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Abstract

The Lehman Brothers’ 2008 bankruptcy spread losses to its counterparties even

when Lehman was a lender of cash, because collateral for that lending was tied up in

the bankruptcy process. I study the implications of such lender default using a general

equilibrium network model featuring endogenous leverage, endogenous asset prices,

and endogenous network formation. The multiplex graph model has two channels

of contagion: a counterparty channel of contagion and a price channel of contagion

through endogenous collateral price. Borrowers diversify their lenders because of the

counterparty risk, but they have to deal with lenders who lend at a higher margin.

This diversification generates positive externalities by reducing systemic risk, but any

decentralized equilibrium is constrained inefficient due to under-diversification. The

key externalities here, arising from the tradeoff between counterparty risk and leverage

(margin), are absent in models with exogenous leverage or exogenous networks. I use

this framework to analyze the introduction of a central counterparty (CCP). I show

that the loss coverage by the CCP reduces diversification incentives and exacerbates

the externality problem which can rather increase systemic risk.
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1. Introduction

The failure of the collateralized debt market was one of the major contributors of the

financial crisis in 2008 (Gorton and Metrick, 2012; Copeland et al., 2014).1 This paper studies

such a market in a hybrid model that combines general equilibrium and network frameworks.

A typical form of collateralized debt takes the form of one-on-one interaction between two

counterparties – a borrower and a lender – because of customization (bespoke) of contract

terms. A collateralized debt network, the collection of such one-on-one relationships, has

two transmission channels of shocks – the price channel and the counterparty channel. The

collapse in the prices of subprime mortgages in 2007 had a direct effect on many financial

institutions that held related assets. But the initial shock was exacerbated by the resulting

bankruptcy of the Lehman Brothers, which spread the losses to Lehman’s counterparties

(Copeland et al., 2014; De Haas and Van Horen, 2012; Singh, 2017). This counterparty

loss triggered fire sales of assets which made prices to decline even further (Demange, 2016;

Duarte and Eisenbach, 2018; Duarte and Jones, 2017). Therefore, a model that incorporates

the interaction of both channels is necessary to capture the full picture of collateralized debt

markets (Glasserman and Young, 2016).

Lender default can also be a source of a counterparty channel of shocks (Eren, 2014;

Infante et al., 2018; Scott, 2014). Lehman’s defaults on its lender obligations to return

collateral to its borrowers caused a significant loss in 2008. All of Lehman Brothers’ assets

including borrowers’ collateral were frozen under the bankruptcy procedure. Many borrowers

had to over-collateralize2 their positions to protect the lender (Lehman) in case of borrower

default. While over-collateralization secured lender’s position, it exposed the borrowers to

losses when they could not recover their collateral. The borrowers did not know when their

collateral would be returned to them, nor did they know how much they would recover from

the bankruptcy process (Fleming and Sarkar, 2014) and paid a sizable cost throughout the

bankruptcy and collateral recovery process.3

1 Repurchase agreements (repo), asset-backed commercial papers (ABCP), and derivatives are typical
examples of collateralized debt and the most common form of short-term financing among financial institu-
tions.

2The financial market has evolved to insulate lenders from borrower counterparty risk over the past
few decades. The evolution of securitization has made the cash flows of contracts remote from borrower
bankruptcies and significantly eliminated tangible losses that could follow from borrower default (Gorton
et al., 2010). However, borrowers are now exposed to the risk of lender default.

3Regardless of whether the borrowers stood to recover their assets over the long term, the inability to
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The goal of this paper is to analyze such a collateralized debt market with both price

channel and counterparty channel of contagion from lender default. The main research

questions are the following. First, how do agents spread losses to each other through a given

network of counterparties in a collateralized debt market? Second, how do counterparties

form an endogenous debt network (borrow and lend to each other) when they account for this

contagion channel? Third, how does regulation change the systemic risk when accounting

for endogenous networks responses of the market?

I propose a general equilibrium model with multiplex network interaction featuring en-

dogenous leverage (margin), endogenous price, and endogenous network formation to study

this problem. The model has interaction between the price channel (fire sales) and the

counterparty channel (both borrower and lender defaults) that affect endogenous network

formation. This paper is the first attempt to endogenize leverage, asset prices, and network

formation simultaneously, to the best of my knowledge.

Model. The model has six main features. First, agents trade an asset that can be

used as collateral in a competitive market. Price changes in the asset market affect agents’

nominal wealth as a price channel. Second, there is a multiplex network of collateralized

borrowing and lending. Agents enter bilateral customized contracts specifying the face value

of the debt and the amount of collateral. Third, agents disagree on the fair value of the asset

ex ante. Agents trade the asset and use it as collateral to borrow and lend because of the

belief disagreement. Fourth, the lender of a debt contract holds the collateral and can reuse

(rehypothecate) it to borrow money from someone else. An agent can be a lender as well as

a borrower at the same time. Fifth, agents are subject to liquidity shocks before paying back

their debt. Because of this liquidity shock, agents may have negative nominal wealth and go

bankrupt. Sixth, both borrower and lender defaults are considered. Borrowers must put up

collateral, and failure to pay results in a costless transfer4 of collateral to the lender. When

the lender fails to return the collateral, the borrower has to go through a costly process

to recover the collateral from the lender. This lender default cost5 generates propagation

recover funds in the short term caused disruption for certain firms. MKM Longboat Capital Advisors closed
its $1.5 billion fund partly because of frozen assets, and the chief operating officer of Olivant Ltd. committed
suicide, because the fund had $1.4 billion value of assets, which was believed to be unlikely to recover from
Lehman Brothers (Scott, 2014). Another good example is the case of MF Global, a prominent broker-dealer
that went bankrupt in 2011. The bankruptcy procedure took nearly five years to resolve all the claims for
customers and creditors of MF Global including their borrowers such as hedge funds. By the end of 2015,
more than half of the borrowers recovered their collateral in full, but they had to go through the lengthy
process of a bankruptcy procedure with considerable costs to stay involved and also could not access the
assets that were used as collateral (SIPC, 2016).

4For example, typical repo contracts are exempt from automatic stay of bankruptcy provisions.
5The lender default cost is similar to the borrower default cost, which is prevalent in the literature. If

there is a bankruptcy of a counterparty, then that will incur additional cost in terms of time, effort, and
litigation costs, which are a deadweight loss to the economy. For example, there were over 100 hedge funds
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through the counterparty channel.

Main results. The first implication of the model is that there is a tradeoff between

counterparty risk and (contract-level) leverage which affects network formation. If there is

no lender default cost, then a single intermediation chain is formed endogenously. Borrowers

prefer to maximize their contract leverage (or minimize margin) by borrowing from the

most favorable lender. The most optimistic agent borrows from the second-most optimistic

agent, who borrows from the third-most optimistic agent, and so on. However, if there is a

lender default cost, borrowers diversify their lenders because of the possibility of counterparty

default losses6. The tradeoff between counterparty risk and leverage (margin) exists because

borrowers have to deal with more pessimistic lenders who lend less for the same collateral.

The second implication of the model is that there are positive externalities from diversi-

fication. Diversification of counterparties reduces not only individual counterparty risk but

also systemic risk by limiting the propagation of shocks and price volatility. If an intermedi-

ary becomes safer, then its borrowers become safer as well, so the aggregate counterparty risk

becomes smaller. In addition, a lower level of debt leads to lower price volatility, making each

agent’s balance sheet more stable. Because agents do not fully internalize these externalities,

any decentralized equilibrium is constrained inefficient because of under-diversification.

The third implication of the model is that the loss coverage by a central counterparty

(CCP)7 exacerbates the externality problems by eliminating individual agent’s incentive

to diversify. A CCP novates a contract between two counterparties—that is, replaces a

contract between a borrower and a lender with two different contracts: a contract between the

borrower and the CCP and a contract between the lender and the CCP. Novation procedure

acts as a pooling of individual counterparty risks as the CCP handles and absorbs any losses

from default costs. However, the tradeoff between counterparty risk and leverage disappears

as individual counterparty risk is covered, and each agent will concentrate all of her borrowing

with the single most favorable lender. The endogenous response to the introduction of CCP

will transform the implicit network structure into a single-chain network, which arises in a

decentralized equilibrium only if there is no default cost. Such reckless borrowing behavior

increases systemic risk in the economy by increasing the riskiness of each agent’s balance

that had prime brokerage accounts or debt obligations under Lehman Brothers, and these accounts were
frozen during the bankruptcy of Lehman Brothers. These positions, valued at more than $400 billion, were
frozen, which further exacerbated the liquidity shortage of the market (Lleo and Ziemba, 2014). The lender
default occurred not only because of rehypothecation but also because of Lehman not holding the collateral
in a segregated account (Fleming and Sarkar, 2014).

6This diversification of lender behavior is similar to firms hedging against bank lending channels by
having multiple banks as lenders as in Khwaja and Mian (2008). The model in this paper has borrowers
replacing firms and lender default as the risk the borrowers are hedging against.

7 Introducing CCP is one of the key elements of the financial system reforms addressed by central banks
and financial authorities after the financial crisis in 2008 (Singh, 2010).
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sheet and price volatility. However, netting8 conducted by the CCP decreases systemic risk

so the overall effect to systemic risk is ambiguous.

The fourth implication of the model is that all of the agents hold positive amounts of

cash in any equilibrium. If there is a crash in the asset price, the marginal utility of cash

will become very high and a surviving agent can enjoy huge return from cash by buying

up all the remaining assets at a cheap price. Thus, every agent holds a positive amount of

cash. This competitive cash holding, due to general equilibrium effect from the asset market

which is absent in typical network models, counteracts the risk-stacking behavior (increasing

correlation with others) of agents that is common in financial networks literature.

Empirical facts. The model captures a few empirical facts. First, an increase in coun-

terparty risk leads to an increase in the number of counterparties and a decrease in reuse

of collateral and average leverage. Because agents want to diversify more when the coun-

terparty risk increases, the number of linkages increase and the reuse of collateral decreases

since the optimists borrow directly from the pessimists rather than indirectly through inter-

mediation. As Singh (2011) documents, the velocity (reuse) of collateral decreased from 3

to 2.4 after the bankruptcy of Lehman Brothers, and the average leverage in the over-the-

counter (OTC) market also went down. Also Craig and Von Peter (2014) show that the

average number of linkages between financial institutions have increased about 30 percent

over the four years after Lehman Bankruptcy. The opposite result happened in unsecured

debt markets in which the banks reduced their number of counterparties (Afonso et al.,

2011; Beltran et al., 2015). This stark comparison shows the role of collateral in network

formation. Finally, Eren (2015) shows that hedge funds in such markets preferred to deal

with more risky counterparties before the crisis, and they switched their counterparties to

less risky ones after the crisis with a more diversified portfolio of counterparties. All of these

empirical observations align well with the main dynamics of this paper.

Second, all of the agents hold positive amounts of cash in any equilibrium. In reality,

even the most aggressive investors, such as hedge funds, tend to hold large amounts of daily

liquidity that are almost equivalent to cash. In the model, even the most optimistic agents

would like to hold some cash to prepare for the case of severe liquidity shocks, which may

push down the market price of the asset below the fair price. Furthermore, the amount of

cash held by the borrowers can exceed the amount of cash held by lenders. This somewhat

counterintuitive result comes from the fact that the potential degree of underpricing is higher

for the optimistic borrowers than that of the pessimistic lenders. This property of the

8A CCP can also perform netting of counterparty exposures. If agent A owes $100 to agent B who owes
$100 to agent C, then the CCP can net out the obligations between the two contracts. As a result, agent A
owes $100 to agent C and agent B has no obligation at all.
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equilibrium also matches the empirical facts well. As Aragon et al. (2017) documented,

hedge funds, which are the ultimate borrowers in collateralized lending markets, hold 34

percent of their assets as daily liquid assets, whereas money market mutual funds, which

are the ultimate lenders in collateralized lending markets, hold less than 20 percent of their

assets as daily liquid assets, as documented by Aftab and Varotto (2017).

Related literature. This paper is closely related to two strands of literature – the

literature on general equilibrium with collateral and the literature on financial networks.

Glasserman and Young (2016) suggest three typical shock transmission channels – default

cascades, price-mediated losses, and withdrawal of funds. This paper strives to incorporate

the first two channels (counterparty and price channels) in a general equilibrium model and

see how they interact.

Accounting for both price and counterparty channels in this paper is important, as they

lead to very different incentives for network formation as well as different probabilities of cas-

cades. Many financial network models have an equilibrium in which agents have overlapping

asset/counterparty portfolios or common correlation structure (Allen et al., 2012; Cabrales

et al., 2017; Elliott et al., 2018; Erol, 2018; Jackson and Pernoud, 2019). Agents have strong

incentives to correlate their investments with those of their counterparties, because they can

enjoy better payments from their counterparties when they are solvent while being insolvent

when they expect lower potential payments from their counterparties. The general equilib-

rium model in this paper introduces an opposing force to such incentives which is marginal

utility of cash. Agents do not hold perfectly correlated portfolio because, if everyone in the

economy collapses, then the one who does not can make a huge return in such a state where

the marginal utility of cash is enormous.

The network contagion part of this paper is based on the insights from exogenous network

contagion literature. Eisenberg and Noe (2001) introduced an exogenous network as debt-like

interdependencies with propagation through the payments, which is extended by Acemoglu

et al. (2015). The payment equilibrium concept employed in such literature is used in this

paper as well. Cifuentes et al. (2005), Gai et al. (2011), and Rochet and Tirole (1996) have

analyzed networks with both counterparty channel and price channel for asset holdings as in

this paper, but this paper also incorporates the price channel for the underlying collateral and

endogenous network formation. Elliott et al. (2014) introduce equity-based interdependencies

with discontinuous jumps in the payoffs of agents in the case of bankruptcy. This paper does

not have equity-based interdependency but incorporate the idea of discontinuous jump in

costs of bankruptcy. Di Maggio and Tahbaz-Salehi (2015) incorporates collateral in the

network model in the context of the moral hazard problem. This paper is different by

having an endogenous market price for the collateral and free network formation, while not
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incorporating the moral hazard problem.

Allen and Gale (2000), Babus and Kondor (2018), Babus (2016), Brusco and Castiglionesi

(2007), Chang and Zhang (2019), Elliott et al. (2018), Erol and Vohra (2018), Farboodi

(2017), and Freixas et al. (2000) studied endogenous network formation in financial networks;

they consider the endogenous network structure—for example, core-periphery structure of

intermediation—and possible inefficiencies and systemic risks. Unlike the models in these

papers, this paper allows for endogenous contracts in addition to an endogenous asset market

and collateral price for both before and after the liquidity shocks. Although the bargaining

problem in this paper is based on treating agents as price-takers, the degree of bargaining

power depends on the position in the network as in the model with more sophisticated

bargaining protocols in Duffie and Wang (2017). Babus and Hu (2017) show endogenous

intermediation and core-periphery structure due to better management of inventory and

matching efficiency. The collateral in their model has fixed values and mainly another option

of contracting. Whereas, the model in this paper endogenizes the amount of collateral, and

collateral is the main focus of the market.

This paper also follows the literature regarding general equilibrium with collateralized

debt. The literature started from the seminal paper of Geanakoplos (1997) and developed

through Geanakoplos (2003), Geanakoplos (2010), and Simsek (2013) which introduce models

with collateral and how heterogeneous beliefs about the payoff of the asset can generate

collateralized debt and trade. Fostel and Geanakoplos (2015) and Fostel and Geanakoplos

(2016) show how endogenous leverage is determined, and the distribution of payoffs affect

the dynamics of leverage. Geerolf (2018) introduces pyramiding, using a contract backed

by collateral as collateral, and analyzes its effect on equilibrium. This paper extends the

number of possible reuse of collateral to any arbitrary number. The literature analyzes how

asset prices and contract-level leverage are determined in equilibrium but does not answer

how the network structure alters the result.

Also this paper incorporates lender default channel and how collateral, which is supposed

to insulate counterparty risk, can still remain as a counterparty contagion channel. Eren

(2014), Gottardi et al. (2017), Infante and Vardoulakis (2018), Infante (2019), Infante et al.

(2018), and Park and Kahn (2019) investigated the lender default problem in collateralized

lending and relevant deadweight loss, in addition to contract and intermediation dynamics.

This paper incorporates the lender default feature into the endogenous network structure

while also having endogenous contract terms and asset prices.

Finally, this paper is also related to the literature about central clearing and repo markets.

Duffie and Zhu (2011) started the formal discussion about central clearing, which is extended

by Biais et al. (2012), Duffie et al. (2015), Arnold (2017), and Frei et al. (2017), analyzing
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the effect and margin dynamics under a CCP. Biais et al. (2012) uses the search effort cost as

the moral hazard problem of clearing members, which is similar to the result of this paper.

This paper, however, has endogenous network changes with a CCP, and the externality arises

from the leverage and counterparty decisions rather than search effort decisions. Paddrik and

Young (2017) and Paddrik et al. (2019) perform a systemic risk analysis on the CCP with

a network shock transmission model and empirical analysis with data. This paper focuses

more on analysis with endogenous network change after the introduction of CCP.

2. Model

Timeline. There are three periods t = 0, 1, 2. There are two goods – cash and an asset

denoted as e and h, respectively. Cash is the only consumption good, and it is storable —

one unit of cash at t becomes one unit of cash at t+ 1. The asset yields s amount of cash at

t = 2, and agents gain no utility from just holding the asset. Each agent has subjective belief

on s at t = 0. The true s is publicly revealed to everyone at the beginning of t = 1, and

everyone agrees upon s at t = 1. Each agent’s preference is risk-neutral and determined by

how much cash she consumes at t = 2. Therefore, agents are facing an investment problem.

Each agent is endowed with e0 amount of cash and h0 amount of asset.

Agents. There are n types of agents, and the set of all agents is N = {1, 2, . . . , n}.
From now on, agent j means agent of type j. Agent j believes s = sj with probability one.9

Agents are ordered by subjective beliefs on the payoff of the asset as s1 > s2 > · · · > sn > 0.

This belief disagreement is the reason why agents trade, borrow, or lend in t = 0. All agents

agree upon the true value of asset payoff s ∈ S ≡ {s1, . . . , sn} after this information is

publicly revealed at the beginning of t = 1. However, the asset payoff is realized at t = 2,

so there is a time gap between uncertainty resolution and payoff realization. Also assume

that ne0 > nh0s
1, so the cash in the market is greater than the equivalent cash value of the

supply of the asset even in agent 1’s perspective, which is the most optimistic view.

Shocks. For each agent j ∈ N , there can be a negative liquidity shock10 εj at t = 1. The

size of the shock εj is independent and identically distributed across j ∈ N , and the common

distribution function is denoted as G where the support of G is [0, ε] and differentiable in

the support for j ∈ N with g as its density function. Denote agent i’s density function as gi

(just for index purpose) for each i ∈ N and define the convolution of the density functions

9This concentrated belief assumption is used in Geerolf (2018), and the assumption is for tractability.
10This εj can be interpreted as senior debt that precedes debt obligations among the agents in the current

economy in the flavor of Diamond and Dybvig (1983). Liquidity shocks are very commonly used in the
financial network literature as in Acemoglu et al. (2015) and Elliott et al. (2018), to see how such external
shocks propagate through the network.
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as gΣ = g1 ∗ g2 ∗ · · · ∗ gn and its distribution function as GΣ. Suppose that the upper bound

of liquidity shock is large enough that ε > e0 + h0s
1.

The probability of arrival of liquidity shock is 0 ≤ θj < 1 for any j ∈ N . Assume that

θj = θ for all j ∈ N unless otherwise noted for now. Even though the distribution of liquidity

shocks are the same, the arrival rate of the liquidity shock may differ across agents. Denote

εj = 0 if j did not receive liquidity shock at t = 1 (which is a measure zero event if j received

the shock). There are no additional asset endowments at t = 1. Without loss of generality,

there are no additional endowments of goods at t = 2.

Markets. Agents are fully competitive and know each other’s type. Since agents are

competitive, every agent believes that she is a price-taker. This assumption is following

the tradition of general equilibrium literature and abstracting out from market power and

bargaining problem.11 Also, agents agree to disagree over the payoff s of the asset. The

markets for both goods are competitive Walrasian markets. The price of cash is normalized

to 1 at any period, and the price of the asset is pt for t = 0, 1, 2.

Contracts. At t = 0, agents can buy or sell the asset in the competitive market. Also

at t = 0, agents can borrow cash using an asset as collateral or lend money taking an asset

as collateral. All borrowing contracts are 1-period contract between t = 0 and t = 1.12 A

borrowing contract consists of:

(1) the amount of collateral posted cij,

(2) the amount of promised cash per 1 unit of collateral yij, and

(3) the identities of the lender and the borrower i, j.

Denote yij as promised cash amount in t = 1 from j to i per unit of collateral. All borrowing

contracts are non-recourse, so the actual payment from j to i is xij = min{yij, p̃1} per unit

of collateral. Denote qij(yij) as the amount of cash i lends to j in t = 0 per unit of collateral.

The second index of the subscript of qij will be omitted from now on, since the identity of the

borrower becomes irrelevant because of competition (and non-recourseness). This borrowing

amount can be considered as the price of the contract and qi is a function of the promise.

The gross interest rate is 1 + ri(yij) ≡ yij
qi(yij)

.

Collateral Exposures. Denote cij as the amount of collateral posted by the borrower

j to the lender i. This cij amount of asset is held by the lender until t = 1. If the borrower j

11One way to interpret this assumption is to consider that each agent j consists of a continuum (or
hundreds) of homogeneous agents within the same type of j with perfectly correlated uncertainties. Since
there is no asymmetric information, the model abstracts out from any adverse selection problem.

12Even if 1-period contracts between t = 1 and t = 2 are allowed, agents will only trade borrowing
contracts between t = 0 and t = 1 endogenously. This is because there is no belief disagreement at t = 1.
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pays back the full amount of promise cijyij, then the lender returns the collateral. Otherwise,

the lender keeps the collateral and the cash value of the collateral is cijp1. The lender who

is holding the collateral can reuse the collateral to borrow cash from someone else which will

be clear later in the collateral constraint in subsection 2.2. Let hi,1 denote the amount of

asset agent i holds that has not been used as collateral at t = 0.

Debt Network. A (collateralized) debt network is a weighted directed multiplex (mul-

tilayer) graph formed by nodes N and links with 2 layers α = 1, 2 defined as ~G =
(
G [1],G [2]

)
,

where G [α] =
(
N,L[α]

)
, L

[1]
ij = cij, and L

[2]
ij = yij. Define the adjacency matrices C = [cij] and

Y = [yij] as collateral matrix and contract (promise) matrix, respectively. A debt network

can be represented by a double of (C, Y ) and describes how much each agent borrows from

or lends to other agents. Following the convention, set cii = 0.

Lender Default. The lenders are obliged to return the collateral when the borrower

pays the promise in full. However, if a lender has negative wealth at t = 1, then the lender

goes bankrupt and defaults on the contract. The deadweight loss from the lender default
13 is the cash cost ζ(c)[p1 − y]+, where ζ(c) is a function of the amount of collateral posted

c, and y is the promised cash amount. If agent j is borrowing from agent i and the lender

i goes bankrupt, the borrower j has to pay ζ(cij)[p1 − yij]+ amount of cash as the lender

default cost. The lender default cost coefficient function is twice-continuously differentiable

and ζ(0) = 0, ζ ′(0) = 0, ζ ′(c) > 0, ζ ′′(c) > 0, ζ(c) ≤ c, ∀0 < c ≤ nh0. Hence, the cost

increases convexly as the total exposure to bankrupt lender increases and it is multiplied by

the amount of liquidity shortage from lender default [p1 − yij]+, that is the excess payoff for

borrower j is supposed make.

2.1. Discussion and Examples

Timeline. The timeline of the model, which is depicted in figure 1, can be summarized

as the following. Agents are endowed with cash and asset at the beginning of t = 0. Agents

buy or sell the asset and also form a collateralized debt network at t = 0. At the beginning

of t = 1, asset payoff s becomes publicly known and liquidity shocks ε ≡ (ε1, . . . , εn) are

realized. Because of the liquidity shocks, some agents may have more obligation to outside

senior debt than their cash inflow (that is, εj is greater than the total cash value of her

wealth) and go bankrupt. All the debt is paid back during t = 1, either by the promise

amount or by giving up the collateral. The collateral is returned to the borrower (if not

13I assume that there is no collateral lost during the bankruptcy process, so all of the collateral will be
eventually returned to the borrower. This assumption resembles the Lehman bankruptcy case in which all
the collateral returned to the original borrowers. In the case of MF Global, the minority of the borrowers
lost a fraction of their collateral. We abstract from the loss of collateral under the bankruptcy procedure.
This assumption is justified by the endogenously arising rehypothecation constraints in the next section.
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debt network
(C, Y ) is formed

agents buy and sell
due to different beliefs

asset payoff s
revealed

t = 0 t = 1

final asset
holding determined

debt is paid back,
some agents go bankrupt and

inflict lender default cost ζ(cij)

liquidity shocks
(ε1, . . . , εn) realized

t = 2

payoff s
realized

Figure 1: Timeline of the Model

defaulted) by the lender, but some borrowers may have to pay additional lender default

costs if their counterparties went bankrupt. At the end of t = 1, all agents’ final asset

holdings are determined. At t = 2, the payoff of the asset is realized, and agents consume

all the cash they have and enjoy utility.

Uncertainties. The model has two sources of uncertainty, the revelation of the payoff of

the asset s̃ and the realization of negative liquidity shocks for each agent. At the beginning of

t = 1, both of the uncertainties are resolved. Therefore, there will be no heterogeneous beliefs

on the actual asset payoff in t = 1, and everyone agrees upon the asset return. However,

the actual payoff realization of the asset occurs in t = 2, while they still have to pay back

the debt they promised for t = 1 and toward the liquidity shocks. If the market is not

under distress, then there will be no reason that p1 is different from the commonly known

cash payoff of s. However, because of the liquidity (cash) shortage in the market, there may

not be enough cash in the market to buy all the assets at the fair price of s. Figure 2 is

an example tree that depicts the underlying states and price realizations. There is a finite

number of different s realization and continuum of different ε shocks. Agent 1 believes that

only the first set of states in t = 1 occurs with positive probability. Agents 2 and 3 believe

that only the second set of states and the third set of states in t = 1 occur with positive

probability, respectively. The asset price in t = 1, p1 depends on the state realization s

and liquidity shock realization ε. Thus, each agent has their own distribution of prices as

depicted in figure 2. Given the subjective distributions, each agent buys or sells, borrows

or lends for different promises, and the equilibrium prices at t = 0 for the asset and for all

the promises will be determined. Note that agents agree upon the distribution of liquidity
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t = 0

p0, q(·)

s3

p1(s3, ε)
s3

s2

p1(s2, ε)
s2

s1

p1(s1, ε)

t = 1

s1

t = 2

Figure 2: Tree of States and Price Realizations

shocks. Each agent’s subjective belief simply puts different upper bounds on price which is

sj for agent j ∈ N .

Example of a Collateralized Debt Contract. Figure 3 visualizes the flow of cash

and collateral for a collateralized debt contract. The red solid lines depict collateral flows,

and the blue dotted lines depict cash flows between the agents. The top-left side of the

figure visualizes the transaction at t = 0, where agent j posts collateral to the lender i in

the amount of cij and i lends cash in the amount of cijqi(yij) to agent j. If the price of the

asset p1 is greater than the promise yij at t = 1, then the borrower j pays the promise and

the lender i returns the collateral as seen in the top right side of the figure. The bottom two

sides visualize the other case. The bottom-left side of the figure has the same transaction at

t = 0 as in the top case. However, the price of the asset p1 is now lower than the original

promise yij, and the borrower does not pay the promise at t = 1 as seen in the bottom

right side of the figure. The lender i just keeps the collateral for herself when the borrower

defaults.

Borrower Default. Because contracts are nonrecourse debt secured by collateral, every

borrower with the same promise and collateral makes the same delivery. Shocks to the

borrower’s wealth do not get to transfer to deliveries toward lenders. Therefore, the lenders

are insulated from the borrower’s bankruptcy risk. In reality, this is precisely the reason why

lenders require collateral from the borrowers. The lenders are protected by the exemption

from automatic stay for repos under borrower bankruptcy (Antinolfi et al., 2015).
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i j

cijqi(yij)

cij

t = 0, when p1 ≥ yij

i j

cijyij

cij

t = 1, when p1 ≥ yij

i j

cijqi(yij)

cij

t = 0, when p1 < yij

i j

cij

cijqi(yij)

cij

t = 1, when p1 < yij

Figure 3: Flows of Cash and Collateral for Two Cases

Note: Blue dashed arrows represent flows of cash and red arrows represent flows of collateral. The top

two figures represent the case without borrower default, and the bottom two figures represent the case with

borrower default.

Lender Default. The lender default cost includes the opportunity cost of time and

effort caused by involvement into a costly and lengthy bankruptcy procedure14, immediate

liquidity needs caused by a depositor run on an agent (bank) with large exposure to the

bankrupt agent, legal costs for hiring lawyers, opportunity cost of investment, reputation

cost from the clients of a financial institution and so on. Because of this lender default cost,

borrowers face counterparty risk, and they may want to diversify their counterparties.

The convexly increasing cost structure in the model is not only a tractable alternative

to assuming risk-aversion of the agents, which induces diversification behavior, but also

a representation of realistic implications. If a hedge fund posted one Treasury bond as

collateral to the Lehman Brothers, then they might find out where the original collateral

went and retrieve it easily. However, if the hedge fund posted one thousand different bonds

as collateral to the Lehman Brothers, then this may take much more time and cost to identify

and retrieve all of the collateral of the hedge fund.15 As a lot of investment opportunities

14These costs are similar to bankruptcy and liquidation costs in Elliott et al. (2014) and Acemoglu et al.
(2015).

15For example, the Lehman Brothers’ Europe branch had $2.16 billion value of collateral in segregated
accounts which are much easier to recover. In December 2009, a U.K. High Court judge held that clients
whose assets should have been segregated but were instead commingled would not receive the same pro-

13

 Electronic copy available at: https://ssrn.com/abstract=3468267 



require a large lump-sum of cash, this hold of liquidity caused by a slowdown due to a larger

pool of assets to the process would increase the opportunity costs exponentially.

The slope of ζ can proxy for how risk-averse agents are. For example, risk-averse agents

would worry more about lender bankruptcy when their risk-aversion goes up, and they would

diversify their lenders, or even reduce the amount of the total debt. Similarly, as ζ ′ increases

faster, the agents are more willing to diversify lenders or even reduce the amount of the

total collateral exposure. Therefore, this convexly increasing cost assumption represents the

risk-aversion and aligns with the institutional facts of the bankruptcy related costs.16 Other

specifications, such as concave or constant cost structure, miss the key mechanism of network

formation which is the tradeoff between counterparty risk and leverage. This property will

be examined in Section 3.

Rehypothecation. The model allows reuse of the collateral held by the lender. Such

reuse of collateral is called rehypothecation, in the financial market and rehypothecation

is prevalent in a wide variety of collateralizable assets including repo contracts of Treasury

bonds (Singh, 2017). In reality, borrowers prefer to allow rehypothecation of their collateral.

Even after the fall of the Lehman Brothers, most borrowers continued to allow rehypotheca-

tion of their collateral (Singh, 2017). The reason for the prevalent use of rehypothecation is

that reuse of collateral generates more funding and market liquidity for the borrowers them-

selves. Since the lender can reuse the collateral to borrow money from someone else, the

lender can provide even more cash to the borrower for the same collateral, and this increases

funding liquidity. Furthermore, since the collateral can be used multiple times, the price

of the collateral also goes up. This price effect can be thought of as the velocity of capital

(Singh, 2010) or the collateral multiplier (Gottardi et al., 2017), which contributes to higher

market liquidity of the asset that can be used as collateral.

Figure 4 depicts how rehypothecation works. Agent k borrows cash from agent j and

posts cjk amount of collateral. Agent j in return lends cjkqj(yjk) amount of cash to k. Now

cjk amount of collateral is sitting on j’s balance sheet, and she can reuse the collateral to

borrow cash from agent i. In this contract, j posts cij amount of collateral, i buys the

contract with price qi(yij) per collateral, and cijqi(yij) is the total amount of cash lent to

j. At t = 1, the opposite flows of cash and collateral occur. Agent k pays his promised

cash amount cjkyjk to j, and j pays cijyij to i. At the other side, the lenders return their

tections as those entities whose asset had actually been segregated. But, in August 2010, an appeals court
reversed the decision and ruled that clients whose money should have been segregated would be treated as
if their funds had been. The decision slowed the return of assets to clients as it required a longer time of
sorting through the bankruptcy procedure (Scott, 2014).

16Note that this cost could have been symmetrically applied to the borrower default as well. The results
in this paper mostly hold for the case with the borrower default cost with a similar structure of convexly
increasing cost. The only difference it makes is the difference in leverage (contract price) determination.
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i j k

cijqi(yij) cjkqj(yjk)

cjkcij

i j k

cijyij cjkyjk

cjkcij

Figure 4: Flows of Cash and Collateral of Rehypothecation

Note: Blue dashed arrows represent flows of cash and red arrows represent flows of collateral. The top two

figures represent the flows at t = 0, and the bottom two figures represent the flows at t = 1.

collateral to the borrowers. Agent i returns cij amount of collateral to j, and agent j returns

cjk amount of collateral back to k. The same collateral can be reused for an arbitrary number

of times in contrast to other models of rehypothecation as in Geerolf (2018), Gottardi et al.

(2017), Infante and Vardoulakis (2018), and Park and Kahn (2019).

Figure 5 shows an example of borrowing without rehypothecation and borrowing with

rehypothecation. Suppose agents i, j, and k all have the same cash endowment of 50, and

they have different beliefs as si = 40, sj = 80, sk = 100. Also suppose that there is no risk

in t = 1, the asset price in t = 0 is p0 = 100, and the interest rate is zero. Agent k is the

most optimistic agent and would like to buy as much of the asset as possible. Agent k can

increase the amount of asset purchase by leveraging more. If agent k wants to borrow from

agent i, any promise above 40 will not be made by k. This is because agent i believes the

payoff of the asset is 40, and any promise above 40 will just be the same as 40 because of

borrower default under agent i’s perspective. Then, the maximum amount of cash that k

can borrow from i is 40. If agent k wants to borrow from agent j, then k will promise up to

80, which provides k a higher leverage than the leverage of borrowing from i. However, since

agent j’s endowment of cash is only 50, k cannot borrow more than 50 from i if there is no

rehypothecation allowed. In contrast, if j is allowed to reuse the collateral, then j can borrow

40 from i. Now the effective cash available for j becomes 50 + 40 = 90, and k can borrow

80 from j which is greater than the borrowing amount of 50 under no rehypothecation. The

leverage of k with no rehypothecation is 100/(100 − 50) = 2, while the leverage of k with

rehypothecation is 100/(100 − 80) = 5. Therefore, agent k can increase leverage by 150
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1 asset
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si = 40
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Figure 5: Example of Rehypothecation Effect

Note: Blue dashed arrows represent flows of cash and red arrows represent flows of collateral. The top figure

represents the case of borrowing 40 directly from i, the middle figure represents the case of borrowing 50

from j, and the bottom figure represents the case of borrowing 80 from j who rehypothecates and borrows

40 from i again.

percent by allowing rehypothecation and would prefer to do so to increase her return.

2.2. Optimization Problem and Equilibrium Concept

Now that all the model structure is defined, an agent’s optimization problem can be

defined. Each agent maximizes their expected payoff in t = 2 at the beginning of t = 0 by

choosing her investment portfolio. Each agent j ∈ N can

(1) hold cash, amount denoted as ej1,

(2) can purchase the asset directly and carry it to the next period, in the amount denoted

as hj,1,
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(3) borrow money from agent i ∈ N , posting collateral in the amount of cij and promise

per collateral as yij, or

(4) lend money to agent k ∈ N , holding collateral in the amount of cjk and promise per

collateral as yjk.

Note that the portfolio decision does not affect the macro variables, such as contract prices

q·(·) and asset price p0, under agent j’s perspective, because each agent is a price-taker. For

a given portfolio, the agent’s expected wealth (cash equivalent of total cash and asset holding

of the agent) in t = 1 is determined. However, these wealth values should be evaluated by

the marginal value (utility) of cash for each state, which is s/p1. The marginal value of cash

could be greater than 1 if the asset price p1 is under the fundamental value of the asset

s. This underpricing can happen if the economy does not have enough aggregate cash in

t = 1 due to liquidity shocks and bankruptcy-induced lender default costs. The market is

liquidity (cash) constrained in such states. Thus, for each realization of liquidity shocks ε,

agent j’s nominal wealth changes, but the marginal value of cash also changes as well. Agent

j’s maximization problem becomes

max
ej1,{cij ,yij}i∈N ,
hj,1,{cjk,yjk}k∈N

Ej

ej1 − εj + hj,1p1 +
∑

k∈N\{j}

cjk min {yjk, p1}

−
∑

i∈N\{j}

cij min {yij, p1} −
∑
i∈B(ε)

ζ(cij)[p1 − yij]+
 s

p1

+

s.t.

hj,1 +
∑

k∈N\{j}

cjk ≥
∑

i∈N\{j}

cij,

e0 + h0p0 = ej1 −
∑

i∈N\{j}

cijqi(yij) +
∑

k∈N\{j}

cjkqj(yjk) + hj,1p0,

(1)

where B(ε) is the set of bankrupt agents for given liquidity shock realization ε, [·]+ =

max{·, 0}, and 1[·] is an indicator function. The first constraint is the collateral constraint,

and the second constraint is the budget constraint. The collateral constraint implies that

agent j should have enough assets, either from direct purchase or from collateral posted by

k who is borrowing from j to post collateral. The underlying implication of the collateral

constraint is the same as in Geanakoplos (1997), but this model keeps track of the identity

of borrowers and lenders to analyze the network effect and rehypothecation structure.
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The equilibrium concept that will be used throughout the paper is a hybrid version of

general equilibrium with price functions that are affected by the network structure as follows.

Definition 1. For a given economy (N, (sj, θj, e0, h0)j∈N , ζ, G), a septuple

(C, Y, e1, h1, p0, p̃1, q) where C, Y ∈ Rn
+ × Rn

+, e1, h1 ∈ Rn
+, p0 ∈ R+, and functions

p1 : Rn
+ → R+ and qj : R+ → R+ where q ≡ (q1, . . . , qn) is a network equilibrium

if (C, Y, e1) solves the agent maximization problem while satisfying budget and collateral

constraints, markets are cleared as cij for the solution of agent j is the same as cij for

the solution of agent i for all i, j ∈ N , asset market clears as
∑

j∈N hj,1 = H ≡
∑

k∈N h0,

and p0, p̃1 realized at t = 1 and q are determined by no arbitrage conditions for the given

network structure in t = 1.

The network dynamic is essentially occurring in t = 1 through repayment and default

costs from bankruptcy. This t = 1 network effect also feeds back into t = 0 optimization

decisions which lead to network formation.

3. Network Equilibrium

This section characterizes the network equilibrium, the general equilibrium with collat-

eralized debt network formation, and payment realization after network propagation. The

payment realization in t = 1 shows how the network structure and shocks affect the market

price and the final wealth (and equivalently payoffs) of the agents. The endogenous network

of collateralized debt contracts in t = 0 is formed based on the consideration of the proper-

ties of a network and how agents clear markets of the asset and contracts. This section will

solve for the equilibrium backwards: First, analyze the network contagion, fire sales, and

price determination properties in t = 1 and then derive the optimal contract decisions and

network formation in t = 0 for the given expected price distribution.

3.1. Payment Equilibrium in Period 1

Since t = 2 is merely the realization of the payoff of the asset and utility, we move to t = 1

and solve for the equilibrium prices and wealth for a given debt network (C, Y ), cash holdings

e1, shock realization ε, and payoff revelation of the asset s. Each agent j ∈ N pays back

their promised amount of cash to her lender i in the amount denoted as xij, which follows

the payment rule, xij = min{yij, p1}. Each agent’s total nominal wealth (evaluated by cash),

denoted as mj, could be negative after the payments subtracted by liquidity shock εj for all

j ∈ N . An agent with negative wealth goes bankrupt, and their wealth does not enter into
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the demand side of the market. Only agents with positive post-payment wealth can enter

the asset market at t = 1 and affect the market price. If the asset is underpriced (p1 < s),

then all the agents will spend all of their wealth to buy the asset, because the asset return

is greater than the cash return. The price that makes the aggregate wealth equal to nh0p1

will be the market clearing price. Thus, for given debt network (C, Y ), cash holdings vector

e1 ≡ (e1
1, e

2
1, . . . , e

n
1 )′, asset holdings vector h1 ≡ (h1,1, h2,1, . . . , hn,1)′, uncertainty realizations

of liquidity shocks ε ≡ (ε1, . . . , εn)′ and asset payoff s, and given lender default cost function

ζ, we can obtain the vector M ≡ (m1, . . . ,mn) of nominal wealth of each agent and the

resulting market price of the asset as well as asset holdings. This market clearing price and

allocation can be defined as payment equilibrium17, which is an intermediate equilibrium of

t = 1 as follows.

Definition 2. For a given period-1 economy of (N,C, Y, e1, h1, ε, s, ζ), a payment equi-

librium is (M,h2, p1), where M is the wealth vector, h2 is the asset holding vector, and p1

is the price of the asset such that M satisfies the payment rule, h2 is determined after the

bankruptcy and default costs, and p1 makes the asset market clear.

From the payment rule xij = min{yij, p1}, contracts with promise of yij > p1 will be

paid less than the face value—that is, just the price of the asset—and the contracts with

promise of ykl ≤ p1 will be paid in full for any i, j, k, l ∈ N . If an agent j’s total wealth mj

is negative, then the agent cannot even fulfill its obligations to the senior outside debtors

(that is, the liquidity shock of εj), and the agent will go bankrupt. The model considers any

event or cost related to the bankruptcy as outside of the collateral debt network, other than

the counterparty (lender) default cost.18 As defined before, B(ε) is the set of agents who

go bankrupt under the shock vector ε. The market clearing price will indirectly determine

this set because, in some cases, an agent could have survived in high p1 but would go

bankrupt in low p1. Thus, this set might not be well defined as there could be multiple

sets that constitute payment equilibria. Among multiple B(ε)’s, selecting the smallest set

of B(ε) that holds as payment equilibrium implies selecting the maximum price payment

equilibrium. This equilibrium selection rule is well defined, which will be shown later in

17In the exogenous debt network literature stemming from Eisenberg and Noe (2001) and to papers such
as Acemoglu et al. (2015), the main equilibrium concept is almost the same as the payment equilibrium (the
name which I coined from this literature) in this paper. This intermediate step also provides a comparison
between the model in this paper and the literature of exogenous financial networks and propagation dynamics.
The crucial difference of the model in this paper is that the model here has an additional market for the
asset used as collateral which induces the network propagation and the asset price feedback to each other.

18 In a similar logic, suppose that the agents will fulfill their promises to each other unless they go
bankrupt. This structure means the collateralized debt is a contingent contract (ultimately) by the use of
collateral and the lenders will try to fulfill their obligations of returning the asset even under the situation
when they have to pay the cost of retrieving the collateral from a bankrupt counterparty.
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this subsection. Omit the subscript of p1 from now on throughout this subsection since this

subsection only focuses on t = 1.

The total nominal wealth of agent j after all the payment is

mj(p) = ej1 − εj + hj,1p+
∑

k∈N\{j}

cjk min{p, yjk}

−
∑

i∈N\{j}

cij min{p, yij} −
∑
i∈B(ε)

ζ(cij)[p− yij]+,

where ej1−εj is the remaining cash you have from t = 0 subtracted by (possibly zero) liquidity

shock εj. To consider the wealth that is actually effective in demand when we compute the

equilibrium, define the effective nominal wealth of each agent as [mj(p)]
+. If mj(p) < 0, then

agent j goes bankrupt, that is j ∈ B(ε), and agent j will liquidate all of their holdings to

pay εj. Thus, the equilibrium asset holding hj,2 is determined by

hj,2 =
[mj(p)]

+

p
,

when p < s. If p = s, hj,2 ≤
[mj(p)]

+

p
but the asset holding cannot be pinned down and also

is irrelevant to pin down due to invariance in final utility at t = 2 between holding the asset

by paying the fair price and holding the equivalent amount of cash.

The aggregate cash value of the supply of the asset should equal to the aggregate cash

value of the demand of the asset. As long as p ≤ s, there will be an agent who would spend

all the excess cash they have to buy the asset. The cash value of the aggregate supply is∑
j∈N

hj,1p = nh0p.

The equality is coming from the market clearing (with budget and collateral constraints)

from t = 0. The cash value of the aggregate demand is a function of the asset price as well.

If the price reaches s and there is enough money to buy up all the supply, then that is an

equilibrium. Therefore, the aggregate effective cash value of demand in the market becomes

∑
j∈N

[mj(p)]
+ =

∑
j∈N

ej1 − εj + hj,1p+
∑

k∈N\{j}

cjk min{p, yjk}

−
∑

i∈N\{j}

cij min{p, yij} −
∑
i∈B(ε)

ζ(cij)[p− yij]+
+

.

20

 Electronic copy available at: https://ssrn.com/abstract=3468267 



Therefore, the market clearing condition that determines the price becomes∑
i∈N

[mi(p)]
+ =

∑
j∈N

hj,1p if 0 ≤ p < s (2)∑
i∈N

[mi(p)]
+ ≥

∑
j∈N

hj,1p if p = s. (3)

The aggregate effective nominal wealth increases as the price increases (see Lemma 5 in

the appendix) and the lender default cost decreases. But, then again there is a feedback

from the nominal wealth to the price. Note that the equality should hold unless p = s. We

can interpret this as the price is going to be the level that makes the aggregate amount of

liquidity that can cover both all available assets and the costs from defaults, cash-in-the-

market pricing. Another case to consider is when p = 0. If there is any extra cash left in

the economy, then p = 0 cannot be true. However, if there is no cash left in the economy

after paying out the liquidity shocks and default costs, then p = 0 can occur, the market is

broken down, and all the asset holdings become indeterminate as in the case of p = s.

The class of possible debt networks for the double (C, Y ) is very large. In order to

make the analysis plausible, I restrict attention to the networks in which collateral from the

borrower is enough for the lender to pay her own promises. I call the class of such networks

as the networks under intermediation order. In fact, the endogenous network formation in

t = 0 will show that the equilibrium networks should be under intermediation order which

will be showed in the next subsection. For a given level of payment ŷ, agent j should hold

enough collateral (either held directly as hj,1 or indirectly by lending as cjk) that promises

greater than or equal to ŷ to cover all the debt promised to pay ŷ or greater value. Thus, a

network is under intermediation order if∑
i∈N\{j}
yij≥ŷ

cij ≤ hj,1 +
∑

k∈N\{j}
yjk≥ŷ

cjk for any ŷ ∈ R+ and j ∈ N. (4)

This intermediation order is equivalent to only allowing pyramiding of contracts – promis-

ing a delivery using another contract as a collateral introduced by Geanakoplos (1997). If

agent j uses the contract by agent k with promise of yjk as collateral to promise yij to agent

i, the actual delivery becomes min{yij,min{p, yjk}} = min{p,min{yij, yjk}}, so yij ≤ yjk to

be a non-trivial pyramiding of the contract.

For example, if agent k promises 20 to j but j reuses the collateral and promises 30 to i,

then, agent j violates the intermediation order. In this case, agent j might not have enough

cash to repay i, if the price is between 20 and 30, so he cannot receive the collateral from i
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and then return it to k. The intermediation order guarantees that if the ultimate borrower

(collateral provider) fulfills her promise, then the intermediary (who reuses the collateral)

also has enough cash to fulfill his promise to the ultimate lender (cash provider). Note that

intermediation order implies collateral constraints.

Under the intermediation order, we can interpret the market clearing condition in a more

intuitive way. The negative liquidity shocks ε destroys the aggregate available cash. The

destruction of cash for the demand can be decomposed into three factors:

(1) each agent’s liquidity shock εj,

(2) lender default costs from bankrupt lenders
∑

i∈B(ε)

ζ(cij)[p− yij]+, and

(3) second-order bankruptcy from the first two effects which amplifies (2).

The second and third factors create a feedback loop in the market through the price channel

and the counterparty channel similar to debt network models without collateral. Note that

the first factor is bounded above by the nominal wealth of the agent before the negative

liquidity shock, µj(p) ≡ mj(p) + εj, because any excess liquidity shock still makes the same

effective nominal wealth of zero. For a given price p, the actual destruction of cash from

liquidity shock to j relevant to the demand of the asset market is min{εj, µj(p)}.
For a given price p, the excess cash of the network can be computed as the cash savings

from t = 0 subtracted by the destruction of cash. Hence, the remaining cash becomes

RM ≡
∑
j∈N

ej1 −
∑
j∈N

min{εj, µj(p)} −
∑
j∈N

∑
i∈B(ε)

ζ(cij)[p− yij]+,

which is the cash saved from t = 0 subtracted by the liquidity shocks and lender default

costs. The remaining cash can be considered as the demand side. For the supply side, the

amount of collateral that are sold in the market is the amount of collateral from bankrupt

agents’ balance sheets, that is the total fire sales of the assets denoted as

FS ≡
∑
j∈B(ε)

∑
k∈N
p<yjk

(cjk + hj,1)−
∑
j∈B(ε)

∑
i 6=j
p<yij

cij.

Suppose that the price p is neither 0 or s. Then, the market clearing condition, equation (2)

becomes

π(p) =
RM

FS
, (5)
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which is the remaining cash divided by the total fire sales of the assets that are under

bankrupt agents’ balance sheets.

By the intermediation order, the denominator is always nonnegative. However, if there

are no assets to be bought (that is, denominator of π(p) is zero), then the price of the asset

will be trivially its fair value price s. If there is no asset to be sold by the bankrupt agent,

then there is no reason to lower the price of the asset. If there are enough cash in the market

to cover the extra supply (fire sales) with the fair price (i.e. π(p) ≥ s) then the price is also

set as fair value price s. If there are some leftover cash after the payments and costs that

is not sufficient to buy all of the assets in fair price, then the market price will be π(p) < s

which we define as liquidity constrained price of the asset.

The post-shock market clearing condition, equations (2) and (3), can be rearranged to

obtain the price equation as follows.

p =


0 if

∑
j /∈B(ε)

ej1 ≤
∑

i/∈B(ε)

εi for any p ∈ [0, s]

s if π(p) > s or FS = 0

π(p) otherwise.

(6)

Under the intermediation order, I can show that a payment equilibrium always exists

and the set of equilibrium prices is a complete lattice.

Proposition 1 (Existence and Lattice Equilibrium Prices). For any given collateral-

ized debt network (N,C, Y, e1, h1, ε, s, ζ) with C > 0 that is under intermediation order, there

exists a payment equilibrium (M,h2, p1). Furthermore, among the possible equilibria, there

always exists a maximum equilibrium that is (M,h2, p1), where p1 is the highest price among

all possible equilibrium prices.

All the proofs are relegated to the appendix. The intuition of the proof is the following.

The delivery xij = min{yij, p} toward the lender increases as price p increases. By inter-

mediation order, every borrower or intermediary payoff also increases as p increases. Thus,

every individual nominal wealth increases in p. Since individual nominal wealth mj is in-

creasing in p, as shown by lemma 5 in the proof, the aggregate nominal wealth is increasing

in asset price p and decreasing in lender default cost ζ. Since increase in wealth also means

bankruptcy is less likely, the lender default cost also decreases when p increases. Therefore,

every single variable that is included in the market clearing condition (weakly) increases in

price p. Although the equilibrium is determined by the vector of all the wealth, we can

summarize each equilibrium by price level p, and there exists a fixed point price that clears

the market.
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∑
j /∈B(0)

ej1 − εj

agent k bankruptcy

∑
hj,1p

p

debt from l defaults

debt toward l defaults

s

p

Figure 6: Multiple Payment Equilibria for Market Clearing

Although we can show that the payment equilibrium always exists, we cannot guaran-

tee its uniqueness. This multiplicity is mainly due to the jumps in mj(p) at the point of

bankruptcy of other agents. The actual bankruptcy set may also depend on the market

clearing price as B(ε|p). An agent may have mj(p) > 0 for given price p and bankruptcy set

B(ε|p), but her wealth may be negative at p′ and given bankruptcy set B(ε|p′) so mj(p
′) < 0.

Her bankruptcy will generate even more second-order bankruptcy costs and make p′ to be

true. The following proposition summarizes this relation between multiplicity (and unique-

ness) and bankruptcy.

Proposition 2 (Multiplicity and Bankruptcy). For any given collateralized debt network

(N,C, Y, e1, h1, ε, s, ζ) with C > 0 that is under intermediation order, there may be multiple

equilibria. If p and p′ are two distinct prices from the two different payment equilibria, then

B(ε|p) 6= B(ε|p′).

Figure 6 depicts an example of multiple equilibria. Define the sum of lender default costs

coming from agent l’s bankruptcy for price p as βl(p) ≡
∑

j∈N ζ(clj)[p − ylj]+. Also denote

the nominal wealth subtracted by negative liquidity shock as µl(p) ≡ ml(p) + εl. There are

kinks at prices in which each contract defaults and discontinuous jumps at prices in which

each agent goes bankrupt. The first type of kink occurs for p < yij which affects both mi(p)

and mj(p), and the second type of jump occurs at the point where mj(p) = 0. From the

second statement of proposition 2 and equation (11) in the proof, the existence of lender

default cost plays a significant role in generating multiplicity and also the counterparty
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Figure 7: Counterparty Irrelevance Example

contagion effect through the second-order bankruptcy. Due to the multiplicity19 and the

lattice property, we assume B(ε) to be the bankruptcy set from the maximum equilibrium

price—that is, B(ε) ≡ B(ε, p), from now on. Also, a maximum equilibrium selection rule

means choosing the equilibrium with the maximum equilibrium price. We will focus on the

results on equilibrium with the maximum equilibrium selection rule from now on as in Elliott

et al. (2014).

Trivially, if there is no default cost—that is ζ(c) = 0 for any c—then the payment

equilibrium is unique from the second statement of proposition 2. Also without a default

cost, change in counterparty connections does not matter as long as the total borrowing and

lending amount remain the same. The following proposition states this property.

Proposition 3 (Counterparty Irrelevance). If there is no lender default cost—that is,

ζ(c) = 0 for all c ≥ 0—then the payment equilibrium is unique for any given network.

Furthermore, two networks (C,X) and (Ĉ, X̂) with the same indegrees and outdegrees—that

is, 1(C ◦X) = 1(Ĉ ◦ X̂) and (C ◦X)1 = (Ĉ ◦ X̂)1—will have the same payment equilibrium.

This proposition shows the necessity of assuming the existence of a lender default cost

(or any counterparty risk) in order to generate interesting interaction among agents. Figure

7 shows an example of two different networks with the same equilibrium outcome. If all the

links have the same weight—that is, cij = c and yij = y for all i, j ∈ N = {1, 2, 3, 4}—then

the two networks have the same indegrees and outdegrees. Because of the absence of a

default cost, agent’s individual connection does not matter as long as the total borrowing

and lending for each agent are the same. The two networks will have the same equilibrium

price and allocation. Also the result holds for networks that are not under intermediation

order.

The result is not so surprising since the main reason for using a collateral is to insulate

the lender from the counterparty risk. A collateralized debt network has no counterparty

risk as in the anonymous market. This irrelevance result can be extended to a model with

19The existence of multiple equilibria implies that there could be even more instability than looking at
just the maximum result (Roukny et al., 2018).
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default cost caused by borrower’s default. For example, the actual payment when retrieving

the collateral from the borrower in case of default can be less than the actual value of the

collateral p, which is (1 − φ)p with φ > 0 due to fire sales cost or collateral seizure cost.

The existence of default costs will only scale down the entire values of the collateral for the

lender (that is, less lending in aggregate) but would not change the irrelevance result.

From now on, define systemic risk under the belief of agent j as the expected difference

between the ex post fair value of the asset and the actual price of the asset,
∫

(sj − p)dG̃(ε),

where G̃ is the joint distribution of Gi’s for all i ∈ N . This notion of systemic risk is

following the definition of systemic loss in value defined in Glasserman and Young (2016).

Even though the fundamental value of the asset is s, the underpricing of the asset, s−p, comes

from the liquidity shocks and lender default costs which vary by the network connections.

The systemic risk definition here is taking the ex ante expected value of the systemic losses

for each subjective belief. The sum of all the systemic risks for each ex ante belief will

be closely related to the social welfare computation, which we will talk later in the next

subsection. The aggregate default costs after the revelation of s and realization of ε will

determine the difference between the two values, and the difference represents how severe

the mispricing is due to the total sum of deadweight losses.

Now we briefly describe how to solve the equilibrium in quantitative analysis under the

maximum equilibrium selection rule.

Equilibrium Search Algorithm: Consider the following algorithm of finding the

maximum payment equilibrium.

0. Set B(0)(ε) = ∅. Start with step 1.

1. For any step k, given B(k−1), compute p(k) that satisfies the market clearing condition

6.

2. For given p(k), compute mj(p
(k)) with given B(k−1) and update B(k) with the new

mj(p
(k)).

3. If B(k−1) = B(k), then we have the maximum equilibrium. Otherwise, move to the next

step k + 1 and repeat procedures 1 and 2.

This algorithm guarantees to find the maximum payment equilibrium price of the given

network. Also, the algorithm finishes within n steps because the second-order bankruptcy

(or cascades) could only occur at the maximum of n− 1 times if it happens for one agent by

one.

26

 Electronic copy available at: https://ssrn.com/abstract=3468267 



3.2. Network Formation in Period 0

Given the results from t = 1, agents form beliefs on the distribution of p1 and B(ε)

under shock realizations. As discussed in the model section, agent j solves the maximization

problem:

max
ej1,{cij ,yij}i∈N ,
hj,1,{cjk,yjk}k∈N

Ej

ej1 − εj + hj,1p1 +
∑

k∈N\{j}

cjk min {yjk, p1}

−
∑

i∈N\{j}

cij min {yij, p1} −
∑
i∈B(ε)

ζ(cij)[p1 − yij]+
 s

p1

+

s.t.

hj,1 +
∑

k∈N\{j}

cjk ≥
∑

i∈N\{j}

cij,

e0 + h0p0 = ej1 + hj,1p0 −
∑

i∈N\{j}

cijqi(yij) +
∑

k∈N\{j}

cjkqj(yjk)

From now on, substitute the probability measure for each individual’s expected utility

with Fj for ε and omit the + superscript and denote Ej[·] as nonnegative expected nominal

wealth. Any negative wealth will be counted as zero in agent j’s perspective. Note that each

individual gi is still relevant when considering the lender default costs and the correlated

bankruptcy of agent j. For example, if agent i goes bankrupt, then agent j may also go

bankrupt because of the cost of ζ(cij) regardless of the size of the εj. In this case, agent

j would not consider the lender default cost to be a problem greater than the size of her

nominal wealth in t = 1 under that shock. Denote this implied expected lender default amount

of i under j’s subjective belief as ωij(y) ≡ Ej [[1− y/p1]+1[i ∈ B(ε)]]. Then, the marginal

increase in counterparty risk of borrowing from agent i for agent j becomes ζ ′(cij)s
jωij(y).

An agent has five different ways to use her budget: holding cash, buying the asset, buying

the asset with leverage, lending cash to others, and lending cash with leverage. For each

additional unit of cash, an agent should compare the five options for marginal returns. Agent

j’s return on holding cash is Ej

[
s

p1

]
.

The cash return goes up as j holds less cash because there would be even more under-

pricing if all other agents go bankrupt. From the market pricing equation (6) in t = 1, price

of the asset in t = 1 can become p1 = 0 if all the agents who are holding cash in the economy

at t = 0 go bankrupt. Even if the probability of liquidity shock θj is small for everyone, if
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there is a positive probability of bankruptcy of the agent, then there is a positive probability

of p1 being zero, and the return on cash holding becomes infinity. Therefore, every agent in

the equilibrium should hold a positive amount of cash. This pins down all the returns from

borrowing and lending to the return of holding cash Ej

[
s

p1

]
. The cash return becomes the

benchmark return for any other investment decision the agent makes.

Lemma 1 (Positive Cash Holdings). If ε > ne0 + h0s
1, then ej1 > 0 for every j ∈ N in any

network equilibrium.

This lemma implies that the model is distinctive from existing models in general equi-

librium with collateral literature when agents have linear utility. Linear utility models in

Geanakoplos (2010), Simsek (2013), and Geerolf (2018) all have borrowers holding only the

assets and zero amount of cash. In reality, the ultimate borrowers such as hedge funds usually

hold a significant proportion of their portfolio as cash equivalent assets. The network model

here replicates this observed phenomenon by adding this liquidity shock in the intermediate

period and the possibility of liquidity constrained-price, which is below the fair value of the

asset.

The (marginal) return on lending depends on how much you lend but does not depend

on which agent you lend to. This irrelevance comes from the fact that lenders do not have

counterparty risk due to collateralization and no recourse contracts. Therefore, the contract

price qi does not depend on the identity of the borrower. Suppose j is lending a positive

amount of cash without leverage—that is, j is a pure lender. The return equation of lending

for j becomes

1

qj(y)
Ej

[
min

{
s, y

s

p1

}]
= Ej

[
s

p1

]
.

The return of lending should equal the return of cash for no arbitrage (indifference). This

equation also represents how the price of a contract (or interest rate) is determined if agent

j does not leverage.

qj(y) =

Ej

[
min

{
s, y

s

p1

}]
Ej

[
s

p1

] =

Ej

[
min

{
1,
y

p1

}]
Ej

[
1

p1

]
As we have seen in the payment equilibrium part in t = 1, if the realization of the asset payoff

increases, the asset is more likely to be underpriced than its fundamental value because of

more exposure to liquidity shortage and lender default costs. Thus, if the nominal wealth of
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the agents are identical, the order of return of holding cash also follows the order of optimism

over asset payoffs— that is, Ej

[
sj

p1

]
> Ek

[
sk

p1

]
for any j < k. In fact, the inequality should

always hold in an equilibrium as in lemma 2.

Lemma 2 (Cash Return Ordering). For any two agents in a network equilibrium, the cash

return from the more optimistic agent is always greater than the cash return from the less

optimistic agent—that is, Ej

[
sj

p1

]
> Ek

[
sk

p1

]
for any j < k and j, k ∈ N .

The main intuition of the proof is as follows: If agent k, who is more pessimistic than

agent j, has higher (subjective) return from cash holdings, then any other investment she is

making should also have that same return by lemma 1. Suppose agent j mimics agent k’s

entire investment portfolio. Then the same investment cannot have a return greater than

the return from cash holdings from agent j’s original portfolio, because otherwise it violates

the optimality of his own portfolio decision. But, if agent j and k face exactly the same

cashflow and counterparty risks, then the return from that investment should always be

higher from agent j’s perspective because he is more optimistic about the asset return and

the degree of underpricing (and marginal utility from cash) is higher under more optimistic

belief. This implies that agent j can have higher return than agent k by mimicking a strategy

that violates the original assumption of agent k having higher return from cash holding.

This cash return ordering from lemma 2 implies that interest rates of the same contract

increases over an agent’s optimism—that is, optimistic agents demand a higher interest rate

than pessimistic agents do. This property will be verified again later by the contract pricing

formula.

Return on buying the asset without leverage is Ej

[
s

p0

]
, where p0 is the asset price

determined at t = 0. Since the return does not depend on p1, this return is not (directly)

influenced by counterparty risk. Hence, this return on asset is ordered directly by the agent’s

optimism—that is, Ej

[
s

p0

]
> Ek

[
s

p0

]
for all j < k. Return on asset purchase with leverage

is

sj

p0 − qi(y)
Ej

[[
1− y

p1

]+

− ζ ′(cij)
[
1− y

p1

]+

1 {i ∈ B(ε)}

]
,

where agent j is borrowing cash from agent i with cij amount and promises y. Similarly,

return on lending with leverage is

sj

qj(y′)− qi(y)
Ej

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cij)

[
1− y

p1

]+

1 {i ∈ B(ε)}

]
, (7)
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where j buys (lends money) a contract with promise y′. From the return comparisons and

pure lender’s no arbitrage condition, an agent’s individual leverage decision could be derived,

and the following lemma summarizes the result of leverage maximization.

Lemma 3 (Maximum Leverage). Suppose that agent j lends a positive amount of money to

an agent (or buys the asset—that is, lends money to herself) and borrows a positive amount

of money from agent i in a network equilibrium. Then, the following statements are true:

1. Agent j maximizes her leverage by borrowing the maximum amount of money she can

borrow from agent i which is si.

2. If j is borrowing the same amount from agent i and k who have the same probability

of bankruptcy with i < k, then j marginally prefers to borrow from i.

The intuition of the proof is as follows: If borrower j and lender i agree on the distribution

of prices below si, which only depends on liquidity shocks that both agents agree upon, then

j and i agree upon the expected delivery. Since j has higher marginal utility of cash in

t = 0 than i, agent j would like to increase borrowing at any point below si. At the point

of si, agents disagree with the promised delivery above si. Agent j believes the price of the

asset p1 can be greater than si if the aggregate liquidity shock is not large enough, but i

believes the price is bounded above by si even if there is zero liquidity shock. Therefore, the

endogenous leverage is determined by the promise of y = si and its price qi(s
i).20 The logic

can be considered as an extension of the three state case in Geanakoplos (2003).

With this lemma, we can focus only on networks following intermediation order along

with the collateral constraints.

Corollary 1. Any debt network from a network equilibrium is under intermediation order.

Also by lemma 3 we can pin down qj(y) for agents who both borrow and lend. If agent

j borrows y from agent i and lends y′ to some other agent (or herself if she buys the asset

directly) then her no-arbitrage contract price becomes

qj(y
′) = qi(y) +

Ej

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cij)

[
1− y

p1

]+

1 {i ∈ B(ε)}

]

Ej

[
1

p1

]
20This intuition also brings light to how complicated the model would be if concentrated beliefs are not

assumed. For example, if agent’s optimism is ordered by first-order stochastic dominance, then endogenous
leverage depends not only on the relative hazard ratio, but also on the difference in marginal utilities of cash
which also changes endogenously and is extremely intractable to pin down. Moreover, they differ with the
distribution of liquidity shocks.
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Figure 8: Credit Surface of Collateralized Debt

By lemma 3 we only need to focus on kink points for borrowing. Hence, any agent who is

willing to borrow from agent j will face the willingness to pay as

qj(y) = qi(s
i) +

Ej

[
min

{
1,
y

p1

}
−min

{
1,
si

p1

}
− ζ ′(cij)

[
1− si

p1

]+

1 {i ∈ B(ε)}

]

Ej

[
1

p1

] . (8)

The following proposition and figure 8 describe the relationship between interest rate and

loan-to-value ratio.

Proposition 4 (Concave Credit Surface). In any network equilibrium, the contract price

function q(y) is piece-wise concave in the amount of promise y and has kinks and jumps

at each payoff points s1, s2, . . . , sn−1, sn. Furthermore, the credit surface of the equilibrium

(the graph between leverage q(y)/p0 and interest rate y/q(y)) is piece-wise concave and con-

tinuous in the amount of leverage q(y) and has kinks at each corresponding payoff points

q(s1), q(s2), . . . , q(sn−1), q(sn) and right derivative of each kink point is greater than the left

derivative. Also, the interest rate goes to infinity at the point q(s1).

Now the remaining parts of the equilibrium are the actual amount of cash holdings and

the amount traded for each contract. From the return equation of leverage, equation (7),

and the convexly increasing lender default cost ζ, borrowers would diversify their borrowings

across different lenders. Even if agent j can borrow more from i in the amount of qi(s
i), higher
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ζ ′(cij) would make j borrow from i + 1 with lower leverage (or higher margin) of qi+1(si+1)

because of lower default cost ζ ′(c(i+1)j). Hence, there is a tradeoff between leverage and

counterparty risk. An agent wants to maximize leverage to maximize her return but she

has to face higher counterparty risk due to increased concentration. If the agent wants to

diversify her lenders, then she has to deal with more pessimistic agents who only provides

low leverage (requires high margin) which implies low return for the borrower. Thus, the

network becomes a multi-layered chain network instead of a single-chain network when ζ

becomes large and θi is non-negligible. Thus, the equilibrium cash holdings depend on the

gap between beliefs on asset payoffs and the slope of the contract price function.

3.3. Results on Decentralized OTC Market

Now with the given contract prices, the asset price can be analyzed. The first result is

about who is buying the asset in the equilibrium. Not surprisingly, the agent with the most

optimistic belief on the asset payoff, agent 1 who believes the asset payoff will be s1, always

buys the asset.

Lemma 4 (Natural Buyers). In a network equilibrium with maximum payment equilibrium

selection rule, the most optimists, agent 1, buys the asset with positive quantity, thus c11 > 0.

Similarly, agent i borrows from agent i+1 with positive amount, ci+1,i > 0 for any i ∈ N, i 6=
n.

The intuition of the lemma is that if any agent j > 1 is buying the asset, then agent 1

will have even higher return than j by using the same leverage decisions as j unless agent 1’s

cash holding is huge enough to make her required return low. However, when agent 1’s cash

holding is large, then j’s return of cash is enormous in case agent 1 goes bankrupt, and agent

j should either increase his cash holding or increase the return on asset purchase—that is,

p0 goes down. But either of them should make agent 1’s perceived return on asset purchase

(with leverage) increase even faster because of s1/p0 > sj/p0. Thus, agent 1 should be a

natural buyer of the asset (but not necessarily the only buyer). Similar logic can be applied

to any subsequent contracts min{p1, s
i} and by induction, we can show that a natural buyer

of any contract with a promise of si is agent i. Note that agents other than agent 1 can also

hold some amount of assets because it is possible to have

Ej

[
sj

p1

]
=

Ej

[
sj −min

{
si
sj

p1

, sj
}
− ζ ′(cij)sj

[
1− si

p1

]+

1 {i ∈ B(ε)}

]
p0 − qi(si)
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for multiple j ∈ N . In this case, agent 1 holds more cash than agent j so that the possible

underpricing coming from larger support for agent 1 is mitigated by being less vulnerable to

liquidity shocks to others including agent j. Thus, e1
1 > ej1 in such cases.

This property of optimists holding more cash than pessimists can be formalized for a

certain parameter region. Belief disagreements are harmonically dispersed if sjsj+2 ≤ (sj+1)2

for any j < n− 2. Harmonically dispersed belief disagreements imply that the belief of one

agent among three consecutive agents are not too radically skewed. For example, belief

disagreements are not harmonically dispersed if agent 2 and 3 believes s to be 20 and 10,

respectively, but agent 1 believes s to be 100. Agent 1’s belief should be less than or equal

to 40 in order to be harmonically dispersed.

Proposition 5. Suppose the network equilibrium is a single-chain network—that is, ci+1,i =

ci+2,i+1 = c > 0 for i < n − 2 and cij = 0 for any ij not in the path between agent 1 and

n and i 6= j. Also suppose that the belief disagreements are harmonically dispersed. Then,

agents hold cash as e1
1 > e2

1 > · · · > en1 —that is, the order of amount of cash holdings is the

same as the order of optimism on the asset payoff.

Corollary 2. If there is no lender default cost—that is, ζ(c) = 0 for any c ∈ R+—and the

belief disagreements are harmonically dispersed, then agents hold cash as e1
1 > e2

1 > · · · >
en1 —that is, the order of amount of cash holdings is the same as the order of optimism on

the asset payoff.

This result is in contrast to standard results in general equilibrium with collateral litera-

ture such as Geanakoplos (1997), Fostel and Geanakoplos (2015), Simsek (2013), and Geerolf

(2018) in which optimists spend more, if not all, cash to purchase assets, and pessimists hold

more cash and sell assets. Although agent 1 values the asset the most, they also have the

highest marginal utility of cash in t = 1. Because the asset value is so high, the price of the

asset is also vulnerable to liquidity shortage in the market. Under agent 1’s perspective, the

market should have nh0s
1 amount of cash to clear the market with the asset’s fundamental

value. On the contrary, agent n believes the market can be cleared in fair value in t = 1

even with nh0s
n amount of cash, and underpricing only happens when the economy is under

severe liquidity shocks. Holding more cash is possible because of the possibility of leveraging

through the lending chain. The down payment (cash paid for the levered purchase) for agent

1, q(s1)− q(s2), can be less than the down payment for agent n− 1, q(sn−1)− q(sn). Also,

the cash holding dispersion will be even more severe if leverage increases.

This cash holding result may seem unrealistic. However, the empirical facts support this

result. On average, 34 percent of a hedge fund’s assets can be liquidated within one day

(without fire sale discounting) according to Aragon et al. (2017) using Form Periodical Filings
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over 2013–2015. This proportion is well above the proportion of money market mutual funds

(MMMFs) in the SEC reformed regulation by 10 percentage points. Before the regulation,

the daily liquid assets for MMMF were on average less than 20 percent, and even after the

regulation, the daily liquidity in the portfolio is still below 31 percent (Aftab and Varotto,

2017). Because hedge funds are the ultimate asset buyers (as agent 1) in a collateralized

debt market, and money market mutual funds are pure lenders in the market (as agent n),

the empirical findings are consistent with the result of the proposition.

The next result and important step for the proof of existence is that individual agent’s

diversification behavior generates positive externalities through amplification and feedback

effects in both asset price channel and counterparty channel in t = 1. If agent j diversifies

more and lowers her own return because of counterparty risk concerns, then it will lower

the leverage through q(y) and also decrease price volatility in t = 1. Furthermore, this risk

reducing behavior makes agent j’s balance sheet mj more stable and decreases the probability

of j’s bankruptcy. Thus, second-order bankruptcy contagion decreases even further.

Before stating the proposition, we have to define directions of lowering the aggregate

debt level. Since any equilibrium network is under intermediation order, we can restrict our

attention to directions that go across such a class of networks. First, for a given collateral

matrix C, a collateral matrix C∗ is uniformly less indebted if cij ≥ c∗ij for any i, j and cij > c∗ij

for at least one pair ij. The second direction comes from diversification. Define Lj as the

largest holder of j’s collateral, thus, max
i∈N\{j}

cij = cLjj. For a given network equilibrium and

its collateral matrix C, C∗ is a diversification of agent j from C, if

1. cLjj > c∗Ljj
≥ max

i∈N\{j}
c∗ij, cij ≤ c∗ij for all i > Lj,

2. ζ(c∗Ljj
)ωLjj ≥ ζ(c∗ij)ωij for any i > Lj,

3.
∑

i∈N\{j}
cij ≥

∑
i∈N\{j}

c∗ij,

4. cik ≥ c∗ik for all i, k ∈ N with k 6= j, and

5. (C∗, Y ) is under intermediation order.

This diversification of agent j from an equilibrium collateral matrix implies that agent j has

her counterparties more diversified than the original network in either intensive or extensive

margins while still maintaining the perceived counterparty risk not exceeding the original

largest holder of collateral.

Proposition 6 (Diversification Externality). Suppose that (C, Y, e1, h1, p0, p̃1, q) is a network

equilibrium. Suppose there is a collateral matrix C∗ and either of the two conditions holds:
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1. C∗ is uniformly less indebted than C.

2. C∗ is a diversification of agent j from C for j < n.

Then, ex ante expected payment equilibrium price p1 under (N,C∗, Y, e1, h1, ·, ·, ζ) is

greater than that under (N,C, Y, e1, h1, ·, ·, ζ) and ex ante expected volatility of p1 under

(N,C∗, Y, e1, h1, ·, ·, ζ) is lower than that under (N,C, Y, e1, h1, ·, ·, ζ) for each subjective be-

lief of j ∈ N .

This proposition implies that the higher the debt level is, either uniformly more indebted

or under the direction of less diversification, the more the underpricing occurs both in terms

of likelihood and intensity. The intuition21 is that the increase in lender default cost as

ζ(c) increases convexly in c and also the contagion intensifies through both second-order

bankruptcy of counterparty channel and asset price channel. If a borrower is more indebted,

the expected sum of lender default costs is higher. Also if a borrower is less diversified, the

expected sum of lender default costs is higher because of convexity of ζ. The second-order

bankruptcy contagion only makes it even worse in expected sense because that only increases

the probability of bankruptcy even more. Thus, diversification generates benefits to all of

the agents.

Given all of the tools from t = 1 payment equilibrium and t = 0 borrowing and lending

behavior, we can prove existence of a network equilibrium as well as the properties of it.

Theorem 1 (Existence and Characterization of Network Equilibrium).

For a given economy (N, (sj, θj, e0, h0)j∈N , ζ, G) and maximum equilibrium selection rule,

there exists a network equilibrium (C, Y, e1, h1, p0, p̃1, q), and any network equilibrium is

characterized as follows:

1. For any y ∈ [sj+1, sj]

q(y) = q(sj+1) +

Ej

[
min

{
1,
y

p1

}
−min

{
1,
sj+1

p1

}
− ζ ′(c(j+1)j)

[
1− sj+1

p1

]
1 {j+1∈B(ε)}

]
Ej

[
1

p1

] ,

where we set q(sn+1) = sn+1 = 0 and maxj Ej [1{n+ 1 ∈ B(ε)}] = 0.

2. For any i, j ∈ N, i 6= j, yij = si and (C, Y ) is under intermediation order.

21Ibragimov et al. (2011) suggests a model with diversification of risk classes leading to systemic risk
through commonality. This force is restricted by the competition in the asset market and high marginal
utility of cash under crisis states in my model.
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3. For any counterparties i, k of j with cij > 0, ckj > 0,

sj

q(sj)− q(si)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
si

p1

}
− ζ ′(cij)

[
1− si

p1

]+

1 {i ∈ B(ε)}

]

=
sj

q(sj)− q(sk)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
sk

p1

}
− ζ ′(ckj)

[
1− sk

p1

]+

1 {k ∈ B(ε)}

]
.

4. For any j, i ∈ N and j ≤ i, cji = 0.

5. Cash holdings of each agent is determined by

ej1 = ej0 + hj0p0 +
∑

i∈N\{j}

cijq(s
i)−

∑
k∈N\{j}

cjkq(s
j)− hj,1p0.

6. The price of the asset at t = 0 is determined by

p0 = q(s1).

7. The price of the asset at t = 1, p̃1 is determined by payment equilibrium for the given

network (C, Y ).

Also the set of network equilibria forms a complete lattice, and there exists a maximum

leverage network equilibrium that is the equilibrium with the collateral matrix which has the

highest aggregate debt among all other equilibria.

The theorem contains several implications. First of all, the theorem suggests the network

structure change for the given economy, in particular the mechanism of network formation—

tradeoff between leverage and counterparty risk. Any equilibrium collateral matrix should

be an acyclical network as an agent only borrows from more pessimistic agents, and the

contract matrix follows rank order due to lemma 3. Each agent can be both borrower and

lender because of return differences under subject beliefs and intermediation rents. For

negligible default cost (small ζ and θj), a single-chain network is formed that is agent j

borrows from agent j + 1 only for all j < n − 1. This is because even if cj+1,j =
∑

k∈N cjk,

the return from borrowing from j + 1 is still greater than return from borrowing from

l > j+1 as the counterparty risk increase is small. Figure 9 is an example of such a network.

This resulting intermediation chain resembles the intermediation pattern in Glode and Opp

(2016), because the agents with the closest beliefs trade with each other which maximizes

the gains of trade. Agents are not concerned about diversifying their counterparty and
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Figure 9: Single-Chain Network

choose the most profitable counterparty—that is, the most optimistic agent after herself—

and concentrates all the borrowing. However, if the default cost ζ is non-negligible, then a

multi-chain network is formed in equilibrium. Figure 10 is an example of such a multi-chain

network. Agent j borrows not only from j+1 but also from j+2 as well. Agents would rather

diversify their counterparties and would like to link with several levels down of optimism.

However, this comes at the cost of lower leverage (higher haircut). This network formation

mechanism, the tradeoff between leverage and counterparty risk, makes the intermediation

pattern distinct from Glode and Opp (2016).

The second implication is the lack of diversification. As shown in proposition 6, is that

such diversification of lenders create positive externalities to other agents by making the

overall network safer. However, such positive externalities from diversification are not in-

cluded in individual agent j’s concern. Therefore, the degree of diversification is always

less than the optimal degree in the economy, and the equilibrium is constrained inefficient.

Define the social welfare of the economy as the sum of ex ante expected utilities of all the

agents as

∑
j∈N

Ej

[
mj(ε)

sj

p1(ε)

]
.

An equilibrium is constrained inefficient if a social planner can generate higher social wel-

fare by adjusting the allocation while the resource constraints and collateral constraints are

satisfied and leaving the t = 1 market interaction decentralized.

Theorem 2. Any network equilibrium under OTC market is constrained inefficient due to

under-diversification if ζ is non-negligible.

The third implication of theorem 1 is leverage stacking through the lending chain. In-

crease in q(sn) increases all the subsequent contract prices, which imply that the lending

amount increases. Therefore, lending or leverage at any point in the lending chain has a
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Figure 10: Multi-Chain Network

multiplier effect on the economy. This leverage multiplier effect due to reuse of collateral

has been mentioned in Gottardi et al. (2017) as well. A distinct feature of the model in this

paper is that different level in the lending chain has different multiplier effects. An increase

in sn will have a larger effect than an increase in s2 as agent n’s lending stacks n− 1 times

through the lending chain through equation 8. A real world implication could be that the

increase in the confidence of the ultimate lender (agent n in the model or cash providers such

as money market mutual funds in reality) can lead to huge increase in asset prices through

this multiplier effect.

The fourth implication is the dispersion of gains of trade. Unlike the result in one link of

borrowing and lending in Simsek (2013) and Geerolf (2018), where the gains of trade are fully

concentrated to the borrower (agent 1), the gains of trade are dispersed across all agents

through competition across different agents and also varying degree of liquidity shortage.

The literature regarding the principal-agent problem in lending contract usually focuses on

the special case in which borrowers have all the bargaining power (Gale and Hellwig, 1985;

Holmstrom and Tirole, 1997), but the result of the network equilibrium shows that even if the

market is competitive and each individual agent is a price-taker, there can be some surplus

distributed to either side. In particular, even if we retract the model to a single contract

case as n = 2, the dispersion of bargaining power still occurs. This is partly due to positive

cash holdings for either side, which is coming from a liquidity shock and differential marginal

utility of cash. Also in the network or lending chain literature context, this feature implies

bargaining power between borrowers and lenders is determined endogenously in contrast

with the papers such as Farboodi (2017) and Hugonnier et al. (2018), where they assume

exogenous bargaining power as some constant. The more cash you are holding, the less

power you have in terms of bargaining power as your outside option becomes less profitable

and cannot charge a higher interest rate.

The fifth implication of theorem 1 is the endogenous market reaction to the change

in counterparty risk. From theorem 1 and proposition 6, the connection between degree
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centrality and contract prices (interest rates) can be deduced. As the debt of the network

increases, the equilibrium contract prices become lower. This is due to the second term of

equation (8). The denominator increases while the numerator does not increase as much due

to the boundedness of contract returns. The intuition for this result is the following. Since

the network has a higher amount of debt, the market in t = 1 can suffer more from liquidity

shocks and further propagation in case of bankruptcy. Agents prefer to hold cash in case

of huge liquidity shocks and are also willing to lend less for the same promise as a lender.

Similar comparative statics can be done for the equilibrium contract prices. For example, if

all of the agent’s liquidity shock arrival rate θj increases, then contract price for an agent

who borrows cash would decrease as the return from the leverage decreases. Also, change

in the asset payoff belief sj would affect both the amount of debt as well as contract prices.

The comparative statics results are summarized as the next proposition.

Before stating the proposition, define the velocity22 of collateral in a network C as the

volume of total collateral posted divided by the stock of source collateral23

V elocity(C) ≡
∑

i∈N
∑

j 6=i cij∑
j∈N hj,1

.

This velocity of collateral represents volume of the reuse of collateral within the network. For

example, if the network C is a single-chain network using all of the source collateral, which

is all held by agent 1 repeatedly, then the velocity of C is n − 1 because c21 = c32 = · · · =

cn,n−1 = c11 and V elocity(C) =
c21 + c32 + · · ·+ cn,n−1

c11

= n − 1. The velocity of collateral

is also an approximate measure of the average length of the lending chain in the network as

argued in Singh (2017).

Proposition 7 (Comparative Statics on Borrowing Pattern). For a given network equilib-

rium with maximum equilibrium selection rule, the following statements are true.

1. If sj increases (decreases) by the same amount for every j ∈ N , then the equilibrium

contract prices and leverage for each agent increases (decreases). Also the number of

links between agents weakly decreases (increases) and the velocity of collateral increases

(decreases).

2. If θj increases (decreases) by the same amount for every j ∈ N , then the equilibrium

contract prices and leverage for each agent decreases (increases). Also the number of

22Since this model is not dynamic, the “velocity” here means how much a collateral moves around in the
market.

23This definition is similar to the definition of the velocity of collateral in Singh (2017)—that is, the
volume of secured transactions divided by the stock of source collateral.
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links between agents weakly increases (decreases) and the velocity of collateral decreases

(increases).

The results above can be summarized in the following theorem.

Theorem 3 (Network Change under Crisis). If the economy is under financial distress and

the counterparty risks become greater as sj decreases or θj increases, then agents diversify

more, the asset price decreases, the average leverage decreases, the velocity of collateral de-

creases, and the average number of counterparties (weakly) increases.

The results of theorem 3 are consistent with the empirical facts. As Singh (2017) docu-

mented, the velocity (reuse) of collateral decreased from 3 to 2.4 right after the bankruptcy

of the Lehman Brothers24 and the average leverage in the OTC market also went down.

Also Craig and Von Peter (2014) shows that the average number of linkages between fi-

nancial institutions have increased about 30 percent over the four years after the Lehman

bankruptcy. The dynamics of theorem 3 has occurred even before the Lehman bankruptcy.

In the wake of Bear Stearns’ demise, hedge funds had increasingly used multiple prime bro-

kers to mitigate counterparty risk. In fact, despite the traditionally concentrated structure

of the prime brokerage business, as far back as 2006, about 75 percent of hedge funds with

at least $1 billion in assets under management relied on the services of more than one prime

broker (Scott, 2014). After the Lehman’s bankruptcy, hedge funds increased the number of

prime brokers they work with even further and the prime brokerage market became much

more competitive (which translates into lower intermediation rents under theorem 3) after

the crisis (Eren, 2015). On the contrary, the opposite result happened in unsecured debt

markets. Afonso et al. (2011) and Beltran et al. (2015) find that the banks in the federal

funds market reduced their number of counterparties after the Lehman bankruptcy. This

stark comparison shows the importance of collateral in network formation.

Numerical examples in figure 11 and table 1 show the comparative statics in theorem 3.

Figure 11 represents the collateral flow of promises of no risk, moderate risk, and significant

risk cases respectively. Each numbered node represents the agent, and the arrowed link

represents the direction and the size of the promise. As the risk increases, equilibrium

network changes from a single-chain network with a large size of collateral flows to a multi-

chain network with a smaller size of collateral flows. The no risk case has θj = θ = 0 for

all j ∈ N , the moderate risk case has θj = θ = 0.4 for all j ∈ N , and significant risk case

has θj = θ = 0.8 for all j ∈ N . As the liquidity shock and counterparty risk become more

24The velocity went further down to 1.8 as of 2015. Singh (2017) argues that the collateral landscape has
changed further because of central banks’ quantitative-easing policies and new regulations which are beyond
the scope of this paper.
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Figure 11: Network Comparative Statics – no risk, moderate risk, and significant risk

No risk Moderate risk Significant risk
Pr(Bankruptcy) 0% 9.6% 25.4%
Leverage 10 2.0766 1.7411
Velocity 3 1.6870 1.4149
$ Volume 2400 756 431
# of links 3 6 6

Table 1: Network Comparative Statics

relevant, the probability of bankruptcy increases. The leverage of a natural buyer, agent 1,

decreases by a huge margin, and the velocity of collateral decreases as agents diversify their

counterparties which reduces the reuse of collateral. The number of links increases because

of diversification and the total nominal cash volume of promises decreases.

3.4. Discussion

The sum of ex ante expected utilities of all agents is comprised of two major parts: the

allocative efficiency and financial stability. The allocative efficiency is maximized under a

single-chain network because each agent effectively buys (bets) the tranche of the asset that

she believes in, however, a single-chain network also minimizes financial stability by the

concentration of network and maximized leverage. The overall social welfare should depend

on the balance between the two as in Gofman (2017). The sources of externalities are fire

sales spillover or collateral externalities as in Duarte and Eisenbach (2018) and Dávila and

Korinek (2017), and cascades through networks as in Eisenberg and Noe (2001) and Elliott

et al. (2014).

The shape of ζ is important. We can consider many different cost specifications such as

concave or constant costs. These cost functions will fail to replicate the risk-aversion behavior

and fail to generate the main mechanism – the tradeoff between leverage and counterparty

risk. One possible interesting cost structure can be a function that is concave (or constant) at
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the beginning and then later becomes convex—that is, ζ ′′(c) ≤ 0 for c ∈ (0, c̄] and ζ ′′(c) > 0

for c ∈ (c̄,∞). This shape will make each and every agent exposed to the agent who is

the next most optimistic to her at least of c̄ amount.25 Even more degree of freedom is

possible by allowing heterogenous costs for each and every pair as ζij(c). Such heterogenous

cost structure would be crucial in estimating the parameters empirically and replicating the

core-periphery structure in OTC markets.

One of the important issues related to the lender default problem is the haircut dif-

ferences. The haircut for a hedge fund’s contract is typically greater than the haircut for

a dealer bank’s contract when they borrow from money market mutual funds. There are

two ways to attain these haircut differences under the model of this paper. One way is

interpreting the rehypothecated contracts as re-use of the contract cash flow and collateral

flow as pyramiding in Geerolf (2018). Under the given pyramiding cash flows, the haircut

becomes lower as the collateral goes down the lending chain because the belief discrepancy

and possible underpricing (due to liquidity shortage) becomes smaller. Thus, this interpre-

tation reconciles the haircut dispersion we observe from the data. Another way of attaining

the haircut differences is by introducing size and cost heterogeneity. If a dealer bank is

much larger than its counterparties—hedge funds and money market mutual funds—then

the dealer may be able to trade with other agents under much lower haircut. The hetero-

geneity of size and cost can also help recover the commonly observed network structure –

core-periphery networks. More formal analysis on the possible heterogeneity is left for future

extensions.

Another important issue related to the lender default problem is allowing rehypotheca-

tion. Rehypothecation greatly enhances allocative efficiency but also generates the channel

of contagion as we have seen in the bankruptcies of the Lehman Brothers and MF Global.

If agents can only trade under standardized contracts or under CCP which does not allow

rehypothecation, then this restriction of rehypothecation generates huge loss of gains from

trade. Even the borrowers would prefer to allow the lenders to rehypothecate the collateral

since that will increase their leverage even more by allowing better funding liquidity for the

lender. An anecdotal evidence for this preference is that the borrowers kept using the mas-

ter agreements that allowed rehypothecation over other contract agreements which prohibit

rehypothecation even after experiencing the huge lender default of Lehman (Singh, 2017).

25This cost structure also makes sense in terms of institutional details since most of the Chapter
11 bankruptcy problems for small financial institutions are straightforward. This cost structure would
make even more sense if other agents’ exposure to the same lender also affects the borrower such as

ζ

(
cij

ci1 + ci2 + · · ·+ cin

)
.
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4. Central Clearing

As discussed in the introduction, central clearing and the introduction of a central coun-

terparty (CCP) is one of the major issues in market structure regulations. In this section,

I define a theoretical way of introducing CCP and perform a counterfactual analysis on the

impact of introducing CCP to a decentralized OTC market.

CCP novates one contract between a borrower and a lender into two contracts – a contract

between the borrower and the CCP and a contract between the lender and the CCP. This

implies the CCP can be considered as a new agent, defined as agent 0, and the CCP simply

duplicates the already existing debt network C, Y into its balance sheet. This can be done by

first adding all the columns of C, and each column sum will be c0i for all i ∈ N . Then, add

all the rows of C, and each row sum will be ci0 for all i ∈ N . The contract matrix Y can also

be modified by adding the new row and column for 0 with all the relevant promises of sj for

each j− 1 row and column. CCP also does pooling, which is buffering the counterparty risk

with its own balance sheet. The CCP’s cash holdings e0
1 can be considered as a cash buffer,

as CCP guarantee funds that are coming from n client agents with γ amount of contribution,

so e0
1 = nγ. This structure of participation fee is in fact, how the actual CCP manages its

guarantee funds in the CCP’s “default waterfall.” Define the new debt network with CCP

as (Cccp, Yccp).

CCP also nets out obligations between two counterparties. We can consider netting of

borrower obligations as a transformation of the debt matrix C ◦ Y that is Ĉ ◦ Ŷ s.t.

ĉij ŷij = [cijyij − cjiyji]+

for all i, j ∈ N . This can be considered by a transformation of matrix as [C ◦Y −C ′ ◦Y ′]+.
If this netting procedure is done for the original debt network, then this is a bilateral netting

procedure. If we run the netting transformation procedure after the inclusion of CCP—that

is, [Cccp ◦ Yccp − C ′ccp ◦ Y ′ccp]+—then it becomes the multilateral netting, Ĉccp ◦ Ŷccp, which is

relatively straightforward operation equivalent to the double summation operation in Duffie

and Zhu (2011).

The netting should be considered more carefully when it comes to lender obligations since

the lender obligation may not be relevant under certain prices when the borrower defaults

on their promises. The netting procedure works as follows.

1. For the given price p1, compute the entry-by-entry indicator matrix Γ ≡ 1(Y = X).

2. Compute the effective collateral matrix C ′ ≡ C ◦ Γ.
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3. Perform the CCP netting procedure above to derive Ĉ ′ccp.

4. Redistribute the relevant collateral obligations from the updated Ĉ ′ccp to corresponding

columns and rows for C.

This redistribution is done by whoever is the final holder of the asset. Under acyclical net-

works which arise endogenously in the model as seen in theorem 1, there is no indeterminacy

of redistribution, so the new debt network is properly defined. Also any leftover wealth of

the CCP is equally distributed to the surviving agents. Thus, the CCP’s nominal wealth

after payments becomes

m0(ε|p1) = nγ −
∑
j∈N

∑
k∈N

ζ(cjk)[p1 − yjk]+1 {j ∈ B(ε)} ,

and the CCP goes bankrupt when m0(ε|p1) = 0. Note that an economy under CCP has the

debt network that is still under intermediation order and there exists an equilibrium.

There are many important properties of a CCP in reality, such as enhanced transparency

and collateral management, that are abstracted out from the model. Other than the pooling

and netting of the contracts, I assume that the CCP is exactly the same as the other agents

in the economy. The CCP still has to pay the same ζ cost for bankrupt lenders and does not

have any additional benefits on collateral management or efficiency in margin settings. Also

when the CCP goes bankrupt (if the nominal wealth of the CCP becomes negative), then all

the agents suffer ζ cost as the OTC market case. Obviously, these assumptions are strong.

For example, the vast majority of Lehman’s clients who went through CCPs obtained access

to their accounts within weeks of Lehman’s bankruptcy (Fleming and Sarkar, 2014). This

implies the ζ when the CCP is the borrower might be lower than ζ of the other agents. But,

the cost of retrieving collateral after the CCP went bankrupt might be much higher than the

lender default costs from the OTC markets. Also CCPs often do not allow rehypothecation or

are sometimes themselves restricted in rehypothecating the assets. But, then this restriction

comes with a cost of worse flow of collateral and liquidity as the velocity of collateral decreases

(Singh, 2017). The main point of this analysis is rather to focus on the understudied property

of endogenous reaction of the market, in terms of change in network formation. Any other

properties are abstracted out from the model and are subject to further studies.
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4.1. CCP without Netting

First, consider the effect of novation and pooling only. Since agents are protected from

direct counterparty risk when the CCP survives, agent j’s optimization problem becomes

max
ej1,{cij ,yij}i∈N ,
{cjk,yjk}k∈N

Ej

ej1 − εj + hj,1p1 +
∑

k∈N\{j}

cjk min {yjk, p1}+
m0(ε|p1)∑

i∈N 1 {i /∈ B(ε)}

−
∑

i∈N\{j}

cij min {yij, p1} −
∑

0∈B(ε)

ζ(cij)[p1 − yij]+1 {i ∈ B(ε)}

 s

p1

+

s.t.

hj,1 +
∑

k∈N\{j}

cjk ≥
∑

i∈N\{j}

cij,

e0 + h0p0 = ej1 + hj,1p0 + γ −
∑

i∈N\{j}

cijq(yij) +
∑

k∈N\{j}

cjkq(yjk).

(9)

From proposition 6 and theorems 1 and 2, the following proposition holds.

Proposition 8. For a given network equilibrium with maximum equilibrium selection rule

under OTC market with collateral matrix C, suppose that a CCP without netting is intro-

duced to the market.

1. If the CCP never goes bankrupt because of (implicit) guarantee by the government,

then the new network with collateral matrix Cccp has the highest systemic risk across

all collateral matrix that will satisfy intermediation order and collateral constraints.

2. If agents have to contribute γ to the CCP and the size of the contribution is large enough

to cover any lender default costs, then the new network with collateral matrix Cccp has

the highest the systemic risk across all collateral matrix that will satisfy intermediation

order and collateral constraints.

3. If agents have to contribute γ to the CCP and the CCP can go bankrupt in some

states, then the new network with collateral matrix Cccp has higher systemic risk than

the original network with collateral matrix C.

The CCP’s pooling feature eliminates direct counterparty risk concern from agents. They

connect for the most favorable contracts with the most concentrated counterparties. This

elimination of positive externalities from diversification amplifies the cost even more through

an increase in debt. The intuition can be explained as a metaphor for fire insurance. If an
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Figure 12: OTC Network and CCP Network

agent joins the fire insurance, her individual fire risk can be fully covered. However, since

she does not care about her own fire risk anymore, the moral hazard problem occurs. She

does not care for fire safety, which incurs individual effort cost and her probability of fire

increases. Thus, the aggregate fire risk rather increases when the economy-wide fire insurance

is introduced. In addition, her individual fire safety might have also prevented some spillover

fire to other people. Thus, the amplification of aggregate fire risk occurs even further. If γ

is high, then some agents, say j + 1, j + 2, . . . , n, may not participate in the market, if they

had the choice, since their return from borrowing or lending in the market does not justify

paying γ. However, the individual incentives of the participants are still the same, since

marginal incentives are the same. Even though the lending chain leverage may decrease, the

network they have is going to maximize the systemic risk for the given component of the

network.

The graphical dynamics of the above result is described in figure 12. The top graph is the

decentralized OTC network where each agent diversifies their counterparties. The bottom

graph is the new network after introducing a CCP in the middle. The notional link in the

new network looks like the black links, which are only the contracts between the CCP and

the other agents. However, the actual contract flows are the single-chain network in red links,

which is different from the OTC network in the top graph. If the endogenous change in the

network, from a multi-chain network to a single-chain network, is not taken into account,

then the impact of introducing a CCP on systemic risk could be under-evaluated.
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4.2. CCP with Netting

A CCP indeed provides positive benefits in reducing systemic risk through the netting.

Bilateral netting does not reduce systemic risk at all, because there is no cycle in an endoge-

nously formed network. However, multi-lateral netting does reduce counterparty exposure.

Proposition 9. Bilateral netting does not affect systemic risk. Multi-lateral netting always

decreases systemic risk.

Multi-lateral netting can reduce risk even if there is no cycle. For example, if agent

1 is borrowing from 2 who is borrowing from 3 and agent 2 goes bankrupt, then agent 1

suffers from default cost. However, if CCP nets out the contracts, then agent 1 can pay

3 to retrieve her collateral and not suffer from default cost because of going through the

additional chain of agent 2. Hence, the introduction of a CCP has the cost of systemic risk

caused by the network structure (from higher leverage and concentrated counterparty risk)

because of pooling and the benefit of reducing net counterparty exposure by multilateral

netting.

Exogenous leverage models completely miss all these cost and benefit features. If there

is an exogenously given leverage that is fixed as y and its market clearing price is fixed as

q(y), then agents will be divided into two groups, buyers (borrowers) and sellers (lenders) of

the asset. Then, there is no tradeoff between leverage and counterparty risk since there is

only one contract. Agents will fully diversify their counterparties, even for an infinitesimally

small default cost. Thus, a complete bi-partite network as in figure 13 is the equilibrium

network under exogenous leverage. Since agents are already diversifying fully, pooling has

zero effect on network formation. On the other hand, since all the paths in the network have

length of 1 and there is no cycle, netting has zero effect as well.

Proposition 10 (Irrelevance of CCP). If there is only one contract y that is available in

the market, then the decentralized OTC equilibrium network is a complete bi-partite network.

Furthermore, introduction of a CCP (with or without netting) to such market has no impact

on leverage and endogenous network formation.

4.3. Numerical Examples

In this subsection, I perform a quantitative analysis of the model to provide for numerical

examples. There are four agents, each with endowments of 5000 cash and 25 assets, where

ζ(c) = c3, and S = {10, 9, 8, 7}. The common shock distribution is a log-normal distribution

with a mean of 5 and a standard deviation of 5. For 500 samples of this distribution and the
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Figure 13: Single Leverage Complete Bi-partite Network

given seed of random number generation, the average shock size is 2406957 and the median

shock size is 347.1644. The equilibrium selection rule is the maximum equilibrium selection

rule. The algorithm is the following:

Quantitative Algorithm.

1. Guess the initial equilibrium collateral matrix C0.

2. Compute the payment equilibrium prices p̃1 and bankruptcy sets B(ε) for each simu-

lated state ε out of k different states and for each subject beliefs sj of agents.

(total n× k matrix of prices and n× n× k array of bankruptcy indicators)

3. Compute each agent’s expected returns on each investment decision in t = 0.

4. Compute the market prices of the asset p0 and contracts q(y).

5. Derive agent’s optimal portfolio decisions starting from agent 1 to agent n. By acycli-

cality and rehypothecation constraints and lemma 1, this procedure satisfies agents’

optimality and market clearing conditions. Set the new collateral matrix as C1

6. Compare C0 and C1. If the difference is above the tolerance level, then update C0 = C1

and go back to step 2. If the difference is smaller than the tolerance level, then set C1

as the equilibrium network and compute the rest of the variables of the equilibrium.

First, suppose that the CCP never defaults as the government guarantees the solvency

of CCP by tax payer’s cash. Under this case, we compare three different cases of the market

structure: decentralized OTC market, CCP without netting, and CCP with netting. For

each market structure, we change the values of θ, which is the common arrival rate of liquidity

shock, and compare the three cases for each θ value. In the graphs in figure 14 and 15, the

blue solid lines represent the numbers from a decentralized OTC market, the red dashed lines
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represent the numbers from a market under a CCP without netting, and the black dotted

lines represent the numbers from a market under a CCP with netting.

As in the top-left graph in figure 14, the leverage of the three cases starts with 10. In

the OTC market, leverage drops around 2 and stays low as the increase in counterparty

risk concern reduces the leverage. On the other hand, two cases with CCP have almost the

maximum leverage because agents are not concerned with lender default costs, which is fully

covered by the CCP. The top-right graph in figure 14 shows the sum of ex ante social welfare

for each case. All of the cases have lower social welfare as the arrival rate of shock increases.

However, the OTC market has the highest social welfare compared with the two CCP cases.

This is due to agents’ diversification in the OTC market, which is absent from the CCP

markets. Also netting has an important impact as it limits the duplication of lender default

costs from bankruptcies which makes a noticeable differences between the two CCP cases.

However, the probability of bankruptcy is still the highest in the OTC market as can be seen

in bottom-left of figure 14. The reason is that there exists a contagion channel in the OTC

market which is nonexistent in CCP cases because the counterparty channel is insulated by

the CCP. As predicted by the theory, the velocity of collateral in the network for the OTC

market goes down as θ increases, while the velocity remains the same for two CCP cases.

Now, suppose that the CCP does not have the government guarantee and only covers its

losses by the member contribution for the default guarantee fund γ. The size of γ is set as

1000. Under this case, the CCP can actually go bankrupt if the sum of the lender default

costs is too large. The leverage graph in the top left of figure 15 shows an interesting shape.

In the market with CCP without netting, the leverage rather increases almost to 30 and

then start to revert back to 10, which is still much larger than the OTC market case. These

dynamics come from the interaction between the counterparty channel and the price channel

through the leverage. As θ = 0.2 is still a small number, agents are willing to borrow and

lend still very aggressively, however, when the CCP goes bankrupt with the low probability

then it will make a huge crash in this case. Agents are gambling for the CCP to survive

which is very costly for the agents. Also, since the CCP failure implies total market failure,

agents are much less concerned about the event of market failure, because that implies the

agents themselves are also out of the market as well. In the meantime, they can have large

return from cash holdings if they survive. All of these features contributes to the enormous

leverage. This colossal leverage also results in lower social welfare as can be seen in the top

right of figure 15. The leverage for the case of CCP with netting is much lower than the

case without netting. The first reason is, of course, the reduction of counterparty exposure

due to netting and much lower likelihood of market breakdown. The agents do not expect

the total market break down, but they do care about having more cash in case of a CCP
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Figure 14: Numerical Results when CCP Never Defaults

failure, but they still survive. Another reason for the moderate leverage is the diversification

behavior of agent 1. As the netting cancels out all the exposures between the intermediaries,

agent 1 is still exposed to agent n’s counterparty risk even after the netting. Therefore,

agent 1 wants to diversify and reduces leverage. Since agents are internalizing some of the

lender default costs and the netting reduces the total expected lender default costs for a

given network, the social welfare under CCP with netting is greater than the social welfare

under the OTC market. The bottom left of figure 15 also shows the similar pattern for

bankruptcy probabilities. Because agents are recklessly borrowing and lending under CCP

without netting, the probability of bankruptcy is very high. The OTC market case is much

lower due to diversification but still the CCP with netting has the lowest bankruptcy rate.

The velocity of collateral also follows a similar pattern.

I also test the effect of a CCP when the network is exogenously fixed as the decentral-
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Figure 15: Numerical results when CCP can default

ized OTC market equilibrium. Suppose that even after the introduction of a CCP, agents

still maintain the same links as before. Figure 16 plots social welfare of the three cases –

OTC market, CCP without netting, and CCP with netting. Numerical results imply that

CCP always increases social welfare if the network remains the same. Since netting reduces

counterparty exposure, social welfare under CCP with netting is the highest as seen from

the previous results. Figure 16 shows that the reversal of social welfare between the OTC

market and the market under a CCP without netting in figure 14 and 15 comes from the

endogenous change in network formation.

4.4. Policy Implications

The results in the previous subsection do not necessarily imply normative implication such

as “introduction of a CCP is always bad.” As we can see clearly from figure 15, the social
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Figure 16: Social Welfare with Exogenous Network

welfare under CCP can be higher than the social welfare under the OTC market depending

on the parameter values. The right way to interpret the results is that there can be an

understudied or rather neglected cost (side-effect) of introducing a mandatory CCP. This

new cost channel, which is a classic moral hazard problem under insurance, is amplified by the

network contagion channels (price and counterparty channels), and the increased correlation

of payoffs26 creates a rather exacerbated externality problem. Therefore, introducing a CCP

should be done after the cost and benefit analysis from pooling and netting. For example,

the CDS market is already highly centralized, and the cost of centralizing such a market

with a CCP could be less than the cost of centralizing well diversified markets with a CCP.

Another more direct regulation to solve for the diversification externality problem could

be introducing a relevant leverage ratio restriction. In Basel III, there is Supplementary

Leverage Ratio (SLR), which is effectively a tax on intermediation activity that is propor-

tional to the size of an intermediary’s balance sheet, defined as follows.

Tier 1 Capital

Total Leverage Exposure
≥ 3%

A slight modification of this ratio, Network Supplementary Leverage Ratio, can be used,

and risk externality is included as weights of degree centrality in the denominator. Such

restrictions provide marginal incentives to diversify and internalize second-order default and

maintain borrower or lender discipline of agents and more effective than a crude measure of

26Note that the correlation problem was mitigated by liquidity holding incentives of each agent in the
OTC market. If there is additional frictional period of liquidity resolution as in Gale and Yorulmazer (2013),
then there could be even more problem.
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single counterparty credit limit.

A supplementary policy is liquidity injection to the agent under distress according to its

impact to the system as in Demange (2016). This injection or bail-out idea also faces side-

effects from moral hazard in terms of network formation (Erol, 2018; Leitner, 2005). Markets

under CCP will have even less ambiguity and uncertainty of such bail-out possibility and

the resulting degree of concentration can be even greater as in the difference between the

figures 14 and 15.

There is one crucial feature of the CCP which is absent in the model – increased trans-

parency the CCP provides by having every trade centralized. The model is deliberately

abstracted from any trading friction that stems from learning from prices and trading be-

havior and agents’ strategic behavior due to information asymmetry. The crucial information

benefits coming from the introduction of a CCP is absent in the model because all of the

agents already have full information. Although this can usually be considered as a benefit

of a CCP, opaqueness can provide benefits in terms of allocative efficiency as in Dang et al.

(2017).

5. Conclusion

I constructed a general equilibrium model with collateral featuring endogenous leverage,

endogenous price, and endogenous network formation. The model bridges the theory of

financial networks and the theory of general equilibrium with collateral. Collateral gener-

ates an additional channel of contagion through asset price risk, the price channel, on top

of the balance sheet risk through the debt network, the counterparty channel. Borrowers

diversify their portfolios of lenders because of the possibility of lender defaults. However,

lower counterparty risk comes at the cost of lower leverage. There are positive externalities

from diversification because it reduces not only the individual counterparty risk, but also the

systemic risk, by limiting the propagation of shocks and resulting price volatility. Because

agents do not internalize these externalities, any decentralized equilibrium is only constrained

inefficient. The key externalities here, arising from the tradeoff between counterparty risk

and leverage, are absent in models with exogenous leverage or exogenous networks. The

model also predicts the empirically observed changes in network structure, leverage (hair-

cuts), asset price, and velocity of collateral during the financial crisis. Greater counterparty

risk induces agents to diversify more, which lowers leverage and the velocity of collateral and

increases the number of links. I performed a counterfactual analysis on the introduction of

a CCP with this model. The loss coverage by CCP exacerbates the externality problems by

eliminating individual agents incentives to diversify. Thus, the endogenous network change
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Securities Derivatives Repos All three

Advanced economies 63.6 72.7 31.8 27.3
Europe 60.0 80.0 40.0 40.0
North America 50.0 50.0 25.0 0.0
Asia-Pacific 75.0 75.0 25.0 25.0

Emerging economies 84.6 76.9 61.5 53.8
Asia 100.0 87.5 87.5 25.0
Latin America 60.0 60.0 20.0 87.5

Total 71.4 74.3 42.9 37.2

Table 2: Product types cleared by CCPs in 2014 (Source: Bank for International
Settlements)

after the introduction of a CCP creates additional systemic risk that exogenous leverage or

exogenous network models do not capture.

A. Appendix

A.1. Institutional Details on Central Clearing

In the aftermath of the Lehman Brother’s collapse, G20 reform of the over-the-counter

(OTC) derivatives market mandated the clearing of standardized derivative contracts by

CCPs. One of the principal risks in the financial system that CCPs seek to address is the

counterparty credit risk. CCPs enable multilateral netting, and an empirical analysis in Cec-

chetti et al. (2009) shows that CCP can reduce gross notional exposures by approximately

90 percent. There are also benefits of transparency from CCPs. In a bilateral market,

parties know their cross exposures to counterparties but they do not know their counter-

parties’ exposures to third parties. The lack of transparency could significantly increase

the systemic risk both by misaligned risk management (Tirole, 2011)—for example, exces-

sive sales of CDS without proper collateral—and the increase in uncertainty. If we consider

the risk from derivative contracts sold to unregulated counterparties, such as foreign finan-

cial institutions, as counterparties, it creates further risk exposures (Cecchetti et al., 2009).

Both private and public sector responses to failures of large financial institutions could be

even more complicated. In addition CCP may decrease transaction costs significantly (Case

et al., 2013). Multilateral netting also reduces collateral requirements as shown in Duffie

et al. (2015). Standardized products by CCPs make it easier to adjust for appropriate mar-

gin calls and allow supervisors to monitor the solvency of CCPs. With the concentrated

counterparty risk to CCPs, the central clearing market usually pools the “default fund”

from all the clearing members or more sophisticated loss-absorbing predetermined contin-
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gent equity resources termed “rights of assessment” which mutualizes the aggregate shock

to all the clearing members. Furthermore, CCPs require initial margins as collateral from

clearing members to recover idiosyncratic counterparty shock, which is usually the operat-

ing cost from novating the contract to another potential buyer or seller of the contract. In

summary, the reduction of counterparty risks through netting, pooling (mutualization), and

orderly distribution of losses are the key differences between trades that are centrally cleared

compared with non-cleared transactions.

However, failure of a large CCP could act as a channel of contagion. CCPs actions may

have ‘procyclical’ effects by adjusting initial margin demands, and strict requirements upon

its members cause limited access to the market to members with adequate financial and

technical resources. Historically, there have been few incidences of CCPs failing, but when

these incidents have happened, the impacts on financial markets have been significant. In

1974, the Caisse de Liquidation failed because of trades put forward by members without

the consent of their clients and high volatility in Paris White Sugar Market, leading to large

margin calls that participants were unable to meet. More recently, the Kuala Lumpur Com-

modity Clearing House failed in 1983 after massive defaults on palm oil contracts following

a market squeeze. The Hong Kong Futures Guarantee Corporation failed in the aftermath

of the stock market crash of 1987, which led to the closure of stock and futures exchanges

in Hong Kong for four days (Rehlon and Nixon, 2013).

Through intermediation of OTC counterparties, CCPs face a great amount of concen-

trated counterparty risk, which make CCPs as systemically important financial institutions.

It might even be the case that a CCP, while solvent, cannot meet immediate demands for the

return of clearing member collateral as well (Singh, 2010). Thus, CCPs demand collateral

(initial margin) from their counterparties. CCPs may decrease the systemic risk by reducing

the impact of a default of bilateral clearing, while they may increase the systemic risk by

increasing margin requirements during financial turmoil, which exacerbates procyclicality.

CCPs may be considered as risk pooling and sharing mechanisms through the mutualization

of the default funds. Hence, central clearing may reduce the overall margin requirements

that are required in bilateral trades (Duffie et al., 2015).

A.2. Proofs

The following lemma is useful for the proofs of the next two results.

Lemma 5. For a given financial network that satisfies collateral constraints, the effective

demand [mj(p)]
+ is increasing in p for any j ∈ N .
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Proof of Lemma 5. It is enough to show that mj(p), which is

ej1 − εj + hj,1 +
∑

k∈N\{j}

cjk min{p, yjk} −
∑

i∈N\{j}

cij min{p, yij} −
∑
i∈B(ε)

ζ(cij)[p− yij]+,

is increasing in p. Since min {yij, p} ≤ p, both min {p, yij} and min {yjk, p} are increasing in

p. For any value of promise ŷ,∑
i∈N\{j}
yij≥ŷ

cij min {yij, p} ≤
∑

k∈N\{j}
yjk≥ŷ

cjk min {yjk, p}+ hj,1

by intermediation order. Therefore, the sum of the payments from other agents will always

exceed the sum of payments that j has to pay to others.27 Also, by ζ(c) ≤ c, the total sum

of coefficients for p will always be nonnegative. For fixed B(ε), each mj(p) is increasing in

p. Therefore, for any p′ < p, B(ε) ⊆ B(ε′) and the indicator function for the bankruptcy

cost is decreasing in p.

Proof of Proposition 1. If p = s, then we automatically have an equilibrium that satisfies

inequality (3) or otherwise p cannot be s. Now suppose p < s. The equilibrium equation

can be represented as

(M, p) =

(
[mj(p)]j∈N ,

∑
i∈N [mi(p)]

+∑
j∈N hj,1

)
≡M[(M, p)].

Consider an ordering � such that (M, p) � (M ′, p′) when M ≥ M ′ and p ≥ p′. Then

an infimum under � can always be defined for any subset of Rn+1. By the assumption

(M(s), s) ≥ M[(M(s), s)]. Since the denominator of the price equation is constant and

h2
i (p) and [mi(p)]

+ are increasing in p by lemma 5, the function M is an order-preserving

function. Then, by Knaster-Tarski’s fixed point theorem, there exists a fixed point (M, p),

and the set of (M, p) that satisfies the equilibrium condition has a maximal point.

Now suppose that the maximal fixed point price p̄ is greater than s, and we will show

that either there exists a price 0 < p ≤ s that is also a fixed point or p = s satisfies

equilibrium condition (3). If equation (2) is true when p = 0, then we already have a

fixed point with p ≤ s. If equation (2) is not true when p = 0, then that implies at

least some mj(0) is positive for j ∈ N after subtracting the counterparty bankruptcy costs.

27This is, in fact, the reason why there is a collateral constraints. It guarantees the agent to have non-
negative amount of cash from all the payments netted out so that they can actually pay the debt at any
price level of the given collateral.
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Therefore,

∑
i∈N [mi(p)]

+∑
j∈N hj,1

≥ 0. This implies that as p increases, the difference between the

p and

∑
i∈N [mi(p)]

+∑
j∈N hj,1

will be eventually closed out at p̄ by intermediate value theorem.

Therefore, the two functions either meet for some p ≤ s, or the gap between them does not

close out even when p = s so equation (3) holds.

Proof of Proposition 2. For the proof, suppress the ε term in bankruptcy sets. If no

agent is going to bankrupt at any price p ∈ [0, s], then the equilibrium price is trivially

and uniquely determined as p = s. Now suppose some agents go bankrupt at a liquidity

constrained price p̃—that is, B(p̃) 6= ∅. Denote Vl as the set of agents such that there is a

link between l and i for any i ∈ Vl. Suppose that l /∈ B(p̃) and Vl ∩ B(p̃) 6= ∅. Thus, at

least at some price close to (or equal to) p̃, the agent l will bear some bankruptcy cost and

may go bankrupt. If there is no agent l that satisfies zl ≡ el1 − εl <
∑

i∈Vl∩B(p̃)

ζ(cil)[p̃ − yil]+

from p̃ = 0 all the way up to s, then B(p) = B(p′) for any p, p′ ∈ [0, s] and in fact there is

unique equilibrium since there will be no jumps in M.

Now suppose that for some price p̃ and some agent l, zl <
∑

i∈Vl∩B(p̃)

ζ(cil)[p̃ − yil]
+ is

satisfied. Then, there exists p∗ less than p (due to monotonicity of ml(p)) such that ∀p′ < p∗,

ml(p
′) < 0 and suppose l be the only one who goes bankrupt due to the price decline from

p to p′ < p∗ without loss of generality. The left-hand side of the market clearing condition,

the sum of effective money, can be decomposed as∑
j∈N

[mj(p)]
+ =

∑
j∈N

ej1 +
∑
j∈N

hj,1p−
∑
j∈N

∑
i∈B(p)

ζ(cij)[p− yij]+

−
∑
j∈N

min

εj, ej1 − ∑
i∈N\{j}

cij min{p, yij} −
∑
i∈B(p)

ζ(cij)[p− yij]+ +
∑
k∈N

cjk min{p, yjk}

 .

Since the term is the same as the supply side of the equation, price is determined by the

remaining cash from t = 0 and the amount of aggregate liquidity shock to the demand,

bounded by its entire position, and the counterparty default costs. We can rewrite the

market clearing condition into loss-coverage with remaining cash equality as

∑
j∈N

ej1 =
∑
i∈B(p)

∑
j∈N

ζ(cij)[p− yij]+ +
∑
j∈N

min

εj, ej1 + hj,1p

−
∑

i∈N\{j}

cij min{p, yij} −
∑
i∈B(p)

ζ(cij)[p− yij]+ +
∑
k∈N

cjk min{p, yjk}


(10)
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Then, there can be a price p̂ such that the additional jump in bankruptcy cost βl(p) ≡∑
j∈N ζ(clj)[p− ylj]+ coincides with the amount of decrease in losses from bankrupt agent’s

endowments and counterparty costs—that is,

βl(p̂) =εl +
∑
j∈B(p)

[∑
i 6=j

(cij − 1{i ∈ B(p)}ζ(cij)) (1 {p > p̂ ≥ yij} (p− p̂)

+1 {p ≥ yij > p̂} (p− yij)) + ζ(clj)[p̂− yij]+

+
∑
k∈N

cjk (1 {yjk > p > p̂} (p− p̂) + 1 {p ≥ yjk > p̂} (yjk − p̂))

]

−

el1 −∑
i 6=l

cil min{p̂, yil} −
∑
i∈B(p)

ζ(cil)[p̂− yil]+ +
∑
k∈N

clk min{p̂, ylk}

 .
(11)

Therefore, p̂ is also an equilibrium price.

Proof of Proposition 3. For a fair price, there exists unique equilibrium price no matter

what happens in shocks and bankruptcies. Now focus on liquidity constrained prices. When

ζ(c) = 0 for any c ≥ 0, equation (10), the market clearing condition with loss-coverage,

becomes

∑
j∈N

ej1 =
∑
j∈N

min

εj, ej1 + hj,1p−
∑

i∈N\{j}

cij min{p, yij}+
∑

k∈N\{j}

cjk min{p, yjk}

 ,

and by intermediation order, the right-hand side is increasing in p. Also the right-hand side

is bounded below by
∑
j∈N

min{εj, ej1}, when p = 0. By intermediate value theorem, there

exists a unique equilibrium price p between [0, s] that satisfies the market clearing condition

above.

For the second statement of the proposition, first note that the nominal wealth with no

lender default cost is

mj(p) = ej1 + hj,1p− εj −
∑

i∈N\{j}

cij min{p, yij}+
∑

k∈N\{j}

cjk min{p, yjk}.
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The sum of nonnegative nominal wealth is∑
j∈N

[mj(p)]
+ =

∑
j∈N

ej1 +
∑
j∈N

hj,1p

−
∑
j∈N

min

εj, ej1 − ∑
i∈N\{j}

cij min{p, yij}+
∑
k∈N

cjk min{p, yjk}

 ,

which can be re-written as the sum of indegrees and outdegrees as below.

∑
j∈N

[mj(p)]
+ =

∑
j∈N

ej1 + nh0p−
∑
j∈N

min

εj, ej1 − ∑
i∈N\{j}

cijxij +
∑
k∈N

cjkxjk

 ,

which will have the same value with a network with∑
i∈N\{j}

cijxij =
∑

i∈N\{j}

ĉijx̂ij∑
k∈N

cjkxjk =
∑
k∈N

ĉjkx̂jk,

so networks (C,X) and (Ĉ, X̂) have the same equilibrium price and final asset holdings.

Proof of Lemma 1. For each agent i ∈ N , the maximum cash he can hold for t = 1 is

by saving all the cash while not lending any cash because borrowing requires collateral and

no arbitrage condition will prevent anyone from making positive cash from borrowing. The

price of the asset at t = 0 cannot exceed the most optimistic agent’s fair value since there is

always a possibility of liquidity constrained underpricing in t = 1. Thus, e0 + h0s
1 is always

the upper bound of the maximum amount of cash each agent can hold by selling all the asset

endowments and not borrowing from or lending to anyone. Since G is differentiable with full

support of [0, ε], any agent can go bankrupt regardless of how much cash they hold in t = 0

because G([e0 + h0s
1, ε]) is positive. Now suppose that agent j has zero cash holdings—that

is, ej1 = 0. Agent j’s nominal wealth depends on asset price p1, which becomes zero if p1 = 0.

By equation (10), this implies that if every other agent i 6= j goes bankrupt because of

liquidity shocks, which happens with probability greater than [G([e0 + h0s
1, ε])]

n−1
, while

agent j is not, which happens with positive conditional probability, the price of the asset

becomes zero while agent j is not bankrupt. Marginal utility of cash in such a state becomes

lim
p1→0

sj

p1

which is infinity. Hence, expected marginal utility of holding cash in t = 0 becomes

infinity as well and agent j would like to hold a positive amount of cash for any j ∈ N . If
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ej1 > 0, then the only state that with infinite marginal utility of cash is when εj = ej1 which

happens with zero probability measure by differentiability of G. Thus, in an equilibrium,

ej1 > 0 for any j ∈ N .

Proof of Lemma 2. The proof is done by contradiction. Suppose that Ej

[
sj

p1

]
≤ Ek

[
sk

p1

]
for j < k. If both j and k are simply holding cash exclusively, then they have the same

cash holdings and it is trivially Ej

[
sj

p1

]
> Ek

[
sk

p1

]
. Therefore, at least agent k should

be investing in something other than cash. Suppose that agent k is borrowing from i and

lending to l. Then her return from this intermediation is

Ek

[
min

{
sk, y′

sk

p1

}
−min

{
sk, y

sk

p1

}
− ζ ′(cik)

[
sk − ys

k

p1

]
1 {i ∈ B(ε)}

]
qk(y′)− qi(y)

=

skEk

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
qk(y′)− qi(y)

= Ek

[
sk

p1

]
.

The last equality holds because the return should be equal to the return from holding cash

because of positive cash holding by lemma 1. Now consider an agent j who deviates from

her equilibrium portfolio decision. Agent j can mimic the investment portfolio of agent k

and obtain the return of

sjEj

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
qk(y′)− qi(y)

≤ Ej

[
sj

p1

]
,

with the last inequality coming from optimality of agent j’s original portfolio decision. In

other words, she would have already done the intermediation more if it exceeded the return

from her cash holdings (which is again positive by lemma 1). If agent j is mimicking k’s

portfolio exactly the same, the two agents will have the same cash holdings and also the

same counterparty risks (or even less if j was the lender). Then, inequalities

Ej

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
≥Ek

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
,
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and sj > sk imply

Ej

[
sj

p1

]
≥
sjEj

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
qk(y′)− qi(y)

>

skEk

[
min

{
1,
y′

p1

}
−min

{
1,
y

p1

}
− ζ ′(cik)

[
1− y

p1

]
1 {i ∈ B(ε)}

]
qk(y′)− qi(y)

= Ek

[
sk

p1

]
,

that is, Ej

[
sj

p1

]
> Ek

[
sk

p1

]
, which contradicts the initial assumption Ej

[
sj

p1

]
≤ Ek

[
sk

p1

]
.

The same method could be applied to any other possible investment strategy of agent k –

lending without leverage or buying the asset with or without leverage. Therefore, Ej

[
sj

p1

]
>

Ek

[
sk

p1

]
holds for any equilibrium.

The following lemma shows that whenever leveraging is profitable for certain investment,

the same leverage makes other investment more profitable than not leveraging.

Lemma 6. Suppose
a− p
b− q

= π =
c− p
d− q

=
e

f
and

a

b
<
a− p
b− q

for a, b, c, d, e, f, p, q, π > 0.

Then,
c

d
≤ c− p
d− q

and
e

f
<
e− p
f − q

.

Proof of Lemma 6. Since
a− p
b− q

= π, a − p = bπ − qπ. By
a

b
<

a− p
b− q

, we obtain

a < bπ. By combining the previous equation and inequality, we have p < qπ. Now suppose

that
c

d
>

c− p
d− q

. Then,
c− p
d− q

= π implies c > dπ. Combining this with p < qπ, we get

c− p
d− q

> π, which is a contradiction. Therefore,
c

d
≤ c− p
d− q

. Similarly, suppose
e

f
≥ e− p
f − q

.

Then, from e = fπ, we obtain e − p ≤ fπ − qπ, which implies qπ ≤ p, which is again a

contradiction. Thus,
e

f
<
e− p
f − q

.

Proof of Lemma 3.

From the return equation (7), we immediately get y′ > y, and qj(y
′) > qi(y) should hold

for agent j’s decision optimality and no arbitrage.28 Similarly, from the positive cash holding

and optimality we know that

q′i(y) =

Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

Ei

[
1

p1

] ,

28No arbitrage prevents the case of y′ < y and qj(y
′) < qi(y).
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which is zero for any y > si. The (semi) partial derivative for agent j’s decision on the

contract promise choice y to agent i is

sjEj

[
−cij
p1

+ ζ(cij)
1

p1

1 {i ∈ B(ε)}
∣∣∣p1 > y

]
Prj(p1 > y) + λcijq

′
i(y)

=sjEj

[
−cij
p1

∣∣∣p1 > y

]
Prj(p1 > y) + sjEj

[
ζ(cij)

1

p1

1 {i ∈ B(ε)}
∣∣∣p1 > y

]
Prj(p1 > y)

+ sjEj

[
1

p1

]
cij

Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

Ei

[
1

p1

] ,

where λ is the Lagrangian multiplier for the budget constraint, λ = sjEj[1/p1], from lemma

1 and envelope theorem. First, if y > si, then the last term is zero. Since cij > ζ(cij),

the first-order derivative (right-semi differential if y = si) is negative for any y > si. Now

consider y ≤ si. Even if the counterparty risk is zero, we can show that the above first-order

derivative is positive by showing the following inequality for any y ≤ si,

Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

Ej

[
1

p1

] <

Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

Ei

[
1

p1

] . (12)

Suppose that the above inequality does not hold—that is,

Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

Ej

[
1

p1

] ≥
Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

Ei

[
1

p1

] . (13)

From lemma 2,

Ej

[
sj

p1

]
=sj

(
Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y) + Ej

[
1

p1

∣∣∣p1 ≤ y

]
Prj(p1 ≤ y)

)
>si

(
Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y) + Ei

[
1

p1

∣∣∣p1 ≤ y

]
Pri(p1 ≤ y)

)
= Ei

[
si

p1

]
,
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which can be rearranged as

1

sj
(
Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y) + Ej

[
1

p1

∣∣∣p1 ≤ y

]
Prj(p1 ≤ y)

)
<

1

si
(
Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y) + Ei

[
1

p1

∣∣∣p1 ≤ y

]
Pri(p1 ≤ y)

) . (14)

By the assumption (13),

sjEj

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

sj
(
Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y) + Ej

[
1

p1

∣∣∣p1 ≤ y

]
Prj(p1 ≤ y)

)

≥
siEi

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

si
(
Ei

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y) + Ei

[
1

p1

∣∣∣p1 ≤ y

]
Pri(p1 ≤ y)

) ,
which implies that

sjEj

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

siEi

[
1

p1

∣∣∣p1 > y

]
Pri(p1 > y)

>

sjEj

[
1

p1

]
siEi

[
1

p1

] .
Since the upper bound for price under agent j’s perspective, sj, is higher than that under

agent i’s perspective, si, previous inequality holds only if Prj(p1 > y) is much larger than

Pri(p1 > y). However, then Pri(p1 ≤ y) > Prj(p1 ≤ y) and 1/p1 is larger when p1 ≤ y than

1/p1 when p1 > y. Therefore,

sjEj

[
1

p1

]
siEi

[
1

p1

] < 1,

which violates (14). Therefore, the assumption (13) is false, and (12) holds, which implies

the first-order derivative (left-semi differential) is positive for any y ≤ si. Hence, agent j

promises si and maximizes her leverage.

In the second part of the lemma, we apply the result from the first part of the lemma

and fix the contracts with promises of expected asset payoffs of the lenders. Suppose agent
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j is borrowing both from i and k with the same probability of bankruptcy and i < k, for the

same amount of contracts—that is, c ≡ cij = cik. The marginal returns from both leveraged

positions for j are

Ri
j ≡

sj

qj(sj)− qi(si)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
si

p1

}
− ζ ′(c)

[
1− si

p1

]+

1 {i ∈ B(ε)}

]

Rk
j ≡

sj

qj(sj)− qk(sk)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
sk

p1

}
− ζ ′(c)

[
1− sk

p1

]+

1 {k ∈ B(ε)}

]

Since q′k is increasing at the left limit of sk and j maximizes over (sk, si) at si, relative increase

in the amount of borrowing (or decrease in down payment) should exceed the relative decrease

in expected payoff at t = 1 under no arbitrage condition. Therefore, agent j prefers to borrow

more from i over k.

Proof of Proposition 4.

By lemmas 3 and 4, agents form a chain of intermediation: Agent 1 borrows from 2, who

borrows from 3, who borrows from 4, and so on. There will be no missing chain because of

lemma 3 and the property of lender cost function ζ—that is, at least some positive amount

of borrowing occurs through the lending chain linking the agents in the order of optimism.

Also, in the equilibrium, qi+1(y) > qi(y) for any y ≤ si+1 for any i ∈ N, i < n. This is true

because, if i can leverage and maximize return for some other contract such as lending to

agent i− 1, then she can also increase her return from lending at y by leveraging from agent

i+ 1 with the same y. Thus, because of the possible counterparty risk, which is positive due

to lemma 3, the marginal return from this intermediation is

−ζ ′(ci+1,i)Ej

[[
1− y

p1

]+

1 {i+ 1 ∈ B(ε)}

]
qi(y)− qi+1(y)

,

and the sign of qi(y)− qi+1(y) should be negative to make the return match agent i’s other

returns29. Hence, all the contract prices are determined by the subsequent lender. In other

words, competitive contract prices for y ∈ [sj+1, sj] are determined by j.

29The inequality of qi(y) < qi+1(y) will be clear in the contract pricing formula (15) as well.
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From equation (8), we have j’s contract pricing formula as follows.

qj(y) = qj+1(sj+1) +

Ej

[
min

{
1,
y

p1

}
−min

{
1,
sj+1

p1

}
− ζ ′(cij)

[
1− sj+1

p1

]+

1 {j+1∈B(ε)}

]

Ej

[
1

p1

] .

(15)

Since qj+1(sj+1) is determined by the perspective of j + 1, the only relevant factor is the

second term. As y increases, the relevant lower bound of price for borrower default increases.

Obviously, sj is the maximum price in j’s perspective, and q′j(y) = 0 at y = sj+—that is, the

right semi-derivative is zero. On the other hand, y = sj+1 provides no additional value and

simply becomes qj(s
j+1) = qj+1(sj+1)− ζ ′(cj+1,j)ωj+1,j(y), and again we find qj(y) < qj+1(y)

at y = sj+1.

Now we compute the derivatives. By Leibniz integral rule, for any y ∈ [sj+1, sj),

q′j(y) =

Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

Ej

[
1

p1

] > 0

q′′(y) = − 1

Ej

[
1

p1

] fj(y)

y
< 0,

where fj is the density function of Fj, which is the distribution function of the asset price

in t = 1 that comes from the convolution of shock distributions. Thus, qj(y) is concavely

increasing in y. Denote κj as the inverse function of qj(y) which is well defined in the domain

of y ∈ [sj+1, sj) since q′j(y) > 0 in the domain and q′j(s
j) = 0. Suppress the subscript for q, κ

for the rest of the proof.

By inverse function theorem of first and second-order derivatives, for any q(y) in the

range of original function, we obtain

κ′(q(y)) =
1

q′(y)
> 0

κ′′(q(y)) = − q′′(y)

(q′(y))3
> 0.

Now denote the gross interest rate function as δ(q) ≡ κ(q)

q
, where q is in the range of q(y).
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The first derivative of the gross interest rate function becomes

δ′(q) =
κ′(q)q − κ(q)

q2
=

q(y)

q′(y)
− y

q(y)2
,

where κ(q) = y. The numerator of the term can be rearranged as q(y) − yq′(y) and this is

positive because

qj(y) = qj+1(sj+1) +

Ej

[
min

{
1,
y

p1

}
−min

{
1,
sj+1

p1

}
− ζ ′(cij)

[
1− sj+1

p1

]+

1 {j+1∈B(ε)}

]

Ej

[
1

p1

]

>

Ej

[
y

p1

∣∣∣p1 > y

]
Prj(p1 > y)

Ej

[
1

p1

] ,

where the last inequality is positive by lemma 6. Therefore, the gross interest rate is increas-

ing in y. The second derivative of the gross interest rate function becomes

δ′′(q) =
1

q4

[
q2 (κ′′(q)q + κ′(q)− κ′(q))− 2q (κ′(q)q − κ(q))

]
,

and the numerator is

κ′′(q)q3 − 2q2κ′(q) + 2qκ(q) = −q′′(y) + 2q(y) [y − q(y)κ′(q(y))]

=
fj(y)/y

Ej

[
1

p1

] − 2q(y) [q(y)/q′(y)− y]

=
fj(y)/y

Ej

[
1

p1

] − 2q(y)

q(y)

Ej

[
1

p1

]
Ej

[
1

p1

∣∣∣p1 > y

]
Prj(p1 > y)

− y

 ,
which is negative because q(y) > yq′(y) as shown previously. Also q(y)/q′(y)− y > 1 implies

the inequality to be trivial, and q(y)/q′(y) − y ≤ 1 also means the first term is negligible

compared to the conditional expectation in q(y) of the second term. Thus, y/q(y) is concavely

increasing in the interval of q(y) ∈ [q(sj+1), q(sj)).

Now we need to check for the kink points and the whole graph. Because q′j(s
j) = 0, δ′j(q)

goes to infinity, that is why q′1(s1) is infinity. A unique property of the pricing of equation
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y

q(y)

0
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Figure 17: Graph of Contract Prices

(8) is that y close to sj+1 will make qj(y) < qj+1(sj+1) coming from the left limit of qj(s
j+1).

Therefore, there are intersections around each point of sj for j ∈ N as can be seen in the

figure 17. Since the borrowers would rather prefer to borrow from low y for higher q(y), the

market price function for q(y) will take the upper envelope of the functions q defined for each

interval (sj+1, sj] for j = 1, 2, . . . , n− 1. Hence, the inverse function of q, κ will have jumps

at each point of q(sj) for j 6= 1, n and the right derivative is greater than the left derivative

of each point. Finally, since the upper envelope of functions q are continuous because above

sj there is a point that borrowers prefer to simply borrow from j at a constant price rate up

to the point that j − 1 becomes the preferred lender when q(y) is greater than or equal to

q(sj). Therefore, both the upper envelope function of market price q(y) is continuous, and

the interest rate function is also continuous.

Proof of Lemma 4. Suppose agent j > 1 is buying the asset while agent 1 is not buying,

then agent 1 will have an even larger amount of cash holdings. If agent 1’s cash holding e1
1

is large, then j’s return of cash is large. Return from the asset purchase for agent j is sj/p0.

By lemma 1, agent j should equate the returns from cash and asset as

sj

p0

= Ej

[
sj

p1

]
.

But then,
sj

p0

<
s1

p0

< E1

[
s1

p1

]
. Agent j can sell the asset lower than the market price to

agent 1 and accumulate more cash because of the gap between the two returns. This implies
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agent j would rather sell her asset to agent 1 and both make profitable trades. The same

inference can be done with levered purchases, as both agents can do the same borrowing from

the same set of lenders and simply change the price as the down payment such as p0− q(si).
The second statement holds with the similar argument as the problem becomes isomorphic

by substituting the asset with the promise of s2 (which is coming from lemma 3) from agent

1 and so forth.

Proof of Proposition 5. By lemma 3, fix the equilibrium contract matrix Y as yij = si

for any i > j. From the contract pricing equation from equation (8),

qj(s
j)− qj+1(sj+1) =

Ej

[
min

{
1,
sj

p1

}
−min

{
1,
sj+1

p1

}
− ζ ′(cj+1,j)

[
1− sj+1

p1

]+

1 {j+1∈B(ε)}

]

Ej

[
1

p1

]

=

Ej

[
1−min

{
1,
sj+1

p1

}
− ζ ′(cj+1,j)

[
1− sj+1

p1

]+

1 {j+1∈B(ε)}

]

Ej

[
1

p1

] .

Agent j makes a positive return out of this margin purchase only if p1 > sj+1. The denomi-

nator of the equation is

Ej

[
1

p1

]
=

∫
1

p1

dGΣ(ε),

while the numerator without the counterparty risk becomes

Ej

[
1−min

{
1,
sj+1

p1

}]
=

∫
p1>sj+1

p1 − sj+1

p1

dGΣ(ε).

As j decreases—that is, becomes more optimistic agent—the probability of p1 > sj+1 be-

comes smaller as agents agree upon the distribution of liquidity shocks and underpricing.

Also the maximum return from the leveraged purchase
sj − sj+1

sj
is (weakly) increasing with
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j as well because the belief is harmonically dispersed and

sjsj+2 ≤ (sj+1)2

sjsj+1 + sjsj+2 ≤ sjsj+1 + (sj+1)2

sjsj+1 − (sj+1)2 ≤ sjsj+1 − sjsj+2

sj − sj+1

sj
≤ sj+1 − sj+2

sj+1
.

Each agent’s cash holding becomes

ej1 = e0 + h0q1(s1)−
(
qj(s

j)− qj+1(sj+1)
)
c

for all j ∈ N where q(sn+1) = 0. Difference of cash holdings between agent j and j + 1 is

ej1 − e
j+1
1 =

(
qj+1(sj+1)− qj+2(sj+2)

)
−
(
qj(s

j)− qj+1(sj+1)
)
> 0

for any j < n, so e1
1 > e2

1 > · · · > en1 .

The following lemma characterizes the properties of the inverse of equilibrium price,

especially with respect to indegree of the bankrupt agents. It will be used to prove proposition

6.

Lemma 7 (Convexity of Inverse Price). Consider a class of debt networks

(N,C, Y, e1, h1, ε, s, ζ) with C > 0 that is under intermediation order. Suppose that j ∈ B(ε).

Then, the inverse of the asset price
1

p
is convexly decreasing in cij and convexly increasing

in cjk for any i and k in N . The convexity of inverse of the price with respect to cij and cjk

is strict up to the point p = yij and p = yjk, respectively.

Proof of Lemma 7.

For prices p = s and p = 0, the result is trivially true. Now consider the intermediate

case of p = π(p). Recall that

1

p
=

∑
j∈B(ε)

∑
k∈N
p<yjk

cjk −
∑

j∈B(ε)

∑
i 6=j
p<yij

cij

∑
i/∈B(ε)

(ei1 − εi) +
∑

j∈B(ε)

∑
i 6=j

p≥yij

cijyij −
∑

j∈B(ε)

∑
k∈N
p≥yjk

cjkyjk −
∑

j∈B(ε)

∑
k/∈B(ε)
p≥yjk

ζ(cjk)
.

Denote
1

p
=

(num)

(den)
. Suppose j ∈ B(ε) and we differentiate the inverse price with respect to
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cij, which will become

∂(1/p)

∂cij
=


− 1

(den)
< 0 , if p < yij and i /∈ B(ε)

−(num)yij
(den)2

< 0 , if p ≥ yij and i /∈ B(ε)

0 , if i ∈ B(ε),

and differentiating with respect to cij once more gives

∂2(1/p)

∂c2
ij

=


0 , if p < yij or i ∈ B(ε)

2
(num)y2

ij

(den)3
> 0 , if p ≥ yij and i /∈ B(ε).

Thus,
1

p
is convexly decreasing in cij with strict convexity up to the point p = yij. Now

differentiate inverse price with respect to lending of bankrupt agent j, cjk.

∂(1/p)

∂cjk
=



1

(den)
> 0 , if p < yjk and i /∈ B(ε)\{j}

(num)(yjk + ζ ′(cjk))

(den)2
> 0 , if p ≥ yjk and i /∈ B(ε)\{j}

0 , if i ∈ B(ε)\{j}

The second derivative becomes zero for the case of p < yjk and i ∈ B(ε)\{j}. In the case of

p ≥ yjk and i /∈ B(ε)\{j}, the numerator of the second derivative becomes

(den)2(num)ζ ′′(cjk) + 2(den) (yjk + ζ ′(cjk))
2
,

which is again positive. Therefore, the inverse of price is convexly increasing in indegree and

strict convexity holds up to the point p = yjk.

The following lemma is also used to prove proposition 6.

Lemma 8 (Counterparty Risk Order). For any network equilibrium and any agent j ∈ N ,

ζ(cij)ωij ≥ ζ(ckj)ωkj for any j < i < k.

Proof of Lemma 8. If cij > 0 and ckj = 0 or cij = ckj = 0, then the result holds trivially.

Suppose that cij > 0 and ckj > 0. Consider the return equations. For cij = ckj = c, Ri
j > Rk

j
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as shown in lemma 3 where

Ri
j ≡

sj

qj(sj)− qi(si)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
si

p1

}
− ζ ′(c)

[
1− si

p1

]+

1 {i ∈ B(ε)}

]

Rk
j ≡

sj

qj(sj)− qk(sk)
Ej

[
min

{
1,
sj

p1

}
−min

{
1,
sk

p1

}
− ζ ′(c)

[
1− sk

p1

]+

1 {k ∈ B(ε)}

]

and agent j will borrow more from i and cij will increase. In other words, agent j has the

higher return when she borrows from the more optimistic lender, agent i. Agent k should

have lower counterparty risk in the persepctive of agent j in order to make the indifference

condition Ri
j = Rk

j hold. Therefore, ζ(cij)ωij ≥ ζ(ckj)ωkj for j < i < k in any network

equilibrium.

Proof of Proposition 6. Since every belief is bounded above by sj for each j ∈ N , a

decrease in expectation of p1 and an increase in the expected sum of default costs implies

an increase in volatility. Suppose that (s, ε) is realized and j ∈ B(ε), which happens with

positive probability because of the distribution of εj. By lemma 7, cij convexly decreases

the inverse price, and cjk convexly increases the inverse price for i, k ∈ N . By lemma 3,

the debt network is under intermediation order. Also from the proof of lemma 7 and the

intermediation order, the slope from cjk dominates the slope from cij. Thus, any inverse of

price p1 ≥ yij will be convexly increasing in cjk.

Suppose that C∗ is uniformly less indebted than C. Holding the bankruptcy state realiza-

tions the same, this decrease in debt decreases volatility directly from the previous argument

of lemma 7 for each realization of (s, ε) involving bankruptcy will have a smaller impact on

increase in inverse price and price decline. Also the decrease will generate fewer states of

bankruptcy as every agent becomes less susceptible to price as in the wealth equation

mj(p) = ej1 − εj −
∑

i∈N\{j}

cij min{p, yij} −
∑
i∈B(ε)

ζ(cij)[p− yij]+ +
∑
k∈N

cjk min{p, yjk},

which has smaller coefficients on prices and also the bankruptcy of lenders have smaller

impact and less second-order bankruptcy will occur for the same state realizations.

Now, suppose that C∗ is a diversification of j from C. From the application of lemma

7 in the beginning, the direct price effect from diversification is always positive, and the

states that incur bankruptcy are fewer by lemma 5. In order to consider the effect from the

counterparty channel, consider the simplest case of three agents, 1, 2, and 3, in a network.

Suppose agent 1 is borrowing more from agent 2 than from agent 3—that is, c21 > c31. By

diversification of agent 1, ζ(c∗21) + ζ(c∗31) < ζ(c21) + ζ(c31) by convexity of ζ. Also, agent 2
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has less collateral from agent 1 to reuse. Lower collateral makes agent 2’s borrowing from

agent 3 less, so c32 ≥ c∗32 because of collateral constraint. Even though agent 1’s promise

becomes smaller by y21 > y31, which implies that it is more susceptible to lender bankruptcy,

the reduction of rehypothecation means the susceptibility is only replaced by the identity of

the agent, from 2 to 1.

The only case left is that diversification happens, and it does not affect any change in

intermediation—that is, the rehypothecation constraint is not binding. Now the conditions

are

ζ(c21) > ζ(c31)

ζ(c∗21) > ζ(c∗31)

ζ(c21)ω21 > ζ(c31)ω31

ζ(c∗21)ω21 > ζ(c∗31)ω31

ζ(c21) + ζ(c31) > ζ(c∗21) + ζ(c∗31)

ζ(c21) > ζ(c∗21)

ζ(c31) < ζ(c∗31),

with 0 ≤ ω21, ω31 < 1, where the third and fourth inequalities come from lemma 8 and the

condition of diversification. By rearranging the inequalities, we obtain

ζ(c21)ω21 + ζ(c31)ω31 > ζ(c∗21)ω21 + ζ(c∗31)ω31.

Thus, the expected default cost is lower under diversification. Also, even the bankruptcy

probability change goes in the same direction. By the distributional assumption on G and

because the second-order bankruptcy of agent 2 is now even more likely when agent 3 is

bankrupt, ω21|C∗ − ω21|C > ω31|C∗ − ω31|C . Thus,

ζ(c21)ω21|C + ζ(c31)ω31|C > ζ(c∗21)ω21|C∗ + ζ(c∗31)ω31|C∗ ,

and the increased case of greater default cost from 3 is dominated by the decrease of de-

fault cost from a more likely occurrence of agent 2’s bankruptcy. Thus, the counterparty

channel also decreases the aggregate expected deadweight loss and increases expected price.

Therefore, diversification in this case decreases aggregate expected deadweight loss, increases

expected price, and decreases volatility.

Finally, we can extend this argument of three agents to any general number of agents.

For any j ∈ N , cLjj > c∗Ljj
while keeping

∑
i∈N\{j} cij =

∑
i∈N\{j} c

∗
ij implies there is an

72

 Electronic copy available at: https://ssrn.com/abstract=3468267 



agent i > Lj such that cij < c∗ij. Using the same argument for agent 1, 2, and 3 on

agent j, Lj, and i will provide the same result. If agent j is diversifying even further, then

that will divide cLjj into even further diversification, and convexity will make it an even

lower aggregate expected default cost. Thus, any diversification increases expected price

and decreases aggregate expected default cost and volatility.

Proof of Theorem 1. The first and second properties come directly from proposition 4

and lemmas 3 and 4. The third property comes from the indifference equation for borrower

j, who has to be indifferent between borrowing cash from i and k if j is borrowing from the

two in a positive amount. The fourth property is again derived from lemma 4, and the fifth

property is simply from the budget constraint and contract prices.

Now we show that an equilibrium that satisfies those properties exists. Define Z ≡ C ◦Y .

Consider a class of networks Z such that every Z ∈ Z satisfies the intermediation order for

fixed Y s.t. yij = si for any i, j ∈ N . Now use the matrix order to compare the total amount

of promises—that is, Z > Z ′ implies Zij ≥ Z ′ij for all i, j ∈ N and at least one element has

strict inequality. Similarly, Z ≥ Z ′ can be defined allowing equality for every entry. Note

that this ordering is only a partial ordering among Z. There can be networks Z,Z ′ ∈ Z
with neither Z ≥ Z ′ nor Z ′ ≥ Z is true. However, (Z,≥) forms a complete lattice, because

for any subset Z ′ ⊆ Z, the least upper bound Z with Zij = sup
Z∈Z′

Zij and the greatest upper

bound Z with Zij = inf
Z∈Z′

Zij exist because each element is from a subset of Euclidean space.

Fix the norm ‖·‖ of matrices as the Frobenius norm (or any other Lp,q norm with p, q ≥ 1).

If ‖Z‖ increases, then there is more aggregate borrowing in the economy which generates

greater probability of bankruptcy and default costs as shown by proposition 6.

Let V : Z → Z be a function from network to network—that is, given the price and

counterparty risk distribution of the first network in t = 1, V generates the agents’ optimal

network formation decisions as best responses. Now I show that V is monotonous in (Z,≥).

Let Z be the network with ‖Z‖ = 0—that is, no risk of counterparty bankruptcy and

dispersion of cash holdings. Under Z, return from cash holding is minimized by lemma

7 in the proof of proposition 6. By intermediation order, V (Z) ≤ Z where Z denotes

the maximum leverage network—that is, the single-chain network with full borrowing as

defined in the proof of proposition 5. Similarly, V (Z) ≥ Z because of the zero lower bound.

Therefore, the range of V is compact.

Since the network is under intermediation order, lemma 3 and proposition 6 imply that

Z ∈ Z with a large ‖Z‖ has a lower degree of diversification and larger average default

costs relative to Z ′ ∈ Z with lower ‖Z ′‖. Then, an increase in ‖Z‖ has two effects to the

return calculation. First, it increases counterparty exposure ωij(Z) and the default cost,
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which implies Ej [1{i ∈ B(ε)}], and βi(p1) increase for each i, j,∈ N . Second, the state

in which the liquidity is constrained is exactly the state in which the optimists are under

liquidity shock—that is, when they would have really wanted to have additional liquidity.

The marginal value of cash in such a state is even greater. Thus, p1 is lower and more volatile

under higher Z ∈ Z by lemma 7. Then, the return on cash Ej[s
j/p1] becomes greater for

each j ∈ N under greater Z,—that is, the return of cash holding is greater, and the agent’s

return on leverage goes down. Thus, any increase in Z (under the two possible directions

restricted by intermediation order) will make the optimal response to the given distribution

of Z to be lowering ‖Z‖. In other words, a large Z makes the agents diversify or reduce

borrowing or lending in general. The equilibrium portfolio decision holds as

Ej[1/p1] =
sj

q(sj)− q(si)
Ej

[
1−min

{
1,
si

p1

}
− ζ ′(cij)

p1

1

[
1 >

si

p1

]
1 {i ∈ B(ε)}

]
=

sj

q(sj)− q(sk)
Ej

[
1−min

{
1,
sk

p1

}
− ζ ′(ckj)

p1

1

[
1 >

sk

p1

]
1 {k ∈ B(ε)}

]
,

as in the proof of lemma 3, and the equality condition holds only at a greater diversification

or lower overall collateral exposure. Thus, V (Z) decreases as Z increases. Then, V is a

monotonic function on a complete lattice, and there exists a fixed point network Z∗ such

that Z∗ = V (Z∗) by the Knaster-Tarski fixed point theorem. Therefore, there exists a

network equilibrium, and the set of equilibria is also a complete lattice.

Now the rest of the proof is simply applying the results and q(y) from proposition 4 into

market clearing conditions. Combining lemmas 1 and 4 with lemma 3, we can conclude

that q(s1) = p0. Also, the nominal wealth are determined by the combination of budget

constraints and market clearing conditions.

Proof of Theorem 2. As discussed in the description

∂

∂cik

∑
j∈N

Ej

[
mj(ε)

sj

p1(ε)

]
6= ∂

∂cik
Ej

[
mj(ε)

sj

p1(ε)

]

and due to counterparty externality and price externality being positive coming from the

arguments in proposition 6, the direction of inefficiency is coming from under-diversification.

Proof of Proposition 7.

1. Suppose that si increases to si + η for every i ∈ N . As shown in proposition 4, q(y) is

increasing in y for any y ∈ [si, si + η] and q′(y) < 1 by the lower bound of y in the numerator.
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By equation (8), the function for contract price becomes

q(y) = q(sj+1) +

Ej

[
min

{
1,
y

p1

}
−min

{
1,
sj+1

p1

}
− ζ ′(cj+1,j)

[
1− sj+1

p1

]+

1 {j+1∈B(ε)}

]

Ej

[
1

p1

] .

Any change in the terms related to q(sj) has a direct effect of increase in q(si) in linear terms

for any i < j by the recursive equation

q(si) = q(sj) +

j−1∑
k=i+1

Ek

[
1−min

{
1,
sk+1

p1

}
− ζ ′(ck+1,k)

[
1− sk+1

p1

]+

1 {k+1∈B(ε)}

]

Ek

[
1

p1

] .

As in the argument in the proof of proposition 4, for any agent k < j, prices relevant to

cashflow of the leveraged contracts are bounded below by the subject belief of the lender

k + 1, sk+1 as in

skEk

[
1−min

{
1,
sk+1

p1

}
− ζ ′(ck+1,k)

[
1− sk+1

p1

]+

1 {k + 1 ∈ B(ε)}

]
.

However, the return from cash holdings, skEk [1/p1] is not bounded by any prices. The ratio

between the changes of the two terms is increasing in k as the lower bound of the price

distribution becomes smaller—that is,

∆Ek

[
1−min

{
1,
sk+1

p1

}
− ζ ′(ck+1,k)

[
1− sk+1

p1

]+

1 {k + 1 ∈ B(ε)}

]

∆Ek

[
1

p1

]

<

∆Ek+1

[
1−min

{
1,
sk+2

p1

}
− ζ ′(ck+2,k+1)

[
1− sk+2

p1

]+

1 {k + 2 ∈ B(ε)}

]

∆Ek+1

[
1

p1

] .

Thus, a direct increase in si dominates the changes in the denominator and in the expecta-
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tions of the return equation

Ri+1
i ≡ si

q(si)− q(si+1)
Ei+1

[
min

{
1,
si

p1

}
−min

{
1,
si+1

p1

}
− ζ ′(c)

[
1− si+1

p1

]+

1 {i+1∈B(ε)}

]
.

Hence, higher counterparty risk can be justified as the leverage return for agent i increases.

Agent i will increase ci+1,i more, which implies fewer links (intensively and extensively), if i

was diversifying. Also, the velocity of collateral (weakly) increases by the increase in ci+1,i

as well as relaxing collateral constraints for the subsequent agents i+ 1, i+ 2, . . . , n.

Also changes in q(sj) have indirect effects by the induced borrowing pattern, changing the

relative distribution of prices Fi for given liquidity shocks ε and the return on cash holdings

Ei

[
si

p1

]
as well as changing the probability of bankruptcy of the lenders. First, there will be a

change in price distribution of p̃1, which influences both the denominator and the numerator

of equation (8). The increase in agents’ debts will increase the price volatility by proposition

6. The effect from the indirect increase in bankruptcy probability is confined by the increase

in Ek

[
sk

p1

]
, because now the underpricing is more likely due to the increase in sk. And

the increase in second-order bankruptcy probability Gi ([ζ(ci+1,i), ζ(ĉi+1,i)] |i+ 1 ∈ B(ε)) is

always lower than the increase in first-order bankruptcy probability, which is taken into

account by agent i. Thus, the direct effect Ek

[
min{1, η

p1

}
]
/Ek

[
1

p1

]
always dominates the

indirect effect. Hence, q(si) and leverage increase, and Rj
i increases for all i < j, which

implies the velocity of collateral increases.

The last thing to check is whether the change will affect the agents with beliefs below

agent i. Note that the increase in clk for any k, l ≤ j does not affect the expected sum of

lender default costs of each agent in {j+1, j+2, . . . , n}, because any promise between agents

k, l ≤ j is going to be defaulted no matter what in their perspective of the upper bound

of the asset price sj+1 > sj+2 > · · · > sn. Thus, the debt amount or even the change in

price distribution is irrelevant to these pessimistic agents. The only change for them comes

from the increase in asset price p0 = q(s1) that increases their nominal value of endowments

which incentivizes them to increase borrowing and increase the reuse of collateral—that is,

the velocity of collateral.

2. Suppose θj decreases by η for all j ∈ N . Then Ri+1
i increases again because of the

lower probability of default costs and ci+1,i increases. The rest of the argument goes the

same as in the previous case. In this case, it is even more simple because there is a reduction

of counterparty risk in every link that offsets the indirect change.

Proof of Proposition 8. From equation 9, an individual agent does not care about the
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terms of γ and
m0(ε|p1)∑

i∈N 1 {i /∈ B(ε)}
, since they are determined by the macro variables and

the agent considers herself as a price-taker. Under the case of 1 and 2, the term ωij equals

to zero for any i, j ∈ N . Therefore, each agent does not have any incentive to diversify and

lower leverage and will maximize their leverage. The equilibrium network under CCP has a

collateral matrix Cccp, which has a greater debt than the debt of decentralized equilibrium

network C, by being more indebted (the opposite of less indebted) and less diversified (the

opposite of diversification) maximizing concentration of the network. By proposition 6, this

equilibrium network maximizes the systemic risk by maximizing the sum of expected default

costs. Even if γ is not large and CCP can go bankrupt in some states, agent j’s perceived

risk of borrowing from agent i,

Ej
[
[1− yij/p1]+1 {0 ∈ B(ε) & i ∈ B(ε)}

]
is always smaller than

ωij = Ej
[
[1− yij/p1]+1 {i ∈ B(ε)}

]
under decentralized equilibrium, and the debt of the network becomes larger either by more

indebted or less diversification. As argued in the proof of theorem 2, the positive externality

becomes even less incorporated into the agent’s individual decisionmaking, and the systemic

risk is always greater under Cccp than the systemic risk under C.

Proof of Proposition 10. Suppose only one contract y is available in the market. As

in lemma 4, agent 1 will buy the asset and borrow cash from agents who has sj ≥ y with

equal weights as diversification. If agent 1’s endowment e0 is not enough to purchase all

the assets with the downpayment, then agent 2 also joins the buyer side and borrows from

another pool of lenders. This can be repetitively done for agent 3, 4, and so forth. Similarly,

if the demand for cash is too high, then the price of the contract q(y) will decrease, and

even agents with sj < y can become a lender, similar to the argument in lemma 4. Since the

maximization problem and the budget constraints with down payments are all monotone,

there is always an equilibrium. The resulting network becomes a complete bi-partite network

for the given component of market participants. Since agents have no tradeoff between

choice of counterparties and choice of leverage, they have no incentives to change their

network formation behavior even after eliminating the counterparty risk concerns ωij for

each i, j ∈ N . Since all the walks in the network have a length of 1, there will be no effect

from netting as well.
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