including the COVID-19 pandemic experience. We adopt the likelihood in-

ference methodology proposed by Pienaar and Varughese (2016), where parameter estimation

is performed under the MCMC algorithm implemented via R package DiffusionRjgqd.

Table 4.1 presents the estimated parameter values, as well as their corresponding 95% con-

fidence intervals (CIs). The convergence diagnostics for the MCMC sampler, as well as the

autocorrelation function (ACF) of MCMC draws, are plotted in Figures A.1 and A.2 in the

Appendix.

Estimate Lower CI Upper CI

d1 0.126 −0.123 0.407
m1 0.005 0.001 0.009
σ1 0.002 0.002 0.003
d2 2.301 0.656 4.357
m2 0.002 −0.126 0.100
σ2 0.124 0.109 0.147
ρ1 −0.038 −0.101 0.022
λ 4.865 1.820 8.572
ν1 −0.001 −0.002 0.000
ν2 0.035 0.001 0.088
φ1 0.002 0.001 0.004
φ2 0.074 0.049 0.114
ρ2 −0.479 −0.767 −0.065

Table 4.1. Estimated parameters for model (2.8) based on data including the pandemic
experience, from 2017 to 2020.

The calibrated dynamics of the interest rate process and the excess mortality process are
drt = (0.005− 0.126rt)dt+ 0.002dW1,t + d

Nt∑
i=1

X1,i,

dµt = (0.002− 2.301µt)dt+ 0.124 (−0.038dW1,t + 0.99928dW2,t) + d
Nt∑
i=1

X2,i,

(4.1)

where, under P ,

• {(W1,t,W2,t)}0≤t≤T is a standard bivariate Brownian motion;

• {Nt}0≤t≤T is a Poisson process with intensity 4.865;

• {Xj = (X1,j, X2,j)
ᵀ}j∈N is a sequence of i.i.d. bivariate random vectors such that

the generic vector X is normally distributed with marginal means −0.001 and 0.035,

standard deviations 0.002 and 0.074, and correlation coefficient −0.479, that is, X ∼
N (−0.001, 0.035; 0.002, 0.074;−0.479);

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3899660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Using the data, we detect joint jumps with an estimated intensity of 4.865 per year.

Moreover, we find a strong negative jump correlation of ρ2 = −0.479, which means that the

excess mortality and interest rate tend to jump in the opposite directions. On the other

hand, the two diffusions are nearly independent, with an estimated diffusion correlation

of ρ1 = −0.038. Plugging these calibrated values into (2.9), we obtain the instantaneous

correlation

Corr(drt, dµt) = −0.450.

In the proposed AJD model, diffusions represent market fluctuations in their normal

range, while jumps are used to capture unusual changes that often result from catastrophic

events. Based on the values of ρ1 and ρ2, as well as the instantaneous correlation calculated

above, we find that the significant instantaneous correlation here is mainly caused by the

joint jumps. Therefore, under extreme market conditions driven by catastrophes or shocks,

the independence assumption is no longer appropriate and can become fundamentally wrong.

4.3 Model calibration excluding the pandemic experience

We now fit model (2.8) to pre-pandemic data only, from 2017 to 2019. The estimated

parameters and their 95% CIs are shown in Table 4.2. The convergence diagnostics for the

MCMC sampler and the ACF of MCMC draws are presented in Figures A.3 and A.4.

Estimate Lower CI Upper CI

d1 0.727 0.222 1.181
m1 0.016 0.006 0.024
σ1 0.002 0.002 0.003
d2 16.368 9.015 23.134
m2 −0.217 −0.349 −0.094
σ2 0.095 0.086 0.105
ρ1 0.017 −0.049 0.088
λ 1.909 0.497 3.780
ν1 0.000 −0.001 0.001
ν2 0.026 0.001 0.058
φ1 0.001 0.000 0.003
φ2 0.056 0.041 0.072
ρ2 −0.475 −0.558 −0.384

Table 4.2. Estimated parameters for model (2.8) based on data excluding the pandemic
experience, from 2017 to 2019.

The calibrated dynamics of the interest rate process and the excess mortality process are
drt = (0.016− 0.727rt)dt+ 0.002dW1,t + d

Nt∑
i=1

X1,i,

dµt = (−0.217− 16.368µt)dt+ 0.095 (0.017dW1,t + 0.99986dW2,t) + d
Nt∑
i=1

X2,i,

(4.2)
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where, under P ,

• {(W1,t,W2,t)}0≤t≤T is a standard bivariate Brownian motion;

• {Nt}0≤t≤T is a Poisson process with intensity 1.909;

• {Xj = (X1,j, X2,j)
ᵀ}j∈N is a sequence of i.i.d. bivariate random vectors such that

the generic vector X is normally distributed with marginal means 0.000 and 0.026,

standard deviations 0.001 and 0.056, and correlation coefficient −0.479, that is, X ∼
N (0.000, 0.026; 0.001, 0.056;−0.479);

We again find a strong negative jump correlation of ρ2 = −0.475 and that the two

diffusions can still be seen as independent, with ρ1 = 0.017. However, the estimates of some

parameters have changed notably compared to those in Table 4.1. In particular, joint jumps

are detected with a much lower frequency at λ = 1.909 per year, and the means and variances

of jump sizes tend to be smaller for both the interest rate and excess mortality. Plugging

the calibrated values in Table 4.2 into (2.9), we obtain

Corr(drt, dµt) = −0.153.

That is, due to the less frequent joint jumps, the dependence between the interest rate and

excess mortality is much weaker—but still significant—in the pre-pandemic world. Moreover,

some easy calculations show that the changes result in a substantial increase of the long-term

average excess mortality from −0.010 pre-pandemic to 0.075 post-pandemic.

5 Implied market prices of risk

Understanding the MPRs is an important step toward understanding the mortality risk

market and how it may react to a pandemic experience. Since precise calibration of the

implied MPRs is challenging due to lack of data on relevant market deals, we compute the

MPRs based on the hypothetical bond designed in Example 3.3. In doing so, we accept

the assumption that the hypothetical bond, if issued on 30 September 2013 under the then

market conditions, would have been traded at the same prices as the Atlas bond. This

assumption is largely innocuous, since the hypothetical bond closely resembles the Atlas bond

in structure, covers the same population, and shares the same attachment and exhaustion

probabilities.

The price data used for our calibration is obtained from the Lane Financial L.L.C. annual

reviews of the catastrophe insurance market, which include quarter-end indicative secondary

market prices of various catastrophe-linked securities. The 2014–2019 reviews, which cover

the tenor of the Atlas bond, list the average spreads for the bond indicated by the dealers

in the market.

Our secondary market price data contains 21 quarterly observations of market-indicated

spreads during the period of September 2013 – September 2018, which we denote by c∗tk ,

tk = k
4
, k = 0, 1, . . . , 20. We illustrate these spreads in Figure 5.1.
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Figure 5.1. This figure plots the quarterly market-indicated spreads of the Atlas bond from
September 2013 to September 2018 inclusive, published by Lane Financial L.L.C.

Note that the bond price at each time point tk depends on the level of interest rate and

excess mortality at that time. While the interest rate data is available, the excess deaths

information from the CDC does not date back to September 2013. Therefore, we project

excess deaths based on the information available then and via the seasonal ARIMA model

proposed by Li and Tang (2021), which incorporates both non-seasonal and seasonal factors

in a multiplicative model. The estimated quarterly excess mortality is shown in Figure 5.2.
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Figure 5.2. This figure shows the estimated quarterly excess mortality based on the seasonal
ARIMA model.

5.1 Three scenarios

Our pricing measure Q is constructed through the Radon–Nikodym derivative (2.11) with

the MPR vector ζ = (γ1, γ2;κ1, κ2;χ). For each k = 0, 1, . . . , 20, the bond price pζtk(c
∗
tk

),

evaluated at the spread level c∗tk under Q, should be close to the par value, which we assume
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to be 100 for simplicity. We calibrate the MPRs by searching for the vector ζ that minimizes

the sum squared error
20∑
k=0

(
P ζ
tk

(
c∗tk
)
− 100

)2

. (5.1)

Recall model (4.1), estimated with the pandemic data, and model (4.2), estimated with-

out it. We identify the MPRs for three different scenarios:

S1. The underlying risks follow model (4.1) and the bond trigger levels are designed ac-

cording to model (4.1);

S2. The underlying risks follow model (4.2) and the bond trigger levels are designed ac-

cording to model (4.2);

S3. The underlying risks follow model (4.1) but the bond trigger levels are designed ac-

cording to model (4.2).

First, we consider scenario S1. To align the bond’s attachment and exhaustion probabil-

ities with the Atlas bond’s, which are 1.16% and 0.74%, respectively, we simulate 106 paths

of the process {(rt, µt)ᵀ}0≤t≤T under P to estimate the exceedance probabilities for different

thresholds. Figure 5.3 plots the results and suggests that to align with the Atlas bond, the

attachment and exhaustion points should be 0.49 and 0.52, respectively.
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Figure 5.3. This figure shows the probability that the maximum excess mortality index
during the bond tenor (µ∗, as defined in Example 3.3) exceeds a certain threshold. The
probability is estimated using a simulation of 106 paths of the process {(rt, µt)ᵀ}0≤t≤T under
the P measure, where the process follows model (4.1).
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Scenario S1 Scenario S2 Scenario S3

Parameter Under P Under Q Under P Under Q Under P Under Q

m1 ↔ m∗1 0.005 0.0058 0.016 0.0162 0.005 0.0072

m2 ↔ m∗2 0.002 0.0235 −0.217 −0.2080 0.002 −0.2038

ν1 ↔ ν∗1 −0.001 −0.0008 0.000 0.0001 −0.001 0.0011

ν2 ↔ ν∗2 0.035 0.0638 0.026 0.0314 0.035 −0.2673

λ↔ λ∗ 4.865 5.3118 1.909 2.5091 4.865 7.9877

Table 5.1. This table compares the parameter values in models (2.8) and (2.10). The
parameters without ∗ are the ones in model (2.8) under P and those with ∗ are the ones in
model (2.10) under Q.

Let us now use the indicative prices to derive the MPRs. In our implementation, each

price appearing in (5.1) is evaluated using Monte Carlo simulation based on formula (3.2)

with 104 paths of {(rt, µt)ᵀ}0≤t≤T . The minimization of (5.1) is performed using the limited-

memory Broyden–Fletcher–Goldfarb–Shanno method implemented in R. The MPR vector is

obtained as

ζ1 = (0.4161, 0.1897; 0.1119, 0.3889; 1.0918) . (5.2)

Recall that the set of MPRs maps the measure P to a risk-neutral measure Q, leading to a

change of parameters in the process {(rt, µt)ᵀ}0≤t≤T . The comparison between the param-

eters under the two measures is listed in Table 5.1. We can see that, investors’ perceived

parameter values under Q are all higher than their counterparts under P .

Next, let us consider scenario S2. This scenario relates to a market where both the is-

suer/risk modeling agent and investors lack sufficient awareness of the pandemic risk. They

design and trade the bond based on model (4.2), where the pandemic experience is not

accounted for. Following the procedure for scenario S1, we obtain the exceedance proba-

bilities, as shown in Figure 5.4. Note that, to maintain the same trigger probabilities, the

attachment and exhaustion points should be lowered to 0.13 and 0.14, respectively. It is

worth pointing out that such a bond would be triggered multiple times if traded during the

COVID-19 pandemic (see Figure 5.5).

Using the same optimization algorithm, we obtain the MPR vector

ζ2 = (0.1099, 0.0924; 0.1068, 0.0961; 1.3144) . (5.3)

Again, the set of MPRs leads to a change of measure where the perceived parameter values

of {(rt, µt)ᵀ}0≤t≤T are all higher under Q than their counterparts under P , as listed in Table

5.1.
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Figure 5.4. This figure shows the probability that the maximum excess mortality index
during the bond tenor (µ∗, as defined in Example 3.3) exceeds a certain threshold. The
probability is estimated using a simulation of 106 paths of the process {(rt, µt)ᵀ}0≤t≤T under
the P measure, where the process follows model (4.2).
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Figure 5.5. This figure plots the observed excess mortality in 2020

Last, we consider scenario S3. This scenario relates to the case where there is significant

pandemic risk, with {(rt, µt)ᵀ}0≤t≤T following model (4.1), but the modeling agent and in-

vestors fail to perceive or choose to ignore the risk. They still determine the bond trigger
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levels according to model (4.2) and still agree on transactions at the prices of the Atlas bond.

Following the same procedure as above to compute the MPRs yields

ζ3 = (1.0944, −1.6196; 1.0743, −4.0847; 1.6419) .

We observe from Table 5.1 that, unlike in scenarios S1 and S2, the MPRs in scenario S3

result in some parameter values of the {(rt, µt)ᵀ}0≤t≤T process—specifically, m2 (m∗2) and

ν2 (ν∗2)—that are lower under Q than under P . This means that the investors are receiving

negative mortality risk premia although the interest rate risk premia they receive are positive.

Moreover, note that the negative premium on the mortality jump size is significant enough

to flip the sign of the expected jump size. Therefore, a larger jump intensity perceived under

Q than under P indicates that the perceived jump risk is actually lower than that under P ,

further contributing to the negative risk premium.

In conclusion, we have shown that turning a blind eye to potential pandemic risk—that

is, failing to update the model properly for bond design to reflect the pandemic risk—could

cost investors dearly.

5.2 On the post-pandemic mortality risk market

In this subsection, we aim to offer a glimpse of how a devastating pandemic experience like

today’s could reshape the extreme mortality risk market by, e.g., prompting industry-wide

model recalibration.

We illustrate our results using a three-year hypothetical bond with coupons payable

quarterly at 6% per annum, which otherwise shares the same structure as the one in Example

3.3. In this case, our pricing formula (3.2) becomes

Pt = 100

(
1.5%

∑
t<tk≤3

P (t, tk) + P (t, 3)− EQ
t

[
e−

∫ 3
t rsds

(µ∗ − a)+ − (µ∗ − b)+

b− a

])
, (5.4)

for 0 ≤ t ≤ 3, where tk = k
4
, k = 1, . . . , 12, and µ∗ = max0<tk≤3 µtk .

Let us first envision a pre-pandemic world, where the modeling agent and investors believe

that the underlying risks follow model (4.2), determine the trigger levels accordingly (Figure

5.4), and price the risk using the MPR vector ζ2 in (5.3). In this case, formula (5.4) leads

to a time 0 bond price of 112.6.

Now suppose that the market participants have experienced a pandemic like COVID-19,

have opted for model (4.1) to describe the underlying risks, and have updated their MPR

vector to ζ1 in (5.2). By formula (5.4), the time 0 bond value is found to be 7.0. While this

is an extreme example, it sheds light on a possible overhaul of the pricing mechanism due

to the pandemic and the potential disruption it causes to the mortality risk market.

Note that in practice, the sponsor may modify the bond design in response to the pan-

demic experience by, e.g., raising its trigger levels. In our further analysis, we consider a
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scenario where the attachment and exhaustion points, respectively, have been raised sub-

stantially from 0.13 and 0.14 to, for illustration purpose, 0.3 and 0.32. We now further

illustrate our idea by demonstrating how the bond price reacts over time to the pandemic

experience.

Recall that the bond price at any time point depends on the interest rate level then and

the mortality levels until then. Therefore, to show the bond price evolutions under different

scenarios, we generate several paths of {(rt, µt)}0≤t≤3 and obtain a price curve along each

path. The prices on the curves are all computed based on formula (5.4) using simulation

with 105 paths.

We present the results for the pre- and post-pandemic markets in Figures 5.6 and 5.7,

respectively. The four graphs in each figure correspond to four scenarios generated for the

underlying risk process, which lead to either a full return or a partial reduction of the bond

principal.
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Figure 5.6. This figure shows the price evolutions for a three-year bond with coupons
payable quarterly at 6% per annum and attachment and exhaustion points at 0.13 and 0.14,
respectively. Each of the graphs (a)–(d) is obtained under a scenario generated for the risk
process {(rt, µt)ᵀ}0≤t≤3. The prices are calculated based on formula (5.4), model (4.2), MPR
vector ζ2 in (5.3), and a simulation with 105 paths.

We observe that, despite the higher trigger points, the bond priced under the updated

model of (4.1) should be issued at a much lower price than under model (4.2).
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Figure 5.7. This figure shows the price evolutions for a three-year bond with coupons
payable quarterly at 6% per annum and attachment and exhaustion points at 0.3 and 0.31,
respectively. Each of the graphs (a)–(d) is obtained under a scenario generated for the risk
process {(rt, µt)ᵀ}0≤t≤3. The prices are calculated based on formula (5.4), model (4.1), MPR
vector ζ1 in (5.2), and a simulation with 105 paths.

Moreover, it is interesting to see that the pandemic experience introduces extra volatility

to the post-pandemic mortality risk market, with bond prices that are much more volatile.

A comparison of Figures 5.6 and 5.7 shows that while a small change in mortality barely

moves the bond price pre-pandemic, it may cause a large swing of the bond price if it

occurs post-pandemic. This is not surprising, since in the aftermath of a crisis, even the

slightest change in market condition could ripple through the market and stir up turbulences.

Mathematically, any mortality change could get amplified through the model—more so under

model (4.1) than under model (4.2)—and cause large fluctuations in bond price. For the

same reason, the prices obtained under model (4.1) usually recover faster (than under model

(4.2)) when the mortality rate surges, triggers the bond, and then returns to its normal

range due to mean reversion.

To summarize, one may expect a very different post-pandemic mortality risk market than

pre-pandemic. The post-pandemic market will likely see MLS prices that are distressed and

more volatile. The distressed price at issuance means a much higher reinsurance premium

paid by the MLS sponsor to the bond investors than in the pre-pandemic world. This could

change both the supply and demand sides of the MLS market.
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5.3 Sensitivity analyses

In this subsection, we conduct sensitivity tests to investigate how the bond issue price would

change with respect to some key risk parameters. The bond under consideration is the

hypothetical bond defined in Example 3.3, with attachment and exhaustion points set to

0.49 and 0.52, respectively. In our base model, we use (4.1) as the underlying risk process

and use ζ1 as the MPR vector. This ensures that the conclusions hold in the post-pandemic

world.

We demonstrate the results in Figures 5.8–5.10. Specifically, Figures 5.8–5.9 show the

change of the bond’s issue price for varying values of γ1, γ2, κ1, and κ2, and Figure 5.10

shows the change of the bond price and jump risk elasticity against the change of χ. Here

the jump risk elasticity is defined by
dP0/P0

dχ/χ

and is calculated using forward difference approximation.
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Figure 5.8. This figure shows the change of the hypothetical bond price against varying
values of γ1 and γ2. In our base model, the process {(rt, µt)ᵀ}0≤t≤T is given by (4.1) and the
MPR vector is chosen as ζ1 in (5.2). The prices are estimated with 105 paths of the risk
process.

Not surprisingly, we observe that, ceteris paribus, the bond price decreases in any of the

MPR parameters. The bond price is more sensitive to changes in the jump risk premium

than to the diffusion risk premium. In particular, the impact of jump intensity is quite

prominent; a moderate increase in the jump intensity risk premium χ can cause a drastic

drop in the bond price. Moreover, the elasticity also decreases, indicating that in the case of

a higher jump intensity, the already highly distressed bond price even reacts more strongly

to the same change of jump intensity.
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Figure 5.9. This figure shows the change of the hypothetical bond price against varying
values of κ1 and κ2. In our base model, the process {(rt, µt)ᵀ}0≤t≤T is given by (4.1) and
the MPR vector is chosen as ζ1 in (5.2). The prices are estimated with 105 paths of the risk
process.

0.8 1.0 1.2 1.4 1.6

8
5

9
0

9
5

1
0

0
1

0
5

1
1

0

χ

P
ri

c
e

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

J
u

m
p

 (
In

te
n

s
it
y
) 

R
is

k
 E

la
s
ti
c
it
y
 o

f 
P

ri
c
e

Series

Price

Elasticity

Figure 5.10. This figure shows the changes of the hypothetical bond price and of the jump
risk elasticity against varying values of χ. In our base model, the process {(rt, µt)ᵀ}0≤t≤T is
given by (4.1) and the MPR vector is set to ζ1 in (5.2), except that χ varies from 0.8 to 1.6.
The prices are estimated with 106 paths of the risk process.
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6 Concluding remarks

We propose a bivariate AJD structure to jointly model the interest rate and excess mortality

and calibrate the model using the most up-to-date US mortality and interest rate data. Our

empirical results show that the COVID-19 pandemic experience greatly intensifies the nega-

tive instantaneous correlation between the interest rate and excess mortality, which calls for

a reassessment of the independence assumption widely used in the literature. Furthermore,

we develop a risk-neutral pricing measure that accounts for both a diffusion risk premium

and a jump risk premium, and solve for the market prices of risk with second-market in-

dicative mortality bond prices. We argue that failing to recognize the pandemic risk could

cost investors dearly, in the sense that they may receive negative mortality risk premia. In

addition, based on some envisioned scenarios we show that the pandemic experience is likely

to disconcert the MLS prices and reshape the mortality risk market.

During our research, weekly mortality data is available only for four years, which limits

us from more in-depth analysis. Consequently, some simplifying assumptions are necessary

for model calibration, such as the MPRs and the jump intensity being constant. Another

limitation is that some of our conclusions about the post-pandemic market are conjectures

that cannot be tested at this stage. Nonetheless, assuming that the mortality risk market

continues to grow and timely mortality data of high frequency becomes more accessible, we

expect to improve the model and test the conjectures in future research. Lastly, we introduce

a three-week lag in the interest rate data to synchronize the first emergency rate cut by the

Federal Reserve and the first observed surge in excess mortality at the beginning of the

COVID-19 outbreak in the US. Although in the current research such a synchronization can

be done by visually inspecting the data, this motivates us to think to incorporate a lag feature

into a bivariate model and then establish a statistical procedure to identify the lag. This

leads to a novel problem that is both theoretically challenging and practically interesting. We

will investigate this problem in a future project, aiming at a rigorous algorithm for detecting

joint jumps.
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Appendix

A.1 Proof of Proposition 2.1

From Remark 9.3 of Cont and Tankov (2004), we have

dZ1,t

Z1,t

=Γᵀ
t dWt,

dZ2,t

Z2,t−
=

m∑
i=1

d

−(λ∗i − λi)t+

Ni,t∑
k=1

(
λ∗i
λi
gi (Xi,k)− 1

) .

It follows that

d (Z1,tZ2,t)

Z1,t−Z2,t−
= Γᵀ

t dWt +
m∑
i=1

d

−(λ∗i − λi)t+

Ni,t∑
k=1

(
λ∗i
λi
gi (Xi,k)− 1

) , (A.1)

which indicates that Z1,tZ2,t, 0 ≤ t ≤ T , is a martingale under P . Furthermore, we show

that Z1,tZ2,tW
Q
i,t, 0 ≤ t ≤ T , is a martingale under P . For this purpose, we expand

d
(
Z1,tZ2,tW

Q
i,t

)
= WQ

i,td (Z1,tZ2,t) + Z1,tZ2,tdW
Q
i,t + d (Z1,tZ2,t) dW

Q
i,t.

Then plugging in (2.4) for dWQ
t and (A.1) for d (Z1,tZ2,t), after some simplification we obtain

d
(
Z1,tZ2,tW

Q
i,t

)
= WQ

i,td (Z1,tZ2,t) + Z1,tZ2,tdWi,t.

Thus, Z1,tZ2,tW
Q
i,t, 0 ≤ t ≤ T , is a martingale under P as claimed.

Now we are ready to verify that {WQ
t }0≤t≤T is a standard bivariate Brownian motion

under Q. For any 0 ≤ s ≤ t ≤ T ,

EQ
[
WQ
i,t

∣∣∣Fs] =
1

Z1,sZ2,s

E
[
WQ
i,tZ1,tZ2,t

∣∣∣Fs] =
1

Z1,sZ2,s

WQ
i,sZ1,sZ2,s = WQ

i,s,

where the first step applies Lemma 5.2.2 of Shreve (2004) and the second step is due to the

martingale property of Z1,tZ2,tW
Q
i,t, 0 ≤ t ≤ T , under P . Thus, {WQ

i,t}0≤t≤T is a martingale

under Q. Moreover, it has continuous paths, the starting point WQ
i,0 = 0, and the quadratic

variation/covariation [
WQ
i ,W

Q
j

]
(t) =

{
t, if i = j,
0, if i 6= j.

By Lévy’s theorem, {WQ
t }0≤t≤T is a standard bivariate Brownian motion under Q, as

claimed.

Denote by Hi,t the sigma field generated by {Ji,s}0≤s≤t for each i = 1, . . . ,m and 0 ≤ t ≤
T , and let

Z2,i,t = e−(λ∗i−λi)t
Ni,t∏
k=1

(
λ∗i
λi
gi (Xi,k)

)
, 0 ≤ t ≤ T.
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For any Hi,T measurable random variable Vi and any bounded measurable function hi, i =

1, . . . ,m, we have

EQ

[
m∏
i=1

hi(Vi)

]
=E

[
Z1,TZ2,T

m∏
i=1

hi(Vi)

]

=E

[
Z2,T

m∏
i=1

hi(Vi)E [Z1,T |H1,T ∨ · · · ∨ Hm,T ]

]

=E

[
Z2,T

m∏
i=1

hi(Vi)

]

=
m∏
i=1

E [Z2,i,Thi(Vi)] .

This shows that the random variables Vi, i = 1, . . . ,m, are mutually independent under

Q, and so are {Ji,t}0≤t≤T , i = 1, . . . ,m under Q. Moreover, for each i = 1, . . . ,m, any

Hi,T measurable random variable follows a probability law under Q that is distorted by the

simplified Radon–Nikodym derivative Z2,i,T . Following the proof of Proposition 9.6 of Cont

and Tankov (2004), we can show that, under Q, each {Ji,t}0≤t≤T is a compound Poisson

process with intensity λ∗i and common jump-size distribution G∗i for i = 1, . . . ,m.

The rest of the proof follows directly by Corollary 11.5.3 of Shreve (2004).

A.2 The price of a risk-free zero-coupon bond

Recall the dynamics of the interest rate process given in (2.10) under Q and the distorted

distribution function G∗ in Example 2.1. The risk-free zero-coupon bond price is given by

P (t, T ) = EQ

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣F1
t

]
= eα(t)+β(t)rt ,

where α and β satisfy the ODEs

0 = α′(t) +m∗1β(t) +
1

2
σ2

1β
2(t) + λ∗

(∫
R
eβ(t)z 1√

2πφ1

e
− (z−ν∗1 )2

2φ2
1 dz − 1

)
,

0 = −1 + β′(t)− d1β(t),

with boundary conditions α(T ) = 0 and β(T ) = 0. Then

α(t) = −m
∗
1

d1

(
T − t− 1− e−d1(T−t)

d1

)
+

σ2
1

2d2
1

(
T − t−

2
(
1− e−d1(T−t))

d1

+
1− e−2d1(T−t)

2d1

)

+λ∗
∫ T

t

(
eν
∗
1β(s)+ 1

2
φ2

1β
2(s) − 1

)
ds,

β(t) = −1− e−d1(T−t)

d1

.
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The last integral term in α(t) can further be explicitized as∫ T

t

(
eν
∗
1β(s)+ 1

2
φ2

1β
2(s) − 1

)
ds

=

∫ T

t

exp

{
−ν∗1

1− e−d1(T−s)

d1

+
1

2

φ2
1

(
1− e−d1(T−s))2

d2
1

}
ds− (T − t)

=

∫ T−t

0

exp

{
−ν∗1

1− e−d1w

d1

+
1

2

φ2
1

(
1− e−d1w

)2

d2
1

}
dw − (T − t) .

A.3 Preliminaries for univariate (integrated) Ornstein–Uhlenbeck
processes with jumps

In view of the pricing formula (3.2), our numerical procedure requires sampling of the excess

mortality, the interest rate, and its integration. To prepare for our sampling algorithm,

to be detailed in Subsection A.4, we first provide some preliminary results for univariate

(integrated) Ornstein–Uhlenbeck (OU) processes with jumps.

Consider a general OU process {xt}0≤t≤T with jumps that evolves according to

dxt = a (b− xt) dt+ σdWt + d
Nt∑
i=1

ξi,

where a 6= 0, b ∈ R, and σ > 0 are constants, {Wt}0≤t≤T is a standard Brownian motion,

{Nt}0≤t≤T is a homogeneous Poisson process, and {ξi}j∈N is a sequence of i.i.d. normal

random variables independent of {Nt}0≤t≤T . Its solution is given by

xt = x0e
−at + b

(
1− e−at

)
+ σe−at

∫ t

0

easdWs + e−at
Nt∑
i=1

ξie
aτi ,

where τi is the occurrence time of the ith jump. To derive the exact sampling algorithm for

the underlying risk processes, we need the conditional distributions of xt and
∫ t

0
xsds given

the filtration generated by {Ns}0≤s≤t, 0 ≤ t ≤ T .

Obviously, at time t, conditional on {Ns}0≤s≤t, the random variable xt as the sum of two

independent normal random variables is normally distributed. For
∫ t

0
xsds, note that it can

be written as

σ

∫ t

s=0

∫ s

u=0

e−aseaudWuds+

∫ t

0

e−as
Ns∑
i=1

ξie
aτids+

∫ t

0

(
x0e
−as + b

(
1− e−as

))
ds

= I1 + I2 + I3.

The term I3 is deterministic. For I1, note that

I1 = σ

∫ t

u=0

eau
∫ t

s=u

e−asdsdWu
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= σ

∫ t

u=0

eau
(e−au − e−at)

a
dWu

=
σ

a

∫ t

u=0

(
1− e−a(t−u)

)
dWu

=
1

a

(
σWt − σe−at

∫ t

0

easdWs

)
, (A.2)

where in the first step we applied Theorem 64 of Protter (2005). For I2, let Jξ be the jump

measure of the compound Poisson process
{∑Nt

i=1 ξi

}
0≤t≤T

. We have

I2 =

∫ t

s=0

e−as
∫

(u,x)∈(0,s]×R
xeauJξ(du, dx)ds

=

∫
(u,x)∈[0,t]×R

xeau
∫ t

s=u

e−asdsJξ(du, dx)

=
1

a

∫
(u,x)∈[0,t]×R

xeau
(
e−au − e−at

)
Jξ(du, dx)

=
1

a

∫
(u,x)∈[0,t]×R

x− xe−a(t−u)Jξ(du, dx)

=
1

a

(
Nt∑
i=1

ξi − e−at
Nt∑
i=1

ξie
aτi

)
, (A.3)

where the second step is due to Fubini’s theorem. Thus, given the number of jumps by time

t and the times of the jump occurrences, the terms I1 and I2 are independent and normally

distributed. This enables us to derive the exact sampling algorithm below.

A.4 Details of the sampling algorithm

To numerically evaluate the pricing formula (3.2), we need to sample {(rt, µt, Rt)}0≤t≤T
under the Q measure, where Rt =

∫ t
0
rsds. Recall the dynamics (2.10) and the distorted

distribution function G∗ in Example 2.1:

drt = (m∗1 − d1rt)dt+ σ1dW
Q
1,t + d

Nt∑
i=1

X1,i,

dµt = (m∗2 − d2µt)dt+ σ2

(
ρ1dW

Q
1,t +

√
1− ρ2

1dW
Q
2,t

)
+ d

Nt∑
i=1

X2,i.

The two SDEs and equations (A.2) and (A.3) lead to

rt = r0e
−d1t +

m∗1
d1

(
1− e−d1t

)
+ σ1

∫ t

0

e−d1(t−s)dW̃Q
1,s +

Nt∑
i=1

X1,ie
−d1(t−τi), (A.4)

µt = µ0e
−d2t +

m∗2
d2

(
1− e−d2t

)
+ σ2

∫ t

0

e−d2(t−s)dW̃Q
2,s +

Nt∑
i=1

X2,ie
−d2(t−τi), (A.5)
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Rt =

∫ t

0

(
r0e
−d1s +

m∗1
d1

(
1− e−d1s

))
ds+

σ1

d1

(
W̃Q

1,t −
∫ t

0

e−d1(t−s)dW̃Q
1,s

)
+

1

d1

(
Nt∑
i=1

X1,i −
Nt∑
i=1

X1,ie
−d1(t−τi)

)
, (A.6)

where

W̃Q
1,t = WQ

1,t and W̃Q
2,t = ρ1W

Q
1,t +

√
1− ρ2

1W
Q
2,t.

Note that, under Q, {W̃Q
1,t}0≤t≤T and {W̃Q

2,t}0≤t≤T are two standard Brownian motions satis-

fying dW̃Q
1,tdW̃

Q
2,t = ρ1dt, and (X1,i, X2,i), i ∈ N, are i.i.d. copies of a generic bivariate normal

random vector (X1, X2) ∼ N (ν∗1 , ν
∗
2 ;φ1, φ2; ρ2).

Suppose that, at time 0 ≤ t < T , we need to sample in a vectorized way n paths of

the processes at, say, m sampling dates t1, . . ., tm, where t = t0 < t1 < · · · < tm = T .

We obtain the samples in m steps, and in step j, j = 1, . . . ,m, we use the evolution of

the processes over (tj−1, tj] to sample their time tj values based on their time tj−1 values.

Specifically, in step j, we first sample the number of jumps and their occurrence times over

(tj−1, tj], and then sample from the conditional distribution of
(
rtj , µtj , Rtj

)
given the value

of
(
rtj−1

, µtj−1
, Rtj−1

)
and the filtration generated by {Ns}tj−1<s≤tj .

Consider the jth step and write ∆j = tj − tj−1. To sample the diffusion terms in (A.4)–

(A.6) over (tj−1, tj], note that

V arQ

[
σi

∫ tj

tj−1

e−di(tj−s)dW̃Q
i,s

]
= σ2

i e
−2ditj

∫ tj

tj−1

e2disds =
σ2
i

(
1− e−2di∆j

)
2di

, i = 1, 2.

Moreover, for i = 1, 2,

CovQ

[
σ1

(
W̃Q

1,tj
− W̃Q

1,tj−1

)
, σi

∫ tj

tj−1

e−di(tj−s)dW̃Q
i,s

]

= σ1σie
−ditjCovQ

[∫ tj

tj−1

dW̃Q
1,s,

∫ tj

tj−1

edisdW̃Q
i,s

]

= σ1σie
−ditj

∫ tj

tj−1

edisdt
(
1(i=1) + ρ11(i=2)

)
=

σ1σi
(
1− e−di∆j

)
di

(
1(i=1) + ρ11(i=2)

)
,

and, similarly,

CovQ

[
σ1

∫ tj

tj−1

e−d1(tj−s)dW̃Q
1,s, σ2

∫ tj

tj−1

e−d2(tj−s)dW̃Q
2,s

]
=
ρ1σ1σ2

(
1− e−(d1+d2)∆j

)
d1 + d2

.

Let {(rs,µs,Rs)}t≤s≤T denote n paths of the process {(rs, µs, Rs)}t≤s≤T and note again

that we aim to sample the n paths in a vectorized way. We are now ready to present our

sampling algorithm as follows:
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1. Set j = 1.

2. Sample a vector of n Poisson random variables with mean λ∗∆j, which we denote by

(K1, . . . , Kn). Here Ki represents the number of jumps over (tj−1, tj] that occurred on

the ith path. Suppose that
∑n

i=1Ki = nJ .

3. Sample an nJ dimensional vector of independent uniform random variables taking

values in (0,∆j), which we denote by (U1, . . . , UnJ ). The components of (tj−U1, . . . , tj−
UnJ ) constitute a permutation of the occurrence times of the nJ jumps in step 2.

4. Sample nJ i.i.d. copies of the generic pair (X1, X2), which we denote by (X1,1, X2,1) , . . . ,

(X1,nJ , X2,nJ ).

5. Compute the values of the following three n-dimensional vectors:

Jr =

(
K1∑
i=1

X1,ie
−d1Ui ,

K1+K2∑
i=K1+1

X1,ie
−d1Ui , . . . ,

nJ∑
i=nJ−Kn+1

X1,ie
−d1Ui

)
,

JR =

(
K1∑
i=1

X1,i,

K1+K2∑
i=K1+1

X1,i, . . . ,

nJ∑
i=nJ−Kn+1

X1,i

)
,

Jµ =

(
K1∑
i=1

X2,ie
−d2Ui ,

K1+K2∑
i=K1+1

X2,ie
−d2Ui , . . . ,

nJ∑
i=nJ−Kn+1

X2,ie
−d2Ui

)
.

6. Draw a sample of size n from a 3-dimensional normal random vector that has a zero

mean and a covariance matrix with upper triangular matrix
σ2

1(1−e−2d1∆j)
2d1

ρ1σ1σ2(1−e−(d1+d2)∆j)
d1+d2

σ2
1(1−e−d1∆j)

d1

σ2
2(1−e−2d2∆j)

2d2

ρ1σ1σ2(1−e−d2∆j)
d2

σ2
1∆j

 .

Let Zr, Zµ, and ZR be the vectors consisting of the components in, respectively, the

first, second, and third dimensions of the samples.

7. Let

rtj = rtj−1
e−d1∆j +

m∗1
d1

(
1− e−d1∆j

)
1 + Zr + Jr,

µtj = µtj−1
e−d2∆j +

m∗2
d2

(
1− e−d2∆j

)
1 + Zµ + Jµ,

Rtj = Rtj−1
+

∫ tj

tj−1

(
r0e
−d1s +

m∗1
d1

(
1− e−d1s

))
ds1 +

ZR − Zr

d1

+
JR − Jr

d1

,

where 1 denotes an n-dimensional vector with all components being 1.

8. Repeat steps 2–7 of the procedure for the time intervals (tj, tj+1], . . . , (tm−1, T ].
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Figure A.1. This figure shows convergence diagnostics for the MCMC sampler. The first 13

panels are trace plots of MCMC draws each corresponding to a single parameter in model (4.1 ),

the final two panels show the evolution of the acceptance rate over the MCMC sampler and jump

detection probabilities respectively.

Figure A.2. This figure shows the ACF of MCMC draws for each parameter in model (4.1).

35

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3899660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure A.3. This figure shows convergence diagnostics for the MCMC sampler. The first 13

panels are trace plots of MCMC draws each corresponding to a single parameter in model (4.2),

the final two panels show the evolution of the acceptance rate over the MCMC sampler and jump

detection probabilities respectively.

Figure A.4. This figure shows the ACF of MCMC draws for each parameter in model (4.2).
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