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1 Introduction 

The improvement in machine learning (ML) in recent year and the growth of 

computing power has enabled many new applications.  The financial market 

has been traditionally rich in data and hunger for tools of forecasting.  Early 

attempts at utilizing the neural network in forecasting financial time series 

have yield limited results.  There is a growing interest in revisiting the 

question of forecasting with ML in the finance research and practitioner 

community1.   The objective of this paper is to contribute to this line of 

research by studying the effectiveness of machine learning in improving the 

daily forecast of the CBOE Volatility Index (VIX).   

This study is motivated by three observations.  First, why VIX? Most 

of the published and working papers in the ML literature have mainly focused 

on cross-sectional return forecasting and lower frequency such as monthly or 

annually.  Relatively little work has been done on forecasting the time series 

volatility2.  VIX has been referred to as the ‘fear’ index (Whaley, 2000). The 

importance of VIX cannot be overstated given its role as one of the key 

indicators for practitioners and policymakers to gauge the forward-looking 

market condition.  Therefore, understanding the predictability of this index 

would have significant economic importance.  Second, the advantage of ML in 

terms of nonlinearity and scalability in the number of explanatory variables 

enables us to have a more comprehensive study of the economic and 

financial factors that are not possible when using traditional econometric 

methods.  Third, from the ML methodology point of view, automated and 

interpretable MLs are new emerging trends for developing robust and 

interpretable practical implementations.  We propose a three-step adaptive 

continuous learning framework for training, validation and implementation.  

We then study the model statistics and out-of-sample performance to identify 

 
1 See for example, Blackrock’s discussion on ML in asset management  
https://www.blackrock.com/corporate/literature/whitepaper/viewpoint-artificial-
intelligence-machine-learning-asset-management-october-2019.pdf  [accessed March 2021] 
and CFA institute’s report in similar topic. 
 https://www.cfainstitute.org/-/media/documents/book/rf-lit-review/2020/rflr-artificial-
intelligence-in-asset-management.ashx [accessed Jan 2021] 
2 Most of the existing study in volatility forecasting either adopt an univariate approach such 
as GARCH or HAR type model or swith limited number of economic explanatory variable.  
See a brief review in section 2. 
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the source of predictability with different model setups.  It provides useful 

lessons in the design of forecasting architecture especially in the context of 

time series financial market forecasting with application that goes beyond 

VIX.   

What have we done?  The objective is to predict VIX’s next day’s 

directional movement.  We choose to predict direction instead of the level of 

VIX is because ML is known to be better at classification problem than 

continued value prediction.   The directional prediction is also closer to the 

operational objective of an investment decision which is ultimately a binary 

one (to long or to short).   

For choosing candidate explanatory variables, this is the part that 

human (i.e., the ‘domain experts’) plays an important role in.  We try to be as 

comprehensive as possible while making sure the data is available in real-time 

without a look back bias.  To this end, we use Bloomberg as our main data 

source.  We include the 278 features in 14 categories.  They include time-

series history of the S&P 500 index  (hereafter, SPX) information covering 

both fundamental and technical indicators, global market indexes, industry 

subindexes, major commodities, foreign exchange markets, corporate and 

government bond, US macroeconomic indicators and, last but not least,  

seasonality (e.g., days of the week).  The underlining source of information is 

motivated by both theories of fundamentals such as the change of economic 

conditions, changes of market liquidity, the spillover of global shock as well as 

technicals such as the momentum/reversal and calendar effects3. We start the 

data collection from 1993 when the VIX index is introduced.  What has not 

been considered in the current models is the soft and unstructured 

information such as news sentiments partly due to the lack of sufficient 

historical data.  

 
3 We process the data carefully to help the ML understand the ‘context’ of the data while 
avoiding using future information in our data transformation.  For example, since the 
machine only see one observation and will not have the time series context of the 
observations, most of the variables entering into the system as changes to capture the new 
information in the variables.  For key variables such as the SPX return and changes of VIX, 
more elaborated historical data points are included as individual features in the input data 
set.  We also constructe a ‘balanced’ sample with equal amount of the realized up and down 
sample during the traing step.  More discussion about this in later and in Section 6.3.   
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In terms of ML algorithms, we choose six algorithms including more 

traditional methods such as Naïve Bayes (NB), Logistic Regression (LR) and 

classic ML such as Decision Tree (DT) and Random Forest (RF); we also 

include more advanced methods such as Adaptive boosting (AB), Multi-Layer 

Perceptron (MLP) and an Ensemble model using all of the above4.     

Figure 1 summarizes the key elements of our closed-loop adaptive 

learning design which consists of three key steps: training, validation and 

implementation.  First, for the training stage, selecting the right 

hyperparameters for the ML model is a challenging and important process of 

model construction.  For each algorithm, we adopted an Automated Machine 

Learning based Hyperparameter Optimization (AutoML-HPO) method to 

automate the tuning process by using Grid-Search and K-fold validation over 

a pre-selected range of hyperparameters. The outcome of this method is the 

best performing model of each algorithm in terms of prediction accuracy 

(lowest validation error).  Second, to choose among the algorithm we apply 

these best models to a part of the testing data that the machine hasn’t seen 

before.  From this ‘out-of-sample’ validation, we identified the best algorithm-

model to go for in our next stage.  Third, in the implementation stage, once 

the model is trained and selected, we further use an adaptive continuous-

learning design which we refer to as closed-loop learning.  Specifically, the 

adaptive learning framework proactively monitors the model performance, 

when the model decay and performance drift is detected (the cumulative error 

rate of the current model is lower than 42.5%5), retraining is triggered to start 

a new loop of the aforementioned three-step process. 

<Insert Figure 1> 

For the training sample, we use 4,000 data points for training which is 

about 16-year worth of data.  In which 90% of the data is used for training 

with 5-fold cross-validation and 10% for out-of-sample validation. We start 

 
4 In this paper, we used the term ‘algorithm’ to refer to a modelling methodology (such as 
Decision Tree) while the term ‘model’ is used to refer to a specific parameterization of the 
algorithm.  This distinction is only important in the discussion of training and tuning.  In the 
discussion of the later part of the process, these two terms are used interchangeably. 
5 We choose this modest ratio to ensure the model prediction accuracy is sufficiently high but 
not triggering too many retraining.  This is a parameter that can be adjusted in different 
applications.  We will have more discussion on this in Section 6.2. 
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our out-of-sample implementation from Jan 2010 and end in Dec 2020.   For 

testing purpose, instead of reporting only the choosing algorithm’s out-of-

sample in the implementation period.  We will report all of the algorithms’ 

performance in the closed-loop implementation.  

Our empirical study is organized into three key sections with distinctive 

objectives of studying forecasting performance, economic evaluation 

and source of predictability.  

For the forecasting performance, we have the following key findings.  

First, examining the training and validation accuracy of the ‘best’ models of 

the algorithms at the end of 2009, we find there is a trade-off between model 

complexity and stability/variability of the model when comparing the in-

sample training and the out-sample validation performance.  NB has the 

lowest training accuracy (54.5%) while the neural network type model MLP 

has the highest (93.94%) suggesting more complex algos helps to fit the data 

better (lower bias).  However, there is a much large drop in the out-sample 

validation in the MLP (to 62.2%) than NB (to 52.6%).  This is clear evidence of 

overfitting for MLP (i.e. high variance)6.  AB provides the best validation 

results of 68.2%.  Interestingly, its validation results are higher than the in-

sample results of 62.6% (see Figure 2).  Should we make a decision at the end 

of 2009, AB would be the one we pick to take forward to implementation in 

Step 3.   

Second, the out-of-sample implementation produces a pattern that is 

broadly in line with that of the validation results suggesting that the validation 

play a useful role in assessing the model’s performance. Nevertheless, without 

exception, all model’s implementation performances are lower than their 

validation counterpart (See Figure 5).  The decision tree type models produce 

the best performance.  Especially the DT model produces the highest 

forecasting accuracy of 58%.  The AB model also has a relatively high accuracy 

rate of 57%.   Other performance indicators such as information ratio and 

 
6 See James et al. (2013) Section 2.2.2 page 33- 36 for discussion about the bias and variance 
trade-off.  Intuitivly, a model with high variance is the one’s performance is more sensitive to 
the change of sample.   
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market timing ratio also produce similar conclusions regarding the relative 

performance of the models (see Table 2).   

We then turn to an evaluation of the economic importance of the model 

forecast.  Forecasting daily VIX has many potential applications.  For 

example, it can be used with other valuation and risk management models to 

forecast the directional changes of the next day’s valuation and value at risk.  

More directly, it will inform the derivative market makers for VIX related 

products about the potential market movements.  To illustrate the economic 

relevance, we simulate an ‘investment’ strategy to long and short the VIX 

index7. We show that it produces an average daily return ranging from 6 (LR) 

to 90 (AB) basis point. For the AB model, this is annualized to 2.25 times 

(without compounding) and a Sharpe ratio of 1.7 based on the yearly 

distribution of the average returns.  This model also has the smallest average 

maximum annual drawdown (MDD) at 30% which measure the lowest 

cumulative return from the beginning of each year (Table 3).  Since VIX itself 

is not directly tradable, this exercise can be seen is as measuring the economic 

importance of the directional forecast by weighting the predictions with the 

size of the VIX movement.  This evidence suggests that the directional forecast 

captures VIX changes with significant sizes. We will test the profitability of 

investment strategy on tradable instruments in a later section (see Section 7). 

A large part of our study is devoted to understanding the source of 

predictability.  This is done through studying the variable importance analyses 

and experiments with the model and sampling settings to attribute the main 

model’s performance.   

For variable importance (VI), we find that the variables are used in 

quite a similar way across different models.  For example, the correlation of 

the 278 variables’ VI is 65 to 75% among the models for the AB algorithm in 

the implementation stage.  We examine the top 20 most important variables 

and show that the US weekly jobless report consistently plays the most 

important role in all models (see Table 5).  Seasonality variables such as day of 

 
7 We understand that VIX itself is not directly tradable. This exercises is used to quantify the 
magnitude of economic importance of the directional forecast instead of testing the 
profitability of the strategy.  We test the signals on tradable instrument in later sections.  
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the week, day of the month or number of days to the next VIX futures contract 

expiry also have relatively high contributions in the models. The rest of the 

variables in the top 20 are mainly technical by natures.  For example, the 

Relative Strength Index (RSI) of SPX and VIX are highly ranked.  Another 

important technical indicator group are the SPX’s member statistics such as 

percentage members with new 52 week highs.  The findings in the top 20 

variables confirm the technical nature of these short-term prediction 

exercises.  The underlining source of predictability follows similar arguments 

for technical analysis.  It is likely due to the reversal or momentum effect 

driven by the behavioural or liquidity condition of the market.   Nevertheless, 

it also shows that the new information in the economic condition can also 

predict short-term volatility dynamic. The channel of such impact could be 

potentially through the heterogeneity in interpreting the new economic news 

which extending the persistence of volatility to the next period.  

We also conduct a series of tests on the model specification. First, we 

demonstrate the benefit of the adaptive learning framework by comparing our 

main findings with the results of using one-time modelling.  We find that 

among the onetime models only those more advanced model such as RF, AB 

and MLP can provide average forecast accuracy that is significantly different 

from 50%. The largest improvement brought by dynamic learning is in the DT 

model which has a massive improvement from 49% to 58% (see Table 6).   

Second, we study the benefit of one important sample engineering: 

constructing a ‘balanced’ sample.  Instead of selecting 4000 data point 

consecutively, we select 4000 data points keeping an equal amount of up and 

down observations.   We show that such a setup reduces the likelihood of an 

unconditionally one-sided prediction and improve the accuracy for both 

directions’ predictions.   The model performances from a balanced sample are 

more robust to various market conditions and the improvement are 

economically significant.  The simulated VIX strategy in the unbalanced 

sample is 49 bsps compare to the 90 bsps observed in the main result for the 

AB algorithm (See Table 7). 
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Third, we examine the effectiveness of our binary forecast in the 

context of forecasting different size of the index movement (Big vs Small).  We 

first show that these binary classification models perform better in predicting 

big than small price movement.  For example, for realized big VIX 

movements, which is defined as observations with realized VIX return lower 

than 15% or higher than 85% percentiles of rolling 250 observations, the 

accuracy rate is 61% while for small size changes it is 55% for the AB 

algorithm.  Intuitively this is consistent with the view that a bigger directional 

change may be relatively easier to detect than a small size change which may 

go either way due to noise.  This explains why this model can produce a high 

level of return as when its prediction is correct the realized return is on 

average larger than when it is wrong.  This further improves the model 

performance in addition to the high accuracy rate.    

A natural question to ask given this analysis is to see if one can only 

trade when the expected return is big.  However, the big and small realized 

size analysis do not provide practical information for investors to improve 

investment return as ex-ante we would not know if the signal predicted is for a 

big or smaller change the next day.  To this end, we take the experiment 

further by consider predicting four categories of changes. We extend our 

original binary prediction into a four-category prediction model (4D): up-

small, up-big, down-small, and down-big.  However, we do not find the 

advantage of conducting a finer category forecast.  The overall forecasting 

accuracy is the same.  Furthermore, the prediction accuracy in the big realized 

movement is, in fact, lower in the 4D models than in the 2D models (see Table 

8).     

Fourth, we study the persistence of the prediction.  We show that 

applying the signal with some delay such as to the next day’s open-to-open 

return or the next day’s close-to-close would still produce higher than 50% 

accuracy for the AB models.  However, the return will drop significantly from 

90 basis points down to 20 basis points.  A more interesting experiment is to 

use market close information to directly model the prediction of the next day’s 

open-to-open return. We find the model performs reasonably well compared 

to the benchmark close-to-close return prediction using the AB model.  It 
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produces slightly lower accuracy (dropping from 56.9% to 56.5%) and a lower 

return (dropping from 90 to 69 basis point) than the main result.  All of these 

experiments perform as we expected suggesting the timeliness of the 

information in our data is important to the modelling.  The model 

performance decreases as there are gaps between the data and the predicting 

target.  Furthermore, the automated ML structure can produce reasonable 

predictions, without modification, when the predicting objective is changed 

which provide evidence for the robustness of the model methodology.   

The last test for the source of predictability is focused on the 

unpredictable event i.e., volatility spikes such as the flash crash in 2010, Brexit 

referendum in 2016, and inflation in employment number in 2018.  We show 

that these events (larger than 20% daily movement) are truly exogenous to the 

system (see Table 10).  As there is no information from the data point that the 

machine can learn from.  Importantly, the decision tree type ML model (DT, 

RF and AB) can adapt to the new information relatively quicker and recover a 

large part of the losses within the 20 days and fully recover in 60 days (see 

Table 11). These performances are much better than the non-model short-only 

strategy and other models.   

Overall, we show that the model performance is driven by the 

combination of information embedded in the economic variables selected and 

the flexibility of the modelling structure to extract the nonlinear relationship 

from the data.    

Finally, we conduct two practical application tests.  First, applying the 

VIX signal to the VIX futures trading.  After taking into consideration of the 

special nature of the VIX futures, we show that the AB model prediction can 

beat the short-only and the traditional linear model such as LR and HAR 

model when applying it to trade VIX futures8.   It can produce a return as high 

as 36 basis point daily and a Sharpe of 0.93 which is 50% higher than the 

short-only strategy. Second, we apply the strategy to the trading of VIX 

contract for difference (CFD/spread-betting) in 197 days in 2020 starting 

 
8 It is not a simple straightforward exercise and the outcome is not certain given that there is 
no true underlying binding relationship between the two. We have more discussion in Section 
7.1.   
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from 11 March9. We show that the DT model beats all other models and 

produce a 259% cumulative sum return for the 197 days.  The AB model 

produces a 103% cumulative return in the same period.  However such 

investment comes with large downside risk.  The MDD can be as high as 58% 

and 37% for the DT and AB models, respectively.     

We make the following contributions. First, in terms of finance 

literature, we demonstrate a clear advantage of the machine learning method 

over the traditional methods, such as LR and HAR, in forecasting volatility.  

This work directly extends the VIX forecasting work of Konstantinidi, 

Skiadopoulos and Tzagkaraki (2008), Paye (2012), and Fernandes, Medeiros, 

and Scharth (2014).  Understanding the robustness and magnitude of links 

between macroeconomic variables and volatility is an important empirical 

question in finance (Paye, 2012).  The ML algorithm enables us to include a 

much large number of economic variable to study one of the most important 

benchmarks in the financial market.  Our study also benefits from having 

longer historical data which provide a richer data set for training, cross-

validation and more than ten years of data for out-of-sample implementation 

tests.  Such a setup reveals several new insights regarding the drivers of this 

index.  1) VIX is more predictable than the previous literature show.  For 

example, all of our models, except for NM and MLP, produce higher out of 

sample prediction accuracies than the best model in Konstantinidi, et al. 

(2008) which is 54.7%. Although Fernandes, et al. (2014) do not report 

directional statistics, they show that a pure HAR model is hard to beat.  In our 

sample, a pure HAR produces an accuracy rate of 52.5%.  2) We demonstrate 

significant economic importance that hasn’t been documented in previous 

literature. The predictability demonstrated in this study are economically 

significant and can be potentially used by risk managers or portfolio managers 

to optimize their operations.   3) Our findings regarding the source of 

predictability deepened our understanding of what auto ML and data can and 

cannot do.  We document new economic drivers such as the jobless report, 

seasonality, technical indicators and commodity markets that have important 

influences on the predictability of VIX.  Such findings would provide further 

 
9 This is not an objective choice of starting point.  It is because this is the ealiers data that we 
can obtain at the time of our research.  
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empirical facts for future theoretical studies10. 4) Our study of VIX spikes 

confirms the true exogenous nature of these events to the models. We show 

evidence of how different forecasting model perform after such events which 

provides more insight into the adaptability of these models to changing 

market condition.  Such a quantitative approach to studying VIX spikes hasn’t 

been fully covered in the literature (see Rhoads, 2020 for discussions on a list 

of key VIX spikes events).  

Second, our research design offers some lessons for future research of 

ML in financial forecasting.  Especially we contribute to this development with 

further evidence on the automated and explainable ML.  We propose a closed-

loop adapted learning framework for financial market predictions.  This 

framework consists of two key components: : (1) AutoML and HPO for 

algorithm and hyperparameter selection, and (2) performance-based closed-

loop continuous learning.  Such closed-loop adaptive design reduces the 

manual setup of the models avoiding overturning parameters.  It enables 

continued out of sample application of a model with an adaptive update.  We 

provide empirical evidence for demonstrating these advantages.  The model 

setup and testing design could be useful for future studies of ML in financial 

forecasting.   

One important aspect of the design is the use of cross-validation at the 

training stage and closed-loop continuous learning in the implementation 

stage when designing a model with a forecasting and practical application in 

mind instead of pure inference of the relationships between the dependent 

and independent variables.  Many existing studies on financial forecasting 

often taking a fixed window rolling approach to evaluate the ‘out-of-sample’ 

performance of competing models.  However, without an ex-ante cross-

validation design, it is tempting to tune or retune the model after observing 

the ‘out-of-sample outcome.  This induces a dangerous illusion of good ‘out-

of-sample performance which in fact could be owning to overfitting.  This is 

 
10 There are limited thoratical studies on the determinant of VIX.  David and Veronesi (2002) 
model suggests that the persistence of uncertainty uncertainty about the economic 
fundamentals (e.g., dividends) affects implied volatility. Investor learning has been used to 
motivate assumption that the market updates its beliefs through Bayesrule to study the time-
seriesdynamics of implied volatility surfaces (Guidolin and Timmerman, 2003).   
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especially a concern for more complex models that have many parameters to 

minimize fitting errors (e.g., Hoit-winter).   

Relatedly, we also demonstrate the importance of recognizing that 

there is a bias-variance trade-off in matching the complexity of the ML 

algorithm and the data generating process.  Especially, among the algorithms, 

both the most simple model (NB) and the most complex one (MLP) are not 

performing as well out-of-sample but for very different reasons. The NB has 

both low in-sample and out-of-sample accuracies. By contrast, the MLP 

produces much higher in-sample accuracy (as high as 94%) due to its highly 

nonlinear model flexibility.  But it leads to relatively low out-of-sample 

accuracy due to overfitting11.   The decision tree type ML seems to be well fit 

for the current application.  One implication for future studies is that it is 

important to include a range of ML models with different level of 

complexity/flexibility in the models to better understand the ability of ML for 

a given application. For example, for studies only focusing on the most 

complex model such as the neural network type model, it may be misleading 

to conclude that ML provide no value in this current application.   

The rest of the paper is organized as follows.  Section 2 gives a brief 

discussion of the volatility forecasting literature.  Section 3 describes our 

research design.  Sections 4, 5 and 6 report the empirical results for 

forecasting performance, economic evaluation and source of predictability.  

Section 7 gives two examples of practical applications.  Section 8 concludes.  

2 Related literature 

2.1 Historical and realized volatility forecasting 

The most classic volatility forecasting model is the GARCH family models 

(Engle, 1982 and Bollerslev, 1986).  For direct modelling of volatility time 

series, Andersen, Bollerslev, Diebold, and Labys (2003) showed that direct 

 
11 A more complex model structure, such as neural network, would require a relativly larger 
training data set in order to obtain a more stable model.  The high overfiting problem coud 
potentially due to the limitation of the amonge of data available in orde to obetain a better 
performance for this type of model.    
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modelling of multivariate realized volatility outperforms, in terms of out of 

sample forecasting, the popular GARCH and stochastic volatility models.  In 

this line of development, the heterogeneous autoregressive (HAR) model by 

Corsi (2009) has become one of the popular benchmark models given its 

ability to capture the persistence in the volatility series. It is a simple AR-type 

model of the realized volatility with the feature of considering volatilities 

realized over different time horizons including one day, five (weekly) and 22 

(monthly) days. Despite its simplicity, the HAR model proves to be able to 

reproduce the volatility persistence observed in the empirical data.  

There is a considerable body of literature trying to combined GARCH 

or HAR with nonlinear or nonparametric methods to improve forecasting 

accuracy (Kristjanpoller and Minutolo (2018), Maciel, Gomide, and Ballini 

(2016), Psaradellis and Sermpinis (2016)).   Donaldson and Kamstra (1997) 

show that an Artificial Neural Network -GARCH model is found to generally 

outperform its traditional competing models—GARCH, EGARCH, and Sign-

GARCH models—in both the in-sample and out-of-sample period when 

studying the performance of stock return volatility forecasting models using 

daily returns data from London, New York, Tokyo, and Toronto.  More 

recently, Bucci (2020)  studies monthly realized volatility and shows that long 

short-term memory (LSTM) Recursive Neural Network (RNN) can 

outperform the linear models in out-of-sample forecasts.  Most of the studies 

in this area focus on testing and comparing the time series forecasting 

methods with no or a limited number of other economic determinants in the 

system.   

2.2 Implied volatility and VIX forecasting 

Implied volatility is a measure of future expectation embedded in the options 

price.  It gains its prominent place in the world since CEBO introducing the 

VIX index in 1993.  The VIX Index is an established and globally recognized 

benchmark of U.S. equity market volatility also known as the fear index.   It 

measures the 30-day expected volatility of the U.S. stock market, derived from 

real-time, mid-quote prices of SPX call and put options.  Therefore, VIX itself 

can be seen as a forecast of future volatility. Early work by Hamid and Iqbal 
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(2004) show that using neural networks to forecast the volatility of S&P 500 

Index futures prices can outperform implied volatility forecasts.   However, 

the objective of our study is to forecast VIX itself.  In this regard, 

Konstantinidi, Skiadopoulos and Tzagkaraki (2008) show that predictable 

patterns are detected when studying implied volatility forecast with the 

regression model, VAR and principal component analysis.  Especially, for VIX 

they find accuracy as high as 54.7% in the two and half year of out of sample 

study until September 2007.  However, when they directly apply these signals 

to trade VIX futures.  All returns are negative.  Interestingly, out of all of the 

model the best model is the simple linear regression model with seven 

economic variables such as interest rate, Euro/USD exchange rate, WTI 

(Brent Crude Oil); the changes of the 30-days historical volatility, the changes 

of the slope of the yield curve, and the change of futures contract volume. This 

suggests the importance of the economic variable in this forecasting exercise.  

Paye (2012) find that several variables related to macroeconomic uncertainty, 

time-varying expected stock returns, and credit conditions Granger cause 

volatility.  However, he finds no evidence that forecasts exploiting 

macroeconomic variables outperform a univariate benchmark out-of-sample.  

Whether or not and which economic variables will be relevant to volatility 

forecast, especially for relatively high frequency such as daily, is still a 

research question.  

More recently, Fernandes, Medeiros, and Scharth (2014) use both 

parametric and semiparametric heterogeneous autoregressive (HAR) model 

with additional economic variables to forecast VIX.  Among the economic 

variables, they find that the term spread has a slightly negative long-run 

impact on the VIX index. Importantly, they show that it is pretty hard to beat 

the pure HAR process because of the very persistent nature of the VIX index.  

Degiannakis, Filis, and Hassani (2018) show that non-parametric models of 

Singular Spectrum Analysis combined with Holt-Winters (SSA-HW) for 

univariate forecasting and show statistically superior predictive ability for 
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short-term implied volatility forecasting comparing to parametric model such 

as the pure HAR model12.  

Relative to these existing studies, our study is different in four ways.  

First, compare to the studies using univariate information or limited among of 

economic variables, we are able to study a much larger set of economic 

variables.  Second, our research design provides a clear training, validation 

and ‘implementation explicitly which makes our results trackable and the test 

in the implementation stage are truly out of sample by design.  Third, compare 

to most of the studies with more advanced nonlinear modelling methods, we 

focus not only on the testing of the model accuracy but also on studying the 

underlining source of predictability.  Finally, we design our experiment with 

practical application in mind with careful consideration of data delay and the 

type of instruments in our practical application tests.  So far, there is limited 

evidence of the potential profitability originated from the predictability of 

VIX.  

3 Research Design, Sample and Measurement 

We design an adaptive learning methodology for the VIX signal prediction.  

This framework is developed to address some of the challenges of 

implementing ML in the financial forecast in general.  From a researcher point 

of view, we have the following questions: 

1. What is the objective of the forecast (forecasting target)? 

2. What is the relevant information that should be included as 

explanatory variables (features selections)? 

3.  Which ML algorithm we should include in our analysis (Algorithm 

selection)?  

4. What specification of a given algorithm we should choose 

(hyperparameter selection/model tuning)?  

 
12 However, non-parametric models are very flexible.  Fitting the non-parametric model 
without a clear validation strategy could leads to overfitting despite the final results are 

prested as rolling window ‘out-of-sample’ foreasst.  
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a. Which algorithm+selected model setup we should choose to 

apply to our problem out of sample?  

b. How to monitor and address the model performance decay 

during the inference process systematically (Retraining)?  

We address these questions in the following subsections. 

3.1 Predictive objective  

The objective of this research work is to predict the VIX daily signal for the 

next day.  We choose to predict direction instead of the level of VIX is because 

ML is known to be better at classification problem than continued value 

prediction.   We take the view from a portfolio manager who is interested in 

timing the VIX.  The forecast will translate to a decision to long or short 

volatility.  Given this objective, forecasting classification is a direct match to 

this operation problem.  When forecasting the level, it will need to take one 

more step to translate into the decision rule by comparing it with the current 

level.  This creates one more layer of estimation error.  We select a supervised 

machine learning approach, that the algorithm learns from the input data and 

then uses this learning to predict the VIX’s UP or DOWN signals.  This is a 

typical Binominal Classification problem, that can be addressed by several 

algorithms in Machine Learning (see section 3.3).  

3.2 Variable selections and data processing 

In selecting the variables we try to be as comprehensive as possible while 

making sure the data is available in real-time without a look back bias.  To this 

end, we use Bloomberg as our main data source.  Table 1 summarizes the 278 

features in the 14 categories (See Appendix I for the full list).  These variables 

are broadly informed by economic theories in existing studies.  

<Insert Table 1> 
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Before applying the ML algorithms to the features described above, we 

conduct a set of the feature engineering process to the data13. The quality of 

feature in the data will directly influence the predictive model’s flexibility, 

simplicity, execution performance, and the corresponding results.  Especially, 

certain ML algorithms, such as Tree-based methods, are not sensitive to 

feature unit and magnitude, but some others are. Therefore, scaling methods 

(Standardization and Min-Max Scaling) are applied to the data fields, to 

address the features with highly varying magnitudes, units and ranges. Such 

rescaling is done using the training sample (instead of the full sample) for 

each new model training to avoid looking forward bias.   

3.3 Machine Learning algorithm selection  

There are recent studies of classifiers in the financial market. For example, 

studying stock market prediction, Ballings et al (2015) show the following 

order according to AUC (Area Under the Curve): Random Forests, SVM, 

Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbor, and Logistic 

Regression.  Booth, Gerding, and McGroarty (2015) show that an ensemble of 

random forests improves forecast accuracy by at least 15% compared with the 

competing models (linear regression, neural networks, and SVM) in the out-

of-sample forecast of price impact.  For the main analyses of this paper, we 

include Naïve Bayes (1.NB),  Logistic Regression (2.LR), and classic ML such 

as Decision Tree (3.DT) and Random Forest (4.RF); we also include more 

advanced methods such as Adaptive boosting (5.AB), Multi-Layer Perceptron 

(6.MLP) and an Ensemble model (7.Ens) using all of the above.  These cover a 

wide range of model complexity to examine which type of algorithm is better 

for the volatility directional prediction.  To get stay focus on the empirical 

testing, we leave a further discussion of the algorithms with reference to the 

literature in Appendix II.   The study of  SVM is covered in an online appendix.   

3.4 The adaptive continuous learning methodology 

 
13 The feature engineering normally covers data cleaning, data scaling and transformation, 
feature selection, feature enhancement (extraction and enhancement), feature construction 
and feature learning. 
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What is new in our methodology is the automated adaptive continuous ML 

framework which has briefly introduced in the introduction with Figure 1. The 

methodology utilizes multiple classifiers with dynamic hyperparameter 

setting, then build stacking ensemble models out of the trained classifiers. The 

learning process runs continuously in a closed loop without further human 

intervention during the implementation stage.    We discuss the detail of each 

step in Figure 1 in the following. 

3.4.1 Step 1 Training and model selection with dynamic hyperparameter 

setting and k-fold cross-validation 

Selecting the right hyperparameters for the classification model is an 

important step in the process of model construction and tuning.  The normal 

approach is through trial and error.  It depends on human experience and can 

be time-consuming and potentially untrackable.  In this research, we 

employed an AutoML based Hyperparameter Optimization (HPO) method 

with Grid Search. A K-Fold cross-validation method is used to automate the 

selection process, and generate the best set of hyperparameters for each 

algorithm of the classification model.   

In this tuning technique, we build a matrix of pre-defined ranges of the 

hyperparameters for each algorithm. Once all the combinations are evaluated, 

the model with the set of parameters that give the top performance is 

considered to be the best. The training for each set of the parameter is through 

K-fold cross-validation which utilizes data set randomly partitioned into K 

mutually exclusive subsets. Out of the K sets, one is kept for testing while 

others are used for training. Throughout the whole K folds, the training 

process is iterated to achieve optimal convergence and avoid the possibility of 

over-fitting to one fold of the data.  

3.4.2 Step 2 Algorithm selection with out of sample validation 

Once the best model setup of each algorithm is trained and identified. We 

subject these ‘best’ models of different algorithms to another round of out-of-

sample validation tests.  Comparing the training accuracy and the validation 

accuracy would further inform us about the relative performance and 

variation of different algorithms.  We can then choose the algorithm that has 
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the best validation performance as the main model and proceed to the next 

step of implementation of the model.   In addition to taking into consideration 

of the forecasting accuracy during the valuation stage, the variability of 

performance between training and validation will also be considered.  Models 

with large variation between these two stages may indicate the tendency of the 

models to be over- or under- fitting.  A low variation is preferred.   

3.4.3 Step 3 Implementation and closed-loop continuous learning  

The predictive model performance can drop with time, as the market can have 

new behaviours that were not captured by the model using relatively old data 

samples when training. The typical approach to address this issue is to collect 

new data samples on regular basis to build a new model to replace the old one. 

However, the replacement cycle is determined based on human experience, 

therefore the model switch could be either too late or unnecessary.  

To further standardize this process, we designed a closed-loop 

continuous learning framework. First, we create a performance monitoring 

agent that constantly measures and observe the model performance to detect 

the performance drift and model decay. Every time there is a new prediction, 

the agent calculates the overall performance of the current model, and 

feedback to the closed-loop to compare with the performance target. When the 

model performance starts to drop below the target (for example, in this paper 

we set the prediction error rate = 42.5%), a new training process is 

automatically initiated.  Furthermore, a new model will run for a stabilization 

period (for example, at least 120 days in this research) before the retraining 

will be triggered to obtain sufficient statistics to reevaluate the model 

performance and avoid too frequent model switch. This continuous learning 

cycle is able to renew the model as soon as it is needed, and hence maintain 

the overall quality and performance of the model.  Predefining the rule of 

retraining would also make reduce the need for human intervention when 

market condition changes (less regret or overreactions) and make the model 

update trackable.   

In terms of the number of data point used in each of the steps, for the 

current application, at the end of 2009, we obtain 4000 data points of which 
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90% for the k-fold training and 10% for validation.  During the training phase, 

we use 5-fold cross-validation.  We then implement the selected algorithm 

from 2010 in the out-of-sample closed-loop learning.  For reporting the 

results, instead of presenting only the best model selected at the end of 2009, 

we report the results of all the best models for different algorithms.  This is to 

examine the performance of our modelling framework.  

4 Forecasting Performance 

We organize our empirical results in three main sections focusing on 

prediction accuracy, economic evaluation and source of predictability.  In this 

section, we study the training, validation and forecasting performance 

measured by the forecasting accuracy and market timing.  In Section 5, we 

study the economic significance of the forecast.  In Section 6 we study the 

source of predictability through a number of experiments.  In Section 7 we 

present examples of practical implementations.  

4.1 Training and validation accuracy for modelling at the end of 

2009  

We start by examining the prediction accuracy of the selected models for all 

the algorithms at the end of 2009.  These are the outputs taken from the “Step 

2 validation and algorithm selection”.  Specifically, after the K-fold cross-

validation training, we keep the best models and apply these models to the 

400 validation points.  Figure 2 reports the training and validation accuracy 

for each algo.   We have four notable results. First, NB has the lowest accuracy 

suggesting more complex algos add value to this application. Second, a linear 

model such as LR produces a reasonable accuracy.  This suggests that an 

important part of the predictability is coming from the economic relevances of 

the features we selected in our analysis.   Third, there is a trade-off between 

complexity and stability/variability of the model when comparing the in-

sample training and the out-sample validation performance.  A large drop in 

the out-sample performance is a suggestion of overfitting.  In this regard, the 

neural network type model, such as the MLP,  has the most complex nonlinear 
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structure.  The results of MLP indicates an alarming sign of overfitting with an 

in-sample accuracy as high as 94%.  Nevertheless, its out-of-sample validation 

accuracy rate at 62.2% is still very good comparing to that of NB. Finally, AB 

provides the best validation results.  Interestingly, its validation results are 

higher than the in-sample results.  Should we make the algo choice of decision 

following our framework at the end of 2009, AB would be the one we pick for 

implementation in Step 3.   

<Insert Figure 2> 

4.2 Out of sample implementation accuracy between 2010 and 

2020.   

We report the box plot of the yearly correct ratio for the out-of-sample 

forecast by algorithms in Figure 3.  The mean of the ratio is also reported in 

Table 2.  Consistent with the validation results, Figure 3 shows that the Naïve 

Bayes (NB) has the lowest accuracy rate while the Decision tree (DT), Random 

Forest (RF) and AdaBoost (AB) have relatively higher accuracy rates, which 

are consistently higher than 50%.  The MPL performs poorly.  This further 

confirms the potential impact of overfitting identified in the validation stage.   

The ensemble (ENS) has the performance that is in between DT and RF.  It 

seems to be able to reduce the variability of the model performance among 

different years (a narrower interquartile range).  Overall, this finding confirms 

that simple probabilistic classifiers (NB) and the most complex method (MPL) 

produce poor directional forecast, and the decision tree type models seem to 

be the best tool for this type of classification task.  

<Insert Figure 3 > 

We further study the performance stability in a time series plot.  Figure 

4 shows that most of the model’s performance variations do not have a clear 

time-series pattern which suggests that the models are not systematically 

affected by how long the algorithm has been applied.   While DT and AB seem 

to perform better in recent year, RF has an opposite pattern.   The MLP 

perform especially poorly in the 2014 – 16 period.   
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<Insert Figure 4> 

Finally, we report the statistics of the model retraining during the 

closed-loop learning in Step 3 assuming that we pick each of the best models 

from each algo and start the closed-loop implementation.   By design, the 

weak algos (in terms of performance) will be retained more often than the 

stronger ones.   In Figure 5 we see that NB has the highest number of 

retaining, 23 times in these 11 years.  Note that we require a model to run a 

minimum of 120 days (about half-year in terms of trading days).  This 

suggests that the NB is retrained as soon as 120 days is expired as its 

performance never be as good as the threshold of error rate at 42.5%.   In 

other words, retaining would not solve the performance problem for a weak 

algorithm.    DT and AB have a relatively lower number of retaining being 

retrained slightly less than once a year.   Finally, the benefit of an ensemble 

seems to be producing a more stable model that requires the least number of 

retraining (7 times in 11 years).   

Examing the variation of the model performance, even though NB 

requires a lot of retraining, its performance has low variations between 

models but they are invariantly low.  By contrast, RF and MLP have a huge 

variation in their training performance among different stages/models.  The 

training and validation picture for all models are consistent with what we 

found at the end of 2009 (Figure 2).  This is good to see as it suggests that our 

training regime produce consistent training outcome for different data sets. 

Especially the overfitting problem of MLP persists in the close-loop training14.   

<Insert Figure 5> 

4.3 Market timing 

The combination of predictions and realized outcomes can be represented in a 

confusion matrix.  It visualizes the four different outcomes of the binary 

classification - true positive, false positive, true negative, and false negative – 

 
14 In our initial study, we have also included the Support Vector Machine (SVM) in our model 
choice.  However, it seems that this algorithm tends to produce one-sided prediction with 
close to zero timing ability.  We present the results and brief discussion in an online appendix. 
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in a matrix. The actual values form the columns, and the predicted values 

form the rows. The intersection of the rows and columns show one of the four 

outcomes.    

 

A predicting model that has a one-sided bias may be correct in a certain 

period but very wrong in another one. Furthermore, a model that produces 

equal performance in both market conditions would be preferable from 

practical implication points of view (lower risk and easier for managing 

capital). 

To measure market timing.  We consider the following measure (Bodie, 

Kane and Marcus 2018, Chapter 24): 

Market timing ratio = true positive ratio + true negative ratio -1     (1) 

When this ratio equal to 1 it indicates perfect timing. Asymmetric performance 

for up or down market conditions will result in a much lower market timing.  

For example, a model that predicts only up will be correct for all realized up 

predictions while all wrong for down.  This will lead to a zero market timing.   

The model performance measured by accuracy or information ratio can be 

quite good if the market is in a bull year.  But such a model’s performance will 

have high variations among different periods as the market conditions change.   

Table 2 reports the accuracy and timing measures in the out-of-sample 

implementation phase.  First, it confirms that most of the model outperforms 

a random walk with a significant positive information coefficient.  Among the 

models,  DT and AB seem to be better than the rest in terms of the level of 

correction ratio and the level of statistical significance indicated by the t-

values.   For the market timing ratio DT, AB, RF and ENS are all had above 
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10% market timing with robust statistical significance.  By contrast, the NB 

and MLP produce low market timing15.  

<Insert Table 2> 

To further benchmark our finding with the existing method in the 

literature, we report a simple linear forecasting model known as HAR which 

has been found to perform well in volatility forecasting as discussed briefly in 

Section 2.  Specifically, we conduct the rolling daily HAR model forecast with 

three variables: the lagged one day, weekly average, monthly average values of 

VIX.   Similarly to our main analysis, we take 4000 observation as the rolling 

window.  Table 2 shows that the overall performance of this model is only 

better than NB.  Since, both HAR and LR can be considered as ‘linear’ 

forecasting model, the key difference between these two approaches is mainly 

in the number of features included.  The outperformance of LR, comparing to 

HAR, further confirms that the additional economic variables included in this 

study are important to increase the forecasting performance.  

5 Economic evaluation: a simulated strategy 

To demonstrate the economic significance of the directional forecast, we 

consider taking the prediction as a trading signal for a long-short strategy.  

The daily signal can be generated at the market close (3:15 US central time).  

We trade the signal at the closing VIX price and hold till the next rebalance.  

We rebalance whenever the signal changes its direction.  We are aware that 

VIX is not directly tradable.  For this section, we consider this simulated 

strategy as a size-weighted signal accuracy test.  We devote more realistic 

investment tests with some tradable instruments in Section 7.    

We study the out of sample ‘return’ of such strategy.  Figure 6 reports 

the distribution of mean daily return for different algorithms in the 

implementation phase.  The variations are based on the difference in the 

statistics among the 11 years.  In general, a more accurate prediction produces 

 
15 Note that the information ratio and market timing ratio produce similar conclusion in terms 
of cross model comparison.  This is partly because these training has been implemented with 
a ‘blananced’ sample.  We demonstrate the usefulness of the market timing ratio in Section 
6.3. 
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a higher return.  However, there are exceptions among those having relatively 

higher accuracy, the DT, RF and AB models.   Although DT has the highest 

prediction accuracy it has a relatively lower return compare to RF and AB.  

And these differences are statistically significant.  For example, when we test 

the difference between DT and AB the t-value is 3.91.   

<Insert Figure 6> 

 

When compare the risk of the strategies in Table 3, ENS, RF and AB 

produce high Sharpe ratios which suggest a relatively consistent performance 

year on year.  On balance, AB seems to provide a well-balanced performance 

both from the return, Sharpe and MDD point of view.  

<Insert Table 3> 

Examining the size of the return, the majority of the model produces an 

average daily return that above 50 basis point. If one annualized this by 250 

days, it is equivalent to a 125% return annually.  Such returns are 

economically significant but not directly obtainable for several reasons. Two of 

them are very important to note.  First, VIX cannot be directly traded and can 

only be traded through its futures contracts or other derivatives which are 

mainly constructed based on the VIX contracts instead of the VIX spot.  This 

creates further ‘tracking’ errors and derivative risk that would affect the model 

performance when applying to tradable instruments.    Second, it is the 

transaction costs especially given the relatively high frequency of rebalancing.     

Although the VIX prediction cannot be directly traded, the ‘economic’ 

relevance analysis in this section has two important implications.  First, the 

‘return’ of this strategy can be considered as a ‘weighted’ accuracy rate with 

the size of the VIX movement as the weight for each signal.  A large 

annualized return suggests that the model gets it right more often when the 

market movement is bigger and therefore economically more important.  

Second,  being able to predict VIX with a meaningful size of movement can be 

used for economic decisions other than direct trading.  For example,  this 

prediction can be used as a further signal in optimizing derivative portfolios; it 
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can also be economically relevant to market makers of SPX and VIX futures 

and options who can use this directional prediction to improve their market-

making in terms of mid-price and spread setting16.   In the last section of this 

paper, we are going to explore direct applications of the prediction to various 

VIX derivatives taking into consideration of transaction costs.  

6 Source of predictability 

In this section, we study the source of predictability with several experiments.  

We examine the relevance of economic variables through variable importance 

analysis (Section 6.1).  We then explore how two key features of our model 

setup affect model performances: the closed-loop training (6.2) and the 

balanced sampling method (6.3). We study if multi-categories predictions 

would outperform the binary predictions (6.4).  We consider the persistence of 

the prediction by examing the effect of delay in the predictors (6.5).  Finally, 

we study how these models perform and adapt around large volatility 

episodes, namely the volatility spikes (6.6). 

6.1 Variable importance and variable selections  

One of the key trends in ML is the importance of interpretable ML. The 

availability of statistics such as variable importance help researchers to 

understand, to some degree, the source of the predictability.  This may help 

uncover new important variables of determinants that have been overlooked 

by the literature when traditional methods are applied.   

In this research, we use a forest of trees to evaluate the importance of 

features on the VIX signal classification task. An ensemble learning method 

based on decision trees, ExtraTreeClassifier, is selected to use a meta 

estimator that fits a number of randomized extra-trees on various sub-

samples of the VIX training dataset. Then the feature importance is calculated 

as the decrease in node impurity weighted by the probability of reaching that 

 
16 We leave the precise form of application to the future research.  Any suggestions are most 
welcome. 
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node, which builds the indication of how much the prediction depends on the 

feature. 

Table 4 reports the top 20 variables according to their variable 

importance ranking.  Panel A reports the statistics from the training data at 

the end of 2009 before the out of sample implementation.  Panel B reports the 

ranking and variables based on the average variable importance calculated for 

the nine retrainings for the AB model during the implementation stage.  In 

both panels, we also report the cross-referenced ranking from the other panel 

to examine the consistency of the ranking in different stages of the modelling.    

Table 4 shows that the weekly jobless report plays a decisively 

important role in all models17.  This is something that hasn’t been explicitly 

featured in the discussion of volatility study.  It suggests that the most 

important variable to predict market fear is potentially the fear of 

unemployment.  This could potentially due to the heterogeneity in the 

interpretation of this statistic which leads to high predictability in the next 

period’s volatility.  

<Insert Table 4> 

For other variable, seasonality variables such as day of the week, day of 

the month or day to next VIX contract expiry (Wednesday) also have a 

relatively high contribution. These variables capture the pattern of investor 

behaviour that is driven by the seasonality in the real economic cycle.  For 

example, much macroeconomic news is released on Thursdays.   

The rest of the variables are mainly technical by natures.  For example, 

the Relative Strength Index (RSI)  of SPX and VIX are highly ranked.  Another 

important technical indicator group are the SPX’s member statistics such as 

percentage members with new 52 week highs. Nevertheless, the commodity 

market such as oil (CL and CO1) and gold (AUX) also play some important 

role.    

 
17 Weekly initial unemployment claims track the number of people who have filed jobless 
claims for the first time weekly with the appropriate government labor office. This number 
represents an net inflow of people receiving unemployment benefits. 
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Finally, the last columns of the two panels show that except for the top 

two variables, there are large variations in the variable importance between 

models.  In an untabulated test, we find that the correlations of the variable 

importance in the later models with the initial model range from 63% to 77%.  

This suggests some consistency in the importance of variables while indicating 

there are time variations.  This confirms the importance of updating the 

model training.   

Overall, the findings in the top 20 variables confirm that the technical 

nature of these short-term prediction exercises.  The underlining source of 

predictability would follow a similar argument for technical analysis.  It is 

most likely due to the reversal or momentum effect driven by the behavioural 

or liquidity condition of the market.  Nevertheless, economic variables such as 

the Jobless claim and commodity are also an important source to predict the 

next day’s VIX movement, which is most likely driven by heterogeneity in the 

interpretation of the new information.  

However, it would be misleading to conclude the importance of a type 

of variables by looking at just the most influential variable.  They only have a 

relatively higher variable importance.  The overall model performance is 

driven by all of the variables.  To see this, we summarize the mean, minimum 

and maximum and sum of the variable importance by category.  To be concise 

in Table 5, we report the statistics for the average variable importance of all 

AB models used in the implementation stage including the one at the end of 

2009.  It reports the mean, minimum, maximum and sum variable 

importance and number of variables in each category.   The rows in the table 

are ordered by the sum column.  The conditional formatting with green is 

higher and red is lower in value within each column comparing across 

different categories.  

<Insert Table 5> 

The sum of variable importance confirms the source of predictability is 

from both technical groups (the SPX and VIX Techs) and some fundamental 

such as macroeconomic variables.  The mean of the variable importance in 

Table 5 shows the average relevance of the variables included in each category.  
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It shows that variables in the seasonality category all have a relatively high 

variable importance.  The next two groups are commodity and currency 

variables.  The sum of the variable importance suggests that even though 

individually the contribution is low in those categories, such as 

Macroeconomics, collectively they provide important information for the 

models.   

6.2 One-time model vs dynamic continuous learning model  

To demonstrate the advantage of the continuous learning framework, we 

experimented with a one-time model approach.  The model is built only once 

without further update during the implementation stage.  The same model is 

applied to the whole out of sample period (11 years).  A comparison of the 

performance is given in Table 5 and Figure 7. 

We can see that without the dynamic retraining, among the onetime 

models only those more advanced model such as RF, AB and MLP can provide 

average forecast accuracy that is significantly different from 50% as indicated 

by the p-value of the information ratio.  The largest improvement brought by 

dynamic learning is in the DT model which has a massive improvement from 

49% to 58%.  It also boosts the Ensemble accordingly.  We also see a similar 

improvement in the market timing ratio.  

Overall, these findings suggest updating the learning model with new 

information on demand provide a significant improvement over the static 

model.  

<Insert Figure 7 and Table 6> 

6.3 Balanced vs Unbalanced sampling   

One of the concerns when using a nonlinear model for classification task is 

that the model would produce a one-sided prediction as the prediction 

accuracy may turn out to be good in the training sample.   However, such a 

model can be very wrong when it is applied out of sample.  The timing ratio 
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measurement was designed to measure the model’s balance in predicting both 

up and down signals.   

The main results we presented so far have included the important data 

engineering to construct a “balanced” sample.  We select 4000 data points 

from previous years keeping an equal amount of up and down observations.  

This means we will use more than 4000 data to construct the sample given the 

potential of unbalance outcomes in the raw data.  In this section, we compare 

the results of the unbalanced and balanced approach for the AB model. 

Figure 8 shows that the predicton model using an unbalanced sample 

(selecting 4000 consecutively from the historical data) has a slightly higher 

average accuracy.  However, the main difference mainly lies in the distribution 

of accuracy. With the unbalanced sample, the accuracy has a much wider 

distribution and large outliers.  This confirms our conjectures that with an 

unbalanced sample the model performance can be more extreme at both ends 

of the spectrum.   

Table 7 reports the model statistics.  Comparing these with the main 

results, the unbalanced sample has a slightly higher information ratio.  

However, when taking into consideration the accuracy when it is up or down, 

the timing ratio in the unbalanced model is much lower than the main results 

(the Balanced row).  Furthermore, the economic importance of a balanced 

prediction is demonstrated in Panel B. We see that the before cost simulated 

return is much lower in the unbalanced model (49 basis point) than in the 

balanced model (90 basis point).  An unbalanced sample training also comes 

with a higher drawdown as well.  

Overall, our findings in this session demonstrate the importance and 

benefit of providing the model with a balanced number of observations for 

both up and down realization so that the machine would have an equal 

amount of information to differentiating these two outcomes.  It reduces the 

likelihood of an unconditionally one-sided prediction and improves the 

accuracy for both directions’ prediction.  Such models are more robust to 

various market conditions.  The improvement is economically significant.  

<Insert Figure 8 and Table 7> 
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6.4 The size of VIX changes and multi-category forecasting 

One of the limitations of a binary forecast is that it hasn’t taken into 

consideration the potential magnitude of the next period’s movement as part 

of the objective.  A high accuracy rate may not lead to an economically 

meaningful prediction if it often gets it wrong when there are large changes in 

the market and corrects only when there are small changes in the market.  Our 

simulated investment strategy in Section 5 has demonstrated the significance 

of our prediction through the return-weighted signal quality.  In this section, 

we further explore the relationship between directional predictions and the 

magnitude of VIX movements in two ways.   

First, we develop a measure that is similar to the market timing ratio to 

exam the ‘size timing’.  Specifically, we group the realized outcome into big 

and small size of change comparing to the historical rolling distribution of the 

change in the past 250 observations.  The threshold of big changes are the 

upper and lower 15 percentiles.  Post estimation, we then examine the 

accuracy of these two-size groups: big and small.  Second, to study the 

potential benefit of taking into consideration the size of the expected change, 

we conduct a multi-category prediction experiment.  We extend our original 

binary prediction into a four-category prediction model: up-small, up-big, 

down-small, and down-big (referred as to 4D).  

Table 8 reports the findings for the AB model.  In this post estimation 

analysis, we calculate the correct ratio for the 4D to be comparable with 2D 

predictions in that we only count the accuracy for up and downs without 

considering the size category.   It shows that if one uses the 4D signals it 

doesn’t improve the overall prediction accuracy. The overall accuracy rate is 

similar to those in the 2D model.  And surprisingly, the market timing ratio is 

worsened in the 4D model.  Furthermore, the size timing analyses show that 

the binary model has done quite well in capturing the bigger size movement 

than the smaller size movement.   

Overall, these findings don’t find the advantage of conducting a finer 

category forecast.  One potential reason for this could be that when four 

instead of two categories is needed to learn we should double the sample size 
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so that there are comparable among of observations for the model to learn 

from as in the 2D forecast for a one given outcome category.  This is not 

feasible currently given the total size of our sample.  

<Insert Table 8> 

6.5 Persistence of the prediction  

We examine the persistence of the prediction to answer two questions.  First, 

in practice, some of the data may be delayed (e.g. equity data is delayed by up 

to 15 minutes for standard subscription to Bloomberg) or required a higher 

cost to obtain real-time feeds.  A study of the signal relevance with some time 

lag can help with the decision on the choice of data feed requirement for 

implementing the models.  Second, testing signal persistence would also 

provide information about the stability of the model and further reveal the 

source of predictability from the model.  For example, a gradual decline in 

predicting accuracy would provide some confidence that the model is indeed 

using the most recent data to predict the immediate future efficiently and such 

power will be diminishing if there is a longer gap between the input data and 

the objective signal.   

Specifically, we carry out three tests.  First, we study the accuracy of the 

signal applied with one day delay.  This is a ‘big’ gap given our objective is 

daily prediction.  Second, we study the accuracy of the signal on the next day’s 

open-to-open VIX movement.  Third, instead of using the signal generated by 

the model using the close-to-close VIX price change in the second experiment, 

we directly model the prediction for the next day’s open-to-open VIX price 

change using data from the current day’s close.  This allows us to do the 

modelling before the VIX market open at 2 am US central time (the beginning 

of the global trading hour).  

Table 9 shows the results for our different experiment with the AB 

model. The first row is the benchmark results as reported in the main result.  

Applying the signal with one day delay would reduce the mean forecast 

accuracy by nearly 3%.  The information and timing ratio also reduced 

significantly.  Similarly, applying the close to close prediction to the next day’s 
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open to open return would reduce the accuracy. For these two experiments, 

Panel B also shows that the reductions of the return are significant with about 

70 basis point drops.     These findings suggest that our model produce a 

timely forecast that reflects an immediate change of market condition and the 

timeliness of using the signal is very important.   

If one considers delaying the model prediction due to data availability 

or cost, a possible way to achieve this is to predict the next day’s open-to-open 

price movement. When we model the next day’s open-to-open directly and 

apply this signal to the open-to-open return, the model performance is much 

better than the other two experiments although it is still slightly worse than 

the original benchmark model in terms of the model accuracy.  The return 

performance although lower than the benchmark it still generating 69 basis 

point daily.   Overall, this last experiment confirms the features selected and 

the model structure are robust to a time gap between market close and next 

open.   

Furthermore, the variation of the model performance is expected in 

that more timely information would produce a better forecast and when the 

training and application targets are in line the performance is better than 

when they are mismatched.  All of these confirm that the features and the 

model structures are efficient in use the information it has to predict the 

target specified.     

<Insert Table 9> 

6.6 What has the model missed? 

Large episodes of volatility in the market are, in general, caused by 

unexpected events such as the flash crash and the surge activities in the event 

of  Gamestop’s social trading. These spikes in VIX create a significant tail risk 

in shorting VIX.  Since these innovations are truly exogenous to the system in 

that there is no warning or information embedded in the data.  If market 

participants do learn from each spike and adjust the trading behaviour 

accordingly,  these behaviours will reflect in the data point and our model will 

be able to take such information into account.  However, the next episode of 
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the spike may still catch the system by surprise as it is something that not 

many players, if any, in the market would have a foresight of it18.  

To further understand how the model prediction is related to this 

potential tail risk, we study the performance of the models around these 

episodes of volatility spikes.  Table 10 reports a summary of the model 

performance on the days that VIX change by more than 20% either way where 

spikes=1 indicating positive spikes and spikes=-1 indicating negative spikes.  

<Insert Table 10> 

We can see there are much more positive (64) than negative spikes 

(10).  Furthermore, for negative spikes, most of the models get them right with 

a low error rate of 20%.  By contrast, for positive spikes, these are obvious 

surprises to all models with error rate often much higher than 50% except for 

the NB model.  This confirms that positive VIX spikes are indeed a concern to 

the application of these models’ prediction 19 .  Nevertheless, the average 

returns suggest that the overall impact of these spikes are diversified away 

over these 11 years.  In other words, the models do not perform systematically 

badly.  

Although the spikes are surprises to most of the model, what happens 

after the spike provide further information about the effectiveness of the 

models in adapting to the new environment through the new data points 

coming into the model.  Table 11 shows the mean initial losses for all those 

incorrect predictions on the spike days for each model.  On average the initial 

daily loss is slightly above 30%.  We track the return following these initial 

spikes and report the cumulative P&L until 20 and 60 days after the spike 

 
18 Therefore, we do not expect that our system would be able to pick up those large jumps in 
volatility.  If it happens to get it right we consider it lucky.  What concern us is the downside 
risk brought by these volatility jumps.  One comprehensive approach is to develop a system 
that can predict the dump.  To this end, we do not find a viable solution as these are turely 
unknown to the general public and the cause can be different on different occasions.  
Furthermore, the low number of occurrence makes it ineffective for ML to learn from the 
realized data even if there are any leading indicators presented in the data.   
19 Large reduction of volatility (negative spikes) is less exogenous than large increase of 
volatility (positive spikes) is becasue most of the negative spikes are as a result of reversal 
from the positive spikes. 
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(including the initial losses)20.  We calculate the recovery ratio by comparing 

the gains made during the subsequent period to the initial losses.  It shows 

that the decision tree type models did relatively better after these spikes.  For 

example, 20 days after the initial spikes the AB model can recover 93% of the 

initial losses while the HAR model only recovers 23%.  By 60 days, most 

models covered fully except for NB and MLP.  

<Insert Table 11> 

Overall, although VIX spikes are not predictable to the system the 

decision tree type ML algorithms can adapt quickly by abstracting new 

information from the data to recover from the losses.  

7 Examples of practical applications  

In this section, we present two examples of practical investment applications.  

We first study strategies of trading VIX futures with the model signal and 

compare it with the short-only strategy.  We then present some limited 

evidence of trading the contract for difference (CFD).   

7.1 Trading VIX futures 

We consider a direct application of our forecast to trade VIX derivatives21.   

Among them, VIX futures are relatively liquid with lower trading costs (a 

narrow spread).  However, since VIX and VIX futures do not have the 

traditional cost of carrying relationship.  Their movements need not be 

perfectly correlated. Therefore how useful the VIX prediction for trading VIX 

futures is an empirical question.  

 
20 This cumulation is done by summing the daily return without compounding.  Such a return 
can be achieved by investing a fixed amount of capital into the strategy every day.   Similar to 
abnormal return calculation using sum or average of the return in this case is more relevant to 
evluate the expecte outcome without further complicate by the order of the return in the series 
(Fama, Fisher, Jensen, and Roll, 1969) 
21 VIX options contracts are delivered at the VIX closing, therefore, they are the only product 
that is directly linked to the spot VIX which are the target that our model predicts.  However, 
this product is very illiquid with a premium of more than 10% when one tries to trade near the 
money contracts for the weekly VIX.  It will be not worth further investigation with our 
average daily level of return at less than 1%.  Alternative options strateries may be possible to 
exploit the predictability of our model.  We leave this to future research.  
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We study this by reconstructing a continued series of VIX futures 

return.  This is done by using the front-month contract and switch to the next 

one when the current one expired.  This is similar to the ‘1st generic series’ in 

Bloomberg call UX1.  However, using the UX1 series to calculate return will be 

misleading during the switch.  We carefully identify the day of switching and 

calculating the return using the new contract before the day of switching.   

Three key features of this continue VIX future time series is worth 

noting.  First, the daily correlation between the return of the nearest future 

contract and VIX is about 89%.  Second, simple regression analysis shows that 

VIX futures return is 0.6 of VIX return and the r-squared of the regression is 

63%.   Third, this time series (cumulated return) is declining with time.  It is a 

well-known fact that VIX future is traded at a premium to VIX in normal 

conditions (Rhoads, 2011, Chapter 11).  In normally market condition, the 

term structure of VIX is similar to a normal yield curve upward sloping.  

Therefore, there is a short VIX futures premium that inspired the creation of 

Short VIX ETF such as the “ProShares Short VIX Short-Term Futures”.  To 

the end, CBOE creates the CBOE VIX Premium Strategy Index (VPD) for 

benchmarking such investment opportunity 22 . The existence of such a 

premium (a ‘short bias’) reduces the correlation between the VIX spot and 

VIX futures.   

Bearing the above facts in mind, we explore the application of our VIX 

signal to VIX futures in two ways.  First, it is a direct application without 

modification and second, it takes the short bias into consideration.   

Table 12 reports the summary statistics of applying the VIX signal 

directly on the nearest month VIX futures contract.  As expected, a reduction 

in accuracy rate is observed across the board (a drop ranging from 1.7% to 

4.4%).  While most of the before cost return is positive they are much smaller 

in magnitude as expected.  This is caused both by the drop of accuracy and the 

fact that the magnitude of the VIX futures movement is on average only 60% 

of the VIX.  For example, the best performing strategy AB has its return 

 
22 It reports the return of a strategy consistently selling front month VIX futures combined 
with a money market account. 
https://ww2.cboe.com/micro/vpd/vixpremiumindexvpdvpn.pdf 
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reduced to 1/3 of the VIX return.  For transaction costs, the VIX futures bid-

ask spread is on average 41 basis points23.  None of the signals would earn a 

positive return should we rebalance this every day.  However, we do not need 

to rebalance daily as predictions can be persistent.  The turnover ratio 

suggests that we only need to trade 23% to 38% of the days. When we taking 

into consideration the spread dynamically by applying the spread only when 

the prediction direction changes, most of the strategy still have a positive 

return.  However, they are in a much smaller magnitude.   For the AB model, 

it has an average return of 15 basis point daily which annualized to 38% 

annually. While this is nowhere near 2.25 times in the VIX application, a 38% 

return on average in 11 years would be an excellent achievement even for 

historically successful star investors.   Overall this type of application reduces 

performance from both the low correlation between the VIX and future and 

the low relative size of the return.   

<Insert Table 12> 

We now turn to the consideration of the shorting volatility strategy.  We 

consider if using our signal with the knowledge of the short-bias in the futures 

data would be able to beat the short-only strategy.  To this end, we consider a 

modified trading strategy that avoids going against this short-bias in the VIX 

futures.  Specifically, this would affect our trading in the long leg.  When our 

prediction is UP but the VIX futures is currently higher than the VIX spot, this 

will put downward pressure on the VIX futures contract.  If we were to long 

the VIX futures contract following our model prediction for the VIX spot, this 

would go against the general expected negative VIX futures return given that 

it is likely to converge to the VIX spot.   We, therefore, choose to “sit out” in 

this type of prediction days.     

Table 13 shows that avoiding the ‘conflicting’ days significantly 

improved the correct ratio.  It brings them back to the levels that are 

comparable to those we saw in the simulated strategy of the VIX spot in 

Section 5.   The number of investment days shows that most of the model sits 

out less than half of the trading days except for NB.  For comparison, we 

 
23 Calculated by the bid and ask price of the contracts during the sample period. 
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include the short-only (SO) strategy as a benchmark. We have four key 

observations from the results.  First, the short-only (SO) strategy is one that 

hard to beat especially when the rebalancing costs taking into consideration. It 

produces a 22 basis points daily return with a Sharpe ratio of 0.57.  As 

expected, this one-way bet produces zero market-timing.   

Second, most of the models’ average accuracies improve by sitting out 

those conflicting days but not by too much.  The most consistent performed 

model are LR, AB, ENS and DT judging by their t value before costs.  For the 

magnitude of the return, all model has a higher before cost return than SO. 

Third, taking into consideration of the turnover and transaction costs of the 

strategy dynamically, AB is the only model that can convincingly beat the SO 

strategy. It has about 50% higher daily average return.  Importantly it has a 

much higher Sharpe ratio (0.93 vs 0.57) and a lower yearly MDD.  Finally, the 

LR model performs reasonably well with measures slightly better than SO in 

every aspect.  These results give confidence about the financial and economic 

variables in our studies that are relevant to VIX forecast even in a ‘linear’ 

model. Overall, this analysis demonstrates the economic significance of our 

forecast.  

<Insert Table 13> 

7.2 Trading VIX CFD (spread-betting) 

There is another way to trade VIX that is the contract for difference (CFD) or 

spread betting from platforms such as IG.com 24 .  However, the IG only 

provides limited historical data.  Their daily data is recorded at 5 am UK time 

every day which is not in the normal VIX calculation trading hour.  This daily 

close return has a very low correlation with VIX.  To obtain prices that are 

within the VIX calculation hour, we obtain the hourly data (one year worth of 

data) in March 2021.  We test our trading strategy from 11 March 2020 to the 

 
24 https://www.ig.com/uk/indices/markets-indices/volatility-index accessed March 2021. 
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end of 2020 (197 days) trading near the VIX closing which is 3 pm Central 

Time25.  

In Table 14 we report the statistics for the IG application.  We also 

report the strategy return for applying to the VIX data for comparison.  First, 

for the accuracy, there is a drop in the accuracy when applying to IG in most 

models as expected except for the first two basic models and the ensemble 

model.  In general, the changes are within 1% to 3%.  Second, when looking at 

the return before costs, the IG returns are uniformly lower while maintaining 

similar patterns as applying to VIX.  Especially the decision tree families 

model continued to do well.  Third, the main transaction costs in trading CFD 

is the spread.  During this period, the spread is relatively high since the Covid 

19 pandemic increases the volatility of the VIX.  It is 0.16 times the price level 

for each contract26.  We add these costs in the trading when there is a change 

of direction in the predictions.  On average the turnover ratio is between 14% 

to 46%.  The decision tree’s models (DT, RF, and AB) continued to produce 

good returns after costs.  Especially the DT model.  We also report the 

cumulative return during the 197 trading days (end on 31 Dec 2020).  The AB 

doubles the investment during this period without taking into consideration of 

leverage27.  However, there is a risk attached to these strategies.  Only the DT 

return is statistically significantly different from zero suggesting other returns 

are volatile around zero.  The maximum drawdown can be as high as 58% for 

the DT strategy.  It is also important to note that this testing period is short 

and starts right after the pandemic spike.  Finally, the short only strategy (SO) 

can produce high accuracy of directional prediction but it often misses out in 

 
25 The VIX Index is calculated between 2:15 a.m. CT and 8:15 a.m. CT and between 8:30 a.m. 
CT and 3:15 p.m. CT.   We will not be able to have meaning full length of historical data for 15 
minute frequence.   
26 Note that this spread is in absolute price value that will deducted from the transaction price.  
Therefore the percentage transaction costs would be changing.  For example if VIX is around 
20, then the percentage spread is 0.8%. This percentage spread will be halved (0.4%) if VIX 
increase to 40.   
27 CFD or spreat betting are leverage product by design.  The normal margin is 20% which 
produce 1:5 leverage ratio.  Leverage is a double edged sword.  It is particularly harmful for 
VIX trading when vix spike and the trade is on the wong side.  One can de-leverage the 
position even trading with this product by taking a propotionally smaller position to the 
capital that one willing to invest.  For example, only use 20% of your capital in this strategy 
while calculating return with the full capital will produce an unleveraged return.  All the 
return report here do not consider leverage. They are just the normal long short return 
assuming 100% investment of capital.   
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the relatively larger size movement and the overall return is similar to NB 

during this period.  This confirms the value of economic data and modelling in 

this context.  

<Insert Table 14> 

8 Conclusions 

We study the predictability of VIX in a set of seven ML models.  We developed 

a three-step automated and adaptive training framework based on AutoML 

with explainability and trackability.   This framework has several districted 

features that aim at tackling some of the key challenges in apply ML to 

financial forecasting.  First, the framework utilized the AutoML HPO with 

Grid-Search and K-fold cross-validation to reduce human intervention during 

the training.  It enables automation and produces a trackable outcome.  The 

replacement of the conventional manual hyperparameter tuning 

hyperparameter for each model manually by an automated  Grid-Search with 

K-Fold validation method over the pre-defined parameter range improves 

efficiency and consistency of the algorithm selection and model tuning 

process.   Second, the out-of-sample validation after training ensures the 

robustness of the trained model and avoids overfitting or look-back bias.  This 

avoids false dictation due to multiple testing on the same set of data (Harvey 

and Liu, 2015).  Third, the proactive monitoring of performance drift and 

model decay and the close-loop retraining process make the model switch 

decision more systematic and automatic.  This reduces human error and 

trackable model switching for audit purpose.   

Empirically, this paper provides new evidence of predictability on the 

most important volatility index.   We demonstrate the source of predictability 

coming from two main areas.  First, it is still the most important role to play 

by human which is the choice of economically relevant variables and the 

translation of the prediction task into a form that the machine can be 

interpreted.  To this end we include large coverage of economic and financial 

data in our study and especially uncover the most important variable that is 

used by the machine to predict VIX is the weekly jobless claim data.  This new 
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finding contributes to the existing literature on the determinant of volatility 

and market fear.  The linkage between the labour market and overall market 

volatility hasn’t been covered sufficiently in the current literature.  Further 

research may look into the potential channel of this impact through 

theoretical and empirical studies. Second, the source of the predictability is 

coming from the forecasting framework we described above.  We document 

the benefit of each of the design in this paper.  These include the use of closed-

loop dynamic model retraining and a balanced sampling technique. These 

lessons are both relevant to future studies in volatility forecasting and other 

forecasting design in general.    

Through the process of this research, one lesson that we learn from the 

machine is that it cannot learn from what is not in the data.  Especially, one 

needs to recognize the limitation of the method.  For example, the true 

spectacular movement in the VIX would not be predictable (at least with 

public information we gather from the financial market), what the system can 

do is deduce some under or overreaction to the ‘old’ news.  Our results show 

that there is a robust and consistent pattern of behaviour that the machine can 

learn and the predictions are practically relevant.  
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Appendixes 

Appendix I. List of variables 

ID Catergory Security_name Filed 
1 Commodity Bloomberg Commodity Index Price Change 1 Day Percent 
2 Commodity WTI CRUDE FUTURE  Price Change 1 Day Percent 
3 Commodity BRENT CRUDE FUTR   Price Change 1 Day Percent 
4 Commodity COPPER FUTURE  Price Change 1 Day Percent 
5 Commodity GOLD 100 OZ FUTR  Price Change 1 Day Percent 
6 Commodity SOYBEAN FUTURE   Price Change 1 Day Percent 
7 Commodity CORN FUTURE    Price Change 1 Day Percent 
8 Commodity SUGAR  Price Change 1 Day Percent 
9 Commodity Gold Spot   $/Oz Price Change 1 Day Percent 
10 Currency Euro Spot Price Change 1 Day Percent 
11 Currency Japanese Yen Spot Price Change 1 Day Percent 
12 Currency British Pound Spot Price Change 1 Day Percent 
13 Currency Australian Dollar Spot Price Change 1 Day Percent 
14 Currency China Renminbi Spot Price Change 1 Day Percent 
15 Currency Brazilian Real Spot Price Change 1 Day Percent 
16 Currency DOLLAR INDEX SPOT Price Change 1 Day Percent 
17 Govt & Corp Bond US Generic Govt 2 Yr Price Change 1 Day Percent 
18 Govt & Corp Bond US Generic Govt 5 Yr Price Change 1 Day Percent 
19 Govt & Corp Bond US Generic Govt 3 Yr Price Change 1 Day Percent 
20 Govt & Corp Bond US Generic Govt 12 Mth Price Change 1 Day Percent 
21 Govt & Corp Bond US Generic Govt 3 Mth Price Change 1 Day Percent 
22 Govt & Corp Bond US Generic Govt 6 Mth Price Change 1 Day Percent 
23 Govt & Corp Bond US Generic Govt 30 Yr Price Change 1 Day Percent 
24 Govt & Corp Bond US Generic Govt TII 10 Yr Price Change 1 Day Percent 
25 Govt & Corp Bond US Generic Govt TII 5 Yr Price Change 1 Day Percent 
26 Govt & Corp Bond US Corporate High Yield Price Change 1 Day Percent 
27 Govt & Corp Bond Corporate Price Change 1 Day Percent 
28 Govt & Corp Bond Corporate Price Change 1 Day Percent 
29 Govt & Corp Bond UST 13-Week Bill High Discount Price Change 1 Day Percent 
30 Govt & Corp Bond Ted Spread Price Change 1 Day Percent 
31 Macroeconomic ISM Manufacturing PMI SA ISM PMI 
32 Macroeconomic ISM Services PMI Services PMI 
33 Macroeconomic U-3 US Unemployment Rate Total Total SA 
34 Macroeconomic US PPI Finished Goods SA MoM% Goods MoM SA 
35 Macroeconomic Adjusted Retail & Food Service Monthly % Change 
36 Macroeconomic US Import Price Index by End U % Change 
37 Macroeconomic US Export Price By End Use All % Change 
38 Macroeconomic US Real Average Weekly Earning CES0500000012 
39 Macroeconomic GDP US Chained 2012 Dollars Qo QoQ % Change Annualized 
40 Macroeconomic US Labor Productivity Output P PRS85006092 
41 Macroeconomic US Unit Labor Costs Nonfarm Bu PRS85006112 
42 Macroeconomic US Employees on Nonfarm Payrol Net Change SA 
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ID Catergory Security_name Filed 
43 Macroeconomic US Employees on Nonfarm Payrol Private Chng SA 
44 Macroeconomic US Employees on Nonfarm Payrol Net Change 
45 Macroeconomic Federal Funds Target Rate - Up Fed Funds Target Rate US 
46 Macroeconomic US Initial Jobless Claims SA Initial Jobless Claims SA 

47 Macroeconomic 
US CPI Urban Consumers MoM 
SA MoM % SA 

48 Macroeconomic Conference Board Consumer Conf Confidence 
49 Macroeconomic US Durable Goods New Orders In Month % change 

50 Macroeconomic 
MBA US US Mortgage Market 
Inde WoW% Change 

51 Macroeconomic US New One Family Houses Sold Total sold 
52 Macroeconomic US New Privately Owned Housing US Building Housing Starts 
53 Macroeconomic US Industrial Production MOM S Month % change 
54 Macroeconomic US Manufacturers New Orders To Monthly % Change 
55 Macroeconomic US Personal Income MoM SA MoM % Change 
56 Macroeconomic US Personal Consumption Expend Monthly % Change 
57 Macroeconomic US Trade Balance of Goods and US Trade Balance 
58 Macroeconomic Conference Board US Leading In Monthly % Change 
59 Macroeconomic University of Michigan Consume Univ. of Michigan Sentiment 
60 Macroeconomic ISM Manufacturing PMI SA Change 
61 Macroeconomic ISM Services PMI Change 
62 Macroeconomic U-3 US Unemployment Rate Total Change 
63 Macroeconomic US PPI Finished Goods SA MoM% Change 
64 Macroeconomic Adjusted Retail & Food Service Change 
65 Macroeconomic US Import Price Index by End U Change 
66 Macroeconomic US Export Price By End Use All Change 
67 Macroeconomic US Real Average Weekly Earning Change 
68 Macroeconomic GDP US Chained 2012 Dollars Qo Change 
69 Macroeconomic US Labor Productivity Output P Change 
70 Macroeconomic US Unit Labor Costs Nonfarm Bu Change 
71 Macroeconomic US Employees on Nonfarm Payrol Change 
72 Macroeconomic US Employees on Nonfarm Payrol Change 
73 Macroeconomic US Employees on Nonfarm Payrol Change 
74 Macroeconomic Federal Funds Target Rate - Up Change 
75 Macroeconomic US Initial Jobless Claims SA Change 

76 Macroeconomic 
US CPI Urban Consumers MoM 
SA Change 

77 Macroeconomic Conference Board Consumer Conf Change 
78 Macroeconomic US Durable Goods New Orders In Change 

79 Macroeconomic 
MBA US US Mortgage Market 
Inde Change 

80 Macroeconomic US New One Family Houses Sold Change 
81 Macroeconomic US New Privately Owned Housing Change 
82 Macroeconomic US Industrial Production MOM S Change 
83 Macroeconomic US Manufacturers New Orders To Change 
84 Macroeconomic US Personal Income MoM SA Change 
85 Macroeconomic US Personal Consumption Expend Change 
86 Macroeconomic US Trade Balance of Goods and Change 
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ID Catergory Security_name Filed 
87 Macroeconomic Conference Board US Leading In Change 
88 Macroeconomic University of Michigan Consume Change 
89 Macroeconomic ICE LIBOR USD 1 Month Last Price 
90 Macroeconomic ICE LIBOR USD 1 Month Price Change 1 Day Percent 
91 Macroeconomic US Generic Govt 10 Yr Price Change 1 Day Percent 

92 Major Equities 
INTL BUSINESS MACHINES 
CORP Price Change 1 Day Percent 

93 Major Equities APPLE INC Price Change 1 Day Percent 
94 Major Equities AMAZON.COM INC Price Change 1 Day Percent 
95 Major Equities GENERAL ELECTRIC CO Price Change 1 Day Percent 
96 Major Equities CELGENE CORP Price Change 1 Day Percent 
97 Major Equities MICRON TECHNOLOGY INC Price Change 1 Day Percent 
98 Major Equities MICROSOFT CORP Price Change 1 Day Percent 
99 Major Equities BRISTOL-MYERS SQUIBB CO Price Change 1 Day Percent 
100 Major Equities FEDEX CORP Price Change 1 Day Percent 
101 Major Equities GOLDMAN SACHS GROUP INC Price Change 1 Day Percent 
102 Major Equities PROLOGIS INC Price Change 1 Day Percent 
103 Major Equities NVIDIA CORP Price Change 1 Day Percent 
104 Seasonality Day of the month  
105 Seasonality Day of the week  
106 Seasonality Week of the year  
107 Seasonality Month of the year  
108 Seasonality Day to next expired Wed  

109 SPX Member Tech S&P 500 INDEX 
Pct of Members w/Px Below 
Lower Bollinger Band 

110 SPX Member Tech S&P 500 INDEX 
Pct of Members w/Px Above 
Upper Bollinger Band 

111 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 10 Day Moving Avg 

112 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 20 Day Moving Avg 

113 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
MACD > Base Line Zero 

114 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 150 Day Moving Avg 

115 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Signal > Base Line Zero 

116 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 250 Day Moving Avg 

117 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 10 Wk Moving Avg 

118 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 50 Wk Moving Avg 

119 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
Px > 100 Wk Moving Avg 

120 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 14 
Day RSI Betw 30 & 70 

121 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 14 
Day RSI > 70 

122 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 14 
Day RSI < 30 
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ID Catergory Security_name Filed 

123 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
New 52 Week Highs 

124 SPX Member Tech S&P 500 INDEX 
Percentage of Members With 
New 52 Week Lows 

125 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
New 4 Week Highs 

126 SPX Member Tech S&P 500 INDEX 
Percentage of Members With 
New 4 Week Lows 

127 SPX Member Tech S&P 500 INDEX 
Pct of Members w/MACD Sell 
Signal Last 10 Days 

128 SPX Member Tech S&P 500 INDEX 
Pct of Members w/MACD Buy 
Signal Last 10 Days 

129 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
New 12 Week Highs 

130 SPX Member Tech S&P 500 INDEX 
Percentage of Members With 
New 12 Week Lows 

131 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
New 8 Week Highs 

132 SPX Member Tech S&P 500 INDEX 
Percentage of Members with 
New 24 Week Highs 

133 SPX Member Tech S&P 500 INDEX 
Percentage of Members With 
New 24 Week Lows 

134 SPX Member Tech S&P 500 INDEX 
Percentage of Members With 
New 8 Week Lows 

135 
SPX Options and 
Futures S&P 500 INDEX Hist. Call Implied Volatility 

136 
SPX Options and 
Futures S&P 500 INDEX 

Put Call Volume Ratio - Current 
Day 

137 
SPX Options and 
Futures S&P 500 INDEX 

Total Option Volume - Current 
Day 

138 
SPX Options and 
Futures S&P 500 INDEX Total Call Volume 

139 
SPX Options and 
Futures S&P 500 INDEX Total Put Volume 

140 
SPX Options and 
Futures S&P 500 INDEX Total Call Open Interest 

141 
SPX Options and 
Futures S&P 500 INDEX Total Put Open Interest 

142 
SPX Options and 
Futures S&P 500 INDEX Total Call Volume Current Day 

143 
SPX Options and 
Futures S&P 500 INDEX Total Put Volume Current Day 

144 
SPX Options and 
Futures S&P 500 INDEX 

Total Call Open Interest 
Current Day 

145 
SPX Options and 
Futures S&P 500 INDEX 

Total Put Open Interest Current 
Day 

146 
SPX Options and 
Futures S&P 500 INDEX 

Total Option Volume - Current 
Day 

147 
SPX Options and 
Futures Generic 1st 'SP' Future Aggregate Open Interest 

148 
SPX Options and 
Futures Generic 1st 'SP' Future 

Aggregate Volume of Futures 
Contracts 

149 SPX Subindex S&P 500 Banks Industry Group G Price Change 1 Day Percent 
150 SPX Subindex S&P 500 Retailing Industry Gro Price Change 1 Day Percent 
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ID Catergory Security_name Filed 

151 SPX Subindex 
S&P 500 Automobiles & 
Componen Price Change 1 Day Percent 

152 SPX Subindex S&P 500 Transportation Industr Price Change 1 Day Percent 
153 SPX Subindex S&P 500 Software & Services In Price Change 1 Day Percent 
154 SPX Subindex S&P 500 Insurance Industry Gro Price Change 1 Day Percent 
155 SPX Subindex S&P 500 Real Estate Industry G Price Change 1 Day Percent 
156 SPX Subindex S&P 500 Technology Hardware & Price Change 1 Day Percent 
157 SPX Subindex S&P 500 Media & Entertainment Price Change 1 Day Percent 
158 SPX Subindex S&P 500 Household & Personal P Price Change 1 Day Percent 
159 SPX Subindex S&P 500 Telecommunication Serv Price Change 1 Day Percent 
160 SPX Subindex S&P 500 Utilities Industry Gro Price Change 1 Day Percent 
161 SPX Subindex S&P 500 Food Beverage & Tobacc Price Change 1 Day Percent 
162 SPX Subindex S&P 500 Health Care Equipment Price Change 1 Day Percent 
163 SPX Subindex S&P 500 Consumer Durables & Ap Price Change 1 Day Percent 
164 SPX Subindex S&P 500 Pharm Biotech & Life S Price Change 1 Day Percent 
165 SPX Subindex S&P 500 Energy Industry Group Price Change 1 Day Percent 
166 SPX Subindex S&P 500 Capital Goods Industry Price Change 1 Day Percent 
167 SPX Subindex S&P 500 Diversified Financials Price Change 1 Day Percent 
168 SPX Subindex S&P 500 Food & Staples Retaili Price Change 1 Day Percent 
169 SPX Subindex S&P 500 Consumer Services Indu Price Change 1 Day Percent 
170 SPX Subindex S&P 500 Commercial Professiona Price Change 1 Day Percent 
171 SPX Subindex S&P 500 Materials Industry Gro Price Change 1 Day Percent 
172 SPX Subindex S&P 500 Consumer Discretionary Price Change 1 Day Percent 
173 SPX Subindex S&P 500 Consumer Staples Secto Price Change 1 Day Percent 
174 SPX Subindex S&P 500 Energy Sector GICS Lev Price Change 1 Day Percent 
175 SPX Subindex S&P 500 Financials Sector GICS Price Change 1 Day Percent 
176 SPX Subindex S&P 500 Health Care Sector GIC Price Change 1 Day Percent 
177 SPX Subindex S&P 500 Industrials Sector GIC Price Change 1 Day Percent 
178 SPX Subindex S&P 500 Information Technology Price Change 1 Day Percent 
179 SPX Subindex S&P 500 Materials Sector GICS Price Change 1 Day Percent 
180 SPX Subindex S&P 500 Communication Services Price Change 1 Day Percent 
181 SPX Subindex S&P 500 Utilities Sector GICS Price Change 1 Day Percent 
182 SPX Tech S&P 500 INDEX Volatility 30 Day 
183 SPX Tech S&P 500 INDEX Volatility 90 Day 
184 SPX Tech S&P 500 INDEX Volatility 60 Day 
185 SPX Tech S&P 500 INDEX Volatility 260 Day 
186 SPX Tech S&P 500 INDEX Volatility 360 Day 
187 SPX Tech S&P 500 INDEX Volatility 10 Day 
188 SPX Tech S&P 500 INDEX Volatility 20 Day 
189 SPX Tech S&P 500 INDEX Volatility 180 Day 
190 SPX Tech S&P 500 INDEX Volatility 200 Day 
191 SPX Tech S&P 500 INDEX Volatility 120 Day 
192 SPX Tech S&P 500 INDEX RSI 3 Day 
193 SPX Tech S&P 500 INDEX RSI 9 Day 
194 SPX Tech S&P 500 INDEX RSI 14 Day 
195 SPX Tech S&P 500 INDEX RSI 30 Day 
196 SPX Tech S&P 500 INDEX ARMS Daily Index 
197 SPX Tech S&P 500 INDEX ARMS Weekly Index 
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ID Catergory Security_name Filed 
198 SPX Tech S&P 500 INDEX Money Flow Net Non-Block 
199 SPX Tech S&P 500 INDEX Money Flow Net-Block 
200 SPX Tech S&P 500 INDEX Dividend Per Share Last Net 
201 SPX Tech S&P 500 INDEX Volume - Realtime 
202 SPX Tech S&P 500 INDEX Advance Volumes 
203 SPX Tech S&P 500 INDEX Decline Volumes 
204 SPX Tech S&P 500 INDEX Unchange Volumes 
205 SPX Tech S&P 500 INDEX Average Volume 5 Day 
206 SPX Tech S&P 500 INDEX Average Volume 25 Day 
207 SPX Tech S&P 500 INDEX Moving Average 5 Day 
208 SPX Tech S&P 500 INDEX Moving Average 10 Day 
209 SPX Tech S&P 500 INDEX Moving Average 20 Day 
210 SPX Tech S&P 500 INDEX Moving Average 30 Day 
211 SPX Tech S&P 500 INDEX Moving Average 50 Day 
212 SPX Tech S&P 500 INDEX Moving Average 100 Day 
213 SPX Tech S&P 500 INDEX Moving Average 200 Day 
214 SPX Tech S&P 500 INDEX Percentage Index Advaced 
215 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_5D 
216 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_10D 
217 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_20D 
218 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_30D 
219 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_50D 
220 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_100D 
221 SPX Tech S&P 500 INDEX DIFF_MOV_AVG_200D 
222 SPX Tech S&P 500 INDEX return_5d 
223 SPX Tech S&P 500 INDEX return_10d 
224 SPX Tech S&P 500 INDEX return_30d 
225 SPX Tech S&P 500 INDEX return_60d 
226 SPX Tech S&P 500 INDEX Max 30 day 
227 SPX Tech S&P 500 INDEX Days away from 30 Max 
228 SPX Tech S&P 500 INDEX Min 30 day 
229 SPX Tech S&P 500 INDEX Day away from 30 Min 
230 SPX Tech S&P 500 INDEX RSI3d/RSI14d 
231 SPX Tech S&P 500 INDEX MOV_AVG_5D_20D 
232 SPX Tech S&P 500 INDEX Price Change 1 Day Percent 
233 Vix Tech Cboe Volatility Index vixchanged_3d 
234 Vix Tech Cboe Volatility Index vixchanged_5d 
235 Vix Tech Cboe Volatility Index vixchanged_10d 
236 Vix Tech Cboe Volatility Index vixchanged_30d 
237 Vix Tech Cboe Volatility Index vixchanged_60d 
238 Vix Tech Cboe Volatility Index vixstd_5d 
239 Vix Tech Cboe Volatility Index vixstd_10d 
240 Vix Tech Cboe Volatility Index vixstd_30d 
241 Vix Tech Cboe Volatility Index vixstd_60d 
242 Vix Tech Cboe Volatility Index Moving Average 5 Day 
243 Vix Tech Cboe Volatility Index Moving Average 10 Day 
244 Vix Tech Cboe Volatility Index Moving Average 20 Day 
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ID Catergory Security_name Filed 
245 Vix Tech Cboe Volatility Index Moving Average 30 Day 
246 Vix Tech Cboe Volatility Index Moving Average 5 Day 
247 Vix Tech Cboe Volatility Index Moving Average 10 Day 
248 Vix Tech Cboe Volatility Index Moving Average 20 Day 
249 Vix Tech Cboe Volatility Index Moving Average 30 Day 
250 Vix Tech Cboe Volatility Index RSI 3 Day 
251 Vix Tech Cboe Volatility Index RSI 9 Day 
252 Vix Tech Cboe Volatility Index RSI 14 Day 
253 Vix Tech Cboe Volatility Index RSI 30 Day 
254 Vix Tech Cboe Volatility Index Max 30 day 
255 Vix Tech Cboe Volatility Index Days away from 30 Max 
256 Vix Tech Cboe Volatility Index Min 30 day 
257 Vix Tech Cboe Volatility Index Day away from 30 Min 
258 Vix Tech Cboe Volatility Index RSI3d/RSI14d 
259 Vix Tech Cboe Volatility Index MOV_AVG_5D_20D 
260 Vix Tech Cboe Volatility Index Price Change 1 Day Percent 
261 World Equity Index DOW JONES INDUS. AVG Price Change 1 Day Percent 
262 World Equity Index NIKKEI 225 Price Change 1 Day Percent 
263 World Equity Index Euro Stoxx 50 Pr Price Change 1 Day Percent 
264 World Equity Index DAX INDEX Price Change 1 Day Percent 
265 World Equity Index NASDAQ COMPOSITE Price Change 1 Day Percent 
266 World Equity Index FTSE 100 INDEX Price Change 1 Day Percent 
267 World Equity Index STXE 600 (EUR) Pr Price Change 1 Day Percent 
268 World Equity Index HANG SENG INDEX Price Change 1 Day Percent 
269 World Equity Index TOPIX INDEX (TOKYO) Price Change 1 Day Percent 
270 World Equity Index SHANGHAI SE COMPOSITE Price Change 1 Day Percent 
271 World Equity Index RUSSELL 2000 INDEX Price Change 1 Day Percent 
272 World Equity Index NASDAQ 100 STOCK INDX Price Change 1 Day Percent 
273 World Equity Index CAC 40 INDEX Price Change 1 Day Percent 
274 World Equity Index MSCI World Index Price Change 1 Day Percent 
275 World Equity Index MSCI Emerging Markets Index Price Change 1 Day Percent 
276 World Equity Index NSE Nifty 50 Index Price Change 1 Day Percent 
277 World Equity Index BRAZIL IBOVESPA INDEX Price Change 1 Day Percent 
278 World Equity Index BarCap US Corp HY YTW - 10 Yea Price Change 1 Day Percent 
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Appendix II. List of Algorithms included 

Naïve Bayes (NB) 

Naïve Bayes classifiers are a family of simple probabilistic classifiers based on 

Bayes' Theorem with strong (naive) independence assumptions among the 

features/predictors. It assumes that the presence of a particular feature in a 

class is unrelated to the presence of any other feature. Even if these features 

depend on each other or upon the existence of the other features, all of these 

properties independently contribute to the probability.  Naive Bayes model is 

easy to build and particularly useful for large data sets. Along with simplicity, 

Naive Bayes, in certain circumstances, is known to outperform even highly 

sophisticated classification methods.  In this research work, we use Naïve 

Bayes algorithm as a benchmark approach, to compare with other algorithms 

to demonstrate the model performance.  

Logistic Regression (LR) 

Logistic Regression is a statistical method to analyze a data set in which there 

are one or more independent variables that determine an outcome. The 

outcome is measured with a dichotomous variable in which the calculated 

probability is determined in two possible outcomes.  The goal of logistic 

regression is to find the best fitting model to describe the relationship between 

the dichotomous characteristic of interest and a set of independent predictors.  

In this research work, we use the Naïve Bayes algorithm and Logistic 

Regression as benchmark approaches, to compare with other algorithms to 

demonstrate the model performance.  

Decision Tree (DT) 

A decision tree can be used to build a classification model in the form of a tree 

structure. It splits the input data set into a number of smaller subsets, to 

incrementally develop a tree structure to fit the decision in each node. 

Therefore, the final result is a tree with decision nodes and leaf nodes. The 

decision nodes are factors of decision, and the leaf nodes denoted each 

decision. A decision node has two or more branches, and each leaf node 
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represents a classification or decision. The topmost decision node in a tree 

that corresponds to the best predictor is called the root node.  

The prediction process using the decision tree is to go through the tree 

from the root node, to look for the best fitting factors that led to the decision. 

It is based on the concept of entropy, which looks at the frequency distribution 

of decisions and then calculates a logarithm. The process repeats itself, by 

dividing each decision into sub-conditions for each decision until entropy is 

zero, then the best decision is found.  

Random Forest (RF) 

Random forest is an advanced development on top of the Decision Tree, with 

randomness to avoid bias and group outcomes based upon the most likely 

positive responses. It operates by constructing a multitude of decision trees at 

training time and outputting the class that is the mode of the classes of the 

individual trees.  Random decision forests correct for decision trees’ habit of 

overfitting to their training set.  As the number of trees increase and given the law 

of large numbers, random forests do not suffer from overfitting problems (Breiman, 

2001).   

Booth, Gerding, and McGroarty (2014) apply an automated trading 

system based on performance-weighted ensembles of random forests and 

show better prediction accuracy and higher profitability than other ensemble 

methods using data on the German stock index DAX. 

Adaptive Boosting (AB) 

Boosting is a set of algorithms that combines weak learner to form a strong 

rule. It starts from base learners with a different distribution to generate a 

new weak prediction rule. With a number of iteration, the boosting algorithm 

combines weak rules into a single stronger prediction rule.  

Among the Boosting algorithms, Adaptive Boosting (AB) is more 

focused on classification problems and aims to convert a set of weak classifiers 

into a strong one. It starts with weighted training data to predict the original 

data set and give equal weight to each observation. If the prediction is 

incorrect then the weight is adjusted. This process loops in iterations to 
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continuously add learners until a predefined limit is reached in the number of 

models, the accuracy, number of iterations or other user-defined criteria.  

Neural Network (MLP) 

Neural Network becomes popular in recent years in the Machine Learning 

world, new architectures such as Recurrent Neural Network, Convolutional 

Neural Network are used in many areas of image/video recognition, speech 

recognition, time series analysis etc. The typical neural network consists of 

units (neurons), arranged in layers. The units are connected, each connection 

has a weight associated with it. The whole structure is able to convert an input 

vector into an output. Each unit takes an input, applies a nonlinear objective 

function to it and then passes the output on to the next layer.  

The most common model is the Multi-Layer Perceptron (MLP), where 

a unit takes the input data and feeds its output to all the units on the next 

layer. In the training phase, the weights are tuned to adapt the whole neural 

network to reach the optimal output of the objective function. 

Ensemble model (Ens) 

When multiple models are trained, we combine them into a stacking ensemble 

model, to increase the predictive force of the classifier, and reduce the errors 

introduced by variance, noise and bias. First, all the basic models are trained 

using grid search with cross-validation, to obtain the model structure with a 

sub-optimal hyperparameter set. Then the ensemble algorithm is applied to 

make a final prediction using all the predictions of the individual model, each 

model can be weighted based on their individual performance. This approach 

typically yields performance better than any single one of the trained models. 

In this paper, the ensemble model is built with six algorithms (Naïve Bayes, 

Logistic Regression, Adaptive Boosting, Decision Tree, Random Forest, and 

Multi-Layer Perceptron) that are described above.  The “ensemble” approach 

has been shown to produce better predictions than any individual AI 

technique (Rasekhschaffe, and Jones 2019).  
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Figures and Tables 

Figure 1. The adaptive continuous learning methodology 
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Figure 2. Training and validation accuracy for modelling at the end 
of 2009 

This figure reports the accuracy ratios for training and validation of each model.  
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Figure 3. Out of sample implementation accuracy by model 

This figure reports the box plot of the yearly correct ratio by model.  The correct ratio is 
obtained from the out-of-sample forecast from 2010 to 2020.   
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Figure 4. Accuracy ratio by year by model 

This figure reports the accuracy ratio by year for each model in the implementation stage.  
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Figure 5. Retraining, validation and implementation accuracy 
during the close-loop implementation period 

This figure reports the distribution of accuracy for the models used in the implementation 
stage for each Algo. The numbers of training are reported at the bottom of the figure.   

 

 1.NB 2.LR 3.DT 4.RF 5.AB 6.MLP 7.ENS 

number 
of 

retraining 

23 20 9 16 10 16 7 
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Figure 6. Out of sample simulated long-short strategy performance 

This figure reports the distributions (box plots) of the mean daily return in the 11 years 
between 2010 and 2020 for each algorithm. The return is calculated by applying the predicted 
signal to the next day's VIX return.    The diamond indicated the mean return.   
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Figure 7. Correct ratios of one time model vs dynamic retrained 
method 

This figure reports the distributions (box plots) of the mean daily return in the 11 years 
between 2010 and 2020 for two different training approach: one time (Onemodel) and 
dynamic retrained (Retrain1).  Onemodel uses the model trained at the end of 2009 and apply 
it to the 11 years without further retraining. Retrain1 is the methodology reported in the main 
results where retraining are triggered dynamically.  
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Figure 8. The correct ratio of balanced vs unbalanced sample 
training 

This figure reports the distributions (box plots) of the mean daily return in the 11 years 
between 2010 and 2020 for two different training approaches for the Adaptive Boosting 
model (AB).  One uses a ‘balanced’ sampling approach which consists of equal amounts of ups 
and downs which is the same as the main result reported in Table 1.  The other uses an 
‘unbalanced’ sampling approach simply taking 4000 data point a the time of estimation.    
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Table 1. Summary of variables by groups 

Groups Examples Number of fields 

SPX Member Tech   26 

 PCT MEMB PX GT 50W MOV AVG  

 PCT MEMB WITH 14D RSI LT 30  

 SPX Index PCT MEMBERS WITH NEW 
52W HIGHS 

 
SPX Options and Futures   14 

 Total Put Volume  

 Total Call Open Interest  

 Aggregate Volume of Futures Contracts  
SPX Subindex   33 

 S5BANKX Index  

 S5RETL Index  

 S5AUCO Index  
SPX Tech   45 

 Average Volume 5 Day  

 ARMS Daily Index  

 Volatility 200 Day  
Vix Tech   34 

 RSI 3 Day  

 Moving Average 5 Day  

 Max30  
World Equity Index   18 

 DAX Index  

 CCMP Index  

 UKX Index  
Major Equities   12 

 IBM US Equity  

 AAPL US Equity  

 GE US Equity  

    
Macroeconomic   61 

 PPI CHNG Index  

 RSTAMOM Index  

 IMP1CHNG Index  
Govt & Corp Bond   14 

 CSI BARC Index  

 USGG2YR Index  

 LF98TRUU Index  
Currency   7 

 EUR Curncy  

 JPY Curncy  

 GBP Curncy  
Commodity   9 

 BCOM Index  

 CL1 COMB Comdty  

 CO1 COMB Comdty  

    
Seasonality   5 

 Day of the week  

 Week of the year  

 Days to next maturity Wednesday  
Total   278 
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Table 2. Forecast accuracy summary 

This table reports the correct ratio, information coefficient and timing ratio in the 11 year 
implementation period.  The information coefficient is calculated by (2×Correct_ratio)−1. The 
timing ratio is calculated as (true positive ratio + true negative ratio) -1. Detail of the models 
can be found in Section 3.3.  ***, **, and * indicate statistical significance at 1%, 5% and 10% 
level respectively.  

  Correct_ratio Information_coefficient Timing_ratio 

Models Mean Mean t   Mean t   

1.NB 0.487 -0.0262 -1.36   0.020 1.35   

2.LR 0.552 0.1046 4.19 *** 0.097 4.94 *** 

3.DT 0.582 0.1634 6.93 *** 0.126 5.25 *** 

4.RF 0.560 0.1194 10.64 *** 0.122 9.60 *** 

5.AB 0.569 0.1383 8.01 *** 0.122 7.38 *** 

6.MLP 0.530 0.0595 2.33 ** 0.057 2.61 ** 

7.ENS 0.566 0.1319 7.19 *** 0.119 6.41 *** 

HAR 0.525 0.0502 2.31 ** 0.072 4.02 *** 
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Table 3. Out of sample simulated long-short strategy performance 

This table reports the mean daily return, the Sharpe ratio and the average maximum annual 
percentage drawdown (MDD). ***, **, and * indicate statistical significance at 1%, 5% and 
10% level respectively. 

  Daily Return   Yearly MDD 

model Mean t   Sharpe Mean t   

1.NB 0.0029 2.79 ** 0.85 -60% -4.39 *** 

2.LR 0.0060 5.06 *** 1.54 -52% -2.87 ** 

3.DT 0.0056 4.30 *** 1.27 -64% -2.57 ** 

4.RF 0.0078 6.85 *** 2.05 -47% -2.84 ** 

5.AB 0.0090 5.80 *** 1.73 -30% -3.31 *** 

6.MLP 0.0045 3.91 *** 1.18 -50% -3.24 *** 

7.ENS 0.0074 7.42 *** 2.24 -89% -1.92 * 

HAR 0.0053 3.89 *** 1.15 -56% -3.63 *** 
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Table 4. Top 20 Variable Importance by ranking 

This table reports the top 10 variables according to their ranking in each model and 
all models.  
Panel A. Rank by Average of Variable Importance in the initial training   

Rank Name Full Category 
Rank in 
retraini

ngs 1 US Initial Jobless Claims SA change Macroeconomic 1 

2 day of the week Seasonality 2 

3 SPX Index PCT MEMBERS WITH NEW 52W HIGHS SPX Member Tech 28 

4 SPX Index  Volume SPX Tech 45 

5 S5TELS Index   SPX Subindex 64 

6 VIX Index vixd 60d Vix Tech 132 

7 SPX Index PCT MEMBERS WITH NEW 8W HIGHS SPX Member Tech 35 

8 GBP Curncy   Currency 53 

9 S5AUCO Index   SPX Subindex 85 

10 VIX Index RSI 14d Vix Tech 27 

11 VIX Index days diff min30 Vix Tech 15 

12 SPX Index PCT MEMB PX BLW LWR BOLL BAND SPX Member Tech 144 

13 S 1 COMB Comdty   Commodity 36 

14 day of the month Seasonality 4 

15 SPX index days diff max30 Vix Tech 33 

16 SPX Index VOLATILITY 260D SPX Tech 112 

17 SX5E Index   World Equity Index 103 

18 US CPI Urban Consumers MoM SA Macroeconomic 194 

19 VIX Index RSI 30d Vix Tech 9 

20 S5INDU Index   SPX Subindex 183 

Panel B Rank by Average of Variable Importance in the Retrainings  

Rank Name Full Category 

Ranking 
in the 
initial 
training 

1 US Initial Jobless Claims SA change Macroeconomic 1 

2 day of the week Seasonality 2 

3 SPX index RSI3d/RSI14d SPX Tech 98 

4 day of the month Seasonality 14 

5 VIX Index RSI 9d Vix Tech 41 

6 VIX Index RSI3d/RSI14d Vix Tech 58 

7 Day to maturaity at next 3rd Wednesday Seasonality 92 

8 SPX Index RSI 3D SPX Tech 24 

9 VIX Index RSI 30d Vix Tech 19 

10 VIX Index RSI 3d Vix Tech 112 

11 CL1 COMB Comdty   Commodity 88 

12 CO1 COMB Comdty   Commodity 50 

13 SPX index days diff min30 SPX Tech 86 

14 SPX Index RSI 30D SPX Tech 85 

15 VIX Index days diff min30 Vix Tech 11 

16 SPX Index PCT MEMBERS WITH NEW 24W HIGHS SPX Member Tech 163 

17 XAU Curncy   Commodity 221 

18 SPX Index PCT MEMBERS WITH NEW 12 WK LOWS SPX Member Tech 31 

19 VIX Index days diff max30 Vix Tech 48 

20 SPX Index RSI 14D SPX Tech 60 
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Table 5. Variable importance by category for All model summary 

This table reports the statistics for the average variable-importance of all AB models used in 
the implementation stage including the one at the end of 2009.  It reports the mean, 
minimum, maximum and sum variable importance and number of variables in each category.   
The rows in the table are ordered by the sum column.  The conditional formatting with green 
is higher and red is lower in value within each column comparing across different categories. 

 

Category Mean Min Max Sum N 

SPX Tech 0.0039 0.0031 0.0055 0.1981 51 

Macroeconomic 0.0023 0.0003 0.0133 0.1432 61 

SPX Subindex 0.0038 0.0033 0.0045 0.1238 33 

Vix Tech 0.0041 0.0029 0.0054 0.1146 28 

SPX Member Tech 0.0039 0.0032 0.0047 0.1003 26 

World Equity Index 0.0039 0.0032 0.0044 0.0701 18 

SPX Options and Futures 0.0039 0.0034 0.0045 0.0543 14 

Govt & Corp Bond 0.0038 0.0032 0.0043 0.0527 14 

Major Equities 0.004 0.0034 0.0045 0.0477 12 

Commodity 0.0043 0.0038 0.0047 0.0391 9 

Currency 0.0041 0.0038 0.0044 0.0284 7 

Seasonality 0.0055 0.0039 0.0092 0.0276 5 

All 0.0036 0.0003 0.0133 1 278 
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Table 6. Comparison between one time model vs dynamic retrained 
model 

This table reports the correct ratio, information coefficient and timing ratio in 
the 11 year implementation period for two different training approach: one 
time (Onemodel) and dynamic retrained (Retrain1).  Onemodel uses the 
model trained at the end of 2009 and apply it to the 11 years without further 
retraining. Retrain1 is the methodology reported in the main results where 
retraining are triggered dynamically.   The information coefficient is 
calculated by (2×Correct_ratio)−1. The timing ratio is calculated as (true 
positive ratio + true negative ratio) -1.  p-values are from the tests for the 
mean to be different from zero.  
 

    Correct ratio 
Information 
coefficient Timing ratio 

Models Training Mean Mean p-value Mean p-value 

1.NB ONEMODEL 0.5 -0.0090 0.52 0.0211 0.11 

 RETRAIN1 0.49 -0.0262 0.20 0.02 0.21 

2.LR ONEMODEL 0.5 0.0009 0.97 0.0513 0.01 

 RETRAIN1 0.55 0.1046 0.00 0.0967 0.00 

3.DT ONEMODEL 0.49 -0.0150 0.65 0.0446 0.03 

 RETRAIN1 0.58 0.1634 0.00 0.126 0.00 

4.RF ONEMODEL 0.53 0.0590 0.02 0.0848 0.00 

 RETRAIN1 0.56 0.1194 0.00 0.1216 0.00 

5.AB ONEMODEL 0.56 0.1197 0.00 0.1036 0.00 

 RETRAIN1 0.57 0.1383 0.00 0.1224 0.00 

6.MLP ONEMODEL 0.53 0.0546 0.01 0.0505 0.02 

 RETRAIN1 0.53 0.0595 0.04 0.0571 0.03 

7.ENS ONEMODEL 0.5 -0.0069 0.82 0.0552 0.00 

  RETRAIN1 0.57 0.1319 0.00 0.119 0.00 
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Table 7. Results for the unbalanced sample of the Adaptive 
Boosting model 

This table reports the correct ratio, information coefficient and timing ratio in the 11 year 
implementation period for two different training approaches for the Adaptive Boosting model 
(AB).  One uses a ‘balanced’ sampling approach which consists of equal amounts of ups and 
downs which is the same as the main result reported in Table 1.  The other uses an 
‘unbalanced’ sampling approach simply taking 4000 data point a the time of estimation.   The 
information coefficient is calculated by (2×Correct_ratio)−1. The timing ratio is calculated as 
(true positive ratio + true negative ratio) -1. p-values are from the test for the mean to be 
different from zero. 

Panel A Accuracy 

 Correct ratio 
Information 
coefficient Timing ratio 

Training Mean Mean p-value Mean p-value 

Balanced 0.5691 0.1383 <.01 0.1224 <.01 

Unbalanced 0.5714 0.1428 <.01 0.0895 <.01 

      

Panel B. Simulated before cost return 

 pcnt_r_Mean  Yearly MDD 

Training Mean p-value  Mean p-value 

Balanced 0.0090 <.01  -0.30 <.01 

Unbalanced 0.0049 0.02   -0.58 0.01 
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Table 8. Results of size-timing and multi-category prediction of the 
Adaptive Boosting model. 

This table reports the correct ratio, information coefficient and timing ratio in the 11 year 
implementation period for two different training approaches for the Adaptive Boosting 
models (AB).  One trains the model to predict up and down (2D) which consist of equal 
amounts of ups and downs which is the same as the main result reported in Table 1.  The 
other trains the model to predicts four categories of movements up-small, up-big, down-
small, and down-big (4D).  The information coefficient is calculated by (2×Correct_ratio)−1. 
The timing ratio is calculated as (true positive ratio + true negative ratio) -1. p-values are from 
the test for the mean to be different from zero. 

 

  
Correct 

ratio 
Information 
coefficient Timing ratio 

Big Correct 
ratio 

Small Correct 
ratio 

NumD Mean Mean p-value Mean p-value Mean p-value Mean p-value 

2D 0.5691 0.1383 <.01 0.1224 <.01 0.6101 <.01 0.5522 <.01 

4D 0.5683 0.1366 <.01 0.0871 <.01 0.5619 <.01 0.5731 <.01 
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Table 9. Persistence of prediction accuracy and the use of Open to 
Open predictions. 

This table reports the accuracy and simulated returns for three different experiments with 
different training and application targets.  C2C indicates current close to next period close 
VIX changes; O2O next day indicates next day’s open to the day after next’s open VIX 
changes.  The training column reports the type of returns are used to construct the predicting 
target while the application column reports the type of return is used to calculate forecasting 
performance.   Panel A reports the correct ratio, information coefficient and timing ratio in 
the 11 year implementation period for the different training and application approaches for 
the Adaptive Boosting models (AB).  The information coefficient is calculated by 
(2×Correct_ratio)−1. The timing ratio is calculated as (true positive ratio + true negative 
ratio) -1.  Panel B reports the mean daily return, the Sharpe ratio and the average maximum 
annual percentage drawdown (MDD). ***, **, and * indicate statistical significance at 1%, 5% 
and 10% level respectively. 

 
Panel A. Accuracy 
 

    
Correct 

ratio 
Information 
coefficient Timing ratio 

Training Application Mean Mean t  Mean t  

C2C C2C (main result) 0.569 0.138 8.01 *** 0.122 7.38 *** 

C2C C2C next day 0.541 0.082 4.49 *** 0.071 4.46 *** 

C2C O2O next day 0.527 0.054 2.82 ** 0.051 2.70 ** 

O2O next day  O2O next day 0.565 0.130 4.35 *** 0.136 4.38 *** 
 
Panel B. Simulated returns 
 

    Daily Return   Yearly MDD 

Training security Mean t   Sharpe Mean t   Min 

C2C C2C (main result) 0.0090 5.80 *** 1.73 -30% -3.31 *** -87% 

C2C C2C next day 0.0020 1.38  0.43 -69% -6.43 *** -142% 

C2C O2O 0.0021 1.50  0.46 -51% -4.41 *** -93% 

O2O O2O 0.0069 3.69 *** 1.06 -39% -3.93 *** -107% 
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Table 10. Prediction performance on VIX spikes days 

This table reports the model forecasting performance for the negative and positive VIX spikes 
days.  Spikes are defined as VIX movement greater or equal to 20%.  It reports the number of 
days that spikes occur during 2010 and 2020.  Error days (% err) reports the number 
(proportion) of days that the model makes incorrect predictions. The return columns report 
the mean, minimum and maximum in those spike days for each model.  

 

      Return  

Models  Spikes 
Number of 

days Error days % err Mean Min Max 

1.NB -1 10 2 20% 0.1373 -0.2591 0.2957 

 1 64 23 36% 0.0781 -1.1560 0.5000 
2.LR -1 10 2 20% 0.1432 -0.2337 0.2957 

 1 64 38 59% -0.0800 -1.1560 0.5000 
3.DT -1 10 1 10% 0.1892 -0.2327 0.2957 

 1 64 52 81% -0.2004 -1.1560 0.4933 
4.RF -1 10 0 0% 0.2357 0.2050 0.2957 

 1 64 42 66% -0.1161 -1.1560 0.4638 
5.AB -1 10 2 20% 0.1373 -0.2591 0.2957 

 1 64 40 63% -0.0389 -0.5000 1.1560 
6.MLP -1 10 4 40% 0.0449 -0.2957 0.2696 

 1 64 32 50% -0.0037 -1.1560 0.4933 
7.ENS -1 10 2 20% 0.1352 -0.2696 0.2957 

 1 64 45 70% -0.1315 -1.1560 0.5000 
HAR -1 10 3 30% 0.0958 -0.2591 0.2957 

 1 64 40 63% -0.0884 -1.1560 0.4933 
SO -1 10 0 0% 0.2357 0.2050 0.2957 

 1 64 64 100% -0.3126 -1.1560 -0.2022 
SVM -1 10 2 20% 0.1381 -0.2591 0.2957 
  1 64 48 75% -0.1553 -0.5000 1.1560 
 
 

  

Electronic copy available at: https://ssrn.com/abstract=3866415



 

73 
 

Table 11. Return performance following the VIX spikes days 

This table reports the mean initial loesses for the incorrect predictions for the spike days.  It 
reports the initial losses on spike day.  It also reports the cumulated profit & losses 20 (60) 
after and including the spike day.   

  
Initial 
losses 20 days after initial 60 days after initial   

Models 

on 
spike 

day 
Cummulated 

P&L 
Recover 

percentage  
Cummulated 

P&L 
Recover 

percentage  N 
 (1) (2) (1)-(2)/(1) (4) (1)-(4)/(1)  

1.NB -0.3263 -0.2709 3% -0.2566 15% 23 
2.LR -0.3306 -0.1538 46% 0.037 111% 38 
3.DT -0.3157 -0.1808 50% 0.1782 161% 52 
4.RF -0.3266 -0.1214 63% 0.1654 160% 42 
5.AB -0.2812 -0.0221 93% 0.2702 206% 40 
6.MLP -0.3163 -0.3526 -6% -0.2178 32% 32 
7.ENS -0.3158 -0.119 62% 0.0793 135% 45 
HAR -0.3208 -0.2495 23% 0.0303 106% 40 
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Table 12. Forecast accuracy and return applying to VIX futures 

This table reports the performance of a strategy trading the out-of-sample VIX prediction signal on the nearest month VIX futures contract.  The correct ratio 
is the proportion of prediction days that have a correct prediction.  For strategy return, we report the mean daily return and the Sharpe ratio for both before 
and after costs.  The costs are measured by the bid-ask spread of the contract.  Costs are applied when there is a change in the trading direction. Turnover 
measures the proportion of the days that need to rebalance due to the change of trading direction.    For the after cost return, we also report the average 
maximum annual percentage drawdown (MDD) and the ‘maximum’ of the MDD in the 11 years. ***, **, and * indicate statistical significance at 1%, 5% and 
10% level respectively. 

 

  Correct_ratio Before Cost Return   After Cost Return   Yearly MDD 
Investment 

days turnover 

Model Mean Mean t Sharpe   Mean t Sharpe   Mean Max Mean Mean 

1.NB 0.445 -0.0023 -2.86 ** -0.86  -0.0031 -3.79 *** -1.14  -0.73 -1.23 233 0.23 
2.LR 0.535 0.0023 3.78 *** 1.14  0.0008 1.28  0.39  -0.42 -1.32 233 0.37 
3.DT 0.555 0.0023 2.29 ** 0.69  0.0011 1.17  0.35  -0.52 -1.36 233 0.31 
4.RF 0.515 0.0014 1.53  0.46  0.0000 0.04  0.01  -0.49 -1.18 233 0.33 
5.AB 0.526 0.0029 2.56 ** 0.77  0.0015 1.48  0.44  -0.43 -0.72 233 0.38 
6.MLP 0.508 0.0005 0.56  0.17  -0.0008 -0.76  -0.23  -0.53 -1.24 233 0.30 
7.ENS 0.525 0.0020 2.46 ** 0.74   0.0006 0.73   0.22   -0.58 -1.43 233 0.33 

HAR 0.470 -0.0006 -0.70   -0.21   -0.0014 -1.48   -0.45   -0.62 -1.15 233 0.19 
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Table 13. Augmented VIX futures strategy: sitting out on conflicting days to avoid shorting pressures 

This table reports an augmented VIX futures trading strategy.  The strategy trades the out-of-sample VIX prediction signal on the nearest month VIX futures 
contract except on the days that the model predicts an up signal while the VIX futures contract is trading higher than the VIX spot value.  The correct ratio is 
the proportion of prediction days that have a correct prediction.  For strategy return, we report the mean daily return and the Sharpe ratio for both before and 
after costs.  The costs are measured by the bid-ask spread of the contract.  Costs are applied when there is a change in the trading direction. Turnover 
measures the proportion of the days that need to rebalance due to the change of trading direction.    For the after cost return, we also report the average 
maximum annual percentage drawdown (MDD) and the ‘maximum’ of the MDD in the 11 years. ***, **, and * indicate statistical significance at 1%, 5% and 
10% level respectively. 

  
Correct 

ratio 
Timing 

ratio Before Cost Return   After Cost Return   Yearly MDD 
Investment 

days turnover 

Model Mean Mean Mean t Sharpe   Mean t Sharpe   Mean Min Mean Mean 

1.NB 0.529 0.005 -0.0001 -0.03  -0.01  -0.0023 -0.76  -0.23  -0.48 -1.21 81 0.60 

2.LR 0.593 0.026 0.0040 4.04 *** 1.22  0.0024 2.24 ** 0.67  -0.32 -1.28 151 0.36 

3.DT 0.599 0.002 0.0031 2.15 ** 0.65  0.0021 1.52  0.46  -0.47 -1.29 174 0.24 

4.RF 0.594 0.006 0.0035 1.99 * 0.60  0.0018 1.10  0.33  -0.36 -1.18 128 0.36 

5.AB 0.593 0.016 0.0050 3.95 *** 1.19  0.0036 3.08 ** 0.93  -0.33 -0.62 149 0.37 

6.MLP 0.577 0.014 0.0032 1.98 * 0.60  0.0014 0.84  0.25  -0.34 -1.21 124 0.41 

7.ENS 0.592 0.006 0.0036 2.60 ** 0.79   0.0022 1.51   0.45   -0.45 -1.34 145 0.32 

HAR 0.562 0.004 0.0019 0.74   0.22   0.0004 0.15   0.04   -0.48 -1.19 98 0.36 

SO 0.594 0.000 0.0022 1.88 * 0.57   0.0022 1.88 * 0.57   -0.41 -1.24 233 0.00 
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Table 14. Trading CFD with VIX forecasts 

This table reports the performance of the models applying the VIX signals to the spread betting data from IG.com between 11 Mar 2020- 31 Dec 2020.  The 
hourly data is downloaded and the trade is executed at 3 pm US central time which is 15 minutes before the VIX closing. It reports the statistics for analyses 
using both the IG price and the VIX hourly data which is downloaded from (Refinitiv Tick History).  It reports the correct ratio and the mean before costs 
return.  For IG, the after costs mean return, cumulated return (sum, no compounding), maximum drawdown and turnover of the strategy are reported.  N 
report the number of days.  ***, **, and * indicate statistical significance at 1%, 5% and 10% level respectively. 

  VIX  IG  VIX_r IG_r IG_r_afcost   

Models  correct  correct Mean Mean Mean Cumulated MDD turnover N 

1.NB 0.5 0.5 -0.0033  -0.0029  -0.0036  -0.65 -0.67 0.14 197 

2.LR 0.44 0.47 0.0018  -0.0010  -0.0021  -0.51 -0.53 0.2 197 

3.DT 0.65 0.63 0.0185 *** 0.0102 *** 0.0081 ** 2.59 -0.58 0.37 197 

4.RF 0.55 0.53 0.0123 ** 0.0080 ** 0.0058  1.34 -0.22 0.41 197 

5.AB 0.59 0.58 0.0189 *** 0.0077 * 0.0052  1.03 -0.37 0.45 197 

6.MLP 0.57 0.54 0.0083  0.0007  -0.0009  -0.39 -0.68 0.29 197 

7.ENS 0.54 0.55 0.0116 ** 0.0043   0.0021   0.11 -0.65 0.38 197 

SO 0.59 0.57 0.0035   0.0023   0.0023   0.14 -0.52 0.01 197 
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Online Appendix  

Online Appendix 1. Support Vector Machine 

We study the Support Vector Machine (SVM) for VIX prediction in this 

appendix.  Table A3 reports the performance of SVM compared with other 

models.  The overall accuracy rate of SVM is relatively low compare to other 

ML algorithms.  It is comparable with the simple HAR model.  However, it has 

an extremely low timing ratio.  In other words, it produces a highly 

unbalanced prediction.  It has ‘down’ prediction bias in its prediction.  Panel B 

shows that this one-sided prediction produces a negative overall return which 

is also observed in a short only strategy.  Overall, our experiment shows that 

SVM produces a less effective accuracy rate due to its unbalanced prediction 

despite the use of a balanced sample.  Previous studies finding supportive 

evidence to SVM models are typically a small system with fewer inputs.  Our 

system with 278 variables which takes much longer to run and it seems to 

produce a ‘corner solution’.    
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Table A1. SVM performance 

This table reports the performance of SVM comparing with other MLs.  Panel A reports the 
correct ratio, information coefficient and timing ratio in the 11 year implementation period.  
The information coefficient is calculated by (2×Correct_ratio)−1. The timing ratio is 
calculated as (true positive ratio + true negative ratio) -1. Detail of the models can be found in 
section 3.3. Panel B reports the mean daily return, the Sharpe ratio and the average maximum 
annual percentage drawdown (MDD). ***, **, and * indicate statistical significance at 1%, 5% 
and 10% level respectively. 
 

Panel A. Accuracy and Timing 

 
Correct 

ratio 
Information 

coefficient   
Timing 

ratio   
Positive 

hit 
Negative 

hit 

Models Mean Mean t   Mean t   Mean Mean 

1.NB 0.487 -0.0262 -1.36   0.020 1.35   0.770 0.250 

2.LR 0.552 0.1046 4.19 *** 0.097 4.94 *** 0.480 0.620 

3.DT 0.582 0.1634 6.93 *** 0.126 5.25 *** 0.350 0.780 

4.RF 0.560 0.1194 10.64 *** 0.122 9.60 *** 0.570 0.550 

5.AB 0.569 0.1383 8.01 *** 0.122 7.38 *** 0.480 0.650 

6.MLP 0.530 0.0595 2.33 ** 0.057 2.61 ** 0.580 0.480 

7.ENS 0.566 0.1319 7.19 *** 0.119 6.41 *** 0.490 0.630 

HAR 0.525 0.0502 2.31 ** 0.072 4.02 *** 0.680 0.390 

SO 0.546 0.0928 6.78 *** 0.000 .   0.000 1.000 

SVM 0.523 0.0452 2.80 ** 0.002 0.28   0.220 0.790 
 

Panel B Simulated return applied to VIX. 

  Daily Return   Yearly MDD 

model Mean t   Sharpe Mean t   

1.NB 0.0029 2.79 ** 0.85 -60% -4.39 *** 

2.LR 0.0060 5.06 *** 1.54 -52% -2.87 ** 

3.DT 0.0056 4.30 *** 1.27 -64% -2.57 ** 

4.RF 0.0078 6.85 *** 2.05 -47% -2.84 ** 

5.AB 0.0090 5.80 *** 1.73 -30% -3.31 *** 

6.MLP 0.0045 3.91 *** 1.18 -50% -3.24 *** 

7.ENS 0.0074 7.42 *** 2.24 -89% -1.92 * 

HAR 0.0053 3.89 *** 1.15 -56% -3.63 *** 

SVM -0.0014 -1.80   -0.54 -75% -17.23 *** 
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