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Fernanda Maria Müllera,∗, Marcelo Brutti Righia

aBusiness School, Federal University of Rio Grande do Sul, Washington Luiz, 855, Porto Alegre, Brazil, zip
90010-460

Abstract

In financial decisions, model risk has been recognized as an important source of uncertainty.
The revision of the Basel II suggests that financial institutions quantify and manage their model
risk. Focusing on risk forecasting literature, we identify two main approaches to quantify model
risk: the worst case and loss function. The first approach includes measures that are applied to
a set of forecasts and have a similar structure to deviation measures. On the other hand, for
the second approach, monetary risk measures are employed under a loss or error function, from
some forecasting procedure. Moreover, based on the untapped features of model risk for both
approaches we suggest new proposals, which include measures to quantify upside and downside
model risk, and average costs associated with risk overestimation and underestimation. We also
conduct an empirical assessment of model risk measures using Value at Risk (VaR) and Expected
Shortfall (ES) forecasting. Results indicate that model risk estimates change according to measures,
sample and functional (VaR and ES). We also conclude that a model with good performance to risk
forecasting does not indicate this model has lower model risk. Furthermore, we highlight insights
into future research directions regarding this topic.
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1. Introduction

Financial decisions are based on statistical model outputs for some variables of interest, such as

return (linked to mean and median), and risk (linked to variance, Value at Risk (VaR) and Expected

Shortfall (ES)). The most common approach is to quantify these functionals through the empirical

distribution function. Other approaches often employed are parametric, which includes the Gen-

eralized Autoregressive Conditional Heteroskedasticity (GARCH) model, and semi-parametric, as

Quantile Regression and Filtered Historical Simulation (FHS). The accuracy of the results depends

on the reliability of the model used. Although there are studies that compare risk forecast models,

for instance, Kuester et al. (2006), Righi and Ceretta (2015), Beckers et al. (2017) and Müller

and Righi (2018), there is no consensus regarding the most adequate approach or even a ranking
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of model performance. Furthermore, the models are simplified representations of reality and in-

evitably acknowledge that there is no perfect model (see Dańıelsson (2008) and Federal Reserve

(2011)). In literature the hazard of working with a potentially incorrect or inadequate model is

referred to as being “model risk”1. In risk forecasting literature, Kerkhof et al. (2010), Barrieu and

Scandolo (2015), Bernard and Vanduffel (2015), Dańıelsson et al. (2016), and Kellner and Rösch

(2016) discuss this feature in detail.

A body of research uses backtesting procedures, loss functions, Monte Carlo simulations, and

metrics, such as bias and root mean squared error to assess model risk. After revising the Basel

II Market Risk Framework, which requires that financial institutions quantify and manage their

model risk like other types of risk (see Basel Committee on Banking Supervision (2009) and Federal

Reserve (2011)), the attention of literature has focused on procedures to quantify it. From that

moment, there is also a consensus that better methods for dealing with model risk are pivotal to

improving risk management. However, measures to quantify it are not consolidated at the same

level as those for market risk. The main approach used to measure model risk is the worst case.

In our study, we consider as worst case measures those that are applied to a set of estimates

or forecasts and those with a similar structure to deviation measures. We mention Cont (2006),

Kerkhof et al. (2010), and Barrieu and Scandolo (2015) as examples of studies that use it. Besides

this approach, it is also possible to employ risk measures in a loss or error function, from some

estimation or forecasting procedure. Throughout our research, we name this approach as the loss

function. We refer Bignozzi and Tsanakas (2015) and Detering and Packham (2016) as examples

of studies that explore it.

In this context, our main objective is to present the literature on model risk measures in risk

forecasting2. We aim to verify if any pattern in the measures proposed in the literature and unify

procedures with similar characteristics into one general approach. We only consider works that

propose measures. Empirical applications and adaptations are cited where it is convenient. As

the second main objective, we suggest new proposals to quantify the model risk of risk forecast-

1An important concept, which interlaces with model risk, is model uncertainty (also referred as model ambiguity).
Some definitions used to differentiate them are linked to the concepts of risk and uncertainty, which Knight (1921)
discusses. The risk stems from a situation where we do not know the result of the scenario. However, it is still
possible to assign probabilities for future results. Also, unlike the risk, uncertainty does not enable us to gain all the
necessary information to determine the probability of an event occurring.

2We do not explore studies that develop model uncertainty measures in this review since it is not the focus of this
study. Cont (2006) proposes the only model uncertainty measure which we describe because it can be easily adapted
to quantify model risk.
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ing models. For the worst case approach, we explore measures that allow us to quantify upside,

downside and tail model risk. Concerning loss function approach, we consider risk overestimation

and underestimation distribution in the quantification of model risk. We also conduct an empirical

analysis, considering financial data, of model risk measures. In our illustration, we assess model risk

of VaR and ES forecasting, which we estimate using well-known GARCH models. We investigate

the evolution of model risk across years by adopting a rolling window procedure, considering crisis

and non-crisis periods. Furthermore, based on our findings, we highlight future directions that can

be explored regarding this subject.

Our paper, to the best of our knowledge, is the first to consider a review regarding model

risk measures. Previous studies, such as Branger and Schlag (2004), Sibbertsen et al. (2008),

and Bannör and Scherer (2014), respectively explore model risk, which relates to the hedging of

derivative contracts, a data-driven notion of model risk, and model risk and model uncertainty

in stochastic modeling techniques. Thus, it can be asserted that these authors have a different

objective from ours. Additionally, our work presents up to date literature investigating the subject,

which can be used as a guide in this research topic. This study also provides theoretical support to

investors and managers to examine the main tools to measure this type of risk in risk forecasting.

Moreover, our study also contributes to the literature because we are proposing measures to

quantify unexplored characteristics of model risk. In risk forecasting, model risk underestimation

has a distinct effect than its overestimation. An example is the different costs resulting from

risk underestimation and overestimation (see Dhaene et al. (2003) and Laeven and Goovaerts

(2004)). Risk overestimation can generate costs arising from unexpected and uncovered losses,

while risk overestimation can generate opportunity costs. However, the worst case measures treat

both positive and negative deviations from a reference model as model risk, and loss function

measures consider the entire distribution of the errors in the quantifying model risk. Based on this

perspective, for worst case measures, we propose measures that allow quantifying upside, downside,

and tail model risk. Concerning loss function measures, we explore the use of underestimation and

overestimation error distribution to determine model risk value.

Another contribution of our paper is that it is the first to illustrate model risk measures proposed

in the literature. For instance, previous studies like, Kellner and Rösch (2016), Barrieu and Scandolo

(2015), and Dańıelsson et al. (2016), only illustrate the measures proposed by them. Although

Gianfreda and Scandolo (2018) conduct an empirical evaluation of model risk, they consider only

one model risk measure. Our study also differs because we are checking how model risk behaves
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in times of crisis and non-crisis. Albeit Dańıelsson et al. (2016) assess model risk in crisis and

non-crisis periods, they consider only the measure proposed by them.

The structure for the remainder of this paper is: Section 2 displays definitions and preliminary

information; Section 3 defines model risk measures proposed in the literature and those we propose;

Section 4 describes data and preliminary analysis of VaR and ES forecasting, which we use to

illustrate model risk measures; Section 5 illustrates worst case and loss function measures; and

Section 6 concludes the paper as well as demonstrating directions for future studies on the subject.

2. Preliminaries

Consider a real valued random result X : Ω → R of an asset or portfolio (X ≥ 0 is a gain,

and X < 0 is a loss) defined in a vector space of random variables X := X (Ω,F ,P). FX refers to

cumulative distribution function of X, and F−1X is its (left) inverse. We consider F := {FX : X ∈ X}

as a set of distribution functions. We define X+ = max(X, 0) and X− = max(−X, 0), and 1A as

the indicator function for an event A. We denote by R the field of real numbers, and by R̄ the

extended real line.

A law invariant monetary risk measure is a functional ρ : X → R̄ that fulfills the following

properties:

(MT) : if X ≤ Y, then ρ(X) ≥ ρ(Y ),∀X,Y ∈ X .

(TI) : ρ(X + C) = ρ(X)− C,∀X ∈ X , ∀ C ∈ R.

(LI) : if FX = FY , then ρ(X) = ρ(Y ),∀ X,Y ∈ X , ∀ FX , FY ∈ F.

In our study, (MT), (TI) and (LI) refers to Monotonicity, Translation Invariance, and Law Invari-

ance, respectively.

The (MT) indicates that if the losses of a financial position are greater in all situations, then

the expectation for its risk is always greater. The second property, (TI), informs that if adding

a certain gain (C) to a position X, it is expected that the risk of this position decreases by the

same amount. If a risk measure satisfies both properties it is named as a monetary risk measure.

The third property, (LI), indicates that two positions with the same probability function (law)

have equal risks. When a risk measure fulfills (LI) it is labeled as a law invariant risk measure.

Therefore, if a risk measure satisfies (MT), (TI) and (LI) it is known as a law invariant monetary

risk measure.
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We highlight that a law invariant risk measure can be represented by a functional R : F → R̄,

defined as:

ρ(X) = R(FX),∀ X ∈ X .

We provide examples of some law invariant monetary risk measures. We present these risk

measures because they are common in risk management literature.

(i) EL(X) = −E[X],

(ii) VaRα(X) = −F−1X (α),

(iii) ESα(X) = − 1
α

∫ α
0 V aR

s(X)ds,

where α ∈ (0, 1) is the significance level. The negative sign of risk measures is used to indicate

a monetary loss. The first measure refers to Expected Loss (EL), which computes the expected

value (mean) of a loss. This measure is the most parsimonious among those considered. The

second measure refers to VaR, which quantifies the maximal loss, which we expect will occur for a

financial position, for a given period and confidence level. We also present the ES, which quantifies

the expected value of the losses that exceed α - quantile.

3. Model risk measures

Consider I := {1, · · · , n1} as a finite set of models used to estimate the distribution function

of X. In our framework, T := {1, · · · , n2} is out-of-sample period and XT := {X1, · · · , Xn2} are

verifying observations. We denote GX :=
{
F̂X,i,t : X ∈ X , i ∈ I, t ∈ T

}
⊆ F, with some abuse of

notation, as a set of estimates of the distribution function of X, which we obtain with i ∈ I for

period t ∈ T . We define, for any X ∈ X and ∀ F̂X,i,t ∈ GX , ρi,t(X) = R
(
F̂X,i,t

)
as a risk

forecast for period t ∈ T obtained using model i in X. Thus, for any X ∈ X , ∀ i ∈ I and

∀ t ∈ T , ρI,T (X) := {ρ1,T (X), · · · , ρn1,T (X)} ∈ Rn1×n2 represents a matrix of risk forecasts. In

our notation, ρi,T (X) represents risk forecasts (forX) for out-of-sample period (T ) obtained by any

model i ∈ I, and ρI,t(X) represents risk forecasts (for X) obtained by the set of models (I) for

period t ∈ T . In practical sense, ρI,T (X) can be determined in terms of some divergence centered

at forecasts computed by a reference model (see Glasserman and Xu (2014), Breuer and Csiszár

(2016) and Krajcovicova et al. (2019)).
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Moreover, we consider sup ρI,t(X) and inf ρI,t(X) as the supremum and infimum values, re-

spectively, of ρI,t(X) for period t ∈ T . Besides, as I is finite the supremum and infimum, are,

of course, a maximum and a minimum, respectively. When inf ρI,t(X) = sup ρI,t(X) there is

not model risk for period t ∈ T . We delimit a weighted average as a functional µ̄ : Rn1 → R̄,

which can be defined by µ̄(X) =
∑n1

i=1 xiµ(i), where
∑n1

i=1 µ(i) = 1, µ(i) ≥ 0 ∀ i ∈ I. We

define ρµt (X) = µ̄ (ρI,t(X)) as a weighted risk forecasting for period t ∈ T . It is worth not-

ing that inf ρI,t(X) ≤ ρµt (X) ≤ sup ρI,t(X). In addition, we consider GT := {g1, · · · , gn2} and

LT := {l1, · · · , ln2} as being non-negative variables that represent, respectively, costs from risk

overestimation and underestimation. In our study, these costs are financial rates traded in the

market.

We specify a worst case measure as a functional MRWC : X → R̄, defined by MRWC(X) :=

f1 ◦ ρI,t(X) = f1 (ρI,t(X)), where f1 : Rn1 → R̄ is an aggregation function. Moreover, we delimit

a loss function measure as a functional MRLFi : X → R̄, defined by MRLFi (X) := f2 ◦ ρi,T (X) =

f2 (ρi,T (X)), where f2 : Rn2 → R̄ is an aggregation function. Additionally, we feel that we should

note that a discussion regarding the theoretical properties of aggregation functions and model risk

measures is beyond the scope of this research. For situations where we are not working with a finite

set, it is necessary to consider a more complex framework, as in Righi (2018).

3.1. Worst case approach

One can refer to these examples of worst case measures and the respective study that proposes

it:

• MRWC1(X) := sup ρI,t(X)− inf ρI,t(X). (Cont, 2006).

• MRWC2(X) := sup ρI,t(X)− ρµt (X). (Kerkhof et al., 2010).

• MRWC3(X) := ρµt (X)− inf ρI,t(X). (Breuer and Csiszár, 2016).

• MRWC4(X) := (µ̄ [| ρI,t(X)− ρµt (X) |p])
1
p , where p ∈ [1,∞). (Krajcovicova et al., 2019).

• MRWC5(X) :=
sup ρI,t(X)− ρµt (X)

ρµt (X)
. (Barrieu and Scandolo, 2015).

• MRWC6(X) :=
sup ρI,t(X)− ρµt (X)

sup ρI,t(X)− inf ρI,t(X)
. (Barrieu and Scandolo, 2015).

• MRWC7(X) :=
sup ρI,t(X)− ρµt (X)

sup ρI,t(X)
. (Bernard and Vanduffel, 2015).
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• MRWC8(X) :=
ρµt (X)− inf ρI,t(X)

inf ρI,t(X)
. (Bernard and Vanduffel, 2015).

• MRWC9(X) :=
sup ρI,t(X)

inf ρI,t(X)
. (Dańıelsson et al., 2016).

• MRWC10(X) :=
µ̄ [| ρI,t(X)− µ̄ [ρI,t(X)] |]

µ̄ [ρI,t(X)]
. (Kellner and Rösch, 2016).

The measures MRWC1 to MRWC4 assume values greater than or equal to zero, and their value

is equal to zero only when there is no model risk3. For these measures, lower values imply a

lower model risk. Besides that, these measures have a similar structure to traditional deviation

measures, which includes range - based deviations and p - deviation, belonging to the class of

generalized deviation measures (see Rockafellar et al. (2006)). In relation to MRWC5 to MRWC10 ,

they are constructed by the ratio of one of the first four measures and a statistic to standardize,

such as ρµt (X), sup ρI,t(X) and inf ρI,t(X). However, MRWC5 , MRWC8 , MRWC9 and MRWC10

can assume negative values because the statistics used as denominators can take negative values.

Thus, for these measures, the closer to zero their value, the lower the model risk. Besides, to avoid

negative values, some authors, such as Barrieu and Scandolo (2015), assert that the denominator

can only assume values greater than zero.

We point out that model risk measures of literature are constructed using a forecast computed

by a reference model instead of weighted risk forecasting as performed by us4. We suggest this

adaptation because the choice of a reference model is subject to preferences and the empirical

knowledge of the agent (see Jokhadze and Schmidt (2018)). Besides that, using a reference model

is a particular example of our structure once a model receives µ(i) = 1, for some i ∈ I, for each

t ∈ T , and other receive µ(j) = 0, ∀ j ∈ I, i 6= j, for each t ∈ T . For both structures, the main

objective of these measures is quantifying the dispersion of the results from competing models.

Another point that is worth noting is that worst case measures do not quantify the upside,

downside and tail model risk. To quantify these features of model risk, we recommend the following

measures:

• MRWC11(X) :=
(
µ̄
[(

(ρI,t(X)− ρµt (X))
−
)p]) 1

p
, where p ∈ [1,∞).

• MRWC12(X) :=
(
µ̄
[(

(ρI,t(X)− ρµt (X))
+
)p]) 1

p
, where p ∈ [1,∞).

3In the original proposal of MRWC3 , the functional of interest refers to expected payoffs. The authors consider
ρµt = 0 because the daily expected payoff is close to zero.

4In this situation, µ̄(X) := 1
n1

∑n1
i=1 xi, ∀ i ∈ I, is the arithmetic mean.
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• MRWC13(X) := 1
n(1−α) µ̄

[
(ρI,t(X)− ρµt (X)) |1(ρI,t(X)> q(1−α)(ρI,t(X)))

]
, where α is the confi-

dence level, q(1−α)(ρI,t(X)) refers (1− α) % higher risk forecasts from ρI,t(X).

We suggest MRWC11 to quantify the downside model risk. It allows us to computes the average

distance of each estimate belonging to the ρI,t(X) below from ρµt (X). From another perspective,

MRWC12 estimate upside model risk. This measure computes the average distance of each estimate

belonging to the ρI,t(X) above from ρµt (X). The last measure, MRWC13 , computes tail model risk.

It quantifies the average model risk above (1− α) % more aggressive risk forecasts. For MRWC13 ,

we focus on the upper tail because worst case measures aim to identify the worst outcome from the

set of candidate models. However, one may extend the measure to analyze α % lower risk forecasts

from ρI,t(X). For these measures, there is no model risk when their value is equal to zero. Besides,

the higher the value of the measure, the greater is the model risk.

3.2. Loss function approach

Let ρ : Rn2 → R̄ be a law invariant monetary risk measure, we refer these examples of loss

function measures and the respective research that proposes it5:

• MRLF1
i (X) := ρ (XT − ρi,T (X)). (Bignozzi and Tsanakas, 2015).

• MRLF2
i (X) := ρ [| (XT − ρi,T (X)) |]. (Detering and Packham, 2016).

• MRLF3
i (X) := ρ

[
| (XT − ρi,T (X))− |

]
. (Detering and Packham, 2016).

The measures MRLF1
i and MRLF2

i consider the entire distribution of the errors, while MRLF3
i

consider only a situation wherein the capital reserve is not enough to cover losses. Differently

of worst case measures, these measures allow quantifying model risk of an individual model. In

addition, their main objective is to assess the precision of each risk forecasting model. Therefore,

they can be used jointly with usual statistics applied to rank the quality of the forecasting models.

Besides, these measures are not specific to an individual functional and their use is not conditioned

to statistical properties, such as Elicitability6 for risk measures.

To consider the risk overestimation and underestimation distribution in the quantification of

model risk, we intend to generalize the proposal of Detering and Packham (2016). Our model risk

measures can be represented in this way:

5The reader should not confuse ρ, which is a law invariant monetary risk measure, such as EL, VaR and ES and
ρi,T , which refers to risk forecasts for X for the out-of-sample period, which we obtain using model i ∈ I.

6A functional is named elicitable when it is the minimizer of expectation of some score function. See Ziegel (2016)
and Acerbi and Szekely (2017).
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• MRLF4
i (X) := ρ

[
(XT − ρi,T (X))+GT + (XT − ρi,T (X))− LT )

]
.

• MRLF5
i (X) := ρ

[
| (XT − ρi,T (X))+ |

]
.

• MRLF6
i (X) := ρ1

[
(XT − ρi,T (X))+

]
+ ρ2

[
(XT − ρi,T (X))−

]
, where ρ1 and ρ2 are monetary

risk measures applied to (XT − ρi,T (X))+ and (XT − ρi,T (X))−, respectively.

Our first measure, MRLF4
i , is inspired in the robust risk measurement approach proposed by

Righi et al. (2019), which minimizes the expectation of sum between costs from overestimation

and underestimation. We use their score function here as a model risk measure. This measure

allows us to identify the model with the best trade-off between the sum of the costs from risk

overestimation and underestimation. In periods of greater instability, in which risk underestimation

is more punitive than its overestimation, a higher underestimation cost can be considered to penalize

the more expensively underestimation errors. A specification of this measure is to consider different

weights rather than the costs applied under each error distribution. In this way, this measure can

be defined by ρ
[
λ (XT − ρi,T (X))+ + (1− λ) (XT − ρi,T (X))−

]
, where λ ∈ (0,1), and λ ≤ 1

2 .

The next measure, MRLF5
i , is the complement of MRLF3

i , which only considers the situation in

which the results of position are better than the value determinate by risk measure. Differently, for

MRLF6
i , we applied a risk measure on the underestimation and overestimation error distribution.

We can use as ρ1 and ρ2 the same or a different monetary risk measure. In the financial market,

usually, the underestimation error is more serious, so it is expected ρ2 ≥ ρ1. Therefore, in periods

of greater instability, a more conservative risk measure can be employed on underestimation errors,

resulting in higher levels of security regarding model risk. Besides that, according to loss function

measures, the closer to zero their value the lower is model risk.

4. Data and preliminary analysis

In this section, we describe data and a preliminary analysis of the risk forecasts used to illustrate

model risk measures. For financial position, X, we consider log-returns of S&P500 U.S. market

index multiplied by 100, for the period from January 1, 2001, to May 30, 2018, totalizing 4376

observations. We consider this market index because it is frequently used in academic research.

We divide the sample into crisis and non-crisis periods to analyze if the model risk changes in

periods with greater variability in the return series. To divide the sample we follow what was

suggested by Righi and Vieira (2014). The period considered as a crisis starts on August 1, 2007,

until September 28, 2012 (1297 observations). The trading days from August 1, 2007, until July
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13, 2010, corresponds to the Subprime mortgage crisis and from June 14, 2010, to September 28,

2012, refers to the Eurozone crisis. Trading days from January 1, 2001, until the Subprime crisis

(1660 observations) and after the Eurozone crisis until May 2018 (1419 observations) are non-crisis

periods. We refer these periods as before crisis and after crisis periods, respectively7.

In Table 1, we describe descriptive statistics of log-returns. In the crisis period, the log-returns

have negative average value (-0.005) and the highest standard deviation (1.662), suggesting that in

this period there is a greater risk. Except for the before crisis period, log-returns display negative

asymmetry. Moreover, we observe the presence of heavy-tailed behavior, which indicates a greater

probability of extreme values when compared to a normal distribution. These characteristics are

commonly observed in daily stock returns data. The log-returns evolution of the index depicted

in Figure 1 shows that the series display periods of calm and greater instability, which generally

coincide with the non-crisis and crisis periods.

We use VaR and ES, defined in Section 2, as a functional base to be predicted. We choose these

measures because they are currently the most common risk measures on risk forecasting literature.

We compute these measures using AR(p) (auto-regressive) - GARCH(q,s) model, which can be

described in this manner:

Xt = φ0 +

p∑
i=1

φiXt−i + εt,

εt = σtzt, zt ∼ i.i.d. F (0,1),

σ2t = a0 +

q∑
j=1

ajε
2
t−j +

s∑
k=1

bkσ
2
t−k, (1)

where t = 1, · · · , N is the period8, Xt is the return, φi, for i = 0, 1, · · · , p, are parameters

of auto-regressive model, εt is the innovation in expectation, zt is a white noise process with

distribution F . σ2t is the conditional variance, and aj , for j = 0, 1, · · · , q, as well as bk, for

k = 1, · · · , s, are parameters of the GARCH model. The parameters are estimated through the

Quasi-Maximum Likelihood. The form of the likelihood depends on distributing innovations (zt),

i.e., of F . For F we assume normal (GARCHnorm), skewed normal (GARCHsnorm), Student-t

7BenMim and BenSäıda (2019) use similar periods for the beginning of the Subprime crisis and end of the Eurozone
crisis. However, we do not intend to state that the crisis occurred exactly in these periods. We performed the division
of the sample in crisis and non-crisis periods because Dańıelsson et al. (2016) show that in crisis periods model risk
increases.

8This model is computed using the information we have in - sample period.
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(GARCHstd), skewed Student-t (GARCHsstd), generalized error (GARCHged), skewed general-

ized error (GARCHsged), normal inverse Gaussian (GARCHnig), and Johnson SU (GARCHjsu)

distributions. We consider this set of distributions because they are frequently used in the em-

pirical analysis. Besides the normal distribution, we select the distributions that can capture

asymmetry and heavy tail. The model used is AR(1)-GARCH(1,1). We select the number of

lags through the Akaike information criterion (AIC). For simplicity, when we refer to this model

we will name it as the GARCH model. So with some abuse of notation, we consider I =

{GARCHnorm,GARCHsnorm,GARCHstd,GARCHsstd,GARCHged,GARCHsged,GARCHnig,GARCHjsu}.

We conduct all computational implementations using R programming language (R Core Team,

2019), and the package for estimating the model parameters is rugarch (Ghalanos, 2019).

Given a certain distribution assumption for z, VaR and ES forecasts, for each period t ∈ T , are

quantified in this way:

VaRα
i,t = − (µi,t + σi,tVaRα(zi,t)) ,

ESαi,t = − (µi,t + σi,tESα(zi,t)) , (2)

where µi,t and σi,t are, respectively, the conditional mean forecasting and conditional standard

deviation forecasting, which we compute by i ∈ I for period t ∈ T .

As α values, we employ 0.01 for VaR, and 0.025 for ES because the Basel Committee on Banking

Supervision (see Basel Committee on Banking Supervision (2013)) recommends these values. In

the estimation process, we use a rolling estimation window of 250 days9. At each step, we obtain

one-step-ahead risk forecasts. In this sense, for each day in the out-sample period, we use the

last 250 observations to compute the risk measures. For descriptive analysis of point forecasts, we

present in Table 2 average value (Mean), standard deviation (SD), and realized loss (Lρ), which

for VaR and ES, respectively, we compute as (see Gneiting (2011) and Fissler and Ziegel (2016)):

LVaRαi =
1

n2

n2∑
t=1

[
α
(
Xt + VaRα

i,t

)+
+ (1− α)

(
Xt + VaRα

i,t

)−]
,

LESαi =
1

n2

n2∑
t=1

[(Ii,t − α)
(
−VaRα

i,t

)
− Ii,tXt + e(−ES

α
i,t) × (

(
−ESαi,t

)
+ VaRα

i,t +
Ii,t
α

((
−VaRα

i,t

)
−Xt)

)
9We select this rolling estimation window because is common in risk forecasting literature (see Bayer (2018) and

Argyropoulos and Panopoulou (2019)) and it is recommended by the Basel Committee (see Basel Committee on
Banking Supervision (2013)).
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− e(−ES
α
i,t) + 1− log (1− α)], (3)

where T := {1, · · · , n2} is out-of-sample period, Xt ∈ XT , Ii,t = 1Xt<−VaRαi,t , ∀ t ∈ T .

We observe in Table 2, except for GARCHnig, that average and standard deviation value of VaR

and ES forecasts are higher in the crisis period. For GARCHnig the higher values of these statistics

are found in the before crisis period. On the other hand, during the after crisis period risk forecasts

present the lowest standard deviation and average values. Moreover, we can state that these results

are consistent with the descriptive analysis of the log-returns. For VaR forecasts, GARCHged has

lower realized loss. This model also has the best performance concerning ES forecasting throughout

the whole sample and after the crisis period. During the before crisis period, for ES forecasts,

GARCHsged and GARCHsstd have a lower realized loss, while during crisis period only GARCHsged

has. Contrastingly, GARCHnig displays the worst performance for both risk measures.

We provide, in Figure 2, the evolution of S&P500 log-returns, and VaR and ES forecasting with

converted signal considering the whole sample. For brevity, we omit the illustrations of risk forecasts

for the sub-samples. They are available upon request10. In line with the descriptive analysis, as

seen, the evolution of forecasts obtained considering GARCHnig are far from the evolution of log-

returns as well as the results of the other models. This behavior corroborates with the realized loss

values of forecasts obtained for this model.

5. Empirical Results

5.1. Worst case measures

Aiming to illustrate worst case measures, we use the risk forecasts of VaR and ES described

in Section 4. For each one-step-ahead, we compute model risk using MRWCm ,m = 1, · · · , 13.

We quantify ρµt by means of equally weighted scheme, µ(i) = 1
8 , ∀ i ∈ I, ∀ t ∈ T . We also

consider the situation in which instead of ρµt we have forecasts obtained from a reference model.

These measures are defined by MRWCm
0 ,m = 2, 3, 4, 5, 6, 7, 8, 11, 12, 13. Our reference model, as

performed by Kerkhof et al. (2010) and Krajcovicova et al. (2019), is the model that follows a

normal distribution, i.e., GARCHnorm. For MRWC4 , MRWC4
0 , MRWC11 , MRWC11

0 , MRWC12 and

MRWC12
0 we just describe the results with p = 1. For MRWC13 and MRWC13

0 we use α% = 30%,

and so (1 − α)% = 70%. For each model risk measure, we present the average and standard

10To keep the pattern, we will present the figures, in all illustrations, only for the whole sample.
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deviation value of model risk estimates, and the ratio of model risk about weighted risk forecasting

in % (Prop (%)). Prop (%) allows us to assess the proportion of model risk in relation to weighted

risk measure11. We expose, considering the whole sample and sub-samples, these results, for VaR

and ES forecasts, in Tables 3 and 4, respectively.

It can be highlighted that the mean values of model risk differ according to measures, sample

and the functional (VaR or ES). The standard deviation values indicate variability of the model

risk estimates over the period analyzed. For VaR forecasts, we note that the highest average

model risk value is computed by MRWC1 , being its highest estimate observed in the before crisis

period (7.073). In this period, MRWC1 has the highest standard deviation (13.320) and it assumes

value more than twice as high as ρµt (Prop (%) = 236.092%). Regarding ES forecasts, the highest

averages values are quantified by MRWC1 and MRWC10 in the whole sample (5.129) and after

crisis period (43.680), respectively. Results from MRWC1 allow us to conclude there is a large

amplitude between the minimum and maximum values of ρI,t(X). This dispersion can lead to an

unbalanced regulatory environment, once the individual risk measures determine different amounts

of regulatory capital. The magnitude of the results of these measures become clearer when we see

Figures 3 and 4, which evolve model risk and weighted risk forecasting (gray line), computed for

VaR and ES forecasting, respectively (whole sample).

Among the periods (samples) investigated, we perceive that for most measures, for instance

MRWC1 , MRWC2
0 , MRWC2 , MRWC5

0 , MRWC5 , MRWC6
0 , MRWC6 , MRWC8

0 , MRWC9 , MRWC10 ,

MRWC12
0 , MRWC12 , model risk estimates (in absolute value) are significantly higher in the before

crisis period than crisis and after crisis period12. Unlike our findings, in the study of Dańıelsson

et al. (2016), using MRWC9 , it was found that crisis period increases model risk. Our results differ,

possibly, due to the atypical behavior of GARCHnig estimates. The worst case measures are sensitive

to the influence of a particular model13, which is one of the main criticisms of these measures. When

11For worst case measures estimated with ρµt Prop (%) =
(
MRWCm (X)

ρ
µ
t (X)

)
× 100, ,m = 1, · · · , 13, while worst case

measures estimated with reference model Prop (%) =

(
MR

WCm
0 (X)

ρ
µ
t (X)

)
× 100, m = 2, 3, 4, 5, 6, 7, 8, 11, 12, 13.

12We used Mann - Whitney U test to investigate whether the model risk estimates are significantly higher in the
before crisis period than crisis period and after crisis period. Therefore, we compare the model risk estimates (from
the before crisis period) by testing it against the other periods. The null hypothesis is true location shift is equal to
0 and the alternative hypothesis true location shift is greater than 0. For brevity, p-value and test statistics are not
displayed. We use the Mann-Whitney U test because it is a non-parametric test and it is based on fewer assumptions
regarding sample distributions. They are available upon request.

13In our study, we did not perform the analysis without GARCHnig because we intend to illustrate how the different
model risk measures behave.
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analyzing the temporal evolution of MRWC9 , for both VaR and ES, we identify that two periods

with high estimates coincide with the higher volatility of risk forecasts quantify by GARCHnig.

According to Figures 3 and 4, besides MRWC9 , model risk estimates from MRWC1 , MRWC2 ,

MRWC2
0 , MRWC3 , MRWC3

0 , MRWC8 , MRWC8
0 and MRWC10 are also affected by GARCHnig

estimates. Besides, Dańıelsson et al. (2016) consider different methodological characteristics (for

example, financial position, size of the sample and rolling window estimation). Furthermore, we

observe model risk is significantly lower (in absolute value) in the after crisis period than before

crisis and crisis period14. One of the possible explanations for this finding is due to the lower

variability of the risk forecasts for this period.

In relation to the measures computed using ρµt and a reference model, we verify some patterns

in the results of these measures. For measures proposed by Kerkhof et al. (2010)
(
MRWC2

)
and by

Barrieu and Scandolo (2015)
(
MRWC5 and MRWC6

)
model risk average value tends to be higher

when estimated with the reference model. For measures of Breuer and Csiszár (2013)
(
MRWC3

)
and of Krajcovicova et al. (2019)

(
MRWC4

)
we identify an opposing result. Regarding the results

of VaR and ES, we realize that they are conditioned to worst case measure used. In the study by

Kellner and Rösch (2016), MRWC10 is used to assess model risk. Since this measure is standardized

by µ̄ [ρI,t(X)], it allows the comparison of VaR and ES results. The higher the result of this measure,

the more dispersed is the capital requirements of a financial asset. Our results indicate that ES

is more sensitive to regulatory arbitrage15. For instance, in the whole sample, for VaR, MRWC10

has a value equal to -0.084, while for ES this measure assumes a value equal to 12.536. Regarding

the sub-samples, the measure also presents higher values for the ES forecasts. Similar results are

verified by Kellner and Rösch (2016).

5.2. Loss function measures

We also consider VaR and ES forecasting, to illustrate loss function measures. Additionally,

since we are considering negative results as losses, we first correct the sign of each risk forecasts

ρi,t(X) ∈ ρI,T (X). For risk forecasting obtained by each model, ρi,T (X), we compute model

risk using MRLF
m

i ,m = 1, · · · , 7. We use EL as law invariant monetary risk measure, which we

14We used Mann - Whitney U test to investigate whether the model risk estimates are significantly lower in the
after crisis period than before crisis and crisis period. For brevity, p-value and test statistics are not displayed. They
are available upon request.

15In the sense used, regulatory arbitrage refers to two institutions with the same portfolio and uses different internal
models, approved by the regulator, and so quantify different amounts of capital requirement. As they keep the same
portfolio, they must hold the same or at least almost the same amount of regulatory capital.
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quantify non-parametrically, i.e., EL(X) = 1
n2

∑n2
t=1 xt. We choose this risk measure to maintain

the estimation pattern of functions used to quantify realized loss (see formulation (3)). For MRLF6
i ,

we opted in to use ρ1 = ρ2 = EL. As costs of risk overestimation GT and underestimation LT , we

used daily yield rates of the U.S. Treasury Bill with a maturity of three months and the U.S. Dollar

based Overnight London Interbank Offered Rate (LIBOR). These assets are commonly used in the

literature. Moreover, these rates reflect a risk-free investment with liquidity, where the surplus

over capital requirement can be invested, and a rate for loans, when the capital requirement is

not enough, respectively. We convert both yield rates to a daily frequency. Figure 5 presents the

temporal evolution of these series multiplied by 100. We observe a huge change with their dynamics

in the early of 2005 and the end of 2008. This change is possibly due to economic events that the

Subprime crisis generated. For each model risk measure, we present the EL, which is the average

value of loss function measure, and standard deviation value. These results are reported in Table

5, for VaR, and in Table 6, for ES.

We identify that the forecasting model with the highest model risk coincides with the model’s

worst performance according to realized loss, which refers to GARCHnig model. On the other

hand, the forecast model with the lowest model risk does not match with the model with lower

realized loss. For example, in the whole sample, for VaR, the risk forecasts with lowest realized

loss are quantified with GARCHged (see Table 2); while forecasts with lower model risk according

MRLF3
i are estimated with GARCHstd. For MRLF1

i , MRLF2
i , MRLF5

i , and MRLF6
i , we notice

advantages of risk forecasts estimated with GARCHsnorm. Regarding MRLF4
i , forecasts obtained

by GARCHnorm and GARCHsnorm have the smallest model risk. Thus, it is worth stressing that the

best performance to forecast risk measures does not necessarily mean a low model risk. A similar

result was verified by Gianfreda and Scandolo (2018).

We also note that model risk estimates are significantly higher in crisis period than before

crisis and after crisis period16. During this period, we also observe a higher standard deviation.

Thus, according to these results, we conclude that during crisis period the model risk increases.

This increase primarily occurs, as it is exposed by Dańıelsson (2008), due to the assumption, in

most statistical risk modeling, that the basic statistical properties of financial series during calm

periods remain or about the same as periods of instability (crisis). In periods with greater market

16We also use Mann - Whitney U test to investigate whether the model risk estimates are significantly higher in the
crisis period than before crisis, and after crisis period. For brevity, p-value and test statistics are also not displayed.
They are available upon request.
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uncertainty, model estimates tend to be least reliable. However, these results do not corroborate

with those identified for worst case measures. A possible explanation for distinct results between

both approaches is the conceptual differences between them. Worst case measures evaluate the

dispersion among forecasts from different models, while loss function measures evaluate the precision

of each model. On the other hand, we verify, similar to the worst case approach measures, except

for MRLF3
i and MRLF4

i , that model risk is significantly lower during after crisis period than before

crisis and crisis period17.

Regarding the individual results of each measure, we observe that MRLF3
i has lower values than

MRLF5
i . This result indicates that on average the position has a better result than risk forecasting.

This is a characteristic commonly observed in risk measures forecasting with GARCH models. See

Hwang and Valls Pereira (2006), Carnero et al. (2007) and Müller and Righi (2018). This result

also justifies the similarity between the results of MRLF5
i and MRLF6

i .

Concerning MRLF4
i , we note that on average its value is close to zero. This is also observed

when we see the evolution of their values in Figures 6 and 7, which display results for VaR and

ES, respectively18. The advantage of this measure about the other is that it allows quantifying the

average costs from risk overestimation and underestimation. Generally, among the models, for both

VaR and ES, GARCHnig has the greatest cost. In the after the crisis period, GARCHstd presents

the worst result. Curiously, this model, in this period, has the lowest realized loss for VaR forecasts.

We can explain this difference by the fact of the realized loss computed from elicitable functions,

especially for VaR (see formulation (3)), penalizes more heavily the observations for which we note

returns showing risk estimates exceedance. Moreover, unlike our model risk measure, elicitable loss

functions only consider forecasting errors, rather than the costs associated with such errors.

6. Conclusions and future directions

We provide a review regarding model risk measures. Based on our findings, we propose new

model risk measures to capture unexplored characteristics of model risk. We also conduct an

empirical assessment of model risk measures using VaR and ES forecasting obtained by well-known

GARCH models. Moreover, we will highlight insights for future research directions regarding this

17For brevity, p-value and test statistics of Mann - Whitney U test are also not displayed. They are available upon
request.

18For brevity, these figures display the results for MRLF1
i and MRLF4

i considering the eight models used and whole
sample. The illustrations of the other loss function measures are available upon request.
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topic.

We realize that the model risk measures should be categorized into two main groups, which

refer to the worst case and loss function approach. The first group has a similar structure to

deviation measures, and they are applied to a set of forecasts. Furthermore, due to the fact

that model risk underestimation and overestimation have a distinct effect, we suggest model risk

measures to quantify upside, downside and tail model risk. On the other hand, the second group

employs monetary risk measures in an error or loss function, from some forecasting procedure. As

advantages of these measures, we refer to the possibility of employing them as a complementary

criterion for forecast model selection. For this approach, we recommend measures that consider risk

overestimation and underestimation distribution in the quantification of model risk. Our empirical

results indicate, according to these measures, that the model risk increases during the crisis period.

Contrastingly, worst case measures show that before crisis period has the highest model risk values.

The conflicting results between the two approaches can be explained by the conceptual differences

between each of them. We also observed that a model with good performance to risk forecasting,

i.e., with lower realized loss, does not indicate this model has lower model risk.

Additionally, we verify that current studies focus on model risk measures coming from indi-

vidual models. However, a point that deserves attention, is to consider the model risk originally

from aggregate models. As Federal Reserve (2011), the model risk is affected by interaction and

dependencies among models and determining its magnitude might help to manage it correctly.

Another point, which remains open is the formalization of the theoretical properties of model

risk measures. Theoretical discussions gained a boost, in the risk management literature, after

Artzner et al. (1999)’s pioneering work. Cont (2006), Barrieu and Scandolo (2015), Lazar and

Zhang (2019) present an initial discussion regarding this topic. However, these studies focus on the

individual characteristics of their measure. One possibility to circumvent some of these limitations

is to formalize a theoretical framework for worst case measures using as basis deviation measures

literature. Furthermore, we can confidently state that this framework is consistent and easily

interpretable in a model risk context. However, we do not claim that the theoretical properties

of deviation measures are perfect in a model risk context. Naturally, one can think of imposing

another axiomatic body. Although, they are at least a starting point to gain a more robust and

solid discussion regarding using model risk measures in financial analysis. Therefore, future works

need to conduct a more detailed investigation to identify a complete axiomatic structure for model

risk measures.
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Table 1: Summary statistics of the S&P500 log-returns (in %) for the whole sample (January 1, 2001 to May 30,
2018) and sub-samples (before crisis, January 1, 2001 until July 30, 2007, crisis, August 1, 2007 until September 28,
2012, and after crisis, September 29, 2012 until May 30, 2018).

Statistics Whole Sample Before Crisis Crisis After Crisis
Mean 0.015 0.008 -0.005 0.043
Minimum -9.470 -5.047 -9.470 -4.184
Maximum 10.957 5.574 10.957 5.321
Standard Deviation 1.199 1.050 1.662 0.788
Skewness -0.208 0.116 -0.232 -0.324
Excess kurtosis 9.357 2.990 6.674 4.214
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Table 2: Average value (Mean), standard deviation (SD), and realized loss (Lρ) for VaR0.01 and ES0.025 forecasts.
The results are exposed to the whole sample (January 1, 2001, to May 30, 2018) and sub-samples (before crisis,
January 1, 2001 until July 30, 2007, crisis, August 1, 2007 until September 28, 2012, and after crisis, September 29,
2012 until May 30, 2018) for S&P500 log-returns (in %).

VaR0.01 ES0.025

Whole Sample Mean SD LVaRαi
Mean SD LESαi

GARCHnorm 2.372 1.447 0.036 2.384 1.454 1.020
GARCHsnorm 2.231 1.368 0.038 2.241 1.374 1.037
GARCHstd 3.181 1.924 0.036 3.306 2.026 1.030
GARCHsstd 2.446 1.442 0.036 2.522 1.474 1.013
GARCHged 2.629 1.582 0.034 2.662 1.600 1.012
GARCHsged 2.464 1.464 0.035 2.494 1.480 1.014
GARCHnig 4.607 9.965 0.552 3.987 7.413 > 100.000
GARCHjsu 2.432 1.436 0.036 2.487 1.462 1.017

VaR0.01 ES0.025

Before Crisis Mean SD LVaRαi
Mean SD LESαi

GARCHnorm 2.088 0.920 0.026 2.099 0.925 0.968
GARCHsnorm 2.062 0.974 0.027 2.072 0.979 0.969
GARCHstd 2.361 1.090 0.026 2.403 1.120 0.971
GARCHsstd 2.164 1.024 0.026 2.199 1.039 0.960
GARCHged 2.183 0.965 0.025 2.200 0.973 0.963
GARCHsged 2.142 1.004 0.026 2.159 1.011 0.960
GARCHnig 8.796 13.980 0.114 6.861 8.879 3.995
GARCHjsu 2.170 1.032 0.026 2.198 1.047 0.961

VaR0.01 ES0.025

Crisis Mean SD LVaRαi
Mean SD LESαi

GARCHnorm 3.435 2.161 0.053 3.452 2.171 1.096
GARCHsnorm 3.146 2.037 0.057 3.159 2.046 1.106
GARCHstd 4.595 2.557 0.053 4.761 2.632 1.116
GARCHsstd 3.430 2.100 0.053 3.523 2.130 1.087
GARCHged 3.824 2.291 0.051 3.870 2.311 1.090
GARCHsged 3.483 2.120 0.052 3.523 2.140 1.086
GARCHnig 4.983 4.149 0.057 5.068 4.201 1.124
GARCHjsu 3.379 2.092 0.053 3.445 2.116 1.088

VaR0.01 ES0.025

After Crisis Mean SD LVaRαi
Mean SD LESαi

GARCHnorm 1.766 0.725 0.031 1.774 0.728 1.002
GARCHsnorm 1.638 0.695 0.034 1.645 0.698 1.032
GARCHstd 2.635 1.308 0.030 2.778 1.461 1.004
GARCHsstd 1.874 0.819 0.032 1.967 0.888 0.999
GARCHged 2.007 0.861 0.030 2.039 0.878 0.990
GARCHsged 1.895 0.882 0.032 1.925 0.901 1.002
GARCHnig 0.040 7.445 1.744 0.079 7.475 >100.000
GARCHjsu 1.871 0.857 0.033 1.936 0.909 1.010

Note: The bold values refers to the model with the best performance for VaR0.01 and ES0.025 forecasting (lower realized loss). Risk forecasting
are estimated using GARCH model model with normal (GARCHnorm), skewed normal (GARCHsnorm), Student-t (GARCHstd), skewed Student-t
(GARCHsstd), generalized error (GARCHged), skewed generalized error (GARCHsged), normal inverse Gaussian (GARCHnig), and Johnson SU
(GARCHjsu) distributions. The rolling estimation window is of 250 observations.
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Figure 1: Daily observations from January 1, 2001, to May 30, 2018, of the S&P500 adjusted closing price (Prices)
and log-returns in % (Log-returns). The vertical lines represent the subdivision of sample into non-crisis and crisis.
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Figure 2: S&P500 log-returns (in %) and VaR0.01 and ES0.025 forecasts, with the corrected signal, considering the
whole sample, which refers to January 1, 2001, to May 30, 2018. Thus, forecasts comprehend January 1, 2002 to May
30, 2018. The vertical lines represent the subdivision of sample into non-crisis and crisis..

Note: This figure exposes S&P500 log-returns and VaR0.01 and ES0.025 forecasts, with the corrected signal, considering a rolling estimation
window of 250 observations. We estimate risk forecasting using GARCH model with normal (GARCHnorm), skewed normal (GARCHsnorm),
Student-t (GARCHstd), skewed Student-t (GARCHsstd), generalized error (GARCHged), skewed generalized error (GARCHsged), normal inverse
Gaussian (GARCHnig), and Johnson SU (GARCHjsu) distributions.
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Figure 5: Daily observations (in %) from January 1, 2002, to May 30, 2018, for the annual three months maturity

U.S. Treasury Bill yield (G), and yearly U.S. Dollar based Overnight London Interbank Offered Rate (L). Both yield

rates are in daily frequency.
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