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Abstract

In this article, we construct a portfolio of commodity futures which mimics the
Dow Jones Commodity Index and perform an extensive stress testing exercise
with a focus on hybrid scenarios. The increased volume of investments in com-
modities as �nancial instruments over the last decades underline the importance
of a more thorough framework for stress testing of related portfolios. Our study
is the �rst to show comparatively the marginal impact of the model choice for
portfolio components versus the marginal role of tail dependence on the portfolio
pro�t and loss in stress testing exercises. We model the distribution of returns
of portfolio components with an asymmetric AR-GARCH model combined with
Extreme Value Theory for extreme tails, and employ multivariate copula func-
tions to model the time-varying joint dependence structure. Our study reveals
that indeed, for a realistic stress test, a special attention should be given to
the tail risk in individual commodity returns as well as to tail correlations. We
also draw conclusions about parameter risk persistent in stress testing exercises.
Finally yet importantly, in line with Basel IIIb, the study highlights the impor-
tance of using forward-looking hybrid and hypothetical scenarios over historical
scenarios.

Keywords: stress testing, commodity futures, risk measures, extreme value
theory, copula functions

1. Introduction

Financial investments in commodities have grown rapidly over the last decades
and became an important asset in portfolios of institutional investors such as
pension funds, insurance companies, and hedge funds. The risk associated with
weather, storage etc. led to the rise of commodity indices in the early 2000s, pro-
viding a hedge opportunity for commodity producers. The volumes of exchange-
traded derivatives became 20 to 30 times higher than the physical production
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of many commodities ([33]; [32]). The vivid interest in this asset class might
be attributed to the perceived opinion that commodities show low correlation
with traditional assets, and thus, provide diversi�cation bene�ts in a mixed-asset
portfolio ([13]; [23]; [32]). The empirical analyses in [33] and [17] show increased
integration of commodity and �nancial markets, with higher correlation, espe-
cially in bearish times [16]. In ref. [37] it is shown that the increasing presence
of index investors has exposed commodity prices to market-wide shocks, such
as shocks to the world equity index, the US dollar exchange rate, and shocks to
other commodities, such as oil. Furthermore, [1] show that the risk spillovers to
commodities observed during the �nancial crisis were persistent over time and
the volatility in commodity markets increased during the past decade [37, 7].
These changes in commodity characteristics are often referred to as the �nan-
cialization of commodity markets [15] and lead to the need for an approach to
measure and manage the associated risks in related �nancial investments.

A common tool for risk management is stress testing. European Banking
Authority [21, p.28] points out in their new guidelines under development that
,,Institutions should ensure that the scenario analysis is a core part of their
stress testing programme". Implementing stress testing is now mandatory for
banks, due to regulations from Basel III formed in the post crisis environment
[9].

An example in this sense is the study of [24] which analyses existing risk mod-
els for stress testing purposes. The study presents a semi-parametric copula-
GARCH risk model for equity indices, exchange rates and commodity prices, to
perform stress testing on hypothetical portfolios, where the marginal distribu-
tions of returns are speci�ed using EVT. Results show that di�erent risk models
produce signi�cantly di�erent results in terms of corresponding stress scenarios
and impact on the portfolios.

The analysis in [32] is to our knowledge the only example of stress testing
methodology applied to a portfolio of commodities which takes into account
speci�c events that impacted this class of assets over time. It shows the impor-
tance of using forward-looking scenarios to enable the simulations of extreme
quantiles, providing a better understanding of risk.

In this article, we apply stress testing techniques in line with the regula-
tory requirements from Basel III ([10]; [11]; [12]) to a portfolio of commodity
futures. The existing literature on stress testing of commodity portfolios is
scarce, despite their popularity gained in practice. We update the analysis in
[32], keeping the same procedure for constructing the stress portfolio as in the
original study. However, we innovate in several directions. We extend the data
set by including several new historical shocks, among which the oil price drop
in 2014. Secondly, we enrich the spectrum of stress testing scenarios, focusing
more on the forward-looking ones. The analysis in [32] is limited to show the
e�ects of a reoccurring �nancial crisis on the portfolio pro�t and loss. Our study
shows the importance of combining historical estimations of model parameters
with more 
exible forward-looking scenario construction. Furthermore, this is
the �rst study in the literature where we disentangle the e�ect of individual
model components on the portfolio pro�t and loss.
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For our portfolio construction we mimic the dynamics of Dow Jones Com-
modity Index. The DJCI is a broad commodity index consisting of 24 commodi-
ties in three major sectors: energy, metals and agriculture & livestocks. The
weights are based on the traded volume, ensuring a liquid index.

For the marginal distributions of commodity returns, we use an asymmetric
AR-GARCH process and model the tails by Extreme Value Theory. We further
describe the joint dynamics of portfolio components by employing a copula
function. Finally, we simulate the portfolio pro�t and loss distributions under
di�erent scenarios in a stress testing framework.

Our results are twofold. First we �nd that the simulated pro�t and loss
distribution of the portfolio is highly sensitive to the choice of the modelling
approach for the marginal distribution of portfolio components. In particular,
a correct identi�cation of tail risk is of great importance for the stress testing
purpose. The marginal role of correlations/dependence structure among portfo-
lio components seems, however, to have a less obvious impact for the stress test
results. Secondly, we �nd the construction of hybrid scenarios to be a relevant
tool to combine both historical information and the 
exibility of forward looking
approaches in line with the requirements from Basel III [9].

The remainder of this article is structured as follows. Section 2 o�ers an
overview of the most relevant literature for our study. In Section 3 we will pro-
vide an introduction of our data, focusing on the characteristics of the portfolio.
In Section 4 we show the theoretical background of the di�erent methodologies
applied. Section 5 shows details of the implementation of the methodology for
our data set and of the simulation procedure. Finally, in Section 6 we will
explain and apply stress testing and display our analysis.

2. Review of literature on stress testing

2.1. Regulatory requirements for Stress testing

As de�ned in [27], stress testing is a risk management tool used to evaluate
the potential impact on portfolio values of unlikely, although plausible events or
movements in a set of �nancial variables. The recent �nancial crisis led the at-
tention of banks and authorities to the insu�cient methods of risk management
and the need for more accurate stress testing became obvious, since �nancial
institutions were not prepared to deal with the crisis. One main concern was
that the scenario selection and simulation were carried out by separate units
for each business line and for particular risk types [9]. This indicates that the
stress testing was isolated and did not provide a complete picture on the �rm
level.

Seemingly the most recent development in the methodology for stress test-
ing of portfolios is the use of Extreme Value Theory (EVT) and copulas as
input to the analysis. EVT was �rst introduced in [19] to better model the tail
distribution of risk factors. Extreme Value Theory focuses on shaping the tails
rather than the whole distribution of returns, providing more rigorous estimates
of risk for �nancial portfolios. In [28] the authors suggested using a combina-
tion of GARCH and EVT. This methodology is popular in recent literature,
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with the largest proportion of new studies focusing on stock markets or single
commodities [22, 26, 39, 2].

2.2. Types of Stress tests

Stress tests can be conducted with several methodologies. One can �rstly
di�erentiate between univariate and multivariate stress tests. Univariate stress
tests aim at identifying the isolated in
uence of stressing or shocking one single
risk factor of a portfolio [2, p. 4]. This makes the univariate stress tests simple
to apply, but very limited, since they do not take dependencies between the
returns of portfolio components into account. Multivariate stress tests overcome
this drawback. In [9] we �nd a classi�cation of stress test methodologies for
�nancial institutions. One can consider di�erent scenarios when running stress
tests, historical, hypothetical and hybrid. The need for hypothetical scenarios
was highlighted after the crisis, since risk managers mostly performed historical
stress testing under Basel II [8]. The European Banking Authority [21, p.28]
pointed out that "the design of stress test scenarios should not only be based on
historical events, but should also consider hypothetical scenarios, also based on
non-historical events". Forward-looking scenarios are now required for European
banks according to [9]. In [2] the authors propose an extensive framework for
complex stress testing for portfolios of futures that is in agreement with the
regulations from Basel III formed in the post crisis environment.

2.2.1. Historical Scenario

Historical scenarios are based on actual, realised data stemming from a his-
torical episode of �nancial stress. This makes them realistic and easy to access.
The pro�t and loss distribution in the historical scenario is simply given by the
realised empirical distributions. In ref. [27] it is pointed out that historical
scenarios are developed more fully than other scenarios since they re
ect an ac-
tual stressed market environment that can be studied in great detail, therefore
requiring fewer judgements by risk managers.

One major drawback with historical scenarios is the assumption that passed
�nancial crises will reoccur with the same consequences on portfolio losses. This
makes them unable to capture risks linked to new products that may have
signi�cant impact on the outcome of a crisis. The worst observed loss in the
past might not re
ect the worst possible outcome in the future. This drawback
was proven to be essential in the �nancial crisis of 2007 and resulted in the
underestimation of the risk level and interaction between risks [9, p. 5].

Another drawback in historical scenarios is the sample size. Due to the lim-
ited number of observations, computing risk metrics in the higher con�dence
levels becomes problematic. This is a considerable drawback as the most ex-
treme losses are of great interest in stress testing exercises.

2.2.2. Hypothetical Scenario

Hypothetical scenarios are, unlike the historical scenarios, forward looking.
Scenarios can be constructed in multiple ways, for example by shocking model
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parameters arbitrarily, based on own experiences of market movements. Hypo-
thetical scenarios have the advantage of being more 
exible and forward looking,
making them more informative if conducted correctly. More focus on hypothet-
ical stress testing scenarios allows the institution to be both well prepared for
potential extreme unexpected outcomes, and lay the foundation to overcome
these potential losses.

An extensive analysis has to be in place before constructing hypothetical
scenarios, which can be both time consuming and di�cult. In Basel Committee
on Banking Supervision [9, p. 5] it is pointed out that banks had implemented
hypothetical scenarios prior to the �nancial crisis, but it was di�cult for risk
managers to obtain the support of the senior management, since the scenarios
were extreme or innovative, and often were considered as implausible. Extremes
that have not yet been experienced are often di�cult to imagine and to be taken
seriously.

In the �nancial regulatory frame from /citestresstestingbanks2018 we note
that during stress testing exercises consideration should be given to both his-
torical and hypothetical events. This is to take into account new information
and emerging risks in the foreseeable future. Furthermore, \when conducting
stress tests it is important to be aware of the limitations of the scenarios (BIS
2018, p.4). This also emphasizes the need to use several scenarios for a more
correct result."

2.2.3. Hybrid Scenario

Hybrid scenarios combine the knowledge found in historical scenarios with
the 
exibility of hypothetical scenarios, making them a suitable alternative in
stress testing. Hybrid scenarios are also easier to implement than more extensive
forward-looking scenarios, as they are anchored in actual experienced market
conditions. Hybrid scenarios are constructed by using historical data during
times of �nancial distress to calibrate the process of risk factor evolution, but
allow extrapolation beyond experienced events.

Even though hybrid scenarios allow the construction of new possible sce-
narios, they are still somewhat backward looking in the sense that they do not
fully explore the risk of shifting market conditions or risk associated with new
products. However, [27] points out that risk managers always face a trade-o�
between scenario realism and comprehensibility; that is, more fully developed
scenarios generate results that are more di�cult to interpret. The bene�ts from
implementing hybrid scenarios should not be neglected as they balance this
trade-o�.

3. Data selection and description

3.1. Choice of commodity indices

Commodity indices have become quite popular in the last decades and sev-
eral commodity indices have been developed, among which S&P Goldman Sachs
Commodity Index (S&P GSCI) and the Dow Jones Commodity Index (DJCI).
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The S&P GSCI consists of 24 commodities and the weights are based on
trading volume. It is therefore often seen as a benchmark for investment per-
formance in commodities. The trading volume in energy commodities is higher
than any other commodity sector so this index is heavily based in energy (60%
of the total weight in 2017 [36]). To get a more balanced portfolio across di�er-
ent commodity sectors the DJCI will be the focus in this article. It consists of
24 commodities divided into three major sectors: metals, energy and livestock
& agriculture. The weights are based on the total volume traded, but unlike
the S&P GSCI, the DJCI has constraints on total weight allocated in each sec-
tor and commodity. By not allowing any of the three sectors to obtain more
than 35% of the weight, and no single commodity to constitute less than 2%
or more than 17% of the total index, the DJCI becomes well diversi�ed. These
restrictions also provide continuity and high liquidity for potential investors.
The weights are rebalanced annually. See [35] for a detailed methodology.

To select the risk factors (commodities) for our analysis we apply the method
introduced in [32]. We take the ten commodities with the largest weights for
2017 in the DJCI, and form our test portfolio. This is done to get a more time
e�cient portfolio and to make the analysis more practical. The ten commodities
add up to 76% of the DJCI, providing a good proxy for the movements of the
entire index. To form our test portfolio we scale up the weights, proportionally
to 100%. The weights of the ten commodities can be seen in Table 1. Our
selection leaves us with three portfolio components in energy, three in metals
and four in agriculture & livestocks.

Commodity Weight in index Weight in test portfolio
Wheat 3.2% 4.2%
Corn 7.1% 9.3%
Soybeans 11.9% 15.6%
Live Cattle 2.7% 3.5%
Copper 10.3% 13.6%
Gold 10.2% 13.4%
Aluminium 4.6% 6.1%
WTI 9.7% 12.7%
Brent 8.8% 11.6%
Natural Gas 7.3% 9.6%
Sum 76.1% 100%

Table 1: Portfolio weights scaled up from the weights in DJCI 2017. Source: [34].

3.2. Descriptive statistics

We extracted daily data from 1996 - 2017 from Thomson Reuters Eikon
for continuous series of futures with approximately one year to maturity for
the ten selected commodities. This leaves us with 5741 observations for each
commodity. Details about the data extraction are found in Table 2.

As for our data, the rolling over was done by Eikon. Their methodology can
be found in [38]. For monthly futures data roll over is done by jumping to the
nearest future contract with a switch over following in the last trading day. They
use the nearest contract month to form the �rst values of the continuous series,
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and when the contract expires, the next point of data is the next one year to
maturity contract. They do not adjust for price di�erentials when adjusting the
data, but we found this methodology to be su�cient for our analysis especially
as our futures have one year to maturity.

Commodity Ticker Classi�cation Units Price Quote Exchange
WTI CL Energy 1000 barrels USD/barrel NYMEX
Brent LCO Energy 1000 barrels USD/barrel ICE
Natural Gas NG Energy 10.000 Million BTU USD/MMBtu NYMEX
Corn C Grains 5000 bushels US cent/bushels CBoT
Wheat W Grains 5000 bushels US cent/bushels CBoT
Soybeans ISF Grains 5000 bushels US cent/bushels CBoT
Live Cattle LC Livestock 40.000 Pounds US cent/pound CME
Gold GC Precious metal 100 Ounces USD/Troy oz COMEX
Aluminium MAL Industrial metal 25 Metric Tonne USD/MT LME
Copper HG Industrial metal 25.000 pounce USD/pounce COMEX

Table 2: Data extraction details. Source: Thomson Reuters Eikon

Figure 1 shows the historical price movements of commodities measured in
a relative index value. We observe a general co-movement especially in the
2000s, when the commodity markets experienced a uniform rise in prices until
the �nancial crisis.

We observe several structural breaks across commodities especially during
the �nancial crisis in 2007-2009 that heavily a�ected commodity markets. The
European Central Bank [18] brings evidence supporting that global activity has
clear implications for the commodity markets. Their analysis shows that since
the year 2000 the price drivers of oil have fundamentally changed, and during
the time of the �nancial crisis global activity strongly a�ected the oil price. The
acute drop in oil price in 2014 was driven by several factors, among which the
increased supply of unconventional oil and a signi�cant shift in OPEC policy [6].
What di�erentiates the price drop in 2014 from previous collapses in oil price
is, according to [6], that the 
uctuation could not be explained by a weakened
demand or expansion of supply in isolation, but rather a combination of the
two.
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Figure 1: Historical daily price movements from 1996-2017 for the ten commodities
in relative value.

While during the �nancial crisis all commodity sectors were a�ected, the
price drop in 2014 to a lesser degree showed spillover to non-energy sectors.
This indicates the decoupling of oil price from other commodities in agriculture
and metals. According to [20] the co-integration of oil and natural gas ended in
2009 after an increase in shale gas production. We observe that the commodities
in non-energy sectors in more recent years do not necessarily follow the oil
price as closely as in the past decade, potentially a�ecting the dynamics of the
commodity markets.

Commodity Mean Std. Dev. Max. Min. Skewness Kurtosis Jarque-Bera (p-value)
Wheat 0.0014% 1.53% 8.15% -12.17% -0.11 6.86 3573 (0.001)
Corn 0.0046% 1.45% 9.74% -14.48% -0.22 8.19 6467 (0.001)
Soybeans 0.0049% 1.36% 7.04% -8.11% -0.30 6.48 2984 (0.001)
Live Cattle 0.0098% 0.72% 6.61% -6.89% -0.68 12.98 24 210 (0.001)
Copper 0.019% 1.55% 11.41% -11.26% -0.14 7.80 5512 (0.001)
Gold 0.021% 1.06% 8.62% -9.87% -0.14 9.89 11 351 (0.001)
Aluminium 0.0046% 1.13% 6.37% -7.60% -0.25 6.09 2335 (0.001)
WTI 0.0208% 1.62% 10.00% -9.19% -0.17 6.33 2670 (0.001)
Brent 0.02367% 1.58% 9.26% -9.26% -0.11 6.00 2162 (0.001)
Natural Gas 0.0064% 2.75% 21.64% -31.12% -0.08 10.30 12 716 (0.001)

Table 3: Daily descriptive statistics of commodity returns for years 1996-2017.

Table 3 shows the daily descriptive statistics of our time series. McNeil,
Frey and Embrechts [28, p. 117] present six stylized facts of �nancial returns
that can be observed, which also apply to our data: 1) Return series are not
i.i.d.; 2) Series of absolute or squared returns show profound serial correlation;
3) Conditional expected returns are close to zero; 4) Volatility appears to vary
over time; 5) Return series are leptokurtic or heavy-tailed; 6) Extreme returns
appear in clusters.
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We can also see graphically that the returns show autocorrelation, in line
with the stylized fact 2) (see Figure 2). From the probability plot we see that
the returns follow the t distribution better than the Normal distribution, but
the data deviates from the t distribution in the tails (see Figure 3). This indi-
cates heavy tailed returns. Additionally, ARCH-GARCH tests show evidence
of conditional heteroscedasticity, in line with stylized fact 4). We performed
the test for lags 5, 10, 15 and 20. We also tested for stationarity. Augmented
Dickey-Fuller test, Phillips Perron test and KPSS test show that the returns of
all commodities are stationary.

Figure 2: Sample autocorrelation plot of the returns and squared returns for WTI,
as well as the daily logarithmic returns and a quantile-quantile plot. Corresponding
graphs for all commodities are available upon request.
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Figure 3: Probability plot for WTI return versus standard normal and �t distribu-
tion. Corresponding graphs for the other commodities are available upon request.

4. Methodology

4.1. Motivating the choice of modeling approach

As a result of the return characteristics for the ten commodities,
as shown in section 3, we model the conditional volatility with a
GARCH process. A GARCH process can be extended in various
ways, depending on the purpose. For commoditiy markets it has
been shown that volatility tends to increase more after large negative
returns than after large positive returns [31]. We therefore see it as
an appropriate choice to extend to a GARCH-GJR model [4], which
includes a leverage parameter to capture this asymmetry.

Since the focus of our study is on stress testing, extreme returns
are of special interest. We have shown the deviations from the nor-
mal and student t distribution for the returns, especially in the tails.
Extreme Value Theory with the Peak over Threshold method has
been employed in earlier studies ([2, 32, 39]) showing a good mod-
eling performance in shaping heavy tails. This is in line with the
regulatory requirements for stress testing that point out the need to
give a special attention to tail risk in asset returns.

Due to the common bust and boom cycles and co-integration of
commodity markets, is important to model the dependence structure
between returns in a realistic way. In [3] the authors show the impor-
tance of modelling time-variation and asymmetries in the dependence
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structure between the risk factors of a portfolio of commodity futures.
In support of Basel III critics on over-reliance on historical correla-
tions, the authors introduce multivariate dynamic copula models as
a superior alternative. There exist a numerous amount of copulas to
choose from, and the best choice is dependent on the aim of the anal-
ysis and the data. Analysis in [32], [2] and [28] �nd the t copula to be
superior over the Gaussian copula in the context of modelling mul-
tivariate �nancial return data. For our purpose, we therefore prefer
a t copula over the more common Gaussian copula. The asymmetry
of our data would probably be better modelled by an asymmetric
copula, but as the t copula keeps the analysis tractable and allows a
direct comparison across stress tests we �nd it suitable for this anal-
ysis. The subsequent subsections show the technical speci�cation of
the models employed.

4.2. GARCH

A simple autoregressive AR(p) process is a simple way to capture the auto-
correlation between the individual commodity returns:

yt = �+

pX

i=1

�iyt�i + �t (1)

where �t is i.i.d. with mean zero and variance �2.
The residuals from AR(q) models can be decomposed such that:

�t = zt�t (2)

where zt is i.i.d. with unit variance and �t is the conditional variance.
The generalized autocorrelation conditional heteroscedasticity model (GARCH)

is then used to capture the volatility change and clustering of returns over time.
The symmetric normal GARCH assumes that the dynamic behaviour of the

conditional variance is given by:

�2t = ! + ��2t�1 + ��2t�1; �tjIt�1 � N(0; �2t ): (3)

The parameters of the GARCH model are estimated by maximising the value
of the log likelihood function [see 4, p. 137] .

Empirical evidence suggests that positive (negative) innovations
to volatility correlate with negative (positive) innovations to returns
(Nystr�om and Skoglund [30], p. 5). The rational behind is that neg-
ative impacts on returns have a tendency to increase volatility, which
is accounted for as the \leverage" e�ect ([28]), since a fall in equity
value causes a rise in the debt-to-equity ratio (leverage) of a company,
therewith making the stock more volatile. The leverage e�ect is cap-
tured by extending the classical speci�cation of the GARCH model
(Equation (3)) by an extra parameter, the leverage parameter �. The
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GARCH-GJR can be written from the GARCH(1,1) model above, including the
extra parameter [4, p. 150]:

�2t = ! + ��2t�1 + �1(�t�1<0)�
2
t�1 + ��2t�1 (4)

where the indicator function 1(�t<0) = 1 if �t < 0. Thus, in addition to
the speci�cation in Equation (3), an additional shock to volatility for
negative residuals is added to volatility to account for the asymmetry.
The sign of � is naturally expected to be positive.

In Nystr�om and Skoglund [30, p. 10-12] the authors discuss which distri-
bution should be assumed for the standardized residuals zt for �nancial data,
and �nd that using normal distribution as approximation for the high quan-
tiles might lead to a signi�cant underestimation. Related literature suggests
the t distribution as an alternative distributional assumption, which might be
more accurate in capturing fat tails, but unable to capture asymmetry. In ref.
[30] they use Extreme Value Theory to account for both the fat tails and the
skewness and asymmetry of �nancial data. In this paper, we will apply this
combined method.

4.3. Extreme Value Theory

Extreme value theory (EVT) is the study of improbable, but extreme events.
EVT is more commonly used in weather and insurance, but has over the past
decade become more popular also in �nancial studies. In [19] the authors in-
troduced a full framework for the analysis, and they argue that EVT should be
given more attention in risk management for �nancial institutions. In [28] it is
proposed a combination of GARCH-EVT models where the GARCH standard-
ized residuals are used as input to EVT, since EVT requires the residuals to be
i.i.d.

The theoretical framework for Extreme Value Theory is extensively shown
in [31] and [19].

The generalised Pareto distribution (GPD) is introduced for any � 2 R; � 2
R+:

GP�;�(x) = 1� (1 + �
x

�
)
�

1

�

+ ; x 2 R (5)

where 1=� is the tail index and x represent exceedances of standardized residuals
zt over the threshold that delimitates the extreme tail.

There are two practical methods in the literature for locating the thresh-
old beyond which we de�ne the tail of extreme values. The �rst is the block
maxima method. In this approach we de�ne blocks in the data, and then ex-
tract the maxima (maximum loss) in each block. There are several drawbacks
of this approach. The local maxima in a block might not capture the actual
maximas in the time series, and the second and third maxima in a block might
be of signi�cance to the investor but will not be captured by the block maxima
approach.
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The second method, the Peak over threshold, focuses on the events that
exceed a speci�ed, high threshold. Here the observations over the threshold are
asymptotically described by the generalised Pareto distribution. The Peak over
threshold is the preferred method for practitioners as it makes better use of the
data, and so we will use this approach. Determining the optimal threshold is
challenging, and there are several methods which can be used. However, [31]
argue that the threshold should be between 5� 13% of the data.

~� and ~� are parameter estimates of the generalised Pareto distribution. To
estimate the parameters in the GPD we use maximum likelihood. This is the
preferred method as it provides estimates of the parameters that are consistent
and asymptotically normal as n ! 1 given that � > �1=2. When using the
maximum likelihood it is nearly invariant to the level of the threshold given that
the threshold is within a reasonable limit.

Kernel smoothed interior
The data between the lower and upper tail thresholds are �tted by a Gaussian

Kernel estimator. A kernel estimator is a function that derives a smooth curve
from the observed data that is the best possible representation of the probability
density.

4.4. Dependence structure

The GARCH-GJR-EVT process focuses on modelling the distribution of
individual risk factors by modelling the conditional volatility, asymmetric ad-
justment and fat tails. However, this is done by modelling each risk factor in
isolation, and it does not contain information about the dependence structure,
which is a very important part of stress testing.

A copula allows for modelling the underlying joint distribution of two or more
assets by only specifying the marginals. In ref.[4] it is pointed out that one of the
advantages of using a copula is that it isolates the dependence structure from
the structure of the di�erent marginal distributions. The theoretical background
behind copulas was introduced in 1959 by Sklar. The use of copulas to measure
dependence became more popular in the literature in the end of the 1990s, but
only in the recent decade copula became a popular method employed in �nancial
applications.

We will only focus on the theoretical background of the symmetric t copula.
For a more detailed and complementary background of copulas we refer the
reader to [4] or [28].

The multivariate t copula can be derived from the multivariate t distribution,
and is de�ned as [4, p. 268]:

Cv(u1; :::; un;�) = tv(t
�1
v (u1); :::; t

�1
v (un)); (6)

where tv and tv are multivariate and univariate Student t distribution functions.
v is the degrees of freedom, and � is the correlation matrix.

13

 Electronic copy available at: https://ssrn.com/abstract=3458419 



5. Estimation procedure

In this section, we give an overview of technical details concerning the cal-
ibration of modeling approaches speci�ed in Section 4 and show estimation
results.

5.1. Application of the GARCH-GJR

To �nd the appropriate lag structure for the GARCH(p,q) process we esti-
mate models with q and p ranging from 1 to 6. To select the best model for
the data we perform Akaike (AIC) and Bayesian (BIC) information criteria [14,
p. 193]. These criteria are the preferred ones for selecting the best GARCH �t
for the data because it penalises models for additional parameters estimated.

AIC = �2(logL̂) + 2NumParams
BIC = �2(logL̂) +NumParams � log(n)

The process which minimises these criteria is considered to be the best spec-
i�cation. Table 4 shows the results from the AIC and BIC criterion tests for
lags from 1 to 2. We tested up to 6 lags, but the results show insigni�cant
parameters, and higher AIC and BIC criterion than the displayed models. The
table indicates that the GARCH(1,1) is the optimal choice overall, and we will
continue with this speci�cation. Similar results are found in [32] and [2].

AIC criterion BIC criterion

Commodity
GARCH(p,q)

(1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)

Wheat -32810 -32809 -32805 -32808 -32764 -32749 -32752 -32741
Corn -33868 -33865 -33866 -33863 -33821 -33805 -33812 -33796

Soybeans -34272 -34271 -34270 -34268 -34225 -34211 -34217 -34202
Live Cattle -42571 -42569 -42568 -42569 -42524 -42509 -42515 -42503
Copper -33360 -33357 -33358 -33357 -33313 -33297 -33305 -33290
Gold -37650 -37649 -37648 -37644 -37603 -37589 -37594 -37578

Aluminium -36445 -36444 -36439 -36446 -36399 -36384 -36385 -36379
WTI -32432 -32428 -32434 -32431 -32385 -32368 -32381 -32364
Brent -32637 -32634 -32642 -32638 -32591 -32574 -32589 -32572

Natural Gas -25884 -25891 -25882 -25889 -25838 -25831 -25829 -25823

Table 4: AIC & BIC criterion for t distributed residuals for GARCH process with
various (p,q) lag structures. Preferred model highlighted in blue.
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Commodity !̂ (SE) �̂ (SE) �̂ (SE) �̂ (SE)
Wheat 1.36e-06** (5.63e-07) 0.043*** (0.005) 0.966*** (0.004) -0.030*** (0.006)
Corn 1.43e-06** (5.80e-07) 0.097*** (0.010) 0.913*** (0.007) -0.021* (0.012)
Soybeans 2.36e-06** (7.30e-07) 0.071*** (0.009) 0.937*** (0.007) -0.039*** (0.009)
Live Cattle 1.67e-06** (4.21e-07) 0.043** (0.011) 0.907*** (0.009) 0.076*** (0.016)
Copper 1.05e-06* (5.30e-07) 0.034*** (0.006) 0.955*** (0.005) 0.017** (0.007)
Gold 3.80e-07 (3.01e-07) 0.056*** (0.007) 0.956*** (0.004) -0.024** (0.008)
Aluminium 8.35e-07** (4.13e-07) 0.053*** (0.007) 0.946*** (0.006) -0.007 (0.009)
WTI 6.96e-07 (5.19e-07) 0.034*** (0.006) 0.955*** (0.005) 0.019** (0.008)
Brent 8.07e-07* (5.30e-07) 0.036*** (0.006) 0.955*** (0.005) 0.015** (0.008)
Natural Gas 1.28e-05*** (2.74e-06) 0.040*** (0.007) 0.944*** (0.008) -0.002 (0.008)

Table 5: Estimated GARCH-GJR(1,1) parameters for the variance equation. Stan-
dard errors (SE) in brackets. ! is the constant, � is the reaction, � is the persistence,
� is the leverage.
***signi�cant on 1% level, **signi�cant on 5% level, *signi�cant on 10% level.

Table 5 displays the estimated GARCH-GJR parameters. The parame-
ters closely align with previous empirical results for �nancial assets. Following
Alexander [4, p. 137], the � is a measurement of the persistence in conditional
volatility regardless of what happens in the market. Large �, above 0.9, in-
dicates that high volatility following market stress will persist for a long time
which is true for all of our commodities. � measures the reaction of conditional
volatility to shocks in the market. The sum of the two parameters is the rate
of convergence, for our risk factors the sum is close to 1, indicating high per-
sistence and a relatively 
at term structure of volatility forecasts. From the
table we see that the estimated ARCH and GARCH coe�cients, �̂ and �̂, are
signi�cantly di�erent from zero for all commodities. We found a signi�cant
leverage e�ect in the returns of oil products, copper and live cattle.
Empirical evidence shows that after 2008 holding crude oil as �nan-
cial asset gave higher returns than holding it as commodity, given the
reduction in convenience yields and a change from backwardation to
contango (see [25]). We did not �nd evidence for the expected lever-
age e�ect in agricultural commodities and metals (excluding copper)
though. In this case, negative impacts on returns are associated to
negative shocks to volatility.

Figure 4 displays the �ltered residuals and the �ltered conditional standard
deviation of WTI, as given in Equation (2). The other commodities show similar
results, and are available upon request. We observe that the GARCH process
models realistically the volatility clustering pattern in commodity returns.
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Figure 4: Filtered residuals and �ltered conditional standard deviation for WTI.
Corresponding graphs for the other commodities are available upon request.
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Figure 5: Sample autocorrelation plot of standardised and squared standardised WTI
residuals, showing that the residuals are now i.i.d. Corresponding �gures for the other
commodities are available upon request.

To be able to apply EVT to the tails we need to standardise the �ltered
residuals from each return series. The standardised residuals are calculated by
dividing the �ltered residuals with the conditional variance zt =

�
�t

to obtain
mean zero and unit variance. The standardised residuals are plotted in Figure 5.
We can now see graphically that the residuals are i.i.d. for WTI. The other
commodities show similar results and are available upon request. The residuals
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are now applicable to be modelled by EVT.

5.2. Application of EVT

5.2.1. Estimation of the semi-parametric cumulative distribution functions

To locate the threshold, we have �tted the Generalized Pareto distribution
(GPD) to the standardized residuals testing for parameter stability for di�er-
ent threshold values between 5% and 15%. This allows us to �nd a threshold
where the tail indexes stabilise. In Table 6 we display the 7%, 10%, 11% and
12% thresholds upper tail index. The rest of the parameters from the di�er-
ent thresholds are located in Appendix A1. Notice that the tail index naturally
becomes smaller as the threshold allows for more data in the extreme tail. How-
ever, generally speaking, the value of \�" observed at the 10% threshold has a
similar value at subsequent thresholds.

Upper tail (�), Threshold = u
Commodity u=7% u=10% u=11% u=12%
Wheat 0.0822 0.0223 0.0082 0.0063
Corn 0.1885 0.1775 0.1554 0.1320
Soybeans 0.0816 0.0504 0.0430 0.0356
Live Cattle 0.2781 0.2854 0.2702 0.2714
Copper -0.0069 -0.0290 -0.0572 -0.0555
Gold 0.2011 0.1450 0.1485 0.1413
Aluminium -0.0368 0.0022 0.0117 -0.0278
WTI 0.0646 0.0101 -0.0049 -0.0158
Brent -0.0021 0.0086 -0.0101 0.0006
Natural Gas 0.1583 0.0728 0.0688 0.0871

Table 6: Comparison of upper tail parameters (�) for di�erent thresholds. The rest
of the parameters from the di�erent thresholds are found in Appendix A1.

We will therefore de�ne the lower/upper tails in all commodity returns as
starting at the 10% and 90% quantiles respectively. Previous studies ([2] and
[32]) have chosen a 10% threshold. We see the advantage of choosing a standard
threshold as it gives us the opportunity to compare directly parameter estimates
among commodity returns.

The next step is to �t the generalised Pareto distribution to the exceedances
over threshold by using maximum likelihood. By optimising the log-likelihood
function we estimate the tail indexes � and scale parameters �.

The estimated parameters for our risk factors are listed in Table 7. We have
� > 0 for nine of the ten risk factors. This case coincides with the Fr�echet
distribution, which is characterized by a lower bound and gives an indication
of an extreme tails in commodity returns. Only copper shows a negative sign
for \�" (Weibull distribution, having an upper bound). The lower tails show a
positive sign of � for all commodities. This suggests both fat upper and lower
tails, and furthermore tail asymmetry. The �ndings are consistent with the
theory and empirical results for �nancial time series [31, 19].
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� �

Commodity Upper tail Lower Tail Upper tail Lower Tail
Wheat 0.0223 0.0822 0.6163 0.4942
Corn 0.1775 0.1561 0.5396 0.5081
Soybeans 0.0504 0.1014 0.5595 0.5924
Live Cattle 0.2854 0.2509 0.4534 0.5704
Copper -0.0290 0.1178 0.5818 0.5654
Gold 0.1450 0.1003 0.5203 0.6121
Aluminium 0.0022 0.1003 0.5551 0.5197
WTI 0.0101 0.0926 0.5166 0.5805
Brent 0.0086 0.0664 0.5152 0.5965
Natural Gas 0.0728 0.0714 0.6126 0.5191

Table 7: Maximum likelihood estimators for the generalized Pareto distribution pa-
rameters. Threshold (u) = 10%.
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Figure 6: Generalized Pareto upper tail of the standardised residuals �tted vs. em-
pirical. Corresponding �gures for the other commodities are available upon request.

In Figure 6 we display the empirical cumulative distribution function of the
upper tail of the standardised residuals for WTI. The �tted distribution follows
the empirical exceedances closely, and so the chosen distribution is well suited
to estimate the tails for the commodities.

The last step is to combine the parametric generalized Pareto tails for each
commodity with the corresponding Kernel smoothed interior to obtain the en-
tire semi-parametric cumulative distribution function. Figure 7 displays the
semi-parametric empirical cumulative distribution function of WTI standard-
ized residuals. The piecewise distribution object allows interpolation within the
interior of the CDF, displayed in black, and extrapolation in each tail, displayed
in red and blue for the lower and upper tail, respectively. The extrapolation
allows for estimation of quantiles outside the historical record, and is therefore
important for the stress testing exercise.
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Figure 7: Semi-parametric empirical cumulative distribution function of WTI. Cor-
responding �gures for the other commodities are available upon request.

5.3. Application of the t copula and simulation steps

We �t a t copula to the standardized residuals of portfolio return series.
Estimates of the degrees of freedom for the baseline scenario are given in Table 9.
Given the parameters of the t copula (the correlation matrix � and the degrees
of freedom parameter) we simulate jointly dependent portfolio returns. This
is done by �rst simulating the corresponding dependent standardised residuals.
We transform the dependent uniform variates obtained from �tting the t copula
to standardised residuals through the inversion of the semi-parametric marginal
cumulative distribution function of each risk factor. We therefore extrapolate
into the generalized Pareto tails, and interpolate into the smoothed interior.
This gives simulated standardized residuals consistent with those obtained from
the GARCH-GJR(1,1) �ltering process described in Section 5.1. Residuals show
no autocorrelation and are i.i.d. with unit variance.

5.4. Risk metrics

To compare the implications of various stress scenarios on the portfolio pro�t
and loss pro�le, the use of Value at risk (VaR) and conditional value at risk
(CVaR) is common. These risk metrics provide an indication of the quantile
losses. VaR is the amount of maximum potential loss at a given percentage.
This risk metric is criticized because it is not coherent and ignores extreme
values beyond the value at risk. CVaR corrects for the limitations of VaR [5].
For our analysis we include both risk metrics at various quantiles. This is in line
with European Banking Authority [21, p. 28]: "The institutions should stress
the identi�ed risk factors using di�erent degrees of severity as an important step
in their analysis to reveal nonlinearities, threshold e�ects, i.e. critical values of
risk factors beyond which stress responses accelerate".
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5.5. Simulation steps

Based on the technical speci�cations given in Section 4, we simulate the pro�t
and loss distribution of our portfolio of commodity returns at the end of the given
time horizon as realistically as possible without and with the impact of stress.
Generally speaking, in each type of stress scenario the technical simulation steps
are outlined here:

1. To simulate jointly dependent equity returns with the parameters of the t
copula one �rst of all has to generate the corresponding dependent stan-
dardized residuals. This is done by simulating dependent uniform vari-
ates based on the estimated degrees of freedom parameter and correlation
matrix.

2. We transform them by inversion of the according share's semi-parametric
marginal cumulative distribution function (Pareto tails and Gaussian ker-
nel smoothed interior). The result are standardized residuals consis-
tent with the ones obtained from the �ltration of zt in the GARCH model,
namely i.i.d. with variance 1.

3. These simulated standardized residuals are then employed as the i.i.d.
noise processes of the GARCHmodel. We simulate the asymmetric GARCH
model to reestablish the heteroscedasticity and the autocorrelation of the
original commodity returns. We use as seed for the GARCH model the
last observed values of the data set and according volatilities.

4. The weights of the portfolio are held constant over the simulation horizon.
We calculate the maximum simulated pro�t and loss (P&L distribution),
the VaR (value at risk) and the expected shortfall (ES)

6. Stress testing and simulation results

In this section, we will perform stress tests on our portfolio of commodity
futures.

By de�nition, stress testing is a risk management tool used to evaluate the
potential impact on portfolio pro�t and loss pro�le of unlikely, although plausi-
ble historical or hypothetical events or movements in the portfolio risk factors.
We will shock at one time various components of the model and assess which
ones have the highest e�ect on the simulated pro�t and loss. Shocks are linked
to stress scenarios as explained in this section.

For comparison purposes, we simulate a baseline scenario by calibrating the
model on the entire data set and compare the pro�t and loss pro�le with others
derived from stress scenarios as derived below. For each scenario we run 20
000 simulations over a 22 days horizon, which represent the average number of
working days per month. Note that the portfolio weights are held �xed over
the risk horizon and that the simulation ignores any transaction costs required
to re-balance the portfolio (the daily re-balancing process is assumed to be self-
�nancing).
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6.1. Stress test scenarios

We limit the study mostly to hybrid scenarios, where we calibrate the model
for the risk factors or the copula to the restricted �nancial crisis data set versus
the entire data set, and shock them simultaneously or one at a time. Besides
hybrid, hypothetical scenarios could have been implemented. Examples could
be a scenario with recession in China, which would decrease the demand for
aluminium, oil, copper, soybeans and natural gas, and look at the change in
dependence structure and volatility. Other scenarios could be natural disasters
that a�ect crops or diseases that a�ect grains or livestocks. This is however out
of the scope of this article. We refer the reader to [2] for stress testing with
hypothetical scenarios.

Our analysis consists of seven di�erent scenarios. Underneath follows a brief
description of the scenarios before the analysis is conducted.

Baseline scenario:
The baseline scenario is a default scenario simulation with the t copula and
GARCH-GJR process calibrated on the entire data set, the historical time pe-
riod from 1996 - 2017. None of the parameters are stressed in the baseline
scenario. The baseline scenario is constructed to be a reference for normal
times to assess the e�ect of stressing parameters compared to the steady state.

Historical scenario:
For the historical stress scenario we use the years 2007 and 2008 to observe the
severity of losses in the �nancial crisis. This time period is known for high mar-
ket stress with high return volatility and captures the simultaneous price drop
during the �nancial crisis (see Section 3 for discussion). The historical scenario
is a scenario that stems from the empirical distribution of returns during the
�nancial crisis. We refer to the empirical pro�t and loss distribution as observed
between 2007 and 2008. Unfortunately, due to the limited number of observa-
tions when resuming ourselves to observed returns, extreme loss quantiles are
hard to estimate.

Hybrid scenarios:
Due to the limitations of the historical empirical scenario, we construct �ve
hybrid scenarios. Hybrid scenarios allow extrapolation beyond realized returns,
and are therefore appropriate to estimate extreme quantiles and events that
have not yet occurred. The focus in our hybrid scenario construction is to ex-
amine which of the estimated parameters challenge mostly the portfolio pro�t
and loss distribution in stress testing exercises. The parameters that changed
between the di�erent scenarios are the dependencies between risk factors, mea-
sured in Degrees of Freedom and correlations, and the GARCH-GJR coe�-
cients. The parameters of the GARCH-GJR process and the t copula are here
re-calibrated on the stress horizon, following the same procedure as in section 4.
The re-estimated tails from the generalized Pareto distribution parameters can
be found in Appendix A2. To isolate the e�ect of various parameters, we com-
pare scenarios by mixing parameters from the baseline with those during the
period of �nancial distress. The hybrid scenarios are described in Table 8.
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Scenario Marginal distribution Correlations Degrees of Freedom

Risk factor stress stress baseline baseline
Dependency stress baseline stress stress

Full stress stress stress stress
DoF shock baseline baseline stress

Risk factor stress without EVT stress baseline baseline

Table 8: Description of input parameters for simulation in hybrid scenarios. Baseline
means the parameters from entire dataset 1996-2017 are used as input. Stress means
the parameters are re-calibrated on our chosen time of �nancial distress, years 2007-
2008.

Risk factor stress scenario aims to show the impact of stressing the
model parameters describing the marginal distributions of the risk factors on
the portfolio pro�t and loss distributions, without a change in the dependence
between the risk factors.

Dependence stress scenario isolates the e�ect of stressing the dependence
between the returns of portfolio components on the pro�t and loss distribution,
without changing the parameters for the individual factors model (GARCH-
GJR model).

Full stress scenario aims to simulate the e�ects of a recurring �nancial
crisis on the portfolio. All model parameters refer to the �nancial crisis period

In the degrees of freedom shock we shock only the degrees of freedom of
the copula, leaving all other parameters unchanged.

Risk factor stress without EVT highlights how the application of Extreme
Value Theory to model the tails of portfolio components returns a�ect the pro�t
and loss distribution of the portfolio. The risk factor distributions are here not
modelled with EVT, but with a Student t distribution (see Section 4.1).

6.2. Comparative analysis of simulated pro�t and loss distributions

6.2.1. Baseline scenario vs. Historical scenario

Figure 8 displays the simulated pro�t and loss (P&L) distribution for the
returns in the baseline scenario versus the empirical distribution of P&L in the
historical scenario. The simulated returns deviate in both the upper and lower
tails. This can be further viewed in Table 9, where the maximum simulated
loss is signi�cantly larger for the historical returns than the simulated baseline,
respectively. These results might be linked to the symmetry of the t copula.
The baseline scenario represents normal market conditions while with the his-
torical scenario we get an indication of its pro�t and loss pro�le assuming that a
similar crisis will reoccur. This result highlights the importance of implement-
ing forward-looking scenarios, both to simulate extreme returns in comparison
to the baseline and to simulate beyond the pro�t and loss pro�le empirically
observed.

The previous statement is further substantiated when we look at very high
con�dence levels displayed in Table 9. The historical scenario is limited to al-
ready experienced events so there are not enough observations in the data set to
calculate the expected shortfall at very high con�dence levels. This emphasizes
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the discussion about the scenarios in Section 2.1 and the drawback of using his-
torical scenarios highlighted in [9]. In addition, the historical scenario neglects
the dependence structure between the risk factors, which is highly relevant in
stress testing. In ref. European Banking Authority [21, p. 24] it is stated that
stress tests should take into account changes in correlations between risk types
and risk factors and that correlations tend to increase during times of economic
or �nancial distress. This statement and its implications for stress testing ex-
ercises will be further investigated in the next subsection where we analyse the
hybrid scenarios.
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Figure 8: Portfolio returns simulation, Baseline vs Historical scenario.

Metric Baseline Historical scenario
Degrees of Freedom 15.28 N/A
Max. Simulated loss -12.72% -34.01%
Max. Simulated gain 13.38% 17.08%
Simulated 90% VaR -3.09% -4.26%
Simulated 95% VaR -4.17% -6.01%
Simulated 99% VaR -6.13% -12.47%
Simulated 90% CVaR -4.48% -7.38%
Simulated 95% CVaR -5.39% -9.75%
Simulated 99% CVaR -7.30% -17.82%
Simulated 99.9% CVaR -10.10% N/A
Simulated 99.99% CVaR -12.55% N/A

Table 9: Simulation metrics for Baseline scenario and Historical scenario CDF.

6.2.2. Hybrid scenarios

Table 10 shows the risk metrics over the 5 sets of hybrid scenarios. The
tail dependence for the simulated returns is measured in the degrees of freedom
parameter from the t copula. From the entire data set the DoF is 15.28, while
during the stressed period they shift to 13.78. Our decrease in DoF signals that
the tail dependence in the commodity portfolio is increasing during times of
stress. Lower degrees of freedom indicate a higher tendency of extreme events
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to occur jointly across risk factors [32], which is in line with our simulation
result.

1 2 3 4 5
Metric Risk factor stress Dependency stress Full stress DoF shock without EVT

Degrees of Freedom 15.28 13.78 13.78 13.78 15.28
Max. Simulated loss -36.40% -18.67% -45.90% -16.53% -34.24%
Max. Simulated gain 31.93% 16.32% 42.89% 13.82% 32.38%
Simulated 90% VaR -8.84% -3.75% -10.85% -3.08% -6.91%
Simulated 95% VaR -11.91% -5.05% -14.53% -4.12% -9.78%
Simulated 99% VaR -17.87% -7.46% -21.92% -6.13% -15.79%
Simulated 90% CVaR -12.98% -5.47% -15.89% -4.49% -10.91%
Simulated 95% CVaR -15.71% -6.61% -19.31% -5.42% -13.61%
Simulated 99% CVaR -21.55% -9.08% -26.74% -7.38% -19.57%
Simulated 99.9% CVaR -30.35% -12.99% -37.17% -10.63% -28.04%
Simulated 99.99% CVaR -35.79% -17.40% -44.77% -15.00% -33.72%

Table 10: Risk Metrics for hybrid scenarios.

Risk factor stress vs. Dependency stress

Figure 9 shows the baseline scenario, the scenario where we stress the de-
pendencies between the risk factors, the full stress scenario and the scenario
where the individual risk factors are stressed. Starting from the baseline we can
see that by only stressing the dependencies, the simulation displays more severe
losses (green vs. red). The correlation matrix and the decrease in DoF show
that the dependencies between the risk factors increase in times of stress (see Ta-
ble 11), which leads to larger simulated losses for the portfolio overall. However,
by stressing only the GARCH-GJR-EVT parameters for the individual risk fac-
tors the e�ect on the portfolio P&L is even stronger (red vs. light blue). This
result indicates that stressing the model parameters describing the marginal
distributions of portfolio returns has a larger impact on the pro�t and loss dis-
tribution than stressing the dependencies between the risk factors. This shows
that shocks in returns of portfolio components is of higher impact on
the pro�t and loss than the shifts in their dependence structure and
correlations.
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Figure 9: Simulated one-month portfolio returns CDF for Baseline vs Hybrid
scenarios: Risk factor stress, Dependency stress and Full stress.

Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas
Wheat - -0.0342 0.0085 0.1184 0.1634 0.1518 0.0993 0.1622 0.1688 0.0579
Corn -0.0342 - 0.0562 0.1542 0.1561 0.1564 0.1569 0.2181 0.2156 0.1259
Soybeans 0.0085 0.0562 - 0.1797 0.1634 0.1851 0.1237 0.2668 0.2614 0.1246
Live Cattle 0.1184 0.1542 0.1797 - 0.1342 0.1327 0.1160 0.1546 0.1552 0.1409
Copper 0.1634 0.1561 0.1634 0.1342 - 0.2088 0.0583 0.1615 0.1631 0.0925
Gold 0.1518 0.1564 0.1851 0.1327 0.2088 - 0.1596 0.2597 0.2582 0.1304
Aluminium 0.0993 0.1569 0.1237 0.1160 0.0583 0.1596 - 0.1573 0.1671 0.1023
WTI 0.1622 0.2181 0.2668 0.1546 0.1615 0.2597 0.1573 - 0.0750 0.1907
Brent 0.1688 0.2156 0.2614 0.1552 0.1631 0.2582 0.1671 0.0750 - 0.1959
Natural Gas 0.0579 0.1259 0.1246 0.1409 0.0925 0.1304 0.1023 0.1907 0.1959 -

Table 11: Correlation increases between baseline and stress scenario. The correlation
matrices from the Baseline and �nancial stress period are located in Appendix A3 and
A4. (Light blue is correlation increase larger than 0.15. Dark blue is correlation
increase larger than 0.20).

We compare further the mentioned scenarios with the full stress scenario.
Naturally this stress scenario simulates the largest tail losses since both the de-
pendencies and the individual parameters are stressed (black line). Comparing
the risk metrics in Table 10 we see that the risk factor stress scenario simulates
the second largest losses, after the full stress scenario, which substantiates the
previous result.

The full stress scenario in [32] gives more severe losses overall. Our study
replicated the methodology for modeling the marginal distributions of portfo-
lio components and dependence structure, allowing for a direct comparison of
results. The di�erence between the results might be explained by: i) The di�er-
ence in weights of the test portfolio where our study uses weights from 2017 while
[32] use the weights from 2013. ii) Our extended data sample. We include the
years 1996-1998, and 2011 - 2017 beyond the original data set. iii) Di�erences
might be due partially to the randomness in the scenario generation.
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In [32] natural gas makes 15.11% of the portfolio, while for our portfolio it
is 9.6%. From the descriptive statistics natural gas is by far the most volatile
commodity and we observe that natural gas has performed poorly over the last
decades compared to most of the other commodities. Several structural breaks
in natural gas prices are also included in our data set, examples being the supply
shortfall in Libya 2011 and the Russian export stop in 2012 [29]. Weighting more
the natural gas the portfolio might therefore be one of the main reasons of the
more severe simulated loss in the original study.

Soybean is the second commodity with the most deviating weight from [32].
In our portfolio soybean makes 15.66% of the total weight, in comparison to
6.89% in [32]. Over our time period soybean returns showed low volatility. We
expect that the increased allocation in soybean in our portfolio provides the
same consequences as the down-scaling of natural gas.

DoF shock vs. Dependency stress
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Figure 10: Simulated one-month portfolio returns CDF for Baseline vs Hybrid
scenarios: Dependency stress and DoF shock.

In Figure 10 we compare the scenario where both correlation and DoF are
stressed (green line), with the scenario where only the DoF are shocked from
15.28 for the baseline to 13.78 for the �nancial crisis (purple line). For both
scenarios the parameters of the GARCH-GJR-EVT model are calibrated on the
entire data set. By doing so we can discuss the impact of correlations as a driver
of losses in isolation.

From Figure 10 we observe that a small shock to degrees of freedom does not
provide a signi�cant stress scenario. The baseline scenario and the DoF shock
scenario do not deviate much from each other (red vs. purple), although the
DoF shock scenario simulates larger extreme losses in the lower quantiles (see
Table 10). Furthermore, we see that the scenario where both the correlations
between the risk factors as well as the DoF are shocked displays the largest
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simulated loss. This indicates that shocking the DoF in isolation is a limitation
in a stress testing exercise.

For more forward-looking hypothetical scenarios the implementation of more
severe shocks to DoF might be of interest. We therefore tested by including a
set of hypothetical scenarios where several more substantial downward changes
to DoF are included. The results can be found in Table 12. We used the degrees
of freedom from the �nancial crisis period and also the one corresponding to the
baseline scenario and then we added more extreme values at both ends. For
our data we found that extreme shocks to DoF yield no substantial increase in
simulated tail losses.

Metric
DoF

5 7 10 13.78 15.28 17

Max. Simulated loss -16.72% -17.25% -13.85% -16.53% -12.72% -15.88%
Max. Simulated gain 15.28% 15.47% 14.05% 13.82% 13.38% 16.77%
Simulated 90% VaR -3.08% -3.11% -3.12% -3.08% -3.09% -3.11%
Simulated 95% VaR -4.12% -4.18% -4.20% -4.12% -4.17% -4.19%
Simulated 99% VaR -6.18% -6.32% -6.31% -6.13% -6.13% -6.15%
Simulated 90% CVaR -4.50% -4.55% -4.55% -4.49% -4.48% -4.53%
Simulated 95% CVaR -5.46% -5.52% -5.50% -5.42% -5.39% -5.47%
Simulated 99% CVaR -7.57% -7.64% -7.48% -7.38% -7.30% -7.47%
Simulated 99.9% CVaR -11.14% -11.28% -10.36% -10.63% -10.10% -10.54%
Simulated 99.99% CVaR -14.44% -17.13% -12.81% -15.00% -12.55% -14.20%

Table 12: Risk metrics from di�erent DoF shock scenarios. DoF 15.28 is from the
Baseline (1996-2017), and DoF 13.78 is from the time of �nancial stress (2007-2008).
The other DoF are hypothetical shocks.

Impact of EVT

In Figure 11 we display two hybrid scenarios to highlight the importance
of implementing EVT for modelling extremely large return changes of portfolio
components before running the actual stress test. For both scenarios the cor-
relation matrix and the DoF parameter are calibrated on the entire data set,
so the di�erence between them comes from how the individual risk factors are
modelled. In the risk factor stress scenario the tail distributions are modelled
with EVT where the tail indexes are calibrated on the �nancial crisis data, and
the other scenario with a Student t distribution. One can see that the sce-
nario where EVT is implemented estimates more severe losses, where simulated
99.99% CVaR is -35.79% in comparison to -33.72% for the scenario without
EVT. Overall, the pro�t and loss distribution in the stress test excluding EVT
is shifted to the right. Applying EVT strengthens the accuracy and understand-
ing of the most extreme, potential losses. In light of this, we conclude that the
risk is potentially underestimated when the individual risk factor distributions
disregard extreme events [19].
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Figure 11: Simulated one-month portfolio returns CDF for Baseline and Hybrid
scenarios: Risk factor stress and scenario without modelling with EVT.

7. Conclusion

In this study, we update the analysis in [32] with a more extensive data
set, and a more detailed focus on stress testing. In particular, hybrid and
hypothetical scenarios are explored, in line with the regulatory requirements for
stress testing calling for forward looking scenarios. Our stress testing exercise
are based on rearranging arbitrarily shocks linked to speci�c extreme events
or time to reveal the importance of correlations, tail correlations, or extreme
movements in portfolio components on the pro�t and loss distribution. This is
the �rst study in the literature that clearly illustrates the marginal impact of
the model assumed for the individual portfolio components versus the marginal
role of tail dependence and correlations on the portfolio risk pro�le.

We mimic the DJCI, by forming a portfolio of ten commodities. We use a
GARCH-GJR approach to model stylized facts observed in commodity return
data, and implement Extreme Value Theory to model the tails accurately. To
account for the dependence structure we apply a t copula. We then stress test
the portfolio with di�erent scenarios, examining the drivers of the pro�t and
loss distribution.

Our study revealed three main results. First, we bring empirical evidence
showing the importance of hybrid (forward-looking) scenarios for comprehen-
sive stress testing. In addition, we show the value added of forward looking
over historical scenarios and show numerically the drawbacks of the latter. We
con�rm the stress testing requirements from Basel III accordingly to which dif-
ferent stress testing approaches cannot be used in isolation, but combined, for a
comprehensive picture. Our second �nding is that, before implementing a stress
test, a special attention should be given to an accurate model identi�cation for
the evolution of returns of portfolio components and dependence structures. In
addition, our third �nding enhanced the previous �ndings in [32] by disentan-
gling the e�ects of stressing at one time the model parameters for the individual
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portfolio components versus their correlations and tail dependence. We found
clear evidence that the �rst accounts more than the latter while stress testing
the portfolio pro�t and loss pro�le. At the same time, our analysis represents
an integration of the \model risk" concept into stress testing exercises, highly
relevant for portfolio managers. Special attention should be given to extreme
tails, in line with the regulatory frame on stress testing.

Our analysis is bounded by the number of stress scenarios and simulations
based on the random number generator. Stress scenarios display tendencies,
and the numbers generated cannot be transferred directly to risk management.
On the other hand, the simulations can form expectations and contribute to
an overall understanding of stress testing for capital requirements. For further
analysis it would be interesting to update our analysis with asymmetric copulas
to better capture the dependence structure. In addition, a more extensive use
of hypothetical shocks to a commodity portfolio would be of interest.
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Appendices

Table A1: Comparison of ML estimators for the GPD parameters for di�erent thresh-
olds (u) for years 1996-2017.

u = 7% � �

Commodity Upper tail Lower Tail Upper tail Lower Tail
Wheat 0.082 0.114 0.566 0.477
Corn 0.188 0.233 0.564 0.456
Soybeans 0.082 0.071 0.540 0.645
Live cattle 0.278 0.313 0.516 0.560
Copper -0.007 0.116 0.551 0.591
Gold 0.201 0.124 0.488 0.609
Aluminum -0.037 0.148 0.592 0.494
WTI 0.065 0.075 0.466 0.624
Brent -0.002 0.109 0.527 0.562
Natural gas 0.158 0.123 0.531 0.473

u = 10% � �

Commodity Upper tail Lower Tail Upper tail Lower Tail
Wheat 0.022 0.082 0.616 0.494
Corn 0.178 0.156 0.540 0.508
Soybeans 0.050 0.101 0.559 0.592
Live cattle 0.285 0.251 0.453 0.570
Copper -0.029 0.118 0.582 0.565
Gold 0.145 0.100 0.520 0.612
Aluminum 0.002 0.100 0.555 0.520
WTI 0.010 0.093 0.517 0.581
Brent 0.009 0.066 0.515 0.597
Natural gas 0.073 0.071 0.613 0.519
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u = 11% � �

Commodity Upper tail Lower Tail Upper tail Lower Tail
Wheat 0.008 0.092 0.632 0.480
Corn 0.155 0.152 0.557 0.504
Soybeans 0.043 0.098 0.564 0.591
Live cattle 0.270 0.253 0.454 0.553
Copper -0.057 0.102 0.620 0.577
Gold 0.148 0.103 0.507 0.602
Aluminum 0.012 0.089 0.546 0.528
WTI -0.005 0.098 0.534 0.568
Brent -0.010 0.063 0.535 0.597
Natural gas 0.069 0.062 0.614 0.529

u = 12% � �

Commodity Upper tail Lower Tail Upper tail Lower Tail
Wheat 0.006 0.075 0.634 0.493
Corn 0.132 0.138 0.580 0.514
Soybeans 0.036 0.096 0.571 0.588
Live cattle 0.271 0.266 0.440 0.525
Copper -0.056 0.097 0.621 0.578
Gold 0.141 0.073 0.508 0.636
Aluminum -0.028 0.070 0.587 0.549
WTI -0.016 0.077 0.547 0.588
Brent 0.001 0.044 0.523 0.621
Natural gas 0.087 0.060 0.586 0.528

� �

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.0452 0.0021 0.4820 0.6991
Corn -0.1141 -0.0896 0.4715 0.5985
Soybeans -0.0309 -0.1642 0.5149 0.7738
Live Cattle 0.2708 0.2140 0.4478 0.5416
Copper -0.5240 -0.0681 0.9359 0.5994
Gold 0.1864 -0.0017 0.3939 0.7062
Aluminium 0.1976 -0.1715 0.4346 0.6775
WTI -0.1542 -0.1232 0.5696 0.5557
Brent -0.1876 -0.1805 0.5822 0.5868
Natural Gas 0.1348 0.0107 0.5633 0.5841

Table A2: Recalibrated Maximum Likelihood estimators for the generalized Pareto
distribution parameters for the time of �nancial distress, years 2007-2008. Threshold:
10%.
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Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas
Wheat 1.0000 0.6217 0.4768 0.1259 0.1251 0.1221 0.1048 0.1468 0.1393 0.0793
Corn 0.6217 1.0000 0.6215 0.1508 0.1556 0.1393 0.1316 0.1689 0.1634 0.1071
Soybeans 0.4768 0.6215 1.0000 0.1462 0.2035 0.1633 0.1676 0.1995 0.1971 0.1144
Live Cattle 0.1259 0.1508 0.1462 1.0000 0.0983 0.0450 0.0907 0.1095 0.1035 0.0493
Copper 0.1251 0.1556 0.2035 0.0983 1.0000 0.2637 0.5829 0.2641 0.2496 0.0668
Gold 0.1221 0.1393 0.1633 0.0450 0.2637 1.0000 0.2280 0.2057 0.1979 0.0735
Aluminium 0.1048 0.1316 0.1676 0.0907 0.5829 0.2280 1.0000 0.2156 0.2023 0.0714
WTI 0.1468 0.1689 0.1995 0.1095 0.2641 0.2057 0.2156 1.0000 0.9083 0.2566
Brent 0.1393 0.1634 0.1971 0.1035 0.2496 0.1979 0.2023 0.9083 1.0000 0.2368
Natural Gas 0.0793 0.1071 0.1144 0.0493 0.0668 0.0735 0.0714 0.2566 0.2368 1.0000

Table A3: Correlation matrix for the baseline, years 1996-2017. Light blue is corre-
lation between 0.15 and 0.19. Dark blue is correlation larger than 0.20.

Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas
Wheat 1.0000 0.5875 0.4854 0.2443 0.2885 0.2738 0.2041 0.3090 0.3080 0.1372
Corn 0.5875 1.0000 0.6777 0.3050 0.3117 0.2956 0.2885 0.3870 0.3790 0.2330
Soybeans 0.4854 0.6777 1.0000 0.3259 0.3670 0.3484 0.2913 0.4663 0.4586 0.2391
Live Cattle 0.2443 0.3050 0.3259 1.0000 0.2326 0.1777 0.2067 0.2641 0.2587 0.1902
Copper 0.2885 0.3117 0.3670 0.2326 1.0000 0.4725 0.6412 0.4256 0.4127 0.1594
Gold 0.2738 0.2956 0.3484 0.1777 0.4725 1.0000 0.3876 0.4654 0.4561 0.2038
Aluminium 0.2041 0.2885 0.2913 0.2067 0.6412 0.3876 1.0000 0.3729 0.3694 0.1737
WTI 0.3090 0.3870 0.4663 0.2641 0.4256 0.4654 0.3729 1.0000 0.9833 0.4473
Brent 0.3080 0.3790 0.4586 0.2587 0.4127 0.4561 0.3694 0.9833 1.0000 0.4326
Natural Gas 0.1372 0.2330 0.2391 0.1902 0.1594 0.2038 0.1737 0.4473 0.4326 1.0000

Table A4: Correlation matrix for scenarios re-calibrated on time of �nancial dis-
tress, years 2007-2008. Light blue is correlation between 0.15 and 0.19. Dark blue is
correlation larger than 0.20.
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