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Abstract

In financial decisions, model risk has been recognized as an important source of uncertainty.
The revision of the Basel II suggests that financial institutions quantify and manage their model
risk. Focusing on risk forecasting literature, we identify two main approaches to quantify model
risk: the worst case and loss function. The first approach includes measures that are applied to
a set of forecasts and have a similar structure to deviation measures. On the other hand, for
the second approach, monetary risk measures are employed under a loss or error function, from
some forecasting procedure. Moreover, based on the untapped features of model risk for both
approaches we suggest new proposals, which include measures to quantify upside and downside
model risk, and average costs associated with risk overestimation and underestimation. We also
conduct an empirical assessment of model risk measures using Value at Risk (VaR) and Expected
Shortfall (ES) forecasting. Results indicate that model risk estimates change according to measures,
sample and functional (VaR and ES). We also conclude that a model with good performance to risk
forecasting does not indicate this model has lower model risk. Furthermore, we highlight insights
into future research directions regarding this topic.
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1. Introduction

Financial decisions are based on statistical model outputs for some variables of interest, such as
return (linked to mean and median), and risk (linked to variance, Value at Risk (VaR) and Expected
Shortfall (ES)). The most common approach is to quantify these functionals through the empirical
distribution function. Other approaches often employed are parametric, which includes the Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH) model, and semi-parametric, as
Quantile Regression and Filtered Historical Simulation (FHS). The accuracy of the results depends
on the reliability of the model used. Although there are studies that compare risk forecast models,
for instance, Kuester et al.| (2006), Righi and Ceretta (2015)), Beckers et al.| (2017) and [Mduller

and Righi| (2018), there is no consensus regarding the most adequate approach or even a ranking
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of model performance. Furthermore, the models are simplified representations of reality and in-
evitably acknowledge that there is no perfect model (see [Danielsson| (2008) and [Federal Reserve
(2011))). In literature the hazard of working with a potentially incorrect or inadequate model is
referred to as being “model risk’ﬂ In risk forecasting literature, Kerkhof et al.| (2010), Barrieu and
Scandolo| (2015)), Bernard and Vanduffel| (2015)), |Danielsson et al.| (2016), and |[Kellner and Rosch
(2016) discuss this feature in detail.

A body of research uses backtesting procedures, loss functions, Monte Carlo simulations, and
metrics, such as bias and root mean squared error to assess model risk. After revising the Basel
IT Market Risk Framework, which requires that financial institutions quantify and manage their
model risk like other types of risk (see|Basel Committee on Banking Supervision| (2009) and Federal
Reserve| (2011)), the attention of literature has focused on procedures to quantify it. From that
moment, there is also a consensus that better methods for dealing with model risk are pivotal to
improving risk management. However, measures to quantify it are not consolidated at the same
level as those for market risk. The main approach used to measure model risk is the worst case.
In our study, we consider as worst case measures those that are applied to a set of estimates
or forecasts and those with a similar structure to deviation measures. We mention Cont| (2006),
Kerkhof et al.| (2010), and Barrieu and Scandolo| (2015) as examples of studies that use it. Besides
this approach, it is also possible to employ risk measures in a loss or error function, from some
estimation or forecasting procedure. Throughout our research, we name this approach as the loss
function. We refer Bignozzi and Tsanakas| (2015|) and Detering and Packham (2016) as examples
of studies that explore it.

In this context, our main objective is to present the literature on model risk measures in risk
forecastinﬂ We aim to verify if any pattern in the measures proposed in the literature and unify
procedures with similar characteristics into one general approach. We only consider works that
propose measures. Empirical applications and adaptations are cited where it is convenient. As

the second main objective, we suggest new proposals to quantify the model risk of risk forecast-

! An important concept, which interlaces with model risk, is model uncertainty (also referred as model ambiguity).
Some definitions used to differentiate them are linked to the concepts of risk and uncertainty, which [Knight| (1921)
discusses. The risk stems from a situation where we do not know the result of the scenario. However, it is still
possible to assign probabilities for future results. Also, unlike the risk, uncertainty does not enable us to gain all the
necessary information to determine the probability of an event occurring.

2We do not explore studies that develop model uncertainty measures in this review since it is not the focus of this
study. |Cont| (2006) proposes the only model uncertainty measure which we describe because it can be easily adapted
to quantify model risk.



ing models. For the worst case approach, we explore measures that allow us to quantify upside,
downside and tail model risk. Concerning loss function approach, we consider risk overestimation
and underestimation distribution in the quantification of model risk. We also conduct an empirical
analysis, considering financial data, of model risk measures. In our illustration, we assess model risk
of VaR and ES forecasting, which we estimate using well-known GARCH models. We investigate
the evolution of model risk across years by adopting a rolling window procedure, considering crisis
and non-crisis periods. Furthermore, based on our findings, we highlight future directions that can
be explored regarding this subject.

Our paper, to the best of our knowledge, is the first to consider a review regarding model
risk measures. Previous studies, such as Branger and Schlag (2004), Sibbertsen et al. (2008),
and Bannor and Scherer| (2014), respectively explore model risk, which relates to the hedging of
derivative contracts, a data-driven notion of model risk, and model risk and model uncertainty
in stochastic modeling techniques. Thus, it can be asserted that these authors have a different
objective from ours. Additionally, our work presents up to date literature investigating the subject,
which can be used as a guide in this research topic. This study also provides theoretical support to
investors and managers to examine the main tools to measure this type of risk in risk forecasting.

Moreover, our study also contributes to the literature because we are proposing measures to
quantify unexplored characteristics of model risk. In risk forecasting, model risk underestimation
has a distinct effect than its overestimation. An example is the different costs resulting from
risk underestimation and overestimation (see Dhaene et al.| (2003 and Laeven and Goovaerts
(2004)). Risk overestimation can generate costs arising from unexpected and uncovered losses,
while risk overestimation can generate opportunity costs. However, the worst case measures treat
both positive and negative deviations from a reference model as model risk, and loss function
measures consider the entire distribution of the errors in the quantifying model risk. Based on this
perspective, for worst case measures, we propose measures that allow quantifying upside, downside,
and tail model risk. Concerning loss function measures, we explore the use of underestimation and
overestimation error distribution to determine model risk value.

Another contribution of our paper is that it is the first to illustrate model risk measures proposed
in the literature. For instance, previous studies like, Kellner and Rosch| (2016), Barrieu and Scandolo
(2015), and Danielsson et al.| (2016), only illustrate the measures proposed by them. Although
Gianfreda and Scandolo (2018) conduct an empirical evaluation of model risk, they consider only

one model risk measure. Our study also differs because we are checking how model risk behaves



in times of crisis and non-crisis. Albeit |Danfelsson et al.| (2016) assess model risk in crisis and
non-crisis periods, they consider only the measure proposed by them.

The structure for the remainder of this paper is: Section [2| displays definitions and preliminary
information; Section [3] defines model risk measures proposed in the literature and those we propose;
Section [4] describes data and preliminary analysis of VaR and ES forecasting, which we use to
illustrate model risk measures; Section [5] illustrates worst case and loss function measures; and

Section [6] concludes the paper as well as demonstrating directions for future studies on the subject.

2. Preliminaries

Consider a real valued random result X : £ — R of an asset or portfolio (X > 0 is a gain,
and X < 0 is a loss) defined in a vector space of random variables X := X (Q2,F,P). Fx refers to
cumulative distribution function of X, and F );1 is its (left) inverse. We consider F := {Fx: X € X'}
as a set of distribution functions. We define X = max(X,0) and X~ = max(—X,0), and 14 as
the indicator function for an event A. We denote by R the field of real numbers, and by R the
extended real line.

A law invariant monetary risk measure is a functional p : X — R that fulfills the following

properties:

(MT) :if X <Y, then p(X) > p(Y),VX,Y € X.
(T : p(X +C)=p(X)-C,¥VX € X, VC eR.

(LI) : if Fy = Fy,then p(X) = p(Y),¥ X,Y € X, V Fx, Fy € F.

In our study, (MT), (TI) and (LI) refers to Monotonicity, Translation Invariance, and Law Invari-
ance, respectively.

The (MT) indicates that if the losses of a financial position are greater in all situations, then
the expectation for its risk is always greater. The second property, (TI), informs that if adding
a certain gain (C') to a position X, it is expected that the risk of this position decreases by the
same amount. If a risk measure satisfies both properties it is named as a monetary risk measure.
The third property, (LI), indicates that two positions with the same probability function (law)
have equal risks. When a risk measure fulfills (LI) it is labeled as a law invariant risk measure.
Therefore, if a risk measure satisfies (MT), (TI) and (LI) it is known as a law invariant monetary

risk measure.



We highlight that a law invariant risk measure can be represented by a functional R : F — R,

defined as:
p(X)=R(Fx),VX e X.

We provide examples of some law invariant monetary risk measures. We present these risk

measures because they are common in risk management literature.
(i) EL(X) = —B[X],
(i) VaR*(X) = —Fx'(a),
(ili) ES*(X) = —1 [ VaR*(X)ds,

where « € (0,1) is the significance level. The negative sign of risk measures is used to indicate
a monetary loss. The first measure refers to Expected Loss (EL), which computes the expected
value (mean) of a loss. This measure is the most parsimonious among those considered. The
second measure refers to VaR, which quantifies the maximal loss, which we expect will occur for a
financial position, for a given period and confidence level. We also present the ES, which quantifies

the expected value of the losses that exceed a - quantile.

3. Model risk measures

Consider Z := {1,--- ,n;1} as a finite set of models used to estimate the distribution function
of X. In our framework, 7' := {1,--- ,ns} is out-of-sample period and Xy := {Xy,---, X,,,} are
verifying observations. We denote Gx := {FX,i,t: XeX,iel,tc T} C F, with some abuse of
notation, as a set of estimates of the distribution function of X, which we obtain with ¢ € Z for
period ¢t € T. We define, for any X € X and V FXM € Gx, pit(X) = R(FX’i’t> as a risk
forecast for period ¢ € T obtained using model ¢ in X. Thus, for any X € X, V i € Z and
VteT, prr(X) = {p1r(X), -, pn,0(X)} € R"™*" represents a matrix of risk forecasts. In
our notation, p; 7(X) represents risk forecasts (forX') for out-of-sample period (") obtained by any
model i € Z, and pz.(X) represents risk forecasts (for X) obtained by the set of models (Z) for
period ¢t € T. In practical sense, pz7(X) can be determined in terms of some divergence centered
at forecasts computed by a reference model (see |Glasserman and Xu (2014), Breuer and Csiszar

(2016) and |Krajcovicova et al.| (2019)).



Moreover, we consider sup pz+(X) and inf pzr¢(X) as the supremum and infimum values, re-
spectively, of pz.(X) for period ¢t € T. Besides, as 7 is finite the supremum and infimum, are,
of course, a maximum and a minimum, respectively. When inf p7(X) = sup pz(X) there is
not model risk for period t € T. We delimit a weighted average as a functional i : R™ — R,
which can be defined by a(X) = > zu(i), where > 0t pu(i) = 1, pi) > 0V i € Z. We
define p}'(X) = ji(pz+(X)) as a weighted risk forecasting for period ¢ € T. It is worth not-
ing that inf p7+(X) < p'(X) < suppz4(X). In addition, we consider G := {g1, -, gn,} and
Ly := {li, -+ ,ly,} as being non-negative variables that represent, respectively, costs from risk
overestimation and underestimation. In our study, these costs are financial rates traded in the
market.

We specify a worst case measure as a functional MRV : X — R, defined by MRV (X) :=
fiopri(X) = fi(pz+(X)), where f; : R™ — R is an aggregation function. Moreover, we delimit
a loss function measure as a functional MR : X — R, defined by MRX'(X) = fa 0 pir(X) =
f2 (pir(X)), where fo : R™ — R is an aggregation function. Additionally, we feel that we should
note that a discussion regarding the theoretical properties of aggregation functions and model risk
measures is beyond the scope of this research. For situations where we are not working with a finite

set, it is necessary to consider a more complex framework, as in [Righi (2018).

3.1. Worst case approach

One can refer to these examples of worst case measures and the respective study that proposes

it:
e MRWC(X) = sup pr(X) — inf pz,(X). (Cont, [2006).
e MRV (X) :=suppr(X) — pi'(X). (Kerkhof et al., [2010).
e MRV (X) = p}'(X) — inf pz4(X). (Breuer and Csiszér, |2016).

o MRVOY(X) = (ia[| pra(X) — pl'(X) |p])%, where p € [1,00). (Krajcovicova et al., [2019).

X) — (X
« MRWOs(x) = SPPLUX) =0 (X) g e and Scandolo, 2015).
Py (X)

X) - (X
o MRVCs(X) = Sup pzi(X) =t (X) (5 ien and Scandolo, 2015).
sup pz,+(X) — inf pz4(X)

X) - (X
e MRVC(X) := SuppSLt( ) (;)t( ) (Bernard and Vanduffel, 2015)).
up Pzt




_ PP(X) — inf pr4(X)
inf pz,¢(X)

e MRVCs(X): . (Bernard and Vanduffel, [2015]).

~sup pr(X)

o MRWCo (X) = il pr () (Danielsson et al., 2016)).

o MRWC0(X) = il PI,t(g[?OI—tét)Eﬂ)]I,t(X)] H (Kellner and Résch, [2016).

The measures MRV to MRWC assume values greater than or equal to zero, and their value
is equal to zero only when there is no model riskﬁ For these measures, lower values imply a
lower model risk. Besides that, these measures have a similar structure to traditional deviation
measures, which includes range - based deviations and p - deviation, belonging to the class of
generalized deviation measures (see [Rockafellar et al. (2006)). In relation to MR"W to M RW 1o,
they are constructed by the ratio of one of the first four measures and a statistic to standardize,
such as pf'(X), sup pz¢(X) and inf pz(X). However, MRV MRW MRV and MRW o
can assume negative values because the statistics used as denominators can take negative values.
Thus, for these measures, the closer to zero their value, the lower the model risk. Besides, to avoid
negative values, some authors, such as |Barrieu and Scandolo (2015), assert that the denominator
can only assume values greater than zero.

We point out that model risk measures of literature are constructed using a forecast computed
by a reference model instead of weighted risk forecasting as performed by usﬂ We suggest this
adaptation because the choice of a reference model is subject to preferences and the empirical
knowledge of the agent (see|Jokhadze and Schmidt| (2018)). Besides that, using a reference model
is a particular example of our structure once a model receives (i) = 1, for some i € Z, for each
t € T, and other receive pu(j) =0,V j € Z,i # j, for each t € T. For both structures, the main
objective of these measures is quantifying the dispersion of the results from competing models.

Another point that is worth noting is that worst case measures do not quantify the upside,
downside and tail model risk. To quantify these features of model risk, we recommend the following

o MEVOn(X) i (i [((pzeX) — o 0)))'])7, where p € [1,0).

o MEVER(X) i (i [ ((p2e) — 0N )'])7 where p € [1,0).

3In the original proposal of M R" 3 the functional of interest refers to expected payoffs. The authors consider
pt = 0 because the daily expected payoff is close to zero.
“In this situation, a(X) := L S x;, Vi € Z, is the arithmetic mean.
ni i=

7



° MRWCB(X) = n(ll—a)ﬁ (,OI,t(X) — pé‘(X)) \1(/)”()() > g1 oy (2 () | where « is the confi-

dence level, q(1_q)(pz,+(X)) refers (1 — ) % higher risk forecasts from pz(X).

We suggest M RVC1 to quantify the downside model risk. It allows us to computes the average
distance of each estimate belonging to the pz,(X) below from p}'(X). From another perspective,
MRWE2 estimate upside model risk. This measure computes the average distance of each estimate
belonging to the pzr;(X) above from p}(X). The last measure, M R 13 computes tail model risk.
It quantifies the average model risk above (1 — ) % more aggressive risk forecasts. For M RW 13
we focus on the upper tail because worst case measures aim to identify the worst outcome from the
set of candidate models. However, one may extend the measure to analyze o % lower risk forecasts
from pz+(X). For these measures, there is no model risk when their value is equal to zero. Besides,

the higher the value of the measure, the greater is the model risk.

8.2. Loss function approach
Let p : R — R be a law invariant monetary risk measure, we refer these examples of loss

function measures and the respective research that proposes ilﬂ
o MRMY(X) := p(Xr — pir(X)). (Bignozzi and Tsanakas, 2015).
o MRM?(X) :=p[| (X1 — pir(X)) |]. (Detering and Packhaml, 2016).
o MRM3(X):=p [| (X7 — pir(X))” |]. (Detering and Packham) 2016)).

The measures M RZLF Land M RfF 2 consider the entire distribution of the errors, while M RZLF 3
consider only a situation wherein the capital reserve is not enough to cover losses. Differently
of worst case measures, these measures allow quantifying model risk of an individual model. In
addition, their main objective is to assess the precision of each risk forecasting model. Therefore,
they can be used jointly with usual statistics applied to rank the quality of the forecasting models.
Besides, these measures are not specific to an individual functional and their use is not conditioned
to statistical properties, such as Elicitabilityﬁ for risk measures.

To consider the risk overestimation and underestimation distribution in the quantification of
model risk, we intend to generalize the proposal of Detering and Packham| (2016). Our model risk

measures can be represented in this way:

5The reader should not confuse p, which is a law invariant monetary risk measure, such as EL, VaR and ES and
pi, 7, which refers to risk forecasts for X for the out-of-sample period, which we obtain using model i € 7.

SA functional is named elicitable when it is the minimizer of expectation of some score function. See |Ziegel| (2016))
and |Acerbi and Szekely| (2017)).



o MRI™\(X) = p[(Xr — pir(X))" Gr + (X1 — pir(X))” Lr)].
o MRI™S(X) = p[| (X1 = pir(X))" [].

o MRiLF6 (X) =p [(X7 — pi’T(X))Jr] + p2 [(X1 — pir(X)) "], where p1 and py are monetary

risk measures applied to (X7 — p;7(X))" and (X7 — p; (X)), respectively.

Our first measure, M RZ-LF 4. is inspired in the robust risk measurement approach proposed by
Righi et al.| (2019), which minimizes the expectation of sum between costs from overestimation
and underestimation. We use their score function here as a model risk measure. This measure
allows us to identify the model with the best trade-off between the sum of the costs from risk
overestimation and underestimation. In periods of greater instability, in which risk underestimation
is more punitive than its overestimation, a higher underestimation cost can be considered to penalize
the more expensively underestimation errors. A specification of this measure is to consider different
weights rather than the costs applied under each error distribution. In this way, this measure can
be defined by p [A (X7 — pi7(X))™ + (1 = X) (X7 — pir(X))™], where X € (0,1), and A < 2.

The next measure, M RiLF 5, is the complement of M RiLF 3 which only considers the situation in
which the results of position are better than the value determinate by risk measure. Differently, for
M RZL FG, we applied a risk measure on the underestimation and overestimation error distribution.
We can use as p; and po the same or a different monetary risk measure. In the financial market,
usually, the underestimation error is more serious, so it is expected pa > p1. Therefore, in periods
of greater instability, a more conservative risk measure can be employed on underestimation errors,
resulting in higher levels of security regarding model risk. Besides that, according to loss function

measures, the closer to zero their value the lower is model risk.

4. Data and preliminary analysis

In this section, we describe data and a preliminary analysis of the risk forecasts used to illustrate
model risk measures. For financial position, X, we consider log-returns of S&P500 U.S. market
index multiplied by 100, for the period from January 1, 2001, to May 30, 2018, totalizing 4376
observations. We consider this market index because it is frequently used in academic research.
We divide the sample into crisis and non-crisis periods to analyze if the model risk changes in
periods with greater variability in the return series. To divide the sample we follow what was
suggested by |Righi and Vieiral (2014)). The period considered as a crisis starts on August 1, 2007,
until September 28, 2012 (1297 observations). The trading days from August 1, 2007, until July



13, 2010, corresponds to the Subprime mortgage crisis and from June 14, 2010, to September 28,
2012, refers to the Eurozone crisis. Trading days from January 1, 2001, until the Subprime crisis
(1660 observations) and after the Eurozone crisis until May 2018 (1419 observations) are non-crisis
periods. We refer these periods as before crisis and after crisis periods, respectivelyﬂ

In Table [1, we describe descriptive statistics of log-returns. In the crisis period, the log-returns
have negative average value (-0.005) and the highest standard deviation (1.662), suggesting that in
this period there is a greater risk. Except for the before crisis period, log-returns display negative
asymmetry. Moreover, we observe the presence of heavy-tailed behavior, which indicates a greater
probability of extreme values when compared to a normal distribution. These characteristics are
commonly observed in daily stock returns data. The log-returns evolution of the index depicted
in Figure [I] shows that the series display periods of calm and greater instability, which generally
coincide with the non-crisis and crisis periods.

We use VaR and ES, defined in Section [2] as a functional base to be predicted. We choose these
measures because they are currently the most common risk measures on risk forecasting literature.
We compute these measures using AR(p) (auto-regressive) - GARCH(q,s) model, which can be

described in this manner:

P
Xt = ¢o + Z OiXi—; + €,
i=1

€t = OtZt, zZt 1.3.d. F(O,l),

q s
of = a0+ Y aje_j+ Y bpoiy, (1)
7=1 k=1

where t = 1,--- N is the periodﬂ X; is the return, ¢;, for ¢ = 0,1, ---,p, are parameters
of auto-regressive model, ¢; is the innovation in expectation, z; is a white noise process with
distribution F. o7 is the conditional variance, and aj, for j = 0,1,---,q, as well as by, for
k=1,---,s, are parameters of the GARCH model. The parameters are estimated through the
Quasi-Maximum Likelihood. The form of the likelihood depends on distributing innovations (z;),

i.e., of F. For F we assume normal (GARCH,om), skewed normal (GARCHgyorm), Student-t

"BenMim and BenSaidal (2019) use similar periods for the beginning of the Subprime crisis and end of the Eurozone
crisis. However, we do not intend to state that the crisis occurred exactly in these periods. We performed the division
of the sample in crisis and non-crisis periods because |[Danielsson et al.| (2016)) show that in crisis periods model risk
increases.

8This model is computed using the information we have in - sample period.
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(GARCHgq), skewed Student-t (GARCHggq), generalized error (GARCHgeq), skewed general-
ized error (GARCHggeq), normal inverse Gaussian (GARCH,g), and Johnson SU (GARCHjg,)
distributions. We consider this set of distributions because they are frequently used in the em-
pirical analysis. Besides the normal distribution, we select the distributions that can capture
asymmetry and heavy tail. The model used is AR(1)-GARCH(1,1). We select the number of
lags through the Akaike information criterion (AIC). For simplicity, when we refer to this model
we will name it as the GARCH model. So with some abuse of notation, we consider 7 =
{GARCHyorm, GARCHgporm, GARCHgpq, GARCHggtq, GARCHgeq, GARCHgged, GARCHyig, GARCHjg }-
We conduct all computational implementations using R programming language (R Core Team,
2019)), and the package for estimating the model parameters is rugarch (Ghalanos, [2019).

Given a certain distribution assumption for z, VaR and ES forecasts, for each period ¢t € T', are

quantified in this way:

VaR?; = — (pig + 0i:VaR™(2i4))

ESF = — (pig + 00, ES(2i0)) 2

where p;; and o;; are, respectively, the conditional mean forecasting and conditional standard
deviation forecasting, which we compute by i € Z for period t € T'.

As « values, we employ 0.01 for VaR, and 0.025 for ES because the Basel Committee on Banking
Supervision (see Basel Committee on Banking Supervision (2013)) recommends these values. In
the estimation process, we use a rolling estimation window of 250 dayﬂ At each step, we obtain
one-step-ahead risk forecasts. In this sense, for each day in the out-sample period, we use the
last 250 observations to compute the risk measures. For descriptive analysis of point forecasts, we
present in Table [2| average value (Mean), standard deviation (SD), and realized loss (£,), which
for VaR and ES, respectively, we compute as (see Gneiting| (2011) and Fissler and Ziegel| (2016))):

1 < o (e} -
EVaRf‘ = n—2 tzl [a (Xt + \/'aLRi,t)Jr +(1—-a) (Xt + VaRm) } ,

1 & o I
Losp = == > (e = ) (=VaREy) = Lo 4+ e(P55) s (ESE,) + VR, + 4 ((<VaRey) — X))
t=1

9We select this rolling estimation window because is common in risk forecasting literature (see Bayer| (2018) and
Argyropoulos and Panopoulou| (2019)) and it is recommended by the Basel Committee (see |Basel Committee on
Banking Supervision| (2013))).
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—el"BS%) 11 —log (1 — )], (3)

where T := {1,--- ,na} is out-of-sample period, X; € X7, I, = 1x,<—VaR, VteT.

We observe in Table [2], except for GARCH,;g, that average and standard deviation value of VaR
and ES forecasts are higher in the crisis period. For GARCH,;, the higher values of these statistics
are found in the before crisis period. On the other hand, during the after crisis period risk forecasts
present the lowest standard deviation and average values. Moreover, we can state that these results
are consistent with the descriptive analysis of the log-returns. For VaR forecasts, GARCHgeq has
lower realized loss. This model also has the best performance concerning ES forecasting throughout
the whole sample and after the crisis period. During the before crisis period, for ES forecasts,
GARCHggeq and GARCHggiq have a lower realized loss, while during crisis period only GARCHggeq
has. Contrastingly, GARCH,;, displays the worst performance for both risk measures.

We provide, in Figure [2] the evolution of S&P500 log-returns, and VaR and ES forecasting with
converted signal considering the whole sample. For brevity, we omit the illustrations of risk forecasts
for the sub-samples. They are available upon requesﬂ In line with the descriptive analysis, as
seen, the evolution of forecasts obtained considering GARCH,;, are far from the evolution of log-
returns as well as the results of the other models. This behavior corroborates with the realized loss

values of forecasts obtained for this model.

5. Empirical Results

5.1. Worst case measures

Aiming to illustrate worst case measures, we use the risk forecasts of VaR and ES described
in Section For each one-step-ahead, we compute model risk using MRVEm m = 1,... ,13.
We quantify p}" by means of equally weighted scheme, u(i) = é, VieI VteT Wealso
consider the situation in which instead of p}" we have forecasts obtained from a reference model.
These measures are defined by MRKVC’”,m =2,3,4,5,6,7,8,11,12,13. Our reference model, as
performed by Kerkhof et al.| (2010) and Krajcovicova et al.| (2019)), is the model that follows a
normal distribution, i.e., GARCHorm. For M RWCs, MRXVC“, MRWCn, MR(I)/VC“, MRWC12 and
MRE)/VC12 we just describe the results with p = 1. For MR"W s and MRKVC”’ we use a% = 30%,

and so (1 — a)% = 70%. For each model risk measure, we present the average and standard

1076 keep the pattern, we will present the figures, in all illustrations, only for the whole sample.
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deviation value of model risk estimates, and the ratio of model risk about weighted risk forecasting
in % (Prop (%)). Prop (%) allows us to assess the proportion of model risk in relation to weighted
risk measurdﬂ We expose, considering the whole sample and sub-samples, these results, for VaR
and ES forecasts, in Tables [3] and [4] respectively.

It can be highlighted that the mean values of model risk differ according to measures, sample
and the functional (VaR or ES). The standard deviation values indicate variability of the model
risk estimates over the period analyzed. For VaR forecasts, we note that the highest average

RWC1 being its highest estimate observed in the before crisis

model risk value is computed by M
period (7.073). In this period, M R™W 1 has the highest standard deviation (13.320) and it assumes
value more than twice as high as p}' (Prop (%) = 236.092%). Regarding ES forecasts, the highest
averages values are quantified by MRV and MRW©10 in the whole sample (5.129) and after
crisis period (43.680), respectively. Results from MR™WC' allow us to conclude there is a large
amplitude between the minimum and maximum values of pz+(X). This dispersion can lead to an
unbalanced regulatory environment, once the individual risk measures determine different amounts
of regulatory capital. The magnitude of the results of these measures become clearer when we see
Figures 3| and |4 which evolve model risk and weighted risk forecasting (gray line), computed for
VaR and ES forecasting, respectively (whole sample).

Among the periods (samples) investigated, we perceive that for most measures, for instance
MRWCG MRY® MRWC MRY % MRW®, MRY% MRWC, MR MRVC, MRWCo,
M RKV 012, MRW€2 model risk estimates (in absolute value) are significantly higher in the before
crisis period than crisis and after crisis periodEl Unlike our findings, in the study of |Danielsson
et al. (2016), using MR it was found that crisis period increases model risk. Our results differ,
possibly, due to the atypical behavior of GARCH,;, estimates. The worst case measures are sensitive

to the influence of a particular modeﬂ which is one of the main criticisms of these measures. When

WCm
"For worst case measures estimated with p! Prop (%) = (MRTX)(X)) x 100, ,mm = 1, -+, 13, while worst case
t
. . MRYEm (x)
measures estimated with reference model Prop (%) = % x 100, m = 2,3,4,5,6,7,8,11,12,13.
t

12We used Mann - Whitney U test to investigate whether the model risk estimates are significantly higher in the
before crisis period than crisis period and after crisis period. Therefore, we compare the model risk estimates (from
the before crisis period) by testing it against the other periods. The null hypothesis is true location shift is equal to
0 and the alternative hypothesis true location shift is greater than 0. For brevity, p-value and test statistics are not
displayed. We use the Mann-Whitney U test because it is a non-parametric test and it is based on fewer assumptions
regarding sample distributions. They are available upon request.

31n our study, we did not perform the analysis without GARCH,; because we intend to illustrate how the different
model risk measures behave.
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analyzing the temporal evolution of MRV for both VaR and ES, we identify that two periods
with high estimates coincide with the higher volatility of risk forecasts quantify by GARCHy;g.
According to Figures [3| and [4] besides MR™W?, model risk estimates from MRWE, MRWC2,
MRY 2 MRWC MRV MRWC MR and MRVC are also affected by GARCH,g
estimates. Besides, Danielsson et al. (2016) consider different methodological characteristics (for
example, financial position, size of the sample and rolling window estimation). Furthermore, we
observe model risk is significantly lower (in absolute value) in the after crisis period than before
crisis and crisis period@ One of the possible explanations for this finding is due to the lower
variability of the risk forecasts for this period.

In relation to the measures computed using p}’ and a reference model, we verify some patterns
in the results of these measures. For measures proposed by |[Kerkhof et al. (2010) (M RWCQ) and by
Barrieu and Scandolol (2015) (M RWCs and M RWCG) model risk average value tends to be higher
when estimated with the reference model. For measures of Breuer and Csiszér| (2013) (M RWC3)
and of Krajcovicova et al.| (2019) <M RWC4> we identify an opposing result. Regarding the results
of VaR and ES, we realize that they are conditioned to worst case measure used. In the study by
Kellner and Résch! (2016), M R €10 is used to assess model risk. Since this measure is standardized
by i [pz,:(X)], it allows the comparison of VaR and ES results. The higher the result of this measure,
the more dispersed is the capital requirements of a financial asset. Our results indicate that ES
is more sensitive to regulatory arbitragﬁ For instance, in the whole sample, for VaR, M RWC1o
has a value equal to -0.084, while for ES this measure assumes a value equal to 12.536. Regarding
the sub-samples, the measure also presents higher values for the ES forecasts. Similar results are

verified by |[Kellner and Rosch| (2016)).

5.2. Loss function measures

We also consider VaR and ES forecasting, to illustrate loss function measures. Additionally,
since we are considering negative results as losses, we first correct the sign of each risk forecasts
pit(X) € prr(X). For risk forecasting obtained by each model, p;7(X), we compute model

. . m . . . .
risk using M RZLF ,m=1---,7. We use EL as law invariant monetary risk measure, which we

"We used Mann - Whitney U test to investigate whether the model risk estimates are significantly lower in the
after crisis period than before crisis and crisis period. For brevity, p-value and test statistics are not displayed. They
are available upon request.

15Tn the sense used, regulatory arbitrage refers to two institutions with the same portfolio and uses different internal
models, approved by the regulator, and so quantify different amounts of capital requirement. As they keep the same
portfolio, they must hold the same or at least almost the same amount of regulatory capital.
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quantify non-parametrically, i.e., EL(X) = % 2, x¢. We choose this risk measure to maintain
the estimation pattern of functions used to quantify realized loss (see formulation (3))). For M RfF 5
we opted in to use p; = py = EL. As costs of risk overestimation Gp and underestimation Lp, we
used daily yield rates of the U.S. Treasury Bill with a maturity of three months and the U.S. Dollar
based Overnight London Interbank Offered Rate (LIBOR). These assets are commonly used in the
literature. Moreover, these rates reflect a risk-free investment with liquidity, where the surplus
over capital requirement can be invested, and a rate for loans, when the capital requirement is
not enough, respectively. We convert both yield rates to a daily frequency. Figure [5| presents the
temporal evolution of these series multiplied by 100. We observe a huge change with their dynamics
in the early of 2005 and the end of 2008. This change is possibly due to economic events that the
Subprime crisis generated. For each model risk measure, we present the EL, which is the average
value of loss function measure, and standard deviation value. These results are reported in Table
for VaR, and in Table[6] for ES.

We identify that the forecasting model with the highest model risk coincides with the model’s
worst performance according to realized loss, which refers to GARCH,;; model. On the other
hand, the forecast model with the lowest model risk does not match with the model with lower
realized loss. For example, in the whole sample, for VaR, the risk forecasts with lowest realized
loss are quantified with GARCHgeq (see Table ; while forecasts with lower model risk according
MRZLF?’ are estimated with GARCHgq. For MRiLFl, MRZ-LFQ, MRZ-LF5, and MRiLFG, we notice
advantages of risk forecasts estimated with GARCHgporm- Regarding M RZL i forecasts obtained
by GARCHyorm and GARCHgporm have the smallest model risk. Thus, it is worth stressing that the
best performance to forecast risk measures does not necessarily mean a low model risk. A similar
result was verified by (Gianfreda and Scandolo| (2018)).

We also note that model risk estimates are significantly higher in crisis period than before
crisis and after crisis periodﬂ During this period, we also observe a higher standard deviation.
Thus, according to these results, we conclude that during crisis period the model risk increases.
This increase primarily occurs, as it is exposed by |Danielsson| (2008]), due to the assumption, in
most statistical risk modeling, that the basic statistical properties of financial series during calm

periods remain or about the same as periods of instability (crisis). In periods with greater market

16We also use Mann - Whitney U test to investigate whether the model risk estimates are significantly higher in the
crisis period than before crisis, and after crisis period. For brevity, p-value and test statistics are also not displayed.
They are available upon request.
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uncertainty, model estimates tend to be least reliable. However, these results do not corroborate
with those identified for worst case measures. A possible explanation for distinct results between
both approaches is the conceptual differences between them. Worst case measures evaluate the
dispersion among forecasts from different models, while loss function measures evaluate the precision
of each model. On the other hand, we verify, similar to the worst case approach measures, except
for M RiLF 3 and M RiLF 4, that model risk is significantly lower during after crisis period than before
crisis and crisis period]|

Regarding the individual results of each measure, we observe that M RfF 3 has lower values than
M RiLF 5. This result indicates that on average the position has a better result than risk forecasting.
This is a characteristic commonly observed in risk measures forecasting with GARCH models. See
Hwang and Valls Pereiral (2006)), (Carnero et al. (2007) and Miiller and Righi (2018). This result
also justifies the similarity between the results of M RiLF 5 and M RiLF 6.

Concerning M RiLF 1 we note that on average its value is close to zero. This is also observed
when we see the evolution of their values in Figures [6] and [7], which display results for VaR and
ES, respectively@ The advantage of this measure about the other is that it allows quantifying the
average costs from risk overestimation and underestimation. Generally, among the models, for both
VaR and ES, GARCH,;; has the greatest cost. In the after the crisis period, GARCHgq presents
the worst result. Curiously, this model, in this period, has the lowest realized loss for VaR forecasts.
We can explain this difference by the fact of the realized loss computed from elicitable functions,
especially for VaR (see formulation ), penalizes more heavily the observations for which we note
returns showing risk estimates exceedance. Moreover, unlike our model risk measure, elicitable loss

functions only consider forecasting errors, rather than the costs associated with such errors.

6. Conclusions and future directions

We provide a review regarding model risk measures. Based on our findings, we propose new
model risk measures to capture unexplored characteristics of model risk. We also conduct an
empirical assessment of model risk measures using VaR and ES forecasting obtained by well-known

GARCH models. Moreover, we will highlight insights for future research directions regarding this

'"For brevity, p-value and test statistics of Mann - Whitney U test are also not displayed. They are available upon
request.

'8For brevity, these figures display the results for M RfFl and M RiLF4 considering the eight models used and whole
sample. The illustrations of the other loss function measures are available upon request.
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topic.

We realize that the model risk measures should be categorized into two main groups, which
refer to the worst case and loss function approach. The first group has a similar structure to
deviation measures, and they are applied to a set of forecasts. Furthermore, due to the fact
that model risk underestimation and overestimation have a distinct effect, we suggest model risk
measures to quantify upside, downside and tail model risk. On the other hand, the second group
employs monetary risk measures in an error or loss function, from some forecasting procedure. As
advantages of these measures, we refer to the possibility of employing them as a complementary
criterion for forecast model selection. For this approach, we recommend measures that consider risk
overestimation and underestimation distribution in the quantification of model risk. Our empirical
results indicate, according to these measures, that the model risk increases during the crisis period.
Contrastingly, worst case measures show that before crisis period has the highest model risk values.
The conflicting results between the two approaches can be explained by the conceptual differences
between each of them. We also observed that a model with good performance to risk forecasting,
i.e., with lower realized loss, does not indicate this model has lower model risk.

Additionally, we verify that current studies focus on model risk measures coming from indi-
vidual models. However, a point that deserves attention, is to consider the model risk originally
from aggregate models. As |Federal Reserve (2011), the model risk is affected by interaction and
dependencies among models and determining its magnitude might help to manage it correctly.

Another point, which remains open is the formalization of the theoretical properties of model
risk measures. Theoretical discussions gained a boost, in the risk management literature, after
Artzner et al.| (1999)’s pioneering work. |Cont (2006), Barrieu and Scandolo (2015)), Lazar and
Zhang| (2019) present an initial discussion regarding this topic. However, these studies focus on the
individual characteristics of their measure. One possibility to circumvent some of these limitations
is to formalize a theoretical framework for worst case measures using as basis deviation measures
literature. Furthermore, we can confidently state that this framework is consistent and easily
interpretable in a model risk context. However, we do not claim that the theoretical properties
of deviation measures are perfect in a model risk context. Naturally, one can think of imposing
another axiomatic body. Although, they are at least a starting point to gain a more robust and
solid discussion regarding using model risk measures in financial analysis. Therefore, future works
need to conduct a more detailed investigation to identify a complete axiomatic structure for model

risk measures.
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Table 1: Summary statistics of the S&P500 log-returns (in %) for the whole sample (January 1, 2001 to May 30,
2018) and sub-samples (before crisis, January 1, 2001 until July 30, 2007, crisis, August 1, 2007 until September 28,
2012, and after crisis, September 29, 2012 until May 30, 2018).

Statistics Whole Sample Before Crisis  Crisis  After Crisis
Mean 0.015 0.008 -0.005 0.043
Minimum -9.470 -5.047 -9.470 -4.184
Maximum 10.957 5.574 10.957 5.321
Standard Deviation 1.199 1.050 1.662 0.788
Skewness -0.208 0.116 -0.232 -0.324
Excess kurtosis 9.357 2.990 6.674 4.214
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Table 2: Average value (Mean), standard deviation (SD), and realized loss (£,) for VaR*®! and ES®%%5 forecasts.
The results are exposed to the whole sample (January 1, 2001, to May 30, 2018) and sub-samples (before crisis,
January 1, 2001 until July 30, 2007, crisis, August 1, 2007 until September 28, 2012, and after crisis, September 29,
2012 until May 30, 2018) for S&P500 log-returns (in %).

VaR0.0l E80.025
Whole Sample Mean SD [,VaR? Mean SD ['ES?
GARCH,0rm 2.372 1.447  0.036 | 2.384 1.454 1.020
GARCHgnorm 2.231 1.368  0.038 | 2.241 1.374 1.037
GARCHgq 3.181 1.924  0.036 | 3.306 2.026 1.030
GARCHgq 2.446 1.442 0.036 | 2.522 1.474 1.013
GARCngd 2.629 1.582 0.034 | 2.662 1.600 1.012
GARCHggea 2.464 1.464 0.035 | 2.494 1.480 1.014
GARCH,e 4.607  9.965 0.552 | 3.987 7.413 > 100.000
GARCHjq, 2.432 1.436  0.036 | 2.487 1.462 1.017
VaRO'Ol E80.025
Before Crisis Mean SD EVaR? Mean SD »CES?
GARCH,0rm 2.088  0.920 0.026 | 2.099 0.925 0.968
GARCHgnorm 2.062 0.974  0.027 | 2.072 0.979 0.969
GARCHgq 2.361 1.090 0.026 | 2.403 1.120 0.971
GARCHgq 2.164 1.024  0.026 | 2.199 1.039 0.960
GARCHgeq 2.183  0.965 0.025 | 2.200 0.973 0.963
GARCHggea 2.142 1.004 0.026 | 2.159 1.011 0.960
GARCH,;¢ 8.796 13.980 0.114 | 6.861 8.879 3.995
GARCHjq, 2.170 1.032  0.026 | 2.198 1.047 0.961
VaRO'(H ESO'025
Crisis Mean SD  Lyare | Mean SD Lise
GARCH,orm 3.435 2.161 0.053 | 3.452 2.171 1.096
GARCHgnorm 3.146  2.037  0.057 | 3.159 2.046 1.106
GARCHgq 4.595 2.557  0.053 | 4.761 2.632 1.116
GARCHggstq 3.430  2.100 0.053 | 3.523 2.130 1.087
GARCHgeq 3.824  2.291 0.051 | 3.870 2.311 1.090
GARCHggea 3.483 2.120 0.052 | 3.523 2.140 1.086
GARCH,;, 4.983  4.149 0.057 | 5.068 4.201 1.124
GARCHjgy 3.379  2.092 0.053 | 3.445 2.116 1.088
VaR0.0l ESo‘O25
After Crisis Mean SD  Lyagre | Mean SD Lise
GARCH, orm 1.766  0.725  0.031 | 1.774 0.728 1.002
GARCHgnorm 1.638  0.695  0.034 | 1.645 0.698 1.032
GARCHgq 2.635 1.308 0.030 | 2.778 1.461 1.004
GARCHggstq 1.874 0.819 0.032 | 1.967 0.888 0.999
GARCHgeq 2.007  0.861 0.030 | 2.039 0.878 0.990
GARCHgged 1.895 0.882  0.032 | 1.925 0.901 1.002
GARCH,;g 0.040 7.445 1.744 | 0.079 7.475 >100.000
GARCH;gy 1.871 0.857  0.033 | 1.936 0.909 1.010

Note: The bold values refers to the model with the best performance for VaR? 91 and ES0-025 forecasting (lower realized loss). Risk forecasting
are estimated using GARCH model model with normal (GARCHporm ), skewed normal (GARCHgnorm ), Student-t (GARCHgq), skewed Student-t
(GARCHgg4q), generalized error (GARCHgqq), skewed generalized error (GARCHggeq), normal inverse Gaussian (GARCHyjg), and Johnson SU
(GARCHyjg, ) distributions. The rolling estimation window is of 250 observations.
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Figure 1: Daily observations from January 1, 2001, to May 30, 2018, of the S&P500 adjusted closing price (Prices)
and log-returns in % (Log-returns). The vertical lines represent the subdivision of sample into non-crisis and crisis.
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Figure 2: S&P500 log-returns (in %) and VaR’°" and ES®°% forecasts, with the corrected signal, considering the
whole sample, which refers to January 1, 2001, to May 30, 2018. Thus, forecasts comprehend January 1, 2002 to May
30, 2018. The vertical lines represent the subdivision of sample into non-crisis and crisis..

Note: This figure exposes S&P500 log-returns and vVaR?:%1 and ES?-025 forecasts, with the corrected signal, considering a rolling estimation
window of 250 observations. We estimate risk forecasting using GARCH model with normal (GARCHporm), skewed normal (GARCHgsnorm),

Student-t (GARCHgq), skewed Student-t (GARCHgg¢q), generalized error (GARCHgeq), skewed generalized error (GARCHggeq), normal inverse
Gaussian (GARCH,jg), and Johnson SU (GARCHjsy) distributions.
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Figure 5: Daily observations (in %) from January 1, 2002, to May 30, 2018, for the annual three months maturity
U.S. Treasury Bill yield (G), and yearly U.S. Dollar based Overnight London Interbank Offered Rate (L). Both yield

rates are in daily frequency.
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