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Abstract

In this study, we explore how economic and financial covariates can be incorporated into the two-
stage GARCH-EVT risk model of McNeil and Frey (2000) and whether or not this additional information
improves Value-at-Risk and Expected Shortfall forecasts. We specify the extreme value distribution scale
parameter in the second stage of the model as a log-linear function of covariates. However, the wealth of
available data means that risk managers face a variable selection problem. Accordingly, we incorporate
`1 regularization when estimating distribution parameters. Using an extensive set of performance criteria
we demonstrate that our `1-regularized GARCH-EVT risk model produces competitive risk forecasts,
particularly during periods financial distress.
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1 Introduction

Financial risk is typically summarized by the Value-at-Risk (VaR) and the Expected Shortfall (ES), measures
that specify the amount of capital required to be held as a buffer against potential future losses on a
financial asset or investment portfolio. These tail risk measures underpin international prudential regulations
governing the financial industry. An extensive literature has developed many parametric, semi-parametric
and non-parametric risk models to forecast the VaR and the ES. The performance of these risk models is
underpinned by their ability to accurately model the tails of the conditional loss distribution. However, many
existing risk models ignore the wealth of high frequency financial and economic data currently available and
instead use only the historical returns of the financial assets or investment portfolio.

It is our intuition that economic and financial variables can provide additional information about the
likelihood and severity of future losses. That is, models for the conditional loss distribution can be improved
by incorporating covariates derived from the wealth of data which is now available. For example, the Federal
Reserve Bank of St.Lous’s FRED database records over 550,000 economic and financial time series. Moreover,
the Trade-and-Quote (TAQ) database records every intraday trade and quote for some 8000 U.S. equities1.
This high frequency data could be used to construct measures of trading activity and demand/supply patterns
which may be relevant for understanding idiosyncratic downside risk. Of course, not all the information in
these databases is relevant for predicting future losses, but it is reasonable to assume that at least some
covariates could be useful2.

In this study, we explore how economic and financial covariates can be integrated into an established
financial risk forecasting model and whether or not this information improves VaR and ES forecasts. Tra-
ditionally, if a risk manager wanted to include covariates into a model then a theoretically relevant set of
covariates would first need to be identified. In reality, identifying this set is no longer straightforward, due
to the vast amount of economic and financial data that is now available. As such, the risk manager faces a
variable selection problem. Since the conditional loss distribution is time-varying, this selection problem is
further compounded by the possibility that the predictive importance of covariates changes over time.

Including the entire universe of potentially relevant covariates is not a valid solution for two reasons.
First, the model will almost surely over-fit the data and produce poor VaR and ES forecasts. Second, when
the set of potentially relevant covariates is large, parameter estimation techniques used in traditional models
may break down as degrees of freedom are exhausted. For example, risk models that use extreme value
distributions estimate parameters using only a small number of upper order statistics, typically 10% or less
of the total sample size n. In high dimensions, such as cases where p > 0.1n, standard maximum likelihood
estimation for extreme value distribution parameters is not possible since the first-order condition is rank
deficient.

We hypothesize that there is a large set of relevant covariates to forecast future tail risk, but that only
a handful of these covariates are statistically informative at any given time. In other words, we hypothesize
the that the best risk model is sparse. We incorporate our hypothesis into the popular semi-parametric
two-stage GARCH-EVT model, introduced by McNeil and Frey (2000). In the first stage of this model,
conditional heteroskedasticity and auto-correlation are removed from the raw log-returns using a GARCH
model. The standardized residuals from this GARCH model are assumed to form an approximately i.i.d
time series. In the second stage, a generalized Pareto extreme value distribution is used to approximate the
upper tail of the negated standardized residuals.

Our principle contributions are as follows. First, we use the GJR-GARCH model instead of the stan-
dard GARCH(1,1) model in the first stage of the model. Consistent with Trapin (2018), we find that the

1This equates to approximately 750 gigabytes of new data every month.
2For individual banks, internal trading desks record thousands of transactions per day while research divisions routinely

produce proprietary forecasts for economic indicators and individual equities. This information could be used to enhance
internal risk models.
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GJR-GARCH model does a better job of removing dependence among the most extreme returns. Second,
we re-parameterize the generalized Pareto distribution scale parameter as a log-linear function of economic
and financial covariates. The covariates we study are idiosyncratic measures of the market microstructure
and trading activity, measures of economic uncertainty, indices that track the U.S equity market volatility
and broad measures of U.S. financial market stress. Third, `1-norm regularization is added as a secondary
objective to the likelihood function of the generalized Pareto distribution. Two hyper-parameters to sepa-
rately control the degree of variable selection and coefficient shrinkage induced `1-norm penalty, in the spirit
of the so-called relaxed Lasso (Least Absolute Shrinkage and Selection Operator) method (Meinshausen,
2007; Hastie et al., 2020). Our revised bi-criterion likelihood function jointly performs parameter estimation
and variable selection. We refer to our augmented model as the `1-regularized GARCH-EVT risk model.
Finally, using this regularized forecasting model we study when our chosen economic and financial covariates
improves tail risk forecasts and how each covariates is related to downside risk.

The rolling 1-day ahead VaR forecasts from the `1-regularized GARCH-EVT model are competitive with
forecasts from benchmark risk models over a 2075-day period of normal market volatility. In particular, 1-day
ahead VaR forecasts from the `1-regularized GARCH-EVT model typically outperform benchmark models
at the α = 0.99 level, the level of confidence that is prescribed by regulators. Moreover, the `1-regularized
GARCH-EVT model outperforms VaR forecasts from the traditional GARCH-EVT model at the α = 0.975
and α = 0.99 levels.

During periods of financial market distress, we find that both the 1-day ahead VaR forecasts from the `1-
regularized GARCH-EVT model outperform all benchmark models at the α = 0.975 and α = 0.99 levels. The
1-day ahead ES forecasts from the `1-regularized GARCH-EVT model also outperform forecasts produced
by all other benchmark models at the α = 0.975 level, the level of most interest to regulators. By studying
differences in the value of consistent scoring functions for the VaR and ES, together with the behaviour of
the active coefficient set, we demonstrate that information from our selected set of economic and financial
covariates is particularly valuable during the Global Financial Crisis and around the “Black Monday” stock
market crash on the 8th August 2011. Therefore, the `1-regularized GARCH-EVT model generates accurate
risk forecasts, during times of financial market distress, when accurate forecasts are needed the most.

To demonstrate the need for variable selection mechanisms in financial risk forecasting models, we show
that a naive GARCH-EVT model that includes all covariates without `1 regularization produces inadequate
VaR and ES forecasts. On average, the `1-regularized GARCH-EVT model uses a constant scale parameter
44% of days in our backtest. When covariates are selected by the `1-regularized GARCH-EVT model, the
average size of the active set is six. The majority of covariates we use have a mean predictive duration
less than two days. Together, these statistics support our hypothesis that the best financial risk forecasting
model uses a sparse set of covariates and that the predictive importance of covariates is time-varying.

Our analysis suggests that daily sell volume, total trade volume in the after-hours market and trade/quote
based intraday volatility are generally the most important covariates for financial risk forecasting within the
GARCH-EVT framework. Each of these covariates are positively related to the likelihood and severity of
observing large negative returns. These covariates could be used to design effective risk forecasting models
and more realistic stress testing scenarios.

Our study is related to the literature that develops novel forecasting methods for financial risk man-
agement and is therefore important for improving financial stability. We use a number of widely cited
risk forecasting approaches as benchmarks in our experiments: the traditional GARCH-EVT model of Mc-
Neil and Frey (2000), the Conditional Auto-regressive Value-at-Risk model of Engle and Manganelli (2004),
the conditional-Autoregressive Expectiles model of Taylor (2008) and the Hawkes Peaks-Over-Threshold
(Hawkes POT) model of Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012). Rather
than developing a new model from the ground up, we contribute to the literature by incorporating novel
covariates and a contemporary statistical technique (a two hyper-parameter variant of `1 regularization) into
the well-established GARCH-EVT model. Our approach extends this seminal model for use in the big data
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environments that are now prevalent. In doing so, we improving in tail risk forecasting accuracy, particularly
during financial distress.

While economic and financial variables have been studied in models of market-wide systematic risk (see,
e.g., Tobias and Brunnermeier, 2016), their role in idiosyncratic risk forecasting model for individual equities
or investment portfolios has only recently been explored. Herrera and Clements (2020) develop a point
process risk model that mutually incorporates a small number of covariates into the tail distribution of
returns. However, the study of Hambuckers et al. (2018), who considered the relationship between quarterly
economic variables and the severity of bank operational losses at a single bank using `1-regularized generalized
Pareto regressions, is more closely related to ours. We extend this emergent set of literature by analyzing
a more diverse set of financial covariates, in particular covariates that are derived from high-frequency
millisecond level intraday transaction data, for a comparatively large sample of U.S equities using a more
flexible variant of `1 regularization. Moreover, we extend a well-established risk forecasting model, as this
approach is of considerable importance to the industry.

Finally, our study is related to an developing set of literature studying sparse models for financial applica-
tions. For example, Freyberger et al. (2020) and Chinco et al. (2019) use Lasso regression to investigate the
determinants of return predictability within the cross-section of stocks. We extend this literature by studying
a contemporary two hyper-parameter variant of `1 regularization, within a maximum likelihood framework
for financial risk management applications. Consistent with the overarching conclusion from this emerging
literature, we also find that sparse models can be effective for data-driven financial applications. Moreover
consistent with (Easley et al., 2021), we also find that covariates which describe the market microstructre
and trading process are useful for financial forecasting applications.

The remainder of this study is structured as follows. Section 2 formally defines the VaR and ES measures
and briefly introduces the statistical theory associated with tail modelling using the generalized Pareto
distribution. Section 3 introduces the traditional GARCH-EVT risk model and discusses the GJR-GARCH
extension. The framework for the `1-regularized GRACH-EVT risk model is discussed in 4. Section 5
describes our empirical sample and covariates. The performance criteria used to assess the equality of VaR
and ES forecasts is described in Section 6. Forecasting performance of the `1 regularized GRACH-EVT risk
model and benchmark risk models is assessed in Section 7. Section 8 explores when covariates are most
valuable and Section 9 analyzes the estimated coefficients. Finally, Section 10 concludes the study.

2 Risk Measures and Traditional Extreme Value Theory

To formally define the VaR and ES risk measures we use in this study, let Pt be the daily value of a financial
asset or investment portfolio and {Yt,h = −(log(Pt+h)− log(Pt)), t = 1, . . . , T} be the time series of negative
log returns for investment horizon h. We denote the conditional distribution of negative log returns at time
t as FYt,h

. When discussing forecasts of risk measures conditional on the information available up to time t,
we will include the time and investment horizon h subscripts, otherwise when discussing general properties
of risk measures, we will omit these subscripts for brevity.

First, the Value-at-Risk (VaR) at time t for investment horizon h and confidence level α, is the smallest
value for which the probability that the realized loss exceeds some value y is 1− α. Formally, the VaR is,

V aR
(α)
t,h = inf{y : FYt,h

(y) > 1− α} (1)

In other words, the VaR is the α-quantile of the conditional loss distribution. Typically, when dealing with
negative log returns, α is close to 1, so that VaR estimation methods involve modeling the upper tail of
FYt,h

. The VaR is the cornerstone measure in the field of financial risk management and is also widely used
in other disciplines, such as environmental engineering and health care quality control. However, the VaR
fails to provide any information about losses that occur with a probability smaller than 1 − α (i.e losses
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beyond the α-quantile of the loss distribution). Moreover, the VaR is often criticized for failing to satisfy
the axiom of sub-additivity (McNeil et al., 2015).

The second quantity of central importance in financial risk management is the Expected Shortfall (ES),
also known within the literature as the Conditional Tail expectation or the Superquantile. The ES at time t,
investment horizon h and confidence level α is defined as the conditional expectation of losses which exceed

the V aR
(α)
t,h level. For continuous loss distributions, as is the case when working with negative log returns,

the ES is,

ES
(α)
t,h = E[Y |Y ≥ V aR(α)

t,h ] (2)

Hence, the ES is sensitive to the size of all losses in the tail of the conditional loss distribution. Equivalently,
the ES(α) is the average of all VaRs in the tail beyond the V aR(α) level (Acerbi and Tasche, 2002).

The ES is a coherent risk measure. As such, the Basel Committee on banking supervision has outlined a
shift in risk methodologies from VaR towards ES (Basel Committee on Banking Supervision, 2016). However,
the performance of ES forecasts for a financial institution’s trading book is still evaluated by backtesting the
VaR forecasts produced by the same risk model under the upcoming Basel III framework. Hence, both the
VaR and the ES are important measures of risk.

To forecast the VaR and ES, a model for the upper tail of the conditional loss distribution is required.
The so-called “Peaks-Over-Threshold” (POT) method from the field of extreme value theory offers one
particularly elegant way to model the tails of an underlying loss distribution. Importantly, this approach
alleviates the need to make potentially inappropriate parametric assumptions over the entire support of
conditional loss distribution and is particularly effective for modeling distributions with heavy tails. The
POT method is a natural solution for financial risk management problems where inference about heavy tailed
losses is required.

To introduce the statistical foundations of the POT method, assume we have independent and identically
distributed (i.i.d.) random variables Y , whose common distribution function is denoted by F . We will return
to the case of non i.i.d. financial return data in Section 3. Let u be a high threshold value so that the set
Z = {Y − u|Y > u} is the excess loss above u. The number of exceedances above the threshold is Nu = |Z|,
the cardinality of Z. The Pickands-Balkema-de Haan theorem states that the distribution of the excess loss
converges to the generalized Pareto family of distributions for a suitably large threshold value (Pickands III
et al., 1975; Balkema and De Haan, 1974),

lim
u→Y +

sup
0<z<(Y +−u)

|Pr(Z < z)−Gξ,σ(z)| = 0 (3)

where Y + is the largest value in the sample space of Y and Gξ,σ is the generalized Pareto distribution
function with shape and scale parameters ξ and σ respectively. The generalized Pareto distribution function
is,

Gξ,σ(z) =


1−

(
1 +

ξz

σ

)−1/ξ
, for ξ 6= 0, z > 0

1− exp
(
− z
σ

)
, for ξ = 0, z > 0

(4)

When the conditional loss distribution is heavy tailed the shape parameter of the generalized Pareto distri-
bution is greater than zero.

Assuming that the tail of F begins at u, then for some η > u the following equality holds,

F (η) = 1− (1− F (u))(1− Fu(η − u)), η > u (5)

where Fu represents the distribution of the excess loss above u. The POT method constructs an estimate
for F (η). The term (1− F (u)) is approximated non-parametrically by the proportion of observations in the
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tail region above u, that is Nu/T . The distribution of the excess loss, (Fu(η − u)), is generalized Pareto by
the Pickands-Balkema-de Haan theorem. Hence, the POT tail estimator is,

F̂ (η) = F̂Z(z) = 1− Nu
T

(
1 +

ξz

σ

)−1/ξ
(6)

where z = η − u. Assuming that α > F (u), we may invert F̂Z to estimate the tail quantiles and hence
the V aR(α) as,

F̂−1Z (α) = V aR(α) = u+
σ̂

ξ̂

[(
T

Nu
(1− α)

)−ξ̂
− 1

]
, α > F (u) (7)

If ξ < 1, then an expression for the ES can be derived. For some u′ > u, the excess loss {Y −u′|Y > u′},
also follows a generalized Pareto distribution with an identical shape parameter ξ but new scale parameter
given by σ+ξ(u′−u) (Coles, 2001). Using the expression for the mean of the generalized Pareto distribution,
the ES(α) can be written as,

ES(α) = E[Z|Z > F̂−1Z (α)]

=
F̂−1Z (α) + σ − ξu

1− ξ
, ξ < 1, α > F (u) (8)

Maximum Likelihood can be used to estimate the shape and scale parameters of the generalized Pareto
distribution. The log-likelihood function is (Hosking and Wallis, 1987),

`(ξ, σ) = −Nu log(σ)−
(

1 +
1

ξ

) Nu∑
i=1

log

(
1 +

ξzi
σ

)
+

(9)

The choice of the initial threshold value is important in applied extreme value analysis and represents a
trade-off between bias and variance. If the threshold is set too low then estimates of tail risk measures will be
biased, since the asymptotic foundations of extreme value theory are likely to be violated. On the contrary,
if the threshold is set too high, only a small number of observations are used to estimate the parameters
of the generalized Pareto distribution. Both graphical methods (see, e.g., Davison and Smith, 1990), and
statistical methods (see, e.g., Bader et al., 2018; Langousis et al., 2016), have been proposed to select a value
for the initial threshold. In this study, since our primary contribution is to develop statistical advancements
to existing risk models, we set u such that 10% of the sample are used as threshold exceedances at any
given time. This value works well in finance and insurance applications (Chavez-Demoulin et al., 2014;
Chavez-Demoulin and Embrechts, 2004).

3 Traditional GARCH-EVT Model

To apply the POT method introduced in Section 2, the observed losses must be approximately i.i.d. However,
it is well known that the returns of financial assets exhibit conditional heteroskedasticity (Engle, 1982;
Bollerslev, 1986). In other words, periods of high/low volatility tend to cluster together, causing clusters of
extreme returns. These clusters violate the assumption that observations are independent. As such, a naive
application of extreme value theory to the raw time series of negative log returns tends to produce poor
estimates of the VaR and ES (see, e.g., Chavez-Demoulin et al., 2014).

To address the statistical issues associated with raw financial returns, McNeil and Frey (2000) develop the
two-step GARCH-EVT risk model that first removes any serial dependence and conditional heteroskedasticity
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in raw log-returns using a GARCH model. The residuals from this GARCH model form an approximately
i.i.d. series. In the second stage, POT extreme value theory is used to construct a model for the upper tail
distribution of the negated standardized GARCH residuals.

We prefer to work with the 2-step GARCH-EVT model over alternative financial risk forecasting models
for three reasons. First, the performance of this model has remained competitive for financial risk manage-
ment applications since its inception (Nieto and Ruiz, 2016). Moreover, the model has even been shown
to work well in situations where the GARCH dynamics are theoretically invalid or misspecified (Jalal and
Rockinger, 2008). Second, the traditional GARCH-EVT method can easily be extended to incorporate more
complex models for the mean and variance dynamics of log-returns and contemporary advancements in ap-
plied extreme value theory. Third, GARCH type models are well-established within the industry and the
generalized Pareto extreme value distribution is used most often by risk management professionals to model
the tails of the conditional loss distribution (Basel Committee on Banking Supervision, 2006).

Formally, in the first stage, McNeil and Frey (2000) model the mean and variance dynamics of log-returns
using the following AR(1)-GARCH(1,1) process,

Yt = µ+ φ1Yt−1 + εt (10)

υ2t = ω + γ1ε
2
t−1 + ψ1υ

2
t−1 (11)

εt = υtet (12)

where et ∼ N(0, 1). In the second stage, the parameters of the generalized Pareto distribution are estimated
via Maximum Likelihood using the set of standardized residuals that exceed the chosen threshold value. Using
the 1-day ahead forecasts for the conditional mean and conditional variance from the first-stage GARCH
model, denoted by µ̂t+1 and υ̂2t+1 respectively, together with the expression for the inverse of the POT tail
estimator (7), the GARCH-EVT model computes the 1-day ahead VaR forecast at confidence level α as,

V̂ aR
(α)

t+1 = µ̂t+1 + υ̂t+1F̂
−1
Zt

(α) (13)

Similarly, using the expression for the conditional mean of the POT tail estimator (8), the GARCH-EVT
model computes the 1-day ahead ES forecast at confidence level α as,

ÊS
(α)

t+1 = µ̂t+1 + υ̂t+1E[Z|Z > F̂−1Zt
(α)] (14)

3.1 Removing Dependence Among Extreme Returns

Since the generalized Pareto distribution parameters in the POT tail estimator are estimated using a sample
of i.i.d. upper order statistics, it is important that dependence among the most extreme negative returns is
removed in the first step of the GARCH-EVT risk model. Accordingly, our first modification to the traditional
GARCH-EVT model is to use an asymmetric volatility model, namely the GJR-GARCH(1,1) model (Glosten
et al., 1993), in place of the standard GARCH(1,1) model. This decision is supported by the recent findings
of Trapin (2018), who suggest that volatility models endowed with a so-called “leverage” component are
required to properly remove dependence among extreme returns3. The AR(1)-GJR-GARCH(1,1) model
incorporates the leverage effect via the following econometric specification,

Yt = µ+ φ1Yt−1 + εt (15)

υ2t = ω + α1ε
2
t−1 + γ1ε

2
t−11(εt−1 < 0) + ψ1υ

2
t−1 (16)

εt = υtet (17)

3Alternative leveraged volatility models include the leverage HAR model and the leveraged HEAVY model. However, since
the GJR-GARCH model was shown to perform at least as good as the more complex leveraged HEAVY model in the empirical
study of Trapin (2018) and is a simple extension of the GARCH(1,1) model we prefer this approach.
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where 1(·) is the indicator function. We demonstrate empirically that the GJR-GARCH model properly
removes dependence among extreme returns in Section 5.

4 A Tail Estimator With Covariates

The POT tail estimator that is applied to the standardized residuals in the second step of the GARCH-
EVT model uses time-invariant shape and scale parameters. These parameters are estimated using only
information from a set of upper order statistics of the standardized residuals. We argue that economic
and financial covariates may provide additional important information about the likelihood and severity of
losses, thereby improving forecasts for the VaR and ES. Based upon this intuition we would like to incorporate
covariates into the model for the upper tail of the standardized residuals, that is the POT tail estimator.
One natural approach is to re-parameterize the shape and/or scale of the generalized Pareto distribution as
a function of the relevant covariates.

Let xt = (xt1, . . . , xtp) denote the p-dimensional vector of economic and financial covariates observed at
time t. We assume that the data has been standardized to zero mean and unit variance. It is common to
allow only the generalized Pareto distribution scale parameter to be time-varying (see, e.g., Davison and
Smith, 1990; Coles, 2001). A constant shape parameter is expected to help control the variance of VaR and
ES forecasts. In view of the constraint that σt > 0, we use the following log-linear model for the Generalized
Pareto distribution scale parameter,

σt = exp(ν + xTt β) (18)

where β = (β1, . . . , βp) is the coefficient vector.
Substitution of (18) into the equations outlined Section 2, yields a time-varying POT tail estimator whose

behaviour now depends on a potentially large vector of economic and financial covariatres. The log-linear
parameterization of σt belongs to the family of parametric Generalized Additive Models of Location, Scale
and Shape (GAMLSS), introduced by Rigby and Stasinopoulos (2005). The revised log-likelihood function
for the generalized Pareto distribution with time-varying scale parameter is,

˜̀(ξ, ν,β) = −Nu
Nu∑
i=1

ν + xTi β − (1 +
1

ξ
) log

(
1 +

ξzi
exp(ν + xTi β)

)
+

(19)

4.1 Incorporating `1 Regularization

So far, our discussion regarding the time-varying scale parameter for the generalized Pareto distribution
assumes that that the econometrician knows the optimal set of relevant covariates, and that this optimal set
remains constant through time. Yet, the scale of modern economic and financial databases means that the
number of potentially relevant covariates is now likely to be exceptionally large. Therefore, we argue that
ex-ante knowledge about the optimal set of covariates and their time-varying behavior is no longer feasible.

One solution could be to include the entire universe of potentially relevant covariates. This approach is
not practical for two reasons. First, the model will almost surely over-fit the training data since neither the
log-linear parameterization in (19) nor the corresponding maximum likelihood objective function guarantee
that any coefficient estimate will be zero. We demonstrate this circumstance empirically in Section 7. Second,
in cases where p > Nu, that is the number of covariates exceeds the number of upper order statistics used
for parameter estimation, standard maximum likelihood estimates cannot be obtained as the first-order
condition is rank deficient. Traditional step-wise variable selection approaches are not viable for financial
risk management, since the conditional loss distribution is time-varying and forecasts need to be updated at
a high frequency. Hence, risk managers face a variable selection problem when incorporating covariates into
risk models.
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With the aforementioned arguments in mind, we hypothesize that the best risk model uses only a small
number of potential covariates at any point in time, and that the statistical importance of covariates is time-
varying. That is, we hypothesize that the best risk model is sparse. As such, a modeling framework that
automatically performs both parameter estimation and variable selection is required. The `1 regularization
applied to the coefficient vector β performs these tasks. In the context of linear regression, `1 regularization
corresponds to the well known Lasso estimator Tibshirani (1996).The `1-regularized maximum likelihood
parameter estimates for the generalized Pareto distribution with a time-varying scale parameter are then
given by,

(ξ̂(`1), ν̂(`1), β̂(`1)) = arg min
ξ,ν,β
−˜̀(ξ, ν,β) + λ‖β‖1 (20)

where λ ≥ 0 is a hyper-parameter that defines the weight on the `1-norm penalty. If λ > 0 then the
`1-norm penalty has two effects on the solution, namely variable selection and coefficient shrinkage. First,
some coefficient estimates are shrunk to exactly zero, effectively removing the corresponding covariates from
the model.For a sufficiently large λ, all coefficient estimates are shrunk to zero and the regular time-invariant
scale parameter is recovered. Second, all non-zero coefficient estimates in the active set, that is the set of non-
zero coefficients A(`1) = {βj : βj 6= 0, j = 1, . . . , p}, are shrunk towards zero relative to their non-regularized
counterparts.

Controlling the degree of both variable selection and coefficient shrinkage using a single hyper-parameter
leaves room for improvement. Consequently, multiple extensions to the original Lasso estimator of the have
been proposed. We use the form of an extension proposed by Meinshausen (2007), known as the relaxed
Lasso, that introduces a second hyper-parameter φ ∈ (0, 1], to explicitly control the degree of coefficient
shrinkage separately to variable selection. The analogous relaxed Lasso solution in our setting is given by,

(ξ̂(relaxed), ν̂(relaxed), β̂(relaxed)) = arg min
ξ,ν,β∈A

−`(ξ, ν,β) + φλ‖β‖1 (21)

where β ∈ A corresponds to requiring that βj = 0 if βj 6∈ A(relaxed) for all j = 1, . . . , p.
When φ < 1, the degree of coefficient shrinkage is less than what is imposed by standard `1 regularization.

The relaxed Lasso is particularly flexible, since it offers a large continuum of solutions and faster convergence
rates when the number of noisy variables increases (Meinshausen, 2007). This is because traditional Lasso
regularization requires large values for λ in the presence of many noise variables, which inadvertently imposes
a large degree of shrinkage on all coefficient estimates. As such, it has been shown that the relaxed lasso
tends to perform well in both high and low signal-to-noise ratio settings (Hastie et al., 2020).

Rather than solving Equation (21) directly, we implement a simplified version used by Hastie et al. (2020).

Let β̂A(`1) be the full p-dimensional solution obtained from maximizing the standard non-regularized log-
likelihood function (19), retaining only the coefficients that would be selected by the corresponding `1 solution

β̂(`1) and replacing all remaining coefficients with zeros. The simplified solution is then,

β̂(relaxed) = φβ̂(`1) + (1− φ)β̂A(`1) (22)

We refer to the GJR-GARCH-EVT risk model that uses (ξ̂(`1), ν̂(`1)) from (20) and β̂(relaxed) from (22) as
the `1-regularized GARCH-EVT model. The simplified outlined above estimator eases the computational
burden of selecting the optimal hyper-parameters (λ, φ).

Since we are working with log-return data that are naturally heavy tailed, we impose the inequality
constraint that 0 < ξ < 1 when maximizing the likelihood. This inequality constraint also ensures the
mean of the generalized Pareto distribution is finite so that the ES can always be estimated. As starting
values for the numerical minimization routines, we set β1 = · · · = βp = 0.1 and take the best results for ξ
obtained using the generalized Pareto distribution parameter estimation methods of Hosking (1990), Zhang
and Stephens (2009) and Zhang (2010).
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4.2 Hyper-parameter Tuning

The `1 regularized maximum likelihood parameter estimates are obtained using a sample of upper order
statistics from the standardized residual series. Since this sample of order statistics are assumed to be
approximately i.i.d. we use 5-fold cross validation4 to select the value of the hyper-parameters (λ, φ). We
search for the optimal value of λ using 100 logarithmic spaced values between 0.1 and 20 and for the value
of φ using 100 equally spaced values between 0.01 and 1.

Cross-validation necessitates the definition of a loss function used to compare each candidate set of hyper-
parameters. Our goal is to select the generalized Pareto distribution that provides the best estimate for the
upper tail of standardized GJR-GARCH residuals. This distribution should then produce the most accurate
VaR and ES forecasts across a wide range of confidence levels. With this goal in mind, we compute the
root-mean-squared error loss between the estimated generalized Pareto CDF and empirical CDF over all
standardized residuals in the holdout fold.

5 Data

We backtest the VaR and ES forecasts from our `1-regularized GARCH-EVT model using a sample of 25
U.S. equities in the S&P100 index. This sample includes stocks from the financial, technology, healthcare
and energy sectors. The ticker symbols for each equity we study are listed in Table 1. For each equity
we obtain stock price data from Compustat over a sample period of 4085 trading days from 2003-09-10 to
2019-11-29.

Table 1 reports descriptive statistics for the 1-day negative log-returns of each equity we study. We
also compute two measures that characterize the behavior of extreme returns, namely the tail index and the
extremal index. The tail index quantifies heavy-tailed behavior, with Larger values for the tail index indicate
heavier upper tails. We use the non-parametric Hill estimator (Hill, 1975), applied to the standardized
residuals from a GJR-GARCH(1,1) model. A sample of 408 upper order statistics is used to estimate the
tail index for each equity in the sample, which corresponds to a threshold value set at the 90th quantile of
the standardized residual series. All equities we study exhibit considerable excess kurtosis and all estimates
of the tail index are comfortably above zero. Hence, the returns exhibit heavy tails and the constraint ξ > 0,
used in the optimization routines is well justified.

The extremal index, denoted by θ(·) ∈ [0, 1], measures the the extent to which extreme returns tend to
cluster together. When θ(·) = 1, extreme observations are independent. When θ(·) < 1, extreme returns
exhibit some degree of serial dependence5. We compute θ(·) using the “intervals” estimator of Ferro and
Segers (2003) for the raw negative log return series, the standardized residuals from a GARCH(1,1) model
and the standardized residuals from a GJR-GARCH(1,1) model using a threshold set at the 90th quantile
for each series.

The extremal index of raw negative log returns is appreciably below 1 for all equities, suggesting strong
dependence among the largest negative returns. However, the extremal index of standardized GJR-GARCH
residuals are all close to or equal to 1. The value of the extremal index for the standardized residuals from
the GARCH(1,1) model are always smaller than those from the GJR-GARCH(1,1) model for all equities
we study. As such, Table 1 demonstrates that the GJR-GARCH model does an adequate job of removing
dependence among the largest negative log returns6.

4We experimented with an information criterion based approach but found that 5-fold cross-validation unanimously selected
models which produced substantially more accurate VaR and ES forecasts.

5More specifically, Ledford and Tawn (2003) show that θ(·) < 1 implies asymptotic dependence of extreme observations for
at least 1 lag.

6The 95% confidence intervals computed using the bootstrap method of Ferro and Segers (2003) for the extremal index of
the standardized GJR-GARCH residual series all contain 1.
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To study the forecasting performance of risk models under different market conditions, we construct two
backtests. The first backtest uses a rolling 2000-day training sample beginning on 2003-09-10 to compute
VaR and ES forecasts for an out-of-sample period of 2075 days, ending on 2019-11-29. We refer to this first
backtest sample as the normal backtest, since it covers a period of normal market volatility, with only a
handful of daily returns exceeding 5% in absolute value. It is also important to backtest risk models over
periods of financial distress, as this is when accurate risk forecasts are particularly important. As such, the
second backtest uses a rolling 1000-day training sample, beginning on 2003-09-10 to generate VaR and ES
forecasts for and an out-of-sample period of 1084 days, ending on 2011-12-31. This second backtest includes
the entire Global Financial Crisis period, allowing us to study how each model performs during a period of
prolonged financial market distress. Moreover, the financial crisis backtest covers the largely unanticipated
“Black Monday” crisis, where U.S. debt was downgraded.

5.1 Description of the Economic and Financial Covariates

We use a set of 24 covariates, computed at a daily frequency, in the log-linear model for the generalized
Pareto distribution scale parameter. Table 2 provides a brief description of each covariate together with
information about the data source. We study four broad classes of covariates.

The first class of variables are idiosyncratic measures of trading activity and the market microstructure.
These covariates are computed from millisecond-level intraday trade and quote data. Multiple studies doc-
ument a relationship between stock returns and measures of intraday transaction activity (Amihud, 2002;
Brennan et al., 2012). Moreover, a growing set of literature acknowledges the bid-ask spread and the quoted
depth, derived from high frequency limit order book records, contains information about idiosyncratic volatil-
ity, as these variables reflect demand/supply pressures and the risk management behaviour of intermediaries
(Foucault et al., 2007; Budish et al., 2015). As such, it is conceivable that covariates derived from intraday
transaction data may be informative about short-term variation in extreme returns.

To the best of our knowledge, the literature has not widely considered the role of variables computed
from high-frequency intraday transaction data for risk management applications. The Trade and Quote
(TAQ) database is used to compute each measure of intraday trading activity for each equity in our sample.
The TAQ data for each equity is first filtered using the rules outlined by Holden and Jacobsen (2014).
Trade direction is inferred using the Lee and Ready algorithm (Lee and Ready, 1991). Since our focus is on
predicting future downside risk, we only include covariates related to selling activity and liquidity measures
for the bid side of the order book.

Individual equities are now associated with numerous alternative investment products, such as options
and futures derivatives contracts. Options contracts are inherently forward-looking and therefore provide
idiosyncratic information about the future expectations for a stock (Pan and Poteshman, 2006). Moreover, it
is known that informed traders transact in both stock and option markets, so information from both markets
has the potential to be relevant for understanding future stock returns (Chakravarty et al., 2004). As such,
we also include the daily put option open interest as a covariate.

The second class of covariates are measures of economic uncertainty. Pastor and Veronesi (2012) construct
a model where shocks about economic policy uncertainty affect the price of financial assets. Moreover, if
economic uncertainty affects future investment decisions, then this information should be related to excess
returns (Brogaard and Detzel, 2015). Among others, empirical support for the relationship between economic
uncertainty and asset returns is given by Antonakakis et al. (2013) and Brogaard and Detzel (2015). To
measure economic uncertainty we use the Economic Policy Uncertainty (EPU) index and the Monetary
Policy Uncertainty (MPU) index of Baker et al. (2016). Generally speaking, both indices are derived using
the the frequency of news articles that mention words associated with economic, political and monetary
uncertainty.

The third class of covariates we consider are measures of U.S. equity market volatility. To capture future
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expectations about volatility, we use the Chicago Board Options-Exchange VXO index. This index captures
the market’s 30-day expectation of future volatility for the S&P100. Data for each index is obtained from the
Federal Reserve Bank of St.Louis’s Economic Research Database (FRED). Our second measure of volatility
for the U.S. market is the news based volatility index of Baker et al. (2019). The final set of covariates are
broad measures of U.S. financial market stress and funding market liquidity. We use the TED spread, the
spread between an index of high yield non-investment grade bonds and treasury yields and smoothed U.S.
rescission probabilities computed from a Markov switching model. Data for each of these financial market
stress measures are obtained from FRED.

6 Evaluating VaR and ES Forecasts

The performance of a financial risk forecasting model is assessed by comparing the VaR and ES forecasts,
with the out-of-sample realizations of the negative log return. We use multiple statistical tests to assess
adequate levels of risk coverage together with consistent scoring functions to evaluate the performance of
VaR and ES forecasts. Each evaluation criteria is discussed briefly below.

6.1 VaR Forecast Quality Measures

A VaR violation is defined as the case where Yt,h > V aR
(α)
t,h . Using this definition, the VaR violation indicator

sequence for a prescribed level of confidence α and forecast horizon h is,

I(α) = {1(Yt,h > V aR
(α)
t,h ), t = 1, . . . , T} (23)

Tests of unconditional coverage assess whether the observed number of VaR violations matches the
expected number of violations for the prescribed level of confidence over the backtest. The first unconditional

coverage test, introduced by Christoffersen (1998), tests the null hypothesis that E[I
(α)
t ] = α, against the

2-tailed alternative using a likelihood ratio test. The test statistic is,

LRuc = −2 log[((1− α)n0αn1)/(1− κ̂)n0 κ̂n1 ] ∼ χ2
(1) (24)

where n1 =
∑T
t=1 I

(α)
t , n0 = T − n1 and κ̂ = n1/(n0 + n1).

From the perspective of a prudential regulator an incorrect level of unconditional coverage because

E[I
(α)
t ] < α is preferable to the alternative that E[I

(α)
t ] > α. This is because the former scenario en-

sures that downside risk is minimized, albeit by holding an overly conservative amount of capital to cover
potential future losses. Hence, it is important to identify specific cases where a risk model systematically
underestimates the VaR. Our second unconditional coverage test performs a one-tailed test against the alter-

native hypothesis that E[I
(α)
t ] > α using the approach introduced by Ziggel et al. (2014). The test statistic

is,

MCSuc =

T∑
t=1

I
(α)
t + ε (25)

where ε ∼ N(0, 0.001) and is used to break ties between test values. Monte-Carlo simulation is used to
obtain the distribution of the test statistic under the null hypothesis.

The following two statistical tests assess whether VaR violations are independent and hence whether or
not a risk model provides a correct level of coverage when conditioned on time. Let πij and nij denote
the probability and number of observations corresponding to a transition for the VaR violation indicator
sequence from value i on day t− 1 to value j on day t. Christoffersen (1998) tests the null hypothesis that
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π01 = π11, that is that past VaR violations do not contain information about current and future violations.
The transition probabilities of interest are estimated as,

π̂01 =
n01

n00 + n01
, π̂11 =

n11
n10 + n11

(26)

Defining π = (n01 + n11)/(n00 + n01 + n10 + n11), the likelihood ratio test statistic is,

LRind = −2 log[((1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11 )/((1− π)n00+n10πn01+n11)] ∼ χ2
(1) (27)

We define a matrix A to hold 4-lags of the VaR violation indicator sequence and 4 lags of the negative
log return at each out of sample forecast day over the backtest. Further, let the de-meaned VaR violation
indicator sequence be defined as Ĩ = {I(α) − α}. The Dynamic Quantile test, introduced by Engle and
Manganelli (2004), evaluates the null hypothesis that Ĩ is linearly unrelated to the information in A using
the following test statistic,

DQ =
ĨTA(ATA)−1AT Ĩ

rα(1− α)
∼ χ2

(r) (28)

where r = rank(A).
Finally, the unconditional coverage and independence tests of Christoffersen (1998) can be combined to

assess the so-called conditional coverage of a risk model. The likelihood ratio test statistic for the conditional
coverage test is,

LRcc = (LRuc + LRind) ∼ χ2
(2) (29)

6.2 ES Forecast Quality Measures

We implement three unconditional risk level coverage tests for the ES forecasts that make no parametric
assumptions about the tails of conditional loss distribution. First, we use the unconditional converge test
introduced by McNeil and Frey (2000), who define an exceedance residual sequence as,{

yt+h − ES(α)
t+h

V aR
(α)
t+h

}
, yt+h > V aRt+h

Since the ES(α) estimates the mean of the truncated tail distribution above the corresponding V aR(α)

level, McNeil and Frey (2000) test the null hypothesis that the exceedance residual sequence has a mean of
zero, against the alternative hypothesis that the the mean is greater than zero. This alternative hypothesis
corresponds to the situation where the ES is systematically underestimated. To account for the presence of
any dependence between consecutive ES forecasts we use the circular block bootstrap (Jalal and Rockinger,
2008). The optimal block length is selected following Patton et al. (2009).

The second test of the unconditional coverage for ES forecasts was introduced by Acerbi and Szekely
(2014) and is derived from re-writing the expected shortfall as the following unconditional expectation,

ES
(α)
t =E

[
ytI

(α)
t

α

]

0 =E

[
ytI

(α)
t

αES
(α)
t

]
− 1

which suggests the following test statistic,

ASuc =
1

Tα

T∑
t=1

ytI
(α)
t

ES
(α)
t

− 1 (30)
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The null hypothesis states that ASuc = 0, and hence ES forecasts correctly estimate the mean of the
truncated tail distribution. The alternative hypothesis states that ASuc > 0, that is, the ES is systematically
underestimated. Acerbi and Szekely (2014) recommend using a Student’s-t distribution with 3 degrees of
freedom to approximate the distribution of the test statistic.

Under the upcoming Basel III regulations, backtesting the ES is still based upon an assessment of the
VaR forecasts produced by the same forecasting model (Basel Committee on Banking Supervision, 2016).
Acerbi and Tasche (2002), showed that the ES is equivalent to the average of all VaR estimates at and beyond
the α-quantile of the conditional loss distribution. Using this equivalence, Kratz et al. (2018) propose to
backtest ES forecasts by simultaneously testing the unconditional coverage rates of multiple VaR forecasts.
Specifically, the authors approximate the ES using K different VaR estimates at equally spaced and increasing
levels of confidence, that is,

ES(α) ≈ 1

K

K∑
i=1

V aR(vi), vi = α+
i− 1

K
(1− α) (31)

Let Vt =
∑K
i=1 I

(vi)
t , be the count of different VaR levels violated at time t, and define Oi =

∑T
t=1 1(Vt =

i), i = 1, . . . ,K. Then, the vector (O1, . . . , OK) follows a Multinomial distribution. To test the null hypoth-
esis of correct unconditional coverage at all VaR levels simultaneously, against the alternative hypothesis of
incorrect unconditional coverage for at least one VaR level. Kratz et al. (2018) propose the following test
statistic,

SK = c

K∑
i=0

(Oi+1 − T (vi+1 − vj))2

T (vi+1 − vi)
∼ χ2

w (32)

where w = cE(SK), c = E(SK)/var(SK) and

E(SK) = K, var(SK) = 2K − K2 + 4K + 1

T
+

1

T

K∑
i=1

1

vi+1 − vi

We set K = 4 as recommended by Kratz et al. (2018).

6.3 Scoring Functions

In addition to assessing the quality of VaR and ES forecasts using tests of risk coverage and independence,
Nolde et al. (2017) advocate for the use of consistent scoring functions to compare forecasts. In expectation,
a consistent scoring function is minimized by issuing the correct forecast of a given risk measure. Broadly
speaking, a consistent scoring function ensures that, on average, a misspecified risk model will not outperform
a correctly specified risk model, facilitating an unbiased comparison of forecasting models 7.

Model comparisons based upon a scoring function necessitate that the risk measure being forecast is
elicitable (Gneiting, 2011). The VaR is elicitable. By itself, the ES is not elicitable but is instead jointly
elicitable with the VaR for the same level of confidence. That is the 2-dimensional vector (V aR(α), ES(α))
is elicitable. For the VaR we use well known asymmetric piecewise linear scoring function (Gneiting, 2011),

S(V aR
(α)
t,h , yt,h, α) = (1(V aR

(α)
t,h ≥ yt,h)− α)(V aR

(α)
t,h − yt,h) (33)

We use the so-called (1/2)-homogeneous scoring function outlined by Nolde et al. (2017) to jointly evaluate

7For a more detailed discussion of consistent scoring functions see Nolde et al. (2017) and Gneiting (2011).
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the VaR and ES,

S(V aR
(α)
t,h , ES

(α)
t,h , yt,h, α) = 1(yt,h > V aR

(α)
t,h )

y − V aR(α)
t,h

2
√
ES

(α)
t,h

+ (1− α)
V aR

(α)
t,h + ES

(α)
t,h

2
√
ES

(α)
t,h

(34)

The value of these scoring functions are averaged over the out-of-sample forecast period and scaled by
1/(1− α) to produce a single summary value.

7 Out-of-Sample Forecast Performance

For each of the two backtests, we compute VaR and ES forecasts on a rolling basis, so that all information in
the training sample up to and including time t is used to generate a VaR and ES forecast for time t+h. We
consider VaR forecasts for α ∈ {0.975, 0.99, 0.995} and ES forecasts for α ∈ {0.975, 0.99}, because these are
the most important levels of confidence in practice8. For each aforementioned level of confidence, we consider
VaR and ES forecasts for h ∈ {1, 10}. For each day in the backtests, we re-estimate the optimal values of
the two hyper-parameters for the `1-regularized GARCH-EVT model (λ, φ), using 5-fold cross-validation
applied to the current rolling training sample.

The principle benchmark forecasting model is the traditional GARCH-EVT model, implemented exactly
as proposed by McNeil and Frey (2000). To demonstrate our hypothesized need for variable selection and
shrinkage, the second benchmark risk model is a non-regularized GARCH-EVT model that includes all
covariates but does not use `1 regularization. Since GARCH type risk models are exceptionally popular
in the literature and in practice, our third benchmark risk model is a GJR-GARCH(1,1) model with a
students-t distribution for the errors. Finally, we implement three popular risk models from prior literature,
namely, the Hawkes POT model (Chavez-Demoulin et al., 2005; Chavez-Demoulin and McGill, 2012), the
CaViaR model (Engle and Manganelli, 2004), and the CARE model (Taylor, 2008). Details regarding the
implementation of these three models are discussed in Appendix A

Each of the forecast results tables presented in this section report the number of times each null hypothesis
was rejected at the 5% level for the statistical tests used to evaluate VaR/ES forecasts criteria discussed in
Section 6.1 and 6.2. We also report the total number of rejections across all statistical tests as a summary
measure of forecast quality. The final column of each table reports the mean value of the VaR and the joint
VaR/ES scoring function scaled by 1/(1 − α). For all forecast performance criteria reported in the tables
smaller values indicate better forecasting performance.

The total rejection count and/or the average value of the scoring functions are larger, and in most
cases considerably larger, for VaR and ES forecasts produced by the non-regularized GARCH-EVT model,
compared to the `1-regularized model. This result demonstrates that variable selection mechanisms iare
essential to produce reasonable risk forecasts when covariates are incorporated into the GARCH-EVT model.
On average, we find that the active set of the `1-regularized GARCH-EVT model is empty on approximately
44% of days in both the normal and financial crisis backtests. That is, almost half of the time the best
GARCH-EVT risk model uses a constant scale parameter. The average size of the active set in any given
equity at any given time is 5 in the normal backtest and 6 in the financial crisis backtest. Hence, only
a handfull of our covariates are selected by the `1-regularized GARCH-EVT model at any point in time.
Together, these statistics support our hypotheses that the best risk model is sparse and that the predictive
importance of covariates is time-varying.

8The multinomial test of unconditional coverage for ES forecasts also requires us to compute VaR forecasts for α ∈
{0.9812, 0.9925, 0.9875, 0.9936, 0.9975}. These VaR forecasts are used solely to backtest the ES(0.975) and ES(0.99) forecasts.
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7.1 1-Day Ahead Forecasts

Table 3 reports the 1-day ahead VaR forecast results over the normal backtest. The 1-day ahead VaR
forecasts from the `1-regularized GARCH-EVT model are associated with the smallest number of total
rejections at the α = 0.99 level of confidence, which is the prescribed level of confidence set by regulators.
Moreover, the `1-regularized GARCH-EVT model produces 1-day ahead VaR forecasts that are associated
with a lower total number of rejections for the α = 0.975 and the α = 0.99 levels, when compared to the
traditional GARCH-EVT model. In aggregate across all three levels of confidence, the 1-day ahead VaR
forecasts from the `1-regularized GARCH-EVT model are associated with 28 rejections, the smallest value
for all benchmark models we consider.

The 1-day ahead VaR forecasts from the traditional GARCH-EVT model are associated with a total of 46
rejections. However, the mean value of the VaR scoring function for the `1-regularized GARCH-EVT model
is marginally larger then that of the traditional GARCH-EVT model. The MCSuc statistic shows that
neither of the GARCH-EVT risk models systematically underestimate risk over the normal backtest. Taken
together, Table 3 demonstrates that the `1-regularized GARCH-EVT model is an exceptionally competitive
extension of the GARCH-EVT model during periods of normal market volatility.

With the exception of the non-regularized GARCH-EVT model, the Hawkes POT model is associated
with the largest total number of rejections across all levels of confidence. The VaR forecasts from the
Hawkes POT model generally have acceptable levels of unconditional coverage and do not systematically
underestimate the VaR according to the MCSuc statistic. However, VaR violations from the Hawkes POT
model often violate the tests of independence, suggesting that the Hawkes POT model does not provide
correct levels of coverage when conditioned on time. The GJR-GARCH model with student’s-t errors is
always associated with the smallest value of the scoring function and performs well in terms of the total
number of rejections at the α = 0.975 and α = 0.99 levels.

Table 4 reports the 1-day ahead ES forecast results over the normal backtest. The 1-day ahead ES
forecasts produced by the `1-regularized GARCH-EVT risk model marginally underperform the 1-day ahead
ES forecasts from the traditional GARCH-EVT risk in terms of the total number of rejections at either level
of confidence. The higher number of rejections for the bootstrap test of McNeil and Frey (2000), suggests
that the `1-regularized GARCH-EVT risk model underestimates the ES more often than the traditional
GARCH-EVT risk model during periods of normal market volatility. However, the mean value of joint VaR
and ES scoring function for the `1-regularized GARCH-EVT model and the traditional GARCH-EVT model
are approximately equal at the α = 0.975 level.

The GJR-GARCH model generate 1-day ahead ES forecasts that are associated with the smallest number
of total rejections at both levels of confidence. The mean value of the joint VaR and ES scoring function for
the `1-regularized GARCH-EVT model and the traditional GARCH-EVT model are smaller than competing
models across both levels of confidence. Interestingly, despite the small number of total rejections, the value
of the average scoring function for the GJR-GARCH model is considerably higher than the average scoring
function values for all other risk models. This result may suggest that the GJR-GARCH model tends to
overestimate the ES during periods of normal market volatility.

Table 5 reports the 1-day ahead VaR forecast results over the financial crisis backtest. We find that the
`1-regularized GARCH-EVT risk model outperforms competing benchmark models in terms of the number of
total rejections for the α = 0.975 and α = 0.99 levels. In aggregate, across the three levels of confidence, 1-day
ahead VaR forecasts from the `1-regularized GARCH-EVT model are associated with only 37 rejections while
the 1-day ahead VaR forecasts from the next best model, the traditional GARCH-EVT model, are associated
with 51 rejections. The mean value of the VaR scoring function for the `1-regularized GARCH-EVT model
is lower than that of the traditional GARCH-EVT model at all three levels of confidence.

The 1-day ahead VaR forecasts from the CaViaR, CARE, Hawkes POT and GJR-GARCH Student’s-t
model are inadequate over the financial crisis backtest. The CaViaR and CARE models produce the largest
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number of rejections across all levels of confidence and do not provide correct levels of unconditional coverage
in the majority of equities. The Hawkes POT model again provides acceptable levels of unconditional risk
coverage but fails to satisfy tests for the independence of VaR violations. The GJR-GARCH model with
students-t errors is associated with a higher aggregate number of rejections and underestimates the 1-day
ahead VaR more often than either of the GARCH-EVT models. Together, these results demonstrate that risk
models which use extreme value distributions are particularly effective during periods of financial distress.

Table 6 reports the 1-day ahead ES forecast results over the financial crisis backtest. We find that the
1-day ahead ES forecasts from the `1-regularized GARCH-EVT model are competitive to those from the
traditional GARCH-EVT model. At the α = 0.975 level, the prescribed level of confidence set by regulators,
the `1-regularized GARCH-EVT model marginally outperforms the traditional GARCH-EVT model in terms
of both the total rejection count, and the mean value of the joint VaR and ES scoring function. The 1-day
ahead ES forecasts from both the `1-regularized GARCH-EVT model and the traditional GARCH EVT
based risk models perform best over the financial crisis backtest.

The 1-day ahead ES forecasts from the CARE model and Hawkes POT model are associated with the
largest number of rejections in the financial crisis backtest. Hence, we find that conditional auto-regressive
risk models do not accurately forecast risk during periods of financial market stress. Interestingly, across
both backtests and both levels of confidence, we only observe a single rejection for the ACUC test. This
result suggests that the direct test for unconditional coverage test introduced by Acerbi and Szekely (2014)
may not adequately distinguish between effective risk models.

In summary, we demonstrate that financial and economic covariates have the potential to improve short
term financial risk forecasts if incorporated via variable selection mechanisms, such as `1 regularization. The
addition of covariates routinely improves forecasts of the 1-day ahead VaR from the the traditional GARCH-
EVT model. These improvements in VaR forecasts are particularly evident during periods of financial market
stress and at the α = 0.99 level of confidence. The ES forecasts issued by the `1-regularized GARCH-EVT
model are competitive with those produced by the traditional GARCH-EVT model over the financial crisis
backtest, particularly at the α = 0.975 level that is prescribed by regulators.

7.2 10-Day Ahead Forecasts

To generate 10-day ahead VaR and ES forecasts, we rely on the widely used “square-root-of-time” scaling
rule9. Table A.0.3 reports the 10-day ahead VaR forecast results over the normal backtest and the financial
crisis backtest. We only focus on the results for unconditional coverage tests when studying 10-day ahead
risk forecasts since all risk models reject tests of independence and conditional coverage due to the long term
nature of the forecast.

In aggregate, we find that the 10-day ahead VaR forecasts from the `1-regularized GARCH-EVT model
are associated with a higher number of total rejections and higher value of the mean VaR scoring function
when compared to the traditional GARCH-EVT model over the normal backtest at all three levels of con-
fidence. Over the financial crisis backtest, the `1-regularized GARCH-EVT model marginally outperforms
the traditional GARCH-EVT model at the α = 0.99 level.

Table 9 reports the 10-day ahead ES forecast results over the normal backtest and the financial crisis
backtest. We find that the 1-day ahead ES forecasts produced by the `1-regularized GARCH-EVT model do
not outperform those from the traditional GARCH-EVT model over the normal backtest. Over the financial
crisis backtest, the 1-day ahead ES forecasts from the `1-regularized GARCH-EVT model are associated
with a smaller number of rejections than those from the traditional GARCH-EVT model at the α = 0.975
level. The mean value of the joint VaR and ES scoring functions for the `1-regularized GARCH-EVT model

9We also examine the performance of 10-day ahead risk forecasts generated using the simulation approach of McNeil and
Frey (2000) for the GARCH type models but find that this approach tends to produce inferior forecasts.
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and the traditional GARCH-EVT model are approximately equivalent and are smaller than those of all other
benchmark models.

In summary, the `1-regularized GARCH-EVT model produces 10-day ahead VaR and ES forecasts that
generally do not outperform the forecasts from the traditional GARCH-EVT model. As such, we conclude
that information from our set of economic and financial information is most valuable for short term 1-day
ahead risk forecasting.

8 When are Covariates Most Valuable?

We have shown that `1-regularized GARCH-EVT model can produce competitive 1-day ahead VaR and ES
forecasts, particularly over the financial crisis backtest. As such, we now investigate precisely when economic
and financial covariates are most valuable for financial risk forecasting. We also study how the size and
predictive duration of the active coefficient set changes during the periods where covariates are particularly
useful. This analysis facilitates a deeper understanding of variable selection and shrinkage mechanisms for
financial risk forecasting.

Figure 1 plots the difference between the VaR scoring function and the joint VaR and ES scoring function
for 1-day ahead forecasts from the `1-regularized GARCH-EVT model and the traditional GARCH-EVT
model. We study the α = 0.99 level for VaR forecasts and the α = 0.975 level for ES forecasts as these are
the most important levels of confidence in practice. A negative difference implies that forecasts from the
`1-regularized GARCH-EVT model are more accurate than those from the traditional GARCH-EVT model.
Two notable financial market crisis events are shaded. The first crisis event is the Global Financial Crisis.
The second crisis event is a 10-day period centered around the “Black Monday” market crash on 8th August,
2011 when U.S. debt was downgraded from AAA to AA+. We find that all of the largest negative differences
in the VaR scoring function and the joint VaR and ES scoring function occur within the two shaded market
crisis events. The mean difference in both scoring function values is negative in the shaded regions. Figure
1 therefore suggests that the `1-regularized GARCH-EVT model uses exogenous economic and financial
information to generate more accurate risk forecasts during financial crisis events, when accurate financial
risk forecasts are most valuable.

If covariates are particularly valuable during periods of financial distress, as indicated above, then it
is informative to study temporal dynamics in the behaviour of the active coefficient set that is selected
by the `1-regularized GARCH-EVT model during these periods. Accordingly, we estimate two generalized
linear models. The first model studies the size of the active coefficient set using Poisson regression. The
second model studies the predictive duration of the typical covariate using Weibull regression. The predictive
duration of a covariate is defined as the number of consecutive days that a covariate remains in the active
set at each out-of-sample forecast day10. Predictive durations are averaged over all selected covariates at
each date.

In both regression models we include three independent variables. The first independent variable is an
indicator that takes the value of 1 for all observations between 1st July, 2008 and 30th July, 2009, the global
financial crisis period, and 0 otherwise. This indicator variable identifies a period of prolonged financial
market distress. The second independent variable of interest is an indicator that takes the value of 1 for all
observations between 28th July, 2011 and 18th August, 2011, a 10-day period centered around the “Black
Monday” market crash and zero otherwise. This indicator variable identifies a short-term market crash

10For example, if sell volume is used to make a forecast at date 2008-06-01 but is not used to make a risk forecast at date
2008-06-02 then we say that sell volume had a predictive duration of 1 for the date 2008-06-01. On the other hand, if sell
volume is used to make a risk forecast at date 2008-06-01 and is used to make a risk forecast at date 2008-06-02, 2008-06-03
and 2008-06-04, then we say that sell volume had a predictive duration of 4 for the date 2008-06-01. The predictive duration
is effectively a survival time, where the death event occurs when the covariate drops out of the active set of the `1-regularized
GARCH-EVT model at a future date.
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Figure 1: Time Series Difference between scoring functions for 1-day ahead forecasts for the `1-regularized GARCH-
EVT model and the traditional GARCH-EVT model. The first grey shaded region covers the Global Financial Crisis
period. The second grey shaded region covers a 10-day period before and after the “Black Monday” crash on 8th
August, 2011.

event. The third independent variable of interest is an indicator variable that takes the value of 1 if the
1-day ahead variance forecast from the GJR-GARCH(1,1) model is above the median 1-day ahead variance
forecast over the entire financial crisis backtest and zero otherwise. We include all independent variables
simultaneously in each regression model.

Table 10 reports the coefficient estimates from the two aforementioned regression models. We find that
both the size of the active coefficient set and the predictive duration of the typical covariate are larger during
the global financial crisis period. That is, the `1-regularized GARCH-EVT model uses more covariates
over a longer consecutive forecasting period when financial markets are in distress. This result provides
further evidence that the set of economic and financial variables we consider in this study are most valuable
during times of prolonged financial distress. Interestingly, the `1-regularized GARCH-EVT model uses
fewer covariates and for a shorter predictive duration during the period surrounding the “Black Monday”
market crash event. These differences in the behaviour of the active coefficient set further highlight the
importance of implementing adaptive variable selection mechanisms into financial risk forecasting models
that use covariates.
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9 Analysis of Estimated the Coefficients

The `1-regularized GARCH-EVT model allows us to draw inference about the relationship between each
covariate and the likelihood and severity of short-term downside risk. These relationship can be used to
inform the construction of future risk models and to design more comprehensive stress testing scenarios.
Table 11 reports the mean regularized coefficient estimate, mean selection frequency and mean predictive
duration for each covariate we study over the normal backtest and the financial crisis backtest. We find that
mean selection frequency and the mean predictive duration of covariates is almost always higher during the
financial crisis backtest. This finding is consistent with the conclusion from Section 8, that our chosen set
of covariates are particularly useful for financial risk forecasting during periods of financial market distress.

Sell volume has the largest positive coefficient estimate, highest selection frequency and longest predictive
duration across both backtests. As such, sell volume is the single most important covariate we study. We
find that higher daily sell volume is associated with a higher value of the generalized Pareto distribution scale
parameter and therefore a higher likelihood of observing extreme future losses. When sell volume is selected
by the `1-regularized GARCH-EVT model the variable typically remains in the active coefficient set for the
following three days. Total trade volume after market hours market is also selected comparatively more often
than other covariates and is positively associated with the likelihood and severity of short-term downside
risk. Hence, we observe that measures of daily transaction activity are particularly useful for financial risk
forecasting.

Both quote and trade based measures of high frequency intraday volatility are positively associated
with the generalized Pareto distribution scale parameter and are selected comparatively often. The mean
coefficient estimates for both of these covariates are considerably larger over the financial crisis backtest.
Interestingly, monetary policy uncertainty is considered to be more important for risk forecasting during the
financial crisis backtest while economic policy uncertainty is selected more often over the normal backtest.

With the exception of sell volume and the two measures of intraday volatility, all other covariates have
a reasonably similar mean selection frequency and predictive duration. Importantly, we find that the mean
predictive duration of most covariates is below 2, suggesting that the importance of most economic and
financial covariates we study is highly time-varying and depends on prevailing market conditions. This
finding support our hypothesis that knowledge surrounding the optimal covariate set is difficult to establish
ex-ante.

10 Conclusion

Existing financial risk forecasting models typically use the historical returns of the financial asset or invest-
ment portfolio, failing to consider the wealth of economic and financial data that is being recorded at a high
frequency. In this study, we augment the second step of the traditional GARCH-EVT risk model, first intro-
duced by McNeil and Frey (2000), to incorporate economic and financial covariates. The generalized Pareto
distribution scale is re-parameterized as a log-linear function of covariates. However, we hypothesize that the
best risk model only uses a small number of all possible covariates at any given time, and that the statistical
importance of covariates is time-varying. Accordingly, we incorporate a two hyper-parameter variant of `1
regularization into the maximum likelihood objective function of the generalized Pareto distribution. This
revised financial risk forecasting model, which we refer to as the `1-regularized GARCH-EVT model, now
jointly performs parameter estimation together with variable selection and adaptive coefficient shrinkage.

During periods of normal market volatility, we find that the VaR forecasts from the `1-regularized
GARCH-EVT model are exceptionally competitive with those generated from the traditional GARCH-EVT
model as well as other popular benchmark risk model from the literature. We further demonstrate that
1-day ahead VaR and ES forecasts from the `1-regularized GARCH-EVT model can be substantially more
accurate during periods of financial market distress, particularly at the levels of confidence prescribed by
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regulators. The largest gains in forecast accuracy over the traditional GARCH-EVT model occur during the
Global Financial Crisis period and around the “Black Monday” market crash on 8th August, 2011. Hence,
the `1-regularized GARCH-EVT model generates accurate risk forecasts when they are needed the most.

To demonstrate the need for variable selection mechanisms, we first show that a GARCH-EVT model
without `1 regularization produces inadequate risk forecasts. We then illustrate that the active set of
covariates used by the `1-regularized GARCH-EVT model is sparse and that covariates in this set typically
have short predictive durations. Amongst the covariates we study, only daily sell volume could be considered
to be a systematically important predictor of future financial risk. However, the relationships we identify
between our chosen set of covariates and the likelihood and severity of downside risk may inform the design
of future financial forecasting models and realistic scenarios for stress testing.

Rather than designing a novel risk model from the ground up, this study contributes to the risk manage-
ment literature by augmenting the popular GARCH-EVT model for use in modern big data environments.
The augmented risk model exploits the richness of economic and financial data to leverage improvements
in forecast accuracy, particularly when financial markets are distressed. Recently, a growing branch of lit-
erature studies the relationship between exogenous covariates and extreme losses (Hambuckers et al., 2018;
Embrechts et al., 2018). We contribute by examining a unique set of covariates, many of which are derived
from millisecond level intraday data. Furthermore, we use a regularized forecasting model to demonstrate
how and when certain covariates are related to extreme downside risk. Our results are of particular interest
to prudential regulators, but also practitioners given the relative simplicity and naturality of our regularized
forecasting model.

A Benchmark Risk Models

Below we briefly describe the background and implementation of the Hawkes POT, CaViaR, and CARE risk
models that are used as benchmarks in the backtests. All models are implemented using Python 3.7.

A.0.1 Hawkes POT

Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012) develop a point process risk model,
known as the Hawkes POT model. Negative log returns that exceed the threshold u are considered to be
realizations of a marked point process, characterized by the exceedance time Ti, and the exceedance size Zi.
The history of the event process (ti, zi), i ∈ Z, is denoted byHt. To account for conditional heteroskedasticity
and serial dependence among extreme negative log returns the marked point process is assumed to belong
to the general class of linearly self-exciting Hawkes process. The conditional intensity of a marked point
process is,

λ(t, y|Ht) = λg(t|Ht)f(z|Ht) (35)

where λg(t|Ht) is the conditional intensity of the ground process which measures the occurrence rate of
negative log returns exceeding the threshold and f(z|Ht) is the density of the marks conditional on the
history of the process. The conditional intensity of the ground process is parameterized as self-exciting,

λg(t|Ht) = µ+ φ
∑
j:tj<t

exp(−γ(t− tj)) (36)

The distribution of the marks is assumed to be generalized Pareto. However, the scale parameter of the
Generalized Pareto distribution is modelled as a linear function of time using the same self-exciting dynamics
as in (36), that is,

σ(t|Ht) = β0 + β1
∑
j:tt<t

exp(κ(t− tj)) (37)
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The generalized Pareto distribution for the marks then has the conditional probability density function,

f(z|Ht) = gξ,σ(t|Ht)(z) =
1

σ(t|Ht)

(
1 +

ξz

σ(t|Ht)

)−(1/ξ+1)

(38)

Via these dynamics, clusters of extreme returns cause successively larger increases in the generalized Pareto
distribution scale parameter and the conditional intensity of the ground process, before decaying back to
their respective baseline rates.

Parameter estimation is performed by maximizing the log-likelihood function of the Hawkes POT model,
given in Herrera et al. (2017) for example, subject to the constraint that µ, φ, β0, β1, γ, κ, ξ > 0. We use the
same set of starting values in the numerical optimization routine as Herrera et al. (2017). The 1-day ahead
VaR and ES forecasts from the Hawkes POT model can be obtained by substituting (36) and (37) into the
expressions from Section 2, that is,

ˆV aR
(α)

t+1 = u+
σ̂t(t|Ht)

ξ̂

( (1− α)

λ̂g(t|Ht)

)−ξ̂
− 1

 (39)

ÊS
(α)

t+1 =
ˆV aR

(α)

t+1 + σ̂t(t|Ht)− ξ̂u
1− ξ̂

(40)

A.0.2 CaViaR

The conditional autoregressive Value-at-Risk (CaViaR) model of Engle and Manganelli (2004), uses quan-
tile regression to estimate the VaR. We focus on the symmetric absolute value CaViaR model (CaViaR
henceforth) since this is the most widely used within the literature. The CaViaR model is,

Q
(α)
t = β0 + β1Q

(α)
t−1 + β2|ỹt−1| (41)

where Q
(α)
t is the α-quantile of the underlying loss distribution and ỹ is the de-meaned log return series.

The parameters of the CaViaR model are the solution to,

(β̂0, β̂1, β̂2) = arg min
β0,β1,β2

T∑
t=1

(α− 1(ỹt < Qαt ))(ỹt −Qαt ) (42)

To set the starting parameters for the numerical minimization routine we follow the approach taken by
Taylor (2008). In the first moving window of the backtest we use 105 different parameter vectors of uniformly
distributed random numbers in the half-open interval [0,1) as starting values to multiple different solutions.
The 10 vectors of starting values that produced the smallest value of the quantile regression objective
function (42), are retained. These solutions obtained from the 10 best vectors of starting values are then
re-used as the initial values in the numerical minimization routine and we select the single parameter vector
which minimizes the quantile regression objective function as the final set of starting parameters. For all
subsequent moving windows in the backtest we use the optimal parameter values from the previous moving
window as starting values. The CaViaR model can only be used to estimate the VaR.

A.0.3 CARE

Taylor (2008) propose the conditional autoregressive expectile (CARE) model which uses the conditional
τ -expectile as an estimator of the conditional α-quantile. Importantly, this model estimates both the VaR
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and ES within a conditional autoregressive framework. The τ -expectile is defined as the value m which
minimizes,

E[|τ − 1(y < m)|(y −m)2]

The following autoregressive symmetric absolute value model is proposed to describe the dynamics of the

conditional τ -expectile, denoted e
(τ)
t ,

e
(τ)
t = β0 + β1e

(τ)
t−1 + β2|ỹt−1| (43)

Parameters of this conditional expectile model are estimated using asymmetric least squares,

(β̂0, β̂1, β̂2) = arg min
β0,β1,β2

T∑
t=1

|τ − 1(yt < e
(τ)
t )|(yt − e(τ)t )2 (44)

Since, for each τ -expectile there exists a corresponding α-quantile (Efron, 1991), it is possible to use this
expectile based model to estimate the VaR. Taylor (2008) propose to find the τ -expectile which is equivalent
to the α-quantile in terms of the proportion of in-sample observations are below the τ -expectile, and use this
to estimate the V aR(α) via the conditional symmetric absolute value model given in (43).

Taylor (2008) derive the following relationship11 between the τ -expectile and the ES,

ES(α) =

(
1 +

τ

(1− 2τ)α

)
e
(τ)
t (45)

This expression suggests that the ES can be estimated using the following auto-regressive symmetric absolute
value model

ES
(α)
t = γ0 + γ1ES

(α)
t−1,h + γ2|ỹt−1| (46)

where γ1 = β1 and γi = (1 +
τ

(1− 2τ)α
)βi for i ∈ {0, 2}. The procedure used to find the starting values for

the asymmetric least squares objective is the same as that used for the CaViaR model from Section A.0.2.

11See Taylor (2008) for a detailed derivation.
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Table 2: Description of Economic and Financial Covariates
The table provides a short description of each covariate included in the `1-regularized GARCH-EVT risk model. The
data source for each covariate is also provided.

Name Description Source

sell vol Sell volume Millisecond TAQ
total vol a Trade volume after market hours Millisecond TAQ
quoted spread Time-weighted Quoted Spread Millisecond TAQ
best bid depth Time-weighted best bid depth Millisecond TAQ
effective spread Share-weighted Effective Spread Millisecond TAQ
ivol trade Trade-based intraday volatility Millisecond TAQ
ivol quote NBBO Quote-based intraday volatility Millisecond TAQ
abs volume imbalance Absolute trade imbalance Millisecond TAQ
signed volume imbalance Signed trade imbalance Millisecond TAQ
kyles lambda Kyles Lambda (price impact coefficient) Millisecond TAQ
herfindahl index Herfindahl Index Millisecond TAQ
var ratio 1 Variance Ratio (15- second/3*5-second) Millisecond TAQ
var ratio 2 Variance Ratio (1-min/4*15- second) Millisecond TAQ
var ratio 3 Variance Ratio (5-min/5*1- min) Millisecond TAQ
var ratio 4 Variance Ratio (15-min/3*5- min) Millisecond TAQ
var ratio 5 Variance Ratio (30-min/2*15- min) Millisecond TAQ
open interest Put option open interest OptionMetrics
EPU Economic policy uncertianty index https://www.policyuncertainty.com
EMV News based market volatility index https://www.policyuncertainty.com
MPU Monetary policy uncertianty index https://www.policyuncertainty.com
TED spread TED spread FRED
US high yield spread ICE BofA High Yield bond spread FRED
recssion prob Smoothed recession probabilities FRED
CBOE vol idx CBOE Volatility Index FRED

24

Electronic copy available at: https://ssrn.com/abstract=3891909



Table 3: Normal Backtest 1-day Ahead VaR Forecast Results
The table reports the number of times the null hypothesis was rejected at the 5% level for each of the statistical tests
used to evaluate 1-day ahead VaR forecasts over the normal backtest. Definitions of each statistical test are provided
in Section 6.1. The column Total is the sum of rejection counts across all statistical tests. The final column reports
the mean value of the VaR scoring function (33), scaled by 1/(1 − α). Smaller numbers indicate better forecasts.

Panel A: α = 0.975

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 6 0 2 7 5 20 3.7213
Non-Regularized GARCH-EVT 1 5 2 3 9 20 4.1439
Traditonal GARCH-EVT 5 0 5 9 7 26 3.7190
Hawkes POT 7 0 11 9 11 38 3.7578
Symmetric Absolute Value CaViaR 1 2 4 4 10 21 3.7196
Symmetric Absolute Value CARE 2 1 7 7 12 29 3.7494
GJR-GARCH Student’s t 3 0 2 3 5 13 3.6733

Panel B: α = 0.99

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 0 0 1 1 1 3 4.8313
Non-Regularized GARCH-EVT 11 16 2 11 15 55 5.6862
Traditonal GARCH-EVT 1 0 1 2 2 6 4.7890
Hawkes POT 1 0 5 1 7 14 4.8935
Symmetric Absolute Value CaViaR 1 4 2 3 6 16 4.7900
Symmetric Absolute Value CARE 2 1 2 3 5 13 4.8148
GJR-GARCH Student’s t 0 0 2 1 2 5 4.7374

Panel C: α = 0.995

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 0 2 1 0 3 6 5.8219
Non-Regularized GARCH-EVT 21 23 0 18 21 83 7.2204
Traditonal GARCH-EVT 0 0 1 0 3 4 5.7456
Hawkes POT 0 1 6 1 12 20 5.9231
Symmetric Absolute Value CaViaR 1 3 2 0 9 15 5.7901
Symmetric Absolute Value CARE 0 1 4 1 9 15 5.8311
GJR-GARCH Student’s t 4 4 1 3 6 18 5.6989

25

Electronic copy available at: https://ssrn.com/abstract=3891909



Table 4: Normal Backtest 1-day Ahead ES Forecast Results
The table reports the number of times the null hypothesis was rejected at the 5% level for each of the statistical tests
used to evaluate 1-day ahead ES forecasts over the normal backtest. Definitions of each statistical test are provided
in Section 6.2. The column Total is the sum of rejection counts across all statistical tests. The final column reports
the avermean value of the joint VaR and ES scoring function (34), scaled by 1/(1 − α). Smaller numbers indicate
better forecasts.

Panel A: α = 0.975

Model McNeil (2000) Bootstrap ACUC S4 Total S(V aR,ES, y)

`1-Regularized GARCH-EVT 7 0 3 10 1.9049
Non-Regularized GARCH-EVT 7 0 19 26 1.9896
Traditonal GARCH-EVT 5 0 1 6 1.9044
Hawkes POT 25 0 1 26 1.9264
CARE 8 0 0 8 1.9144
GJR-GARCH Student’s t 0 0 3 3 2.1567

Panel B: α = 0.99

Model McNeil (2000) Bootstrap ACUC S4 Total S(V aR,ES, y)

`1-Regularized GARCH-EVT 5 0 1 6 2.1761
Non-Regularized GARCH-EVT 2 0 22 24 2.3437
Traditonal GARCH-EVT 3 0 1 4 2.1662
Hawkes POT 23 0 0 23 2.2014
CARE 7 0 2 9 2.1751
GJR-GARCH Student’s t 0 0 3 3 2.4345
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Table 5: Financial Crisis Backtest 1-day Ahead VaR Forecast Results
The table reports the number of times the null hypothesis was rejected at the 5% level for each of the statistical
tests used to evaluate 1-day ahead VaR forecasts over the financial crisis backtest. Definitions of each statistical test
are provided in Section 6.1. The column Total is the sum of rejection counts across all statistical tests. The final
column reports the mean value of the VaR scoring function (33), scaled by 1/(1−α). Smaller numbers indicate better
forecasts.

Panel A: α = 0.975

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 2 7 1 2 8 20 6.0743
Non-Regularized GARCH-EVT 17 21 0 15 18 71 7.0333
Traditonal GARCH-EVT 4 8 0 3 14 29 6.1332
Hawkes POT 0 3 3 2 19 27 6.4064
Symmetric Absolute Value CaViaR 13 14 4 8 24 63 6.5886
Symmetric Absolute Value CARE 13 15 4 9 24 65 6.6516
GJR-GARCH Student’s t 5 7 0 5 13 30 6.0465

Panel B: α = 0.99

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 0 0 0 0 6 6 7.7020
Non-Regularized GARCH-EVT 22 22 0 22 22 88 9.7388
Traditonal GARCH-EVT 0 0 1 1 11 13 7.7828
Hawkes POT 1 4 3 3 19 30 8.2523
Symmetric Absolute Value CaViaR 14 14 0 10 25 63 8.7993
Symmetric Absolute Value CARE 18 21 3 16 24 82 9.2573
GJR-GARCH Student’s t 4 5 0 2 9 20 7.6263

Panel C: α = 0.995

Risk Model LRUC MCSUC LRInd LRCC DQ Total S(V aR, y)

`1-Regularized GARCH-EVT 2 4 0 0 6 12 9.2315
Non-Regularized GARCH-EVT 23 24 0 23 24 94 12.4246
Traditonal GARCH-EVT 0 1 0 0 8 9 9.3634
Hawkes POT 1 4 2 1 15 23 9.8433
Symmetric Absolute Value CaViaR 12 16 1 10 21 60 11.2410
Symmetric Absolute Value CARE 18 19 2 17 22 78 12.1329
GJR-GARCH Student’s t 3 5 2 2 10 22 9.0829
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Table 6: Financial Crisis Backtest 1-day Ahead ES Forecast Results
The table reports the number of times the null hypothesis was rejected at the 5% level for each of the statistical tests
used to evaluate 1-day ahead ES forecasts over the financial crisis backtest. Definitions of each statistical test are
provided in Section 6.2. The column Total is the sum of rejection counts across all statistical tests. The final column
reports the mean value of the joint VaR and ES scoring function (34), scaled by 1/(1−α). Smaller numbers indicate
better forecasts.

Panel A: α = 0.975

Model McNeil (2000) Bootstrap ACUC S4 Total S(V aR,ES, y)

`1-Regularized GARCH-EVT 0 0 2 2 2.3764
Non-Regularized GARCH-EVT 1 0 23 24 2.5231
Traditonal GARCH-EVT 0 0 3 3 2.3864
Hawkes POT 22 0 1 23 2.4717
CARE 11 0 14 25 2.5229
GJR-GARCH Student’s t 0 0 5 5 2.6930

Panel B: α = 0.99

Model McNeil (2000) Bootstrap ACUC S4 Total S(V aR,ES, y)

`1-Regularized GARCH-EVT 2 0 2 4 2.6823
Non-Regularized GARCH-EVT 0 0 24 24 2.9887
Traditonal GARCH-EVT 2 0 1 3 2.6871
Hawkes POT 20 0 3 23 2.8025
CARE 14 1 21 36 3.1095
GJR-GARCH Student’s t 0 0 4 4 3.0125
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Table 10: Analysis of the Active Coefficient Set
The table reports the coefficient estimates from regressions studying the size of the active coefficient set and the
predictive duration of the typical selected covariate over the financial crisis backtest. Specification (i) is a Poisson
regression. Specification (ii) is a Weibull regression. Independent variables are described in Section 8. *,** and ***
represent statistical significance at the 10%, 5% and 1% levels, respectively.

(i) |At| (ii) Hazard ratio

Crisis Period 0.0395*** 1.158***
-0.0087 -0.0299

BM Period -0.0611** 0.791***
-0.0244 -0.0549

Volatility > 50th percentile -0.0250*** 0.976
-0.0064 -0.0189

χ2 166.7*** 564.3***
Obs 27,075 15,097
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