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Abstract

We develop a new model for solvency contagion that can be used to quantify
systemic risk in stress tests of financial networks. In contrast to many existing
models it allows for the spread of contagion already before the point of default
and hence can account for contagion due to distress and mark-to-market losses.
We derive general ordering results for outcome measures of stress tests that enable
us to compare different contagion mechanisms. We use these results to study the
sensitivity of the new contagion mechanism with respect to its model parameters
and to compare it to existing models in the literature. When applying the new
model to data from the European Banking Authority we find that the risk from
distress contagion is strongly dependent on the anticipated recovery rate. For low
recovery rates the high additional losses caused by bankruptcy dominate the overall
stress test results. For high recovery rates, however, we observe a strong sensitivity
of the stress test outcomes with respect to the model parameters determining the
magnitude of distress contagion.

Key words: Systemic risk, contagion, financial networks, stress testing, mark-to-
market losses.
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1 Introduction

Following the 2007-2009 financial crisis, stress tests have become an important tool to
assess the stability of financial systems (Anderson, 2016). A particular concern of policy
makers is to make these stress tests more macroprudential (Basel Committee on Banking
Supervision, 2015b) by incorporating feedback and amplification mechanisms into the
stress testing exercise (The Bank of England, 2015; Bardoscia et al., 2017). Modelling
financial contagion lies at the heart of these efforts, see Glasserman & Young (2016) for a
recent overview. An important aspect is to look more broadly at events that can trigger
contagion in the first place.

Bankruptcy of an institution has been considered as the only potential trigger of a
contagion mechanism in a large part of the literature on solvency contagion: this applies
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to the stream of work building on the clearing approach by Eisenberg & Noe (2001) such
as Cifuentes et al. (2005); Rogers & Veraart (2013); Weber & Weske (2017); Kusnetsov
& Veraart (2019); Feinstein (2017) but also to several other default cascade models such
as Furfine (2003); Gai & Kapadia (2010); Amini et al. (2016). We will refer to contagion
that is triggered by default as default contagion.

As the 2007-2009 financial crisis has demonstrated, however, a large part of the losses
was not due to defaults but due to mark-to-market losses. “Under Basel II, the risk of
counterparty default and credit migration risk were addressed but mark-to-market losses
due to credit valuation adjustments (CVA) were not. During the financial crisis, however,
roughly two-thirds of losses attributed to counterparty credit risk were due to CVA losses
and only about one-third were due to actual defaults”, Basel Committee on Banking
Supervision (2011). These mark-to-market losses occur already before the point at which
an institution would declare bankruptcy. We will refer to any spread of losses prior to
bankruptcy as distress contagion.

In line with these observations, regulators have recently started using models that
allow for distress contagion, see Bardoscia et al. (2017). Examples of distress contagion
models are the DebtRank model by Battiston et al. (2012) and extensions of it such as
the models by Bardoscia et al. (2016, 2017). In all these existing models the magnitude
of contagious losses is determined by the probability of default and the recovery rate.
The probability of default is modelled as a function of the relative equity loss, which is
linear in Battiston et al. (2012), non-linear in Bardoscia et al. (2016) and modelled in the
spirit of the classical structural credit risk model by Black & Cox (1976) in Bardoscia
et al. (2017). Usually a constant recovery rate is chosen which is often set to zero, see
Bardoscia et al. (2016).

The main contribution of this paper is to develop a flexible and tractable framework
for quantifying distress and default contagion in financial networks that is consistent with
a scenario-based approach to stress testing. In particular our approach does not rely on
historical estimates or default probabilities but is designed such that it can capture a
wide range of possible contagion mechanisms. Furthermore, analytical ordering results
are provided that enable us to compare the outcome of stress tests based on different con-
tagion mechanisms. Regulators are starting to take a more simulation based approach to
assessing financial risk, in particular to assess channels of risk transmission that might
not have played a role in the past but might become relevant in a future financial crisis.
For these situation no historical data would be available to build a statistical model.
With reference to new types of risk, Alex Brazier, Executive Director for Financial Sta-
bility Strategy and Risk, Bank of England, pointed this out in his speech in September
2018. “These risks need monitoring. Not by asking whether they have appeared, but by
asking whether they could. Don’t wait. Simulate,” Brazier (2018). Our new modelling
framework is in line with this approach and enables us to assess a wide range of possible
contagion mechanisms.

We use a network model to describe how contagion spreads through the system.
The magnitude of contagious losses due to default is quantified using an approach that
adheres to some stylized principles of insolvency law. We suggest a very general modelling
framework for quantifying the magnitude of contagious losses that arise due to distress
but in the absence of default. In contrast to some early distress contagion models, our
framework allows for non-constant recovery rates in the case of default. In particular
it extends the default contagion model by Rogers & Veraart (2013) to allow for distress
contagion.
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We characterize our contagion mechanism in terms of a small number of model pa-
rameters that have an intuitive economic interpretation. It can therefore be easily applied
in a stress testing context. It reduces to some well-known contagion mechanisms such as
the ones by (Eisenberg & Noe, 2001; Rogers & Veraart, 2013; Battiston et al., 2012) for
special parameter choices.

Our new framework allows for a wide range of functional forms for contagious losses
while still remaining analytically tractable. In particular, we provide analytical ordering
results for some outcome measures of stress tests corresponding to different functional
forms of the contagion mechanism. Importantly, our ordering results are independent of
the underlying network structure. Based on these ordering results, we discuss sensitivities
of outcome measures of stress tests with respect to the model parameters.

Furthermore, we discuss the relationship between modelling assumptions for default
contagion and potential for distress contagion. In particular, we show that not every
existing default contagion model can be generalized to account for distress contagion.
Within our modelling framework the existence of bankruptcy costs is a necessary condi-
tion for the possibility of distress contagion. Hence, even though by definition bankruptcy
costs only occur in the case of default, their pure existence can lead to an amplification
of contagion in financial networks even prior to default.

Our approach is similar in spirit to a contagion mechanism mentioned in (Glasserman
& Young, 2015, Section 6), but the modelling of the actual default and distress contagion
is different. In particular, we provide a rich class of models for distress contagion that
include a linear model as a special case.

Our framework is related to the idea of network valuation introduced in Barucca et al.
(2016) but also has some fundamental differences. Barucca et al. (2016) consider the prob-
lem of determining the value of a network prior to the maturity date of the outstanding
debt. Their main application is to consider a stochastic version of the Eisenberg & Noe
(2001) model and they derive fixed points that determine the value of the network. This
approach explicitly determines the stochastic dynamics for the underlying balance sheets
(in particular, the external assets and the equity) and derives the corresponding default
probabilities. It relies on two modelling choices: a function for the spread of losses in the
case of default and a probability distribution for the external assets. The combination of
these two modelling choices leads to a specific function whose fixed points are of interest.
In a similar spirit, Banerjee & Feinstein (2018) also consider a stochastic generalization
of the Eisenberg & Noe (2001) model. They derive formulas for the valuation of debt
and equity of firms under comonotonic endowments.

We take a more direct approach and propose to model the function whose fixed points
are of interest directly. We determine the value of a network as a function of a shock
without accounting for the probability of the shock occurring. Our approach is therefore
in line with a scenario-based approach to stress testing. In this approach one determines
the outcome for a given scenario without accounting for the likelihood of the scenario
itself. Therefore, we do not need to make probabilistic assumptions on shock distributions
and can more easily conduct sensitivity studies of outcome measures of stress tests.

We concentrate on one channel of systemic risk only, by considering a network of
exposures between financial institutions and the spread of losses in such a network. Our
model could easily be used as a building block in a larger class of models that incorporates
other channels of systemic risk, such as fire sales, liquidity and funding channels etc..

The structure of the paper is as follows. In Section 2 we introduce the model for
the financial network and the stylized balance sheets for all financial institutions that
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constitute the nodes in the network. In Subsection 2.1 we discuss how the network can
be re-evaluated if it is hit by a shock as part of a stress testing exercise. In particular,
we show how the default contagion model by Eisenberg & Noe (2001) and a special case
of the default contagion model by Rogers & Veraart (2013) can be written as a network
re-evaluation in Subsection 2.2. We then provide general comparison results for different
outcome measures of stress tests that correspond to different modelling assumptions for
models allowing for both distress and default contagion in Subsection 2.3. In Section 3 we
develop our new model for distress and default contagion. In Subsection 3.1 we introduce
the functional form of the contagion mechanism and discuss the economic meaning of
its model parameters in Subsection 3.2. In particular, we discuss the important role
of bankruptcy costs when modelling distress and default contagion. We then highlight
in Subsection 3.3 which features of the model or which parameter choices determine
whether losses are spread, amplified or even damped. Finally, in Subsection 3.4 we discuss
possible model extensions. In Section 4 we discuss how the new modelling framework
can be applied in regulatory stress tests. In Subsection 4.1 we apply our new model
to empirical data used in the 2011 stress test by the European Banking Authority and
analyze the sensitivity of outcomes of stress tests to the model parameters. Finally,
Section 5 concludes.

2 The framework

We consider a financial network consisting of N nodes which we refer to as banks with
indices in N = {1, . . . , N}. The weighted directed edges between the banks describe the
interbank liabilities and are denoted by the matrix L ∈ [0,∞)N×N . In particular, Lij
denotes the interbank liability from bank i to bank j; i.e., bank i has to repay Lij to
bank j at the maturity date. Hence, Lij is a loan from bank j to bank i and therefore
an interbank asset of bank j. We assume that banks do not borrow from themselves and
hence Lii = 0 for all i ∈ N . In addition to the interbank liabilities, we assume that banks
can have external liabilities, i.e., liabilities to entities outside the interbank network and
we denote them by Le ∈ [0,∞)N .

All contracts are established at time t = 0 and we denote the book value (time-0
value) of the total assets of bank i by Āi, its total interbank assets by ĀB

i , its total
liabilities by L̄i and its total interbank liabilities by L̄B

i . Hence,

Āi = Ae
i +

N∑
j=1

Lji = Ae
i + ĀB

i ,

L̄i = Le
i +

N∑
j=1

Lij = Le
i + L̄B

i ,

wi = Āi − L̄i,

where wi denotes the net worth (or equity if positive) of bank i. We refer to a tuple
(L,Le, Ae) as a financial system.

In addition to the interbank liabilities matrix L we will also consider the relative
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interbank liabilities matrix Π ∈ RN×N , which is given by

Πij =

{ Lij
L̄i
, if L̄i > 0,

0, if L̄i = 0.

Note in particular that the row sums of Π are less or equal than 1 (and they are equal to
1 for those indices i ∈ N for which Le

i = 0 and L̄i > 0.
It will often be convenient to study the set of all nodes that have positive total

liabilities. We denote it by

M := {i ∈ N | L̄i > 0}.

Throughout this paper we assume that all contracts have the same maturity date
T > 0. For an analysis with multiple maturities we refer to Kusnetsov & Veraart (2019).

We assume that the external assets are subject to a deterministic shock x = (x1, . . . , xN)>

where xi ∈ [0, A
(e)
i ] as part of a stress testing exercise. In particular, bank i’s shocked

external assets are given by A
(e)
i − xi and its corresponding shocked net worth is given

by wi−xi. Table 1 shows the corresponding balance sheet after the shock. In particular,
we assume that the interbank liabilities, interbank assets and the external liabilities stay
constant. In the following we provide a re-evaluation mechanisms for a financial network
that is exposed to such a shock.

Table 1: Balance sheet of bank i after the shock.

Assets Liabilities

shocked external assets A
(e)
i − xi external liabilities L

(e)
i

interbank assets
∑N

j=1 Lji interbank liabilities
∑N

j=1 Lij
shocked net worth wi − xi

2.1 Re-evaluation of the shocked network

One possible way to determine the value of the assets and liabilities in the network is
to use the concept of a clearing vector as introduced by Eisenberg & Noe (2001) and
extended to incorporate bankruptcy costs by Rogers & Veraart (2013) and considered
under the aspect of re-evaluation after a shock by Glasserman & Young (2015). The ith
component of a clearing vector characterizes the total amount that bank i ∈ N pays and
this amount might potentially be less than its total nominal liabilities L̄i. All nodes pay
their total nominal obligations if they have enough assets to do so. If they do not have
enough assets they distribute their remaining assets according to the same proportion as
their original debt was distributed and they pay a fixed proportion of their available assets
as default costs. In particular, they never pay more than their total liabilities or more
than their available assets. These assumptions are in line with the stylized principles
of insolvency law of limited liabilities, priority of debt claims and proportionality, see
Eisenberg & Noe (2001).

These concepts are captured by the following fixed point definition of a clearing vector
which rewrites the definition by Rogers & Veraart (2013) in the spirit of Glasserman &
Young (2015).
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Definition 2.1. For a financial system (L,Le, Ae) a clearing vector accounting for
bankruptcy costs for a shock realisation x = (x1, . . . , xn)> ≥ 0 is a vector L(x) ∈ [0, L̄],
such that

L(x) = ΨRV(L(x)),

where the function ΨRV is given by

ΨRV(L(x))i =

{
L̄i, if

∑N
j=1 ΠjiLj(x) + Ae

i − xi ≥ L̄i,(
β
∑N

j=1 ΠjiLj(x) + α(Ae
i − xi)

)+

, else,

(1)

where α, β ∈ [0, 1]. Here, Π denotes the relative liabilities matrix and y+ = max{0, y} for
0, y ∈ R.

If α = β = 1 the definition reduces to the definition by Glasserman & Young (2015)
of the Eisenberg & Noe (2001) model.

Definition 2.2. For a financial system (L,Le, Ae) a clearing vector for a shock realisation
x = (x1, . . . , xn)> ≥ 0 is a vector L(x) ∈ [0, L̄], such that

L(x) = ΨEN(L(x)),

where the function ΨEN is given by

ΨEN(L(x))i = min

L̄i,
(

N∑
j=1

ΠjiLj(x) + Ae
i − xi

)+
 . (2)

Here, Π denotes the relative liabilities matrix and y+ = max{0, y} for 0, y ∈ RN .

Remark 2.3. Note that it will sometimes be convenient to consider the functions above
using the set M = {i ∈ N | L̄i > 0} rather than the relative liabilities matrix Π. In
particular, for all L ∈ RN it holds that

N∑
j=1

ΠjiLj =
∑
j∈M

Lji
L̄j
Lj.

The ith component of a clearing vector L(x) characterizes the total payments that
bank i makes. Each bank j receives a proportion ΠijLi(x) ≤ Lij and bank i repays

(1−
∑N

j=1 Πij)Li(x) ≤ Le
i of the external debt.

One can immediately see from the definition that any fixed point of ΨRV or ΨEN is
in [0, L̄]. Furthermore, for all i ∈ N the sum

∑N
j=1 ΠjiLj(x) are exactly the interbank

assets that bank i has available assuming that every bank j in the network makes a total
payment of Lj(x) and Ae

i − xi are the shocked external assets.
While the original concept of a clearing vector was introduced for payment systems

and assumed that all payments are settled at the same time (the maturity) we can also
use the clearing concept as a concept of re-evaluating the network potentially prior to the
maturity date. In particular, then the clearing vector L(x) no longer represents actual
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payments made, but a valuation of the possible payments in the light of a shock x, see
(Glasserman & Young, 2015, p. 386).

Once we are concerned with the re-evaluation of a network after a shock there is no
reason to assume that assets decline in value only after the net worth of a bank has fallen
below zero. In practice, assets are marked to markets and therefore a decline in asset
value can be caused prior to the actual default of a bank. To be able to develop this
idea further it will be beneficial to rewrite the fixed point problem for a clearing vector of
Definition 2.1 as a fixed point problem for a new quantity that we refer to as re-evaluated
equity.

Definition 2.4 (Equity re-evaluation). 1. We refer to any function V : R → [0, 1]
that is non-decreasing and right-continuous as an admissible valuation function.

2. Let (L,Le, Ae) be a financial system and let the shock vector x satisfy x ∈ [0, A(e)].
Let V be an admissible valuation function and E(x) = [−L̄, w − x] and M := {j ∈
N | L̄j > 0}. We refer to a function Φ = Φ(·;V) : E(x)→ E(x), where for i ∈ N

Φi(E) = Φi(E;V) = Ae
i − xi +

∑
j∈M

LjiV
(
Ej + L̄j
L̄j

)
− L̄i, (3)

as an equity valuation function.

3. Let Φ be an equity valuation function for a financial system (L,Le, Ae) with shock
vector x ∈ [0, A(e)]. We refer to a vector E ∈ E(x) satisfying

E = Φ(E) (4)

as re-evaluated equity.

As one can see the re-evaluated equity is the difference between the re-evaluated
assets and the nominal liabilities. Here the assets are re-evaluated based on an admissible
valuation function V. If one takes the positive part of the re-evaluated equity one would
obtain what is usually considered as the equity of a company, see e.g., Eisenberg & Noe
(2001).

Our approach here is similar to the idea of network valuation developed in Barucca
et al. (2016) and the so-called reduced form Eisenberg & Noe cascade algorithm developed
in Hurd (2016).

The main difference of our approach compared to the approach by Barucca et al.
(2016) is that we only use one valuation function V to re-evaluate the whole network
and parameterise V as a function of the ratio of re-evaluated assets divided by the total
liabilities rather than as a function of the re-evaluated equity. This allows for a more
parsimonious model description while still capturing a wide range of models for which
Barucca et al. (2016) would need N valuation functions parameterised in terms of the
re-evaluated equity.

The main difference between our approach and the approach by Hurd (2016) is that
Hurd (2016) mainly considers a special case of the valuation function V (referred to as
threshold function and parametrised as a function of the ratio of the re-evaluated equity
divided by the total liabilities) that corresponds to the Eisenberg & Noe (2001) model.
We allow for a far wider class of models than just the Eisenberg & Noe (2001) model.
Our re-evaluated equity corresponds to what Hurd (2016) calls the default buffer.
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Since E(x) is a complete lattice and Φ is non-decreasing one obtains from Tarski’s
fixed point theorem the existence of a greatest and least fixed point.

Theorem 2.5. Let Φ be an equity valuation function for the financial system (L,Le, Ae)
with shock vector x ∈ [0, A(e)] and E(x) = [−L̄, w − x]. Then there exists a greatest fixed
point E∗ and a least fixed point E∗, such that for all solutions E to the fixed point problem
(4) it holds that

E∗ ≤ E ≤ E∗.

A proof for this and all remaining results is given in Appendix A.
From an economic point of view the greatest fixed point of the equity valuation func-

tion is of particular interest, since it corresponds to the best possible outcome for the
economy.

The greatest fixed point can be derived, using classical fixed point iteration and start-
ing the iteration from the shocked net worth w − x.

Theorem 2.6 (Fixed point iteration for the greatest fixed point ). Let Φ be an equity
valuation function for the financial system (L,Le, Ae) with shock vector x ∈ [0, A(e)] and
E(x) = [−L̄, w − x]. Let E(0) = w − x and define recursively E(κ+1) = Φ(E(κ)) for
κ ∈ N0 = {0, 1, 2, . . .}. Then,

1. (E(κ))κ∈N0 is a monotonically non-increasing sequence, i.e., E(κ+1) ≤ E(κ) ∀κ ∈ N0.

2. The limit limκ→∞E
(κ) exists and E∗ = limκ→∞E

(κ).

If the valuation function is left-continuous, one can also start the iteration from −L
and then one obtains a non-decreasing sequence of equity values that converges to the
least fixed point. To see why left-continuity is crucial, we refer to the discussion in Rogers
& Veraart (2013).

Definition 2.7. Let Φ = Φ(·;V) be an equity valuation function for the financial system
(L,Le, Ae) with shock vector x ∈ [0, A(e)] and let E∗ be its greatest fixed point. Let
M := {j ∈ N | L̄j > 0}.

1. We define the relative system loss corresponding to Φ(·) = Φ(·;V), by

ΛV =

∑
i∈M

∑N
j=1 Lij(1− V

(
E∗
i +L̄i
L̄i

)
)∑

i∈M
∑N

j=1 Lij
.

2. We refer to every node i with E∗i < 0 as in default under valuation Φ(·) = Φ(·;V).
Furthermore we denote by DV = 1

N

∑N
i=1 I{E∗i<0} the proportion of defaulting banks

under valuation Φ(·) = Φ(·;V).

2.2 Special cases from the literature rewritten as network re-
evaluation

We now briefly describe how a special case of the clearing problem by Rogers & Veraart
(2013) can be rewritten in terms of an equity valuation function. In the following we will
consider the special case in which α = β.
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Lemma 2.8. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)] and let
M := {j ∈ N | L̄j > 0}.
Then, the function VRV : R→ [0, 1] given by

VRV(y) =

{
1 if y ≥ 1,
βy+ if y < 1,

(5)

is an admissible valuation function, and

ΦRV
i (E) = Ae

i − xi +
∑
j∈M

LjiVRV

(
Ej + L̄j
L̄j

)
− L̄i, (6)

is an equity valuation function.

Theorem 2.9. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)] and
M = {i ∈ N | L̄i > 0}. Let α = β ∈ [0, 1].

1. Let L∗(x) be a fixed point of ΨRV defined in (1). Then, E∗ given by

E∗i := Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i, ∀i ∈ N (7)

is a fixed point of ΦRV defined in (6).

2. Let L∗(x) be the greatest fixed point of ΨRV defined in (1). Then, E∗ defined in (7)
is the greatest fixed point of ΦRV defined in (6).

3. Let E∗ be a fixed point of ΦRV defined in (6), then L∗(x) given by

L∗i (x) =

{
VRV

(
E∗
i +L̄i
L̄i

)
L̄i, if i ∈M,

0, if i ∈ N \M.
(8)

is a fixed point of ΨRV defined in (1).

4. Let E∗ be the greatest fixed point of ΦRV given in (6), then L∗(x) given by (8) is the
greatest fixed point of ΨRV given in (1).

Since the Rogers & Veraart (2013) model reduces to the Eisenberg & Noe (2001)
model if β = α = 1 we immediately get the following results.

Corollary 2.10. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)] and
let M := {j ∈ N | L̄j > 0}.

1. Then, the function VEN : R→ [0, 1] given by

VEN(y) =

{
1 if y ≥ 1,
y+ if y < 1,

}
= min{y+, 1} = min{max{0, y}, 1} (9)

is an admissible valuation function, and

ΦEN
i (E) = Ae

i − xi +
∑
j∈M

LjiVEN

(
Ej + L̄j
L̄j

)
− L̄i, (10)
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is an equity valuation function.

2. Let L∗(x) be a fixed point of ΨEN defined in (2). Then, E∗ given by

E∗i := Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i, ∀i ∈ N (11)

is a fixed point of ΦEN defined in (10).

3. Let L∗(x) be the greatest fixed point of ΨEN defined in (2). Then, E∗ defined in (11)
is the greatest fixed point of ΦEN defined in (10).

4. Let E∗ be a fixed point of ΦEN defined in (10), then L∗(x) given by

L∗i (x) =

{
VEN

(
E∗
i +L̄i
L̄i

)
L̄i, if i ∈M,

0, if i ∈ N \M
(12)

is a fixed point of ΨEN defined in (2).

5. Let E∗ be the greatest fixed point of ΦEN given in (10), then L∗(x) given by (12) is
the greatest fixed point of ΨEN given in (2).

2.3 Ordering results

Which admissible valuation function should one now choose? The following result shows
that if one admissible valuation function is bounded from below by another admissible
valuation function in the sense that it always returns a larger value than the other one, the
corresponding greatest fixed point of the re-evaluated equity under the larger valuation
function is greater or equal than the corresponding greatest fixed point under the other
admissible valuation function. Furthermore, the corresponding relative system losses and
proportions of defaults corresponding to the valuation function that returns the higher
values are smaller or equal than the ones that correspond to the valuation function that
returns the smaller values.

Theorem 2.11. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)].
Let VA and VB be two admissible valuation functions with corresponding equity valuation
functions ΦA and ΦB, respectively. Suppose that for all y ∈ R

VA(y) ≥ VB(y). (13)

Let E∗,A and E∗,B be the greatest fixed points of ΦA and ΦB respectively. Then,

1. the greatest fixed points satisfy

E∗,A ≥ E∗,B.

2. The relative system losses satisfy

ΛVA ≤ ΛVB .
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3. The proportions of defaulting banks satisfy

DVA ≤ DVB .

Note that the ordering results presented in Visentin et al. (2016) are special cases of
the above relationship.

3 Modelling distress and default contagion

We have seen that in classical clearing models such as Eisenberg & Noe (2001); Rogers
& Veraart (2013) the valuation function is equal to one, which corresponds to the value
of the assets being equal to their nominal value as long as the total amount of assets
is greater or equal than the total liabilities. We now propose a valuation function that
allows us to model the spread of contagion already prior to default. As in (Glasserman &
Young, 2015, Section 6) we assume that there exists a so-called capital cushion modelled
by a parameter k ∈ [0,∞) and as soon as the value of the total assets of a bank is below
(1 + k)L̄ we assume a deterioration in the bank’s asset value due to marking to markets.
As long as the assets are greater or equal than (1 + k)L̄ the valuation function returns
1, i.e., the asset values coincide with the nominal values. In particular, we consider a
valuation function VDistress : R→ [0, 1] which has the following structure

VDistress(y) = I{y≥1+k} + I{y<1+k}r(y), (14)

where r : R → [0, 1] is non-decreasing and right-continuous and we will present its
functional form below. Note that y represents the value of the assets of a bank divided
by its total nominal liabilities. Then VDistress is indeed an admissible valuation function.

In the classical models by e.g., Eisenberg & Noe (2001) and Rogers & Veraart (2013)
the capital cushion parameter is k = 0 and hence no reduction in asset value occurs
until a bank has reached the default point, i.e., has fewer assets than liabilities. It is
important to note that the classical clearing models (Eisenberg & Noe, 2001; Rogers &
Veraart, 2013) have been developed to describe a resolution mechanisms at the maturity
date. Now we would like to take the perspective of evaluating the state of the network
prior to the maturity date. Hence, we consider a valuation mechanism and not just a
resolution mechanism. There are two approaches how this can be done in principle. The
first approach is a probabilistic approach and has been developed by Barucca et al. (2016)
and a special case of the methodology has been applied to real data from the UK interbank
network in Bardoscia et al. (2017). They essentially use a classical resolution mechanism
from the literature and assume stochastic external assets which implies a stochastic net
worth and then compute expected clearing payments. In Barucca et al. (2016) they
consider the case of Eisenberg & Noe (2001) as a resolution mechanism and assume that
the external assets follow a geometric Brownian motion. In Bardoscia et al. (2017) they
consider a Black & Cox (1976) model for the default probabilities and combine it with
exogenous recovery rates in case of default. Hence, the probabilistic approach consists of
choosing a resolution mechanism and a probability distribution for the external assets.
This approach can lead to admissible valuation functions which return values strictly less
than 1 prior to the point of default and hence account for distress contagion. In these
models devaluation of asset values occur because of the possibility of a shock that leads
to bankruptcy in the future.
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In this paper we model distress contagion by proposing a functional form of an ad-
missible valuation function that models the decline in asset value directly. In particular,
any decline in asset value is modelled as a reaction to a shock without explicitly account-
ing for the probability of a shock in the future. This is in line with the scenario-based
approach to stress testing. We therefore do not make any assumptions on the probability
distribution of the quantities of interest.

Since there are no suitable data available that could be used to empirically estimate
the functional form of the function r, we propose a functional form that can capture
a wide range of possible shapes of the decline in asset value. This is in line with the
point of view by Brazier (2018) that one should use simulation rather than rely purely
on historical data to analyze possible shock transmission channels.

A major advantage of our proposed functional form is that it relies only on a small
number of model parameters that all have an intuitive meaning. One can therefore study
the sensitivities of the outcome measures of a stress test as a function of the (small)
number of parameters and therefore can get a good understanding of the stability of
the financial network under investigation. The parameters reflect bankruptcy law and
accounting standards. We refer to Harris et al. (2013) for a discussion on how allowances
for potential losses are made in accounting terms; in particular adjustments made are for
losses “that represent the management’s estimate of the outstanding balance that it is
unlikely to collect given current information and events”, (Harris et al., 2013, p. 937).

3.1 The functional form

Now we look at the functional form of the valuation function in more detail. We assume
that there is a non-decreasing and right-continuous function r modelling the decline in
asset value as soon as y which is the value of the assets divided by the total nominal
liabilities is less than 1 + k. As soon as y < 1 we have reached the classical definition
for default as e.g., in Eisenberg & Noe (2001); Rogers & Veraart (2013). We will use
their ideas to deal with this case. In particular, we assume that the decline in asset
value is caused by satisfying certain stylized principles of bankruptcy law such as limited
liabilities, proportionality etc. as described in detail in Eisenberg & Noe (2001); Rogers
& Veraart (2013). The advantage of this modelling assumption is that it incorporates
fundamental ideas from bankruptcy law into the modelling of default contagion. Further-
more, by keeping this part of the model consistent with existing approaches our model
reduces to those models for special choices of the model parameters which is useful in
sensitivity studies. This assumption implicitly assumes that marking-to-market is consis-
tent with these fundamental principles of bankruptcy law. We will discuss some possible
generalizations in Subsection 3.4.

Therefore from a modelling point of view we only need to find a model that describes
the decline in asset value for y ∈ [1, 1 + k). We propose the following functional form

r(y) =

{
1− (1−R)F

(
1+k−y
k

; a, b
)
, if 1 ≤ y < 1 + k,

βy+, if y < 1,
(15)

where y+ = max{y, 0} and F is the cumulative distribution function (cdf) of the Beta
distribution with parameters a > 0, b > 0. Recall that the probability density function
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of the Beta distribution with parameters a > 0 and b > 0 is given by

f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1I{0≤x≤1}

and the corresponding cumulative distribution function is

F (x; a, b) =

∫ x

0

f(y; a, b)dy

for 0 ≤ x ≤ 1.
The reason for choosing the cumulative distribution function of the Beta distribution

for modelling the distress contagion branch of the valuation function is that it enables us
to model a wide range of possible declines in asset value using a very parsimonious set of
model parameters. We will illustrate this in the next subsection.

The following Proposition shows that this indeed leads to an admissible valuation
function.

Proposition 3.1. Let k ≥ 0, R, β ∈ [0, 1] with R ≤ β, a > 0, b > 0 and let VDistress :
R→ [0, 1] be given by

VDistress(y) = VDistress(y; k, β,R, a, b)

= I{y≥1+k} + I{y<1+k}r(y),

=


1 if y ≥ 1 + k,

1− (1−R)F
(

1+k−y
k

; a, b
)
, if 1 ≤ y < 1 + k,

βy, if 0 ≤ y < 1,
0, if y < 0.

(16)

Then VDistress is an admissible valuation function.

Hence, the model distinguishes between four different situations. If y modelling the
asset value divided by the total nominal liabilities is above a certain level, i.e., higher than
1 + k the asset values correspond to the nominal values. If 1 ≤ y < 1 + k we are in the
distress contagion branch of the valuation function, i.e., the bank has enough assets to
satisfy its nominal payment obligations but still a decline in its asset value occurs. This
captures the mark-to-market effects of losses suffered by the bank to its total assets. As
soon as y < 1 we are in the default contagion branch of the valuation function, because
now the value of its assets is strictly less than its nominal payment obligations. We assume
here a proportional repayment of the remaining assets and proportional bankruptcy costs
as in Rogers & Veraart (2013).

Remark 3.2 (Relationship between distress contagion and credit valuation adjustments).
Our distress contagion model is related to credit valuation adjustments (CVAs). “CVA is
an adjustment to the fair value (or price) of derivative instruments to account for coun-
terparty credit risk (CCR),” Basel Committee on Banking Supervision (2015a). Hence,
the losses due to distress contagion can be interpreted as losses due to contagion that are
caused by such adjustments.

It is common to model CVAs as a factor. In Ha laj & Kok (2015), CVAs are considered
in the context of CVA-based capital charges in a network of interbank liabilities. They
assume that a capital charge of γjLji is applied to bank i, where γj is bank j’s specific
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CVA-factor. They provide explicit formulae for CVA-factors that are consistent with
Basel III regulation. These formulae are based on the “advanced method of CVA cal-
culation [which] involves the observed credit default spreads of the counterparts to infer
the market-based probability of default and consequently, given the assumed exposures
and their maturities, the expected loss on the portfolio of the interbank assets”, (Ha laj
& Kok, 2015, Appendix 1).

In our model, if node j is hit by a shock its re-evaluated equity declines and hence
its creditworthiness deteriorates. Hence, our valuation assumes that it will no longer pay
the full amount Lji to node i but only LjiVDistress

(
(E∗j + L̄j)/L̄j

)
≤ Lji, where E∗ is

the greatest re-evaluated equity. In that sense, the deterioration of j’s credit quality is
captured by the factor VDistress

(
(E∗j + L̄j)/L̄j

)
which depends on j’s re-evaluated assets

and the size of the shock. This can be interpreted as a credit valuation adjustment.
Since E∗ is a fixed point, the factor VDistress

(
(E∗j + L̄j)/L̄j

)
in our model accounts

for the re-evaluated assets of all nodes in the network and in particular captures higher-
order network effects. Such higher-order network effects are currently not captured in
more structural models for CVAs such as the one by Ha laj & Kok (2015) which build on
the current Basel III regulation.

Hence, our choice of the functional form of VDistress allows for a wide range of possible
losses that are due to credit valuation adjustments while accounting for feedback effects.

It would be possible to include additional market fundamentals into the modelling of
VDistress as we will briefly discuss in Subsection 3.4.

3.2 The meaning of the model parameters

Our model consists of five model parameters that have the following interpretation:

• k ∈ [0,∞): parameter modelling the capital cushion. It determines at which asset
level the bank starts suffering from contagion.

• R ∈ [0, 1]: parameter modelling the perceived exogenous recovery rate (and deter-
mining the perceived proportional default costs).

• β ∈ [0, 1]: parameter modelling the actual exogenous recovery rate (and determining
the actual proportional default costs).

• a, b ∈ (0,∞): parameters modelling decline in asset value due to distress contagion
by determining the shape of the cdf of the Beta distribution.

We refer to the parameters R and β as (perceived and actual) exogenous recovery
rates. In addition to these exogenous recovery rates, the model also contains an endoge-
nous (non-constant) recovery rate. This can be seen in (15) where the function r is also
non-constant on the default branch, i.e., for y < 1.

Figure 1 illustrates the sensitivity of the valuation function VDistress with respect to the
model parameters. The left hand side of Figure 1 shows the effect of different exogenous
recovery rate parameters (R, β) assuming (a, b) = (1, 1). This choice of (a, b) corresponds
to a linear function on the distress contagion branch of the valuation function. The
default contagion branch of the valuation function is always a linear function. In this
case, if R = β, the valuation function is piecewise linear and continuous. If R > β the
valuation function is still piecewise linear but discontinuous at y = 1.
The right hand side of Figure 1 shows the sensitivity of the valuation function with
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respect to the parameters a, b for (R, β) = (0.5, 0.2). Since we have chosen R > β
here, the valuation function is discontinuous at y = 1. We see that the cdf of the Beta
function F (; a, b) allows for a wide range of different shapes of the valuation function on
the distress contagion branch of the valuation function. It includes the linear function
and polynomials as special cases, in particular

F (x; 1, 1) = x,

F (x; a, 1) = xa,

F (x; 1, b) = 1− (1− x)b.

Furthermore, if we set b = 1 and let a → ∞, the cdf of the Beta distribution models
converges to the cdf of a probability distribution with point mass at 1. Hence, we see
that if we choose k > 0 and an almost horizontal shape of the valuation function for large
part of the distress contagion branch (obtained by setting b = 1 and letting a→∞) we
obtain a valuation function that is very similar to choosing k = 0 (and arbitrary values
of R, a, b). This overall shape would correspond to the Rogers & Veraart (2013) model.

In the following we derive ordering results for some outcome measures of a stress test
for different choices of the model parameters.

Theorem 3.3. Consider VDistress(y) = VDistress(y; k, β,R, a, b) given in (16). Let k ≥ 0,
β,R ∈ [0, 1] with β ≤ R and a, b ∈ (0,∞).

1. Sensitivity with respect to the capital cushion parameter: Let k1, k2 ∈ [0,∞) with
k1 ≤ k2.

(a) Then for all y ∈ R

Vk1(y) := VDistress(y; k1, β, R, a, b) ≥ VDistress(y; k2, β, R, a, b) =: Vk2(y).

(b) Let E∗,k1 and E∗,k2 be the greatest fixed points of the to Vk1 and Vk2 corre-
sponding equity valuation functions Φk1 and Φk2. Then,

i. the greatest fixed points satisfy

E∗,k1 ≥ E∗,k2 .

ii. The relative system losses satisfy

ΛVk1 ≤ ΛVk2 .

iii. The proportions of defaulting banks satisfy

DVk1 ≤ DVk2 .

2. Sensitivity with respect to the exogenous recovery rates β and R: Let β1, β2, R1, R2 ∈
[0,∞) with β1 ≤ β2 ≤ R1 ≤ R2.

(a) Then for all y ∈ R

Vβ1,R1(y) := VDistress(y; k, β1, R1, a, b) ≤ VDistress(y; k, β2, R2, a, b) =: Vβ2,R2(y).
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(b) Let E∗,β1,R1 and E∗,β2,R2 be the greatest fixed points of the to Vβ1,R1 and Vβ2,R2

corresponding equity valuation functions Φβ1,R1 and Φβ2,R2. Then,

i. the greatest fixed points satisfy

E∗,β1,R1 ≤ E∗,β2,R2 .

ii. The relative system losses satisfy

ΛVβ1,R1 ≥ ΛVβ2,R2 .

iii. The proportions of defaulting banks satisfy

DVβ1,R1 ≥ DVβ2,R2 .

As an immediate consequence of part 1 of Theorem 3.3 (assuming k1 = 0 < k2) we see
that allowing for distress contagion (k2 > 0) will lead to worse or at best equal outcomes
of the stress test compared to not allowing for distress contagion (k1 = 0).

Similarly, from part 2 of Theorem 3.3 (assuming β1 < β2 = 1 = R1 = R2) we see
that in particular stress test outcomes in the special case of the Rogers & Veraart (2013)
model (β1 < 1) are worse or at best equal to outcomes in the Eisenberg & Noe (2001)
model (β2 = 1).

3.3 Spread, containment and amplification of losses

As already outline, choosing a capital cushion parameter k > 0 gives rise to a new class
of models that account for distress and not just default contagion. From Theorem 3.3 it
is clear that when keeping R, β, a, b fixed, higher levels of k will result in worse outcomes
for the network. If k = 0 the model reduces to the model by Rogers & Veraart (2013)
in which α = β. If in addition β = 1 the valuation function reduces to the model by
Eisenberg & Noe (2001). If k = 0 and R = β = 0, the model reduces to the default
cascade model considered e.g., in Amini et al. (2016); Furfine (2003) with zero recovery
rate.

Note that in the Furfine (2003); Amini et al. (2016); Rogers & Veraart (2013); Eisen-
berg & Noe (2001) models the net worth acts as a buffer that can absorb losses. Only
if this buffer is depleted, i.e., if the net worth becomes negative, transmission of losses
to other nodes in the network occurs. Since there are no default costs in the Eisenberg
& Noe (2001) model, losses are not amplified in any way by the network. On the con-
trary, in the Eisenberg & Noe (2001) model losses can actually be contained due to the
existence of the equity buffer that has to be depleted first. The analytical results derived
in Glasserman & Young (2015) on the likelihood of contagion in the Eisenberg & Noe
(2001) model reflect this. When we allow for k > 0 we reduce the ability of the network
to absorb losses before they are transmitted.

Once losses are transmitted to other nodes in the network, the role of the parameters
modelling the exogenous recovery rate and default costs is absolutely crucial. Note that
we use two parameters R, β ∈ [0, 1] with β ≤ R to model the perceived exogenous
recovery rate (R) and the actual exogenous recovery rate (β). As soon as they do not
coincide, i.e., R > β the valuation function is discontinuous at the default point (but
remains right-continuous throughout). The parameter R ∈ [0, 1] determines the lower
bound for the valuation function prior to the default event, i.e., a lower bound for the
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distress contagion branch of the valuation function. The parameter β ∈ [0, R] acts as an
upper bound of the default contagion branch of the valuation function.

The first important point to note is that if we do not introduce default costs there
would be no way to model distress contagion in our setting. The reason why marking to
markets reduces the value of the assets, is that implicitly there is the assumption that at
default, the bank does not recover all of its assets. The valuation function corresponding
to the Eisenberg & Noe (2001) model is a continuous function as we have seen in Corollary
2.10. Hence, there is no big difference between being just below the default threshold or
above it. This means, if a bank is marginally below the default threshold it can repay
almost all of its total nominal liabilities. Hence, from the point of view of marking to
markets, there is no reason why the asset value of a bank that is close to default should be
reduced in value if the default event itself is modelled as a continuous and soft threshold
with no additional losses. As soon as the market participants think that there will be
additional losses (due to bankruptcy costs modelled by R) assuming a lower asset value
prior to default is reasonable. By assuming that perceived exogenous recovery rate R is
greater or equal than the actual exogenous recovery rate β we ensure the monotonicity
of the valuation function which keeps the model tractable.

Hence we see that despite the fact that bankruptcy costs by definition only occur in
the case of bankruptcy, their existence can have consequences for the re-evaluation of
the network even in the absence of bankruptcy. Therefore, bankruptcy costs can amplify
losses in networks due to two different effects. The direct effect of bankruptcy costs is just
the additional losses that occur in the case of default. The indirect effect of bankruptcy
costs is that they imply mark to market losses prior to the default event itself, because
the default point is modelled as a discontinuity of the valuation function. We are not
aware that these twofold consequences of bankruptcy costs have been recognised before.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

V
di

st
re

ss

(R,β)

(1,1)
(0.9, 0.9)
(0.9, 0.4)
(0.4, 0.4)
(0, 0)

(a) Vdistress for different choices of (R, β)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

V
di

st
re

ss

●

(a,b)

(1,1)
(0.5, 7)
(0.3, 0.3)
(100, 100)
(100, 1)

(b) Vdistress for different choices of (a, b)

Figure 1: Function Vdistress for different choices of (R, β) with (a, b) = (1, 1) (left) and for
different choices of (a, b) with (R, β) = (0.5, 0.2) (right) for k = 0.5.
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3.4 Generalizations

We briefly would like to discuss three possible extensions of our valuation framework.
First, we could allow for node-specific model parameters. So far we have assumed

that the model parameters k,R, β, a, b are the same for all nodes in the network. If
we consider a heterogeneous network of financial institutions, there are good reasons to
assume that some of these model parameters should be institution specific. In particular,
some institutions might have much higher recovery rates in case of default since they
have financial collateral in place and therefore their lending is much more secure. This
would lead to making β and R institution specific. As we have already seen in our
previous discussion, the default cost/recovery rate parameter is strongly linked to the
capital cushion parameter k. In particular, one could argue that the higher the perceived
exogenous recovery rate R, the lower should be the capital cushion parameter k. In this
case also the parameter k should be institution specific. Since then the valuation function
depends on the index j of the institution, it is no longer a valuation function according
to our original definition, but all results can be easily generalized.

Theorem 3.4. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)] and
let M := {j ∈ N | L̄j > 0}. Let for all j ∈ N Vj : R→ [0, 1] with

VGeneral
j (y) := VDistress(y; kj, βj, Rj, aj, bj)

with VDistress as in (16).
Consider ΦGeneral : E(x)→ E(x), where E(x) = [−L̄, w − x] and for i ∈ N

ΦGeneral
i (E) = Ae

i − xi +
∑
j∈M

LjiVGeneral
j

(
Ej + L̄j
L̄j

)
− L̄i. (17)

Then,

1. there exists a greatest fixed point E∗∗ and a least fixed point E∗∗ of ΦGeneral
i such

that for all fixed points E of ΦGeneral
i it holds that

E∗∗ ≤ E ≤ E∗∗.

2. Let E(0) := w − x and define recursively E
(κ+1)
i = ΦGeneral

i (E(κ)) for all κ ∈ N0 and
for all i ∈ N . Then

(a) (E(κ))κ∈N0 is a monotonically non-increasing sequence, i.e., E(κ+1) ≤ E(κ)

∀κ ∈ N0.

(b) The limit limκ→∞E
(κ) exists and E∗∗ = limκ→∞E

(κ).

We can also define the relative system loss and the proportion of defaulting banks
corresponding to the greatest fixed point as before.

In the literature, there is one model that can be considered as using a institution
specific capital cushion, namely the DebtRank model by Battiston et al. (2012). The
DebtRank model with zero recovery rate can be rewritten in terms of our general model
by setting ki = wi

L̄i
, a = b = 1 and R = β = 0. This choice of the capital cushion parameter

ki implies that all shocks to a node are transmitted to other nodes in the network since
there is no buffer left that can be depleted before shock transmission occurs. In practice,
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this is a strong assumption. We will discuss the effect of different choices for the model
parameters including the capital cushion parameter in our case study in the next section.

Second, we could also consider relaxing the assumption on the default point which
is currently assumed to be at y = 1, i.e., when the total assets are equal to the total
liabilities and hence the net worth is equal to zero. This would give us a sixth model
parameter D ∈ [0, 1 + k] and would lead to the following admissible valuation function

VDistress2(y) := VDistress2(y; k, β,R, a, b)

:=


1 if y ≥ 1 + k,

1− (1−R)F
(

1+k−y
k

; a, b
)
, if D ≤ y < 1 + k,

βy, if 0 ≤ y < D,
0, if y < 0.

(18)

In practice, default will usually occur at D > 1, namely when regulatory capital require-
ments are no longer met. To model such a situation one would need to require that
D ≤ R

β
to guarantee the monotonicity of VDistress2.

From a mathematical point of view, the additional parameter D also allows for an
application of the very flexible shape of the cdf of the Beta distribution over not just the
distress contagion branch of the valuation function, but also over the default contagion
branch by setting D = 0. This would then enable us to model situations in which
the effects of marking-to-market are no-longer restricted to comply with the stylized
principles of bankruptcy law established in Eisenberg & Noe (2001) on what we call the
default contagion branch of the valuation function.

Third, it would be possible to extend our modelling framework such that the valuation
function VDistress depends explicitly on additional variables that describe the state of the
market. In particular, we could make the model parameters a and b that describe the
severity of decline due to distress contagion dependent on some market fundamentals.
Our sensitivity analysis, however, will show that we can get many interesting insights
about the state of the network already without adding this additional layer of structural
modelling.

4 Applications to stress testing

In the following we will show how the new framework can be used in a regulatory stress
test. The stress test would proceed in the following four steps.

First one collects the market data corresponding to the stylized balance sheet in Table
1, i.e., the value of the external assets, the interbank assets, the external liabilities and
the interbank assets. This information is available from published balance sheets.

Second one needs to establish the network of interbank liabilities, i.e., the matrix L. If
the interbank liabilities are not fully observable then one can reconstruct this matrix from
its observable row and column sums. Several methods are available to do this, see e.g.,
the Bayesian approach by Gandy & Veraart (2017, 2019) and discussions on alternative
approaches. These approaches do not rely on historical estimates of the financial network
but reconstruct the financial network based on the partial information that is available
on the current network.

Third one decides on a shock x or a selection of shocks used in the stress test. This
would correspond to a choice of a scenario in a scenario based stress tests. Prior to the
2007-2008 financial crisis it was common to consider shocks that would correspond to
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some historic events. More recently there is a clear tendency to include hypothetical
scenarios in stress testing, see e.g., Basel Committee on Banking Supervision (2009).
Different shocks can be considered here. All institutions could be hit by a shock or only
a selection of institutions could be hit by a shock. The number of fundamental defaults
corresponding to different shocks can be read off directly from the stylized balance sheet
in Table 1. All institutions whose shocked net worth is strictly less than zero are in
fundamental default. One can use this information to choose shock sizes of interest.

Finally one uses the new contagion model to determine different outcome measures
of the stress test. For example, one can compute which banks default as the result of the
stress test or one can derive the corresponding system loss. Since these outcome measures
will depend on the five model parameters, a sensitivity analysis should be performed to
analysis the effects of the various model parameters. We will discuss how this can be done
efficiently in Subsection 4.1. In particular we show how the analytical ordering results
established in in Theorem 3.3 can be used in the sensitivity analysis.

This approach to stress testing does not rely on historical estimates of financial mar-
kets to perform the stress testing exercise. In particular, the contagion mechanism pro-
posed incorporates ideas from bankruptcy law and accounting and does not rely on his-
torical estimates of financial contagion processes. In that sense this approach to stress
testing is not an econometric policy analysis and as such cannot be subject to the Lucas
critique. Lucas (1976) argued that “given that the structure of all econometric model
consists of optimal decision rules of economic agents, and that optimal decision rules vary
systematically with changes in the structure of series relevant to the decision maker, it
follows that any change in policy will systematically alter the structure of econometric
models.” This implies that models are useful for policy analysis only if the underlying
parameters are policy-invariant. This is indeed the case in our framework. Our conta-
gion mechanism takes the financial network as given and characterizes how asset values
decline due to financial contagion. The modelling framework is so general that it can
capture a wide variety of shapes of declines in asset value using a parsimonious set of
parameters. By performing a sensitivity study as part of the stress testing exercise one
can then understand the possible outcomes for the network if these parameters change.
We will illustrate this in our empirical case study.

We also would like to point out that one of the main goals of an annual stress test is to
assess the resilience of the financial system. If a stress test shows that some institutions
would not be able to withstand a certain shock they might be required to take specific
actions determined by the financial regulator such as adjusting capital buffers for example.
While stress tests could be used to assess the effects of different regulatory policies this
is usually not their main purpose. Still this would be possible to do in our setting.
One could, for example, assess the consequences of requiring different leverage ratios for
financial institutions, because our financial contagion mechanism is independent of such
characteristics of the network. One could also, for example, assess consequences of large
exposure constraints which would alter the underlying financial network. The contagion
mechanism can then be applied to the network without large exposure constraints and
to a corresponding network that satisfies some given constraints on the exposures. If
one wanted to assess the consequences of changes in accounting practice or bankruptcy
law for example, this could be achieved by adapting some of the model parameters. For
example, one can investigate the effects of different legal frameworks which determine
when the point of bankruptcy is reached as discussed in Subsection 3.4. Since the model
parameters have a clear economic interpretation this can easily be done.
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4.1 Empirical case study

We now apply the new framework for quantifying distress and default contagion based
on the valuation function VDistress to empirical data. We consider balance sheet data of
76 banks1 that took part in the European Banking Authority’s (EBA) 2011 stress test 2.
These data have been analyzed in Glasserman & Young (2015) and subsets of these data
have also been used in Gandy & Veraart (2017) and Chen et al. (2016).

For each bank i the data contain its total assets Āi, its total interbank assets ĀB
i and

the net worth wi. From these observations we obtain the external assets as Ae
i := Āi−ĀB

i .
The total interbank liabilities L̄B

i are not available. As in Gandy & Veraart (2017) we set
them to be equal to a slightly perturbed version of ĀB

i . In particular, for i ∈ {1, 2, . . . , N−

1} we set L̄B
i := Round

(
(ĀB

i + εi)
∑N
j=1 Ā

B
j∑N

j=1(ĀB
j +εj)

)
and L̄B

N :=
∑N

j=1 Ā
B
j −

∑N
j=1 L̄

B
j , where

Round(·) is the function that rounds to 1 decimal place and ε1, . . . , εN are independent
realisations from the normal distribution with mean 0 and standard deviation 100. We
take one fixed realisations for the L̄B

i for our analysis. We can then determine the external
liabilities by setting Le

i := Āi − L̄B
i − wi for all i ∈ N .

To re-evaluate the network we need to know the individual entries Lij, where i, j ∈ N ,
of the liabilities matrix. Since these are not available, we use the Bayesian approach to
network reconstruction developed by Gandy & Veraart (2017, 2019) to reconstruct a
matrix from its row and column sums. In particular, we use the empirical fitness model
introduced in Gandy & Veraart (2019) and calibrate it to a network density of 0.4 as
described in Gandy & Veraart (2019), i.e., 40% of the entries of the matrix are assumed
to be non-zero. We obtain a sample of liabilities matrices L(ν), which have the observed
row and column sums. For the first part of the analysis we take one of the samples and
treat it as the true liabilities matrix L. For the second part of the analysis we use all
samples.

We choose a deterministic shock vector x where xi = 0.03Ae
i for all i ∈ N . This leads

to the fundamental default of ten banks, i.e., ten banks have a negative net worth w− x
even under the assumption that all banks satisfy their obligations in full.

Now we conduct a sensitivity analysis of the proportion of defaults and the relative
system loss with respect to the five model parameters. We first study the sensitivity of
these measures with respect to two model parameters: the perceived exogenous recovery
rate R and the parameter determining the start of the contagion process k. We assume
that β = R which implies that the valuation function is continuous. Furthermore, we
assume that a = b = 1, i.e., the distress contagion branch of the valuation function is
a linear function. Later we will investigate what happens if we assume β < R and use
different choices of a and b.

Figure 2 shows the proportion of defaults DVDistress
(left hand side) and the relative

system loss ΛVDistress
(right hand side) as a function of the perceived exogenous recovery

rate R for different choices of the capital cushion parameter k for one reconstructed
network. As expected from Theorem 3.3 we see that smaller values of k (i.e., a later start
of the contagion process) correspond to lower proportions of default and lower relative
system losses in particular for large exogenous recovery rates R.

We can compute an upper bound kmax on the capital cushion parameter k that is of

1In total 90 banks took part in the stress test. Due to some problematic data with some of the
smallest banks we excluded the ten smallest banks and any countries with only a single participating
bank as in Glasserman & Young (2015). This results in 76 banks.

2See http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results
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(a) Proportion of defaults for different k
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(b) Relative system loss for different k

Figure 2: Proportion of defaults DVDistress
(left) and relative system loss ΛVDistress

(right)
as a function of R for different values of the cushion parameter k using β = R and
a = b = 1 for one reconstructed network.

interest in a sensitivity analysis as follows. We assume that the asset value of bank i
starts to decline due to marking-to-markets as soon as its assets are less than or equal
to (1 − ki)L̄. Its maximum asset value is the notional amount listed on the balance
sheet reduced by the shock xi, i.e., this represents the shocked assets prior to the start
of the contagion process. Therefore we determine ki ∈ R, i ∈ N , by requiring that
Āi−xi = (1−ki)L̄i. Now for all i ∈M = {i ∈ N | L̄i > 0} we can solve for ki as follows3

ki =
Āi − x− L̄i

L̄i
=
wi − xi
L̄i

=
1
L̄i
wi

− xi
L̄i
.

Hence we see how ki is related to the debt-to-equity or leverage ratio L̄i/wi. For our
data set we find that the median and the mean of the ki for i ∈ N is 0.015 and 0.016
respectively. Furthermore, we set

kmax :=

(
max
i∈M

{
Āi − x− L̄i

L̄i

})+

.

For our data set we obtain kmax ≈ 0.08, which means that wi−xi = Āi−xi− L̄i ≤ 0.08L̄i
for all i ∈ M. Hence, we see that for any sensitivity analysis choices of k ∈ [0, kmax] are
potentially of interest.

As previously discussed, if the exogenous recovery rate satisfies R = 1, then the choice
of k does not matter, since the distress contagion branch of the valuation function is just
a horizontal line at 1, since it is bounded from below by R = 1. If R is slightly less than
1 than the choice of k seems to matter. If R is too small, however, the amplification
effect and hence the total losses are so large that they dominate the overall behaviour. If

3Note that if i ∈ N \M then L̄i = 0. Hence, this bank can always repay its nominal liabilities of 0
in full and no losses due to distress or default can occur.
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losses are too big, it is less important whether distress contagion starts slightly earlier or
not. So we see that the choice of the exogenous recovery rate R will have a huge effect
on the outcome of the contagion process. In our example, for R = 1, the proportion of
defaulting banks corresponds to 10/76 ≈ 0.13 which corresponds to only the fundamental
defaults, i.e., defaults that occur even if all banks are assumed to satisfy their payment
obligations. For R = 0, however, the proportion of defaulting banks almost reaches 1,
meaning that almost all banks have been wiped out. Note that we assume here that
R = β, i.e., the perceived exogenous recovery rate R coincides with the actual exogenous
recovery rate β.

From Theorem 3.3 we know that if β < R then the outcome for the network is worse
than for R = β. Hence, in that sense Figure 2 represents a best case scenario (for fixed
parameters a, b, k, R) with respect to the parameter β. Further tests not reporter here
show that the introduction of a discontinuity of the valuation function at the point of
default by choosing β < R only has a small (but worse) overall effect on the proportion
of defaults and the relative system loss and again this only matters for rather large values
of R. Here we find that for k = 0.05 and R < 0.78 more than 75 % of the banks have
already defaulted. Hence, there is not much point in investigating what happens for
β < R < 0.75 if already three quarters or more of the banks have defaulted under β = R.
Hence, we see that in practice there is only a small range of values for R that would not
lead to an almost complete collapse of the system and which would then require a further
analysis of the effects of β.

Next we investigate the effects of the parameters a and b modelling the decline due
to distress contagion. Figure 3 shows that the choice of the parameters a, b only matters
for large values of the recovery rate R. Here we compare the proportion of defaults and
relative system losses for (a, b) = (1, 1) which corresponds to a linear distress contagion
model to (a, b) = (0.5, 7) which corresponds to a model which has a strong decline in
value close to the capital cushion and a flatter region closer to 1, the overall shape can be
seen in Figure 3(c) where we used a much larger capital cushion k = 0.5 to make it easier
to visualise the difference between the two curves. In line with the results of Theorem
2.11 we see that the linear decline in asset value always lead to a better outcome than
the stronger than linear initial decline achieved by choosing (a, b) = (0.5, 7). But again
this only matters for rather high values of the exogenous recovery rate R.

These results show that distress contagion has a larger influence on the outcomes
of the stress tests in financial networks with higher exogenous recovery rates. Higher
exogenous recovery rates can for example be associated with more secured lending due to
the use of financial collateral or higher seniority of the debt. Furthermore, the magnitude
of any recovery rate is strongly linked to the duration of the actual recovery process. In
particular, recovery rates over a long time horizon can be significantly higher than right
at the point of default. If we allow for a longer time horizon, then there are also more
opportunities for mark-to-market accounting and for distress contagion to unfold. So we
see that accounting for distress contagion seems particularly important when assessing
financial stability over a longer time horizon.

Next we investigate whether our results based on one reconstructed network carry
over to a large sample of reconstructed networks. Figure 4 shows the minimum, mean
and maximum of the MCMC sample of 10,000 reconstructed networks of the proportion
of defaults (left) and relative system loss (right) as a function of R for β = R and
a = b = 1 with k = 0 (black) and k = 0.05 (gray). We again find that the proportion
of defaults increases steeply if the exogenous recovery rate R falls below 1. Furthermore,
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(a) Difference in proportion of defaults using
(a, b) = (1, 1) and (a, b) = (0.5, 7)
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(b) Difference in relative system loss using
(a, b) = (1, 1) and (a, b) = (0.5, 7)
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(c) Valuation function VDistress for (a, b) = (1, 1) and
for (a, b) = (0.5, 7) using R = β = 0.7 and k = 0.5.

Figure 3: Difference between the proportion of defaults DVDistress
with (a, b) = (1, 1) and

the proportion of defaults with (a, b) = (0.5, 7) (top left) and the difference between the
relative system loss ΛVDistress

(top right) with (a, b) = (1, 1) and the relative system loss
with (a, b) = (0.5, 7) as a function of R for different values of the cushion parameter k
using β = R for one reconstructed network. Note that the figures use different scales for
the y-axis. The lower picture shows the corresponding shape of VDistress for (a, b) = (1, 1)
and for (a, b) = (0.5, 7) using k = 0.5.
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(a) Proportion of defaults
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(b) Relative system loss

Figure 4: Minimum, mean and maximum of the MCMC sample of 10,000 reconstructed
networks of the proportion of defaults (left) and relative system loss (right) as a function
of R for β = R and a = b = 1 with k = 0 (black) and k = 0.05 (gray).

the difference between the outcome measures for the different samples is very small, since
the minimum and maximum values of the outcome measures are quite similar.

It seems that the exogenous recovery rate parameter R is clearly dominating the
overall behaviour of the network. Only for large recovery rate parameters R does the
choice of the capital cushion parameter k seem to matter in line with our results on only
one reconstructed network. In particular if we allow for distress contagion (corresponding
to k = 0.05) we have in general higher proportions of defaults and a higher relative system
loss compared to having only default contagion (k = 0). This is in line with the theoretical
results established in Theorem 3.3. We see that moving from k = 0 to a small but positive
k can lead to different, i.e., worse outcome for the network. In our data, however, we
observe this outcome only for rather large values of the anticipated exogenous recovery
rate R.

5 Conclusion

We have developed a new model for distress and default contagion that can be used in
macroprudential stress tests. Its basic form depends on only five model parameters: One
parameter determines the start of the contagion process (k), one parameter determines
a lower bound for the distress contagion branch (R), one parameter determines an upper
bound for the default contagion branch (β) and two model parameters determine the
overall shape of the distress contagion mechanism (a, b). We have shown how the new
model reduces to some well-known contagion models for special choices of the model
parameters.

We have provided ordering results for outcome measures of stress tests that correspond
to different parameter choices. These results provide a useful tool to conduct stress tests
together with an analytical sensitivity analysis and bounds on outcomes of stress tests.
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We have discussed how different choices of the model parameter lead to amplification,
containment or spread of losses. In particular, we have shown that bankruptcy costs can
amplify losses in two ways. They amplify losses directly since every time a bank defaults
additional losses occur. But they can also amplify losses indirectly, because they provide
scope for distress contagion and therefore can lead to an earlier start of a contagion
mechanism.

Our empirical case study showed that accounting for distress contagion is more im-
portant in models with higher recovery rates, since in models with low recovery rates the
large losses due to bankruptcy costs dominate the overall outcome for the network.

A Proofs

Theorem 2.5 and Theorem 2.6 are special cases of Theorem 3.4 and hence we only prove
Theorem 3.4 later.

Proof of Lemma 2.8. By definition VRV : R → [0, 1] and it is clear that it is non-
decreasing and right-continuous and hence an admissible valuation function. Hence, ΦRV

is an equity valuation function.

Proof of Theorem 2.9. We will prove the statements 1. and 3. for general fixed points
first, before we prove the results for the greatest fixed points 2. and 4..

1. Let L∗(x) be the a fixed point of ΨRV, and set

E∗i := Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i, ∀i ∈ N .

To see that E∗ is indeed a fixed point of ΦRV we need to show that for all i ∈ M
it holds that

L∗i (x)

L̄i
= VRV

(
E∗i + L̄i
L̄i

)
.

Let i ∈M with L∗i (x) = L̄i. Then by the definition of ΨRV it holds that

L̄i ≤ Ae
i − xi +

N∑
j=1

ΠjiL
∗
j(x) = Ae

i − xi +
∑
j∈M

Lji
L∗j(x)

L̄j

⇐⇒ 0 ≤ Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i = E∗i

⇐⇒ E∗i + L̄i
L̄i

≥ 1.

Therefore,

VRV

(
E∗i + L̄i
L̄i

)
= 1 =

L∗i (x)

L̄i
=
L̄i
L̄i
.
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Let i ∈ M with L∗i (x) = β(Ae
i − xi +

∑
j∈M Lji

L∗
j (x)

L̄j
)+. Then by the definition of

ΨRV it holds that

Ae
i − xi +

N∑
j=1

ΠjiL
∗
j(x) ≤ L̄i

⇐⇒ 0 ≥ Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i = E∗i

⇐⇒ E∗i + L̄i
L̄i

≤ 1.

Therefore,

VRV

(
E∗i + L̄i
L̄i

)
= β

(
E∗i + L̄i
L̄i

)+

=
β

L̄i
(E∗i + L̄i)

+ =
L∗i (x)+

L̄i
=
L∗i (x)

L̄i
.

Hence, E∗ = ΦRV(E∗).

3. Let E∗ be a fixed point of ΦRV, hence for all i ∈ N

E∗i = Ae
i − xi +

∑
j∈M

LjiVRV

(
E∗j + L̄j

L̄j

)
− L̄i.

Let

L∗i (x) = VRV

(
E∗i + L̄i
L̄i

)
L̄i

for all i ∈M and L∗i (x) = 0 for all i ∈ N \M.

Let i ∈M. Then,

L∗i (x)

L̄i
= VRV

(
E∗i + L̄i
L̄i

)
and hence

E∗i = Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i.

Since L∗i (x) = 0 for all i ∈ N \M we obtain that for all i ∈ N

E∗i = Ae
i − xi +

N∑
j=1

ΠjiL
∗
j(x)− L̄i.

Let i ∈M with E∗i ≥ 0 (and hence Ae
i − xi +

∑N
j=1 ΠjiL

∗
j(x) ≥ L̄i). Then,

L∗i (x)

L̄i
= VRV

(
E∗i + L̄i
L̄i

)
= 1
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and hence L∗i (x) = L̄i.

Let i ∈M with E∗i < 0 (and hence Ae
i − xi +

∑N
j=1 ΠjiL

∗
j(x) < L̄i). Then,

L∗i (x)

L̄i
= VRV

(
E∗i + L̄i
L̄i

)
=

β

L̄i
(E∗i + L̄i)

+ =
β

L̄i

(
Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j

)+

and therefore

L∗i (x) = β

(
Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j

)+

.

Let i ∈ N \M. Then, L̄i = 0 = L∗i (x) and in particular

Ae
i − xi +

N∑
j=1

ΠjiL
∗
j(x) ≥ L̄i = 0.

Combining these results we obtain that indeed

L∗i (x) =

{
L̄i, if Ae

i − xi +
∑N

j=1 ΠjiL
∗
j(x) ≥ L̄i,

β(Ae
i − xi +

∑N
j=1 ΠjiL

∗
j(x))+, else

and hence L∗(x) is a fixed point of ΨRV defined in (1).

2. It remains to show that E∗ is the greatest fixed point of ΦRV.

Suppose there exists a vector Ẽ ∈ [0, w − x] with ΦRV(Ẽ) = Ẽ and Ẽ > E∗, i.e.,
Ẽi ≥ E∗i for all i ∈ N and there exists an ν ∈ N such that Ẽν > E∗ν .

We set L̃i := VRV
(
Ẽi+L̄i
L̄i

)
L̄i for all i ∈ N . By 3. this is a fixed point of ΨRV. We

show that L̃ > L∗ which is a contradiction to L∗ being the greatest fixed point of
ΨRV.

By definition,

Ẽν = Ae
ν − xν +

∑
j∈M

LjνVRV

(
Ẽj + L̄j
L̄j

)
,

E∗ν = Ae
ν − xν +

∑
j∈M

LjνVRV

(
E∗j + L̄j

L̄j

)
,

and hence

0 < Ẽν − E∗ν =
∑
j∈M

Ljν

(
VRV

(
Ẽj + L̄j
L̄j

)
− VRV

(
E∗j + L̄j

L̄j

))
.
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Since VRV non-decreasing and Ẽ > E∗, VRV
(
Ẽj+L̄j
L̄j

)
− VRV

(
E∗
j+L̄j

L̄j

)
≥ 0. Since

0 < Ẽν − E∗ν there exists an µ ∈M with

Lµν

(
VRV

(
Ẽµ + L̄µ
L̄µ

)
− VRV

(
E∗µ + L̄µ

L̄µ

))
> 0

and hence

VRV

(
Ẽµ + L̄µ
L̄µ

)
> VRV

(
E∗µ + L̄µ

L̄µ

)
.

Furthermore,

L̃µ = VRV

(
Ẽµ + L̄µ
L̄µ

)
L̄µ > VRV

(
E∗µ + L̄µ

L̄µ

)
L̄µ = L∗µ

and

L̃i = VRV

(
Ẽi + L̄i
L̄i

)
L̄i ≥ VRV

(
E∗i + L̄i
L̄i

)
L̄i = L∗i

for all i ∈ N . Hence, L̃ is a fixed point of ΨRV by 3. and L̃ > L∗ which is a
contradiction to L∗ being the greatest fixed point of ΨRV. Hence, E∗ is indeed the
greatest fixed point of ΦRV.

4. Let E∗ be the greatest fixed point of ΦRV and let L∗i (x) := VRV
(
E∗
i +L̄i
L̄i

)
L̄i for

all i ∈ N . We show that L∗(x) is the greatest fixed point of ΨRV. From 2. we
know already that L∗(x) is a fixed point of ΨRV. We show that it is the greatest
fixed point again by proof by contradiction. Suppose there exists a vector L̃ with
ΨRV(L̃) = L̃ and L̃ > L∗, i.e., L̃i ≥ L∗i for all i ∈ N and there exists a ν ∈ N for
which L̃ν > L∗ν . Note that this implies ν ∈M.

We define

Ẽi := Ae
i − xi +

∑
j∈M

Lji
L̃j
L̄j
− L̄i ∀i ∈ N .

By 1. this is a fixed point of ΦRV. Since,

E∗i := Ae
i − xi +

∑
j∈M

Lji
L∗j(x)

L̄j
− L̄i ∀i ∈ N .

Then,

Ẽi − E∗i =
∑
j∈M

Lji
L̄j

(L̃j − L∗j(x)) ≥ 0 ∀i ∈ N .

Since by assumption there exists a ν ∈ M with L̃ν > L∗ν there also exists a µ ∈ N
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such that Lνµ > 0 and hence Ẽµ > E∗µ. This is a contradiction to E∗ being the

greatest fixed point of ΦRV and hence such a L̃ does not exist.

Proof of Theorem 2.11. 1. LetE(0),ν = M−x and define recursivelyE(κ+1),ν = Φν(E(κ),ν)
∀κ ∈ N0, ν ∈ {A,B}. By Theorem 2.6 we know that the limits E∗,ν = limκ→∞E

(κ),ν ,
ν ∈ {A,B}, exist and that they are the greatest fixed points.

We prove the statement by induction with respect to κ. Let κ = 0. Then E(0),A =
M − x = E(0),B.

Suppose E(κ),A ≥ E(κ),B for a κ ∈ N0. Then for all i ∈ N it holds that

E
(κ+1),A
i := ΦA(E(κ),A)i = Ae

i − xi +
∑
j∈M

LjiVA

(
E

(κ),A
j − L̄j
L̄j

)
− L̄i

≥ Ae
i − xi +

∑
j∈M

LjiVB

(
E

(κ),A
j − L̄j
L̄j

)
− L̄i

≥ Ae
i − xi +

∑
j∈M

LjiVB

(
E

(κ),B
j − L̄j
L̄j

)
− L̄i

= ΦB(E(κ),B) = E(κ+1),B,

where the last inequality follows from the induction hypothesis and the fact that
VB is an admissible valuation function and hence non-decreasing.

Hence, E(κ),A ≥ E(κ),B ∀κ ∈ N0 and hence

E∗,A = lim
κ→∞

E(κ),A ≥ E(κ),B = lim
κ→∞

E∗,B.

2. The result is an immediate consequence of part 1 of this theorem.

3. The result is an immediate consequence of part 1 of this theorem.

Proof of Proposition 3.1. Since F (·; a, b) is the cumulative distribution function of the
Beta distribution it is non-decreasing and continuous. Hence, y 7→ 1−(1−R)F

(
1+k−y
k

; a, b
)

is continuous as well. Furthermore, it is non-decreasing for all y ∈ [1, 1 + k). One can see
directly from the definition of VDistress that it is right-continuous on the other parts of the
domain as well and non-decreasing. Hence, it is an admissible valuation function.

Proof of Theorem 3.3. 1. Let 0 ≤ k1 ≤ k2.

(a) We consider four cases.
First, let y ∈ (−∞, 1).

VDistress(y; k1, β, R, a, b) = βy+ = VDistress(y; k2, β, R, a, b).

Second, let y ∈ [1 + k2,∞). Then,

VDistress(y; k1, β, R, a, b) = 1 = VDistress(y; k2, β, R, a, b).

30

 Electronic copy available at: https://ssrn.com/abstract=3465612 



Third, let y ∈ [1 + k1, 1 + k2). Then by definition

VDistress(y; k1, β, R, a, b) = 1 ≥ VDistress(y; k2, β, R, a, b).

Fourth, let y ∈ [1, 1 + k1). Then,

VDistress(y; k1, β, R, a, b) = 1− (1−R)F

(
1 + k1 − y

k1

; a, b

)
,

VDistress(y; k2, β, R, a, b) = 1− (1−R)F

(
1 + k2 − y

k2

; a, b

)
.

Define, G : [y − 1,∞)→ [R, 1], where

G(k) := 1− (1−R)F

(
1 + k − y

k
; a, b

)
.

Then, G is differentiable and

G′(k) = −(1−R)F ′
(

1 + k − y
k

; a, b

)
k − (1 + k − y)

k2

= − (1−R)︸ ︷︷ ︸
≥0

f

(
1 + k − y

k
; a, b

)
︸ ︷︷ ︸

≥0

y − 1

k2︸ ︷︷ ︸
≥0

≤ 0.

Hence, G is decreasing in k and therefore

VDistress(y; k1, β, R, a, b) = 1− (1−R)F

(
1 + k1 − y

k1

; a, b

)
≥ 1− (1−R)F

(
1 + k2 − y

k2

; a, b

)
= VDistress(y; k2, β, R, a, b).

(b) The results follow directly from Theorem 2.11 and part a).

2. The statement follows immediately from the definition of VDistress and Theorem
2.11.

In order to prove Theorem 3.4 we need the following Lemma.

Lemma A.1. Let (L,Le, Ae) be a financial system with shock vector x ∈ [0, A(e)] and let
M := {j ∈ N | L̄j > 0}. Let ΦGeneral : E(x)→ E(x) be as in (17) and E(x) = [−L̄, w−x].

Then ΦGeneral has the following properties.

1. ΦGeneral is bounded from above by w−x and bounded from below by −L̄, i.e., for all
E ∈ E(x) we have

ΦGeneral(E) ∈ [−L̄, w − x].

2. ΦGeneral is non-decreasing, i.e., for all E, Ẽ ∈ E(x) with Ẽ ≤ E it holds that
ΦGeneral(Ẽ) ≤ ΦGeneral(E).
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Proof of Lemma A.1. 1. Since by definition VGeneral : R → [0, 1] and the liabilities
matrix L ≥ 0 we obtain from the definition of ΦGeneral that for all E ∈ E(x)

ΦGeneral
i (E) = Ae

i − xi +
∑
j∈M

LjiVGeneral
j

(
Ej + L̄j
L̄j

)
− L̄i ≤ Ae

i − xi +
∑
j∈M

Lji − L̄i

= wi − xi

and since x ∈ [0, Ae]

ΦGeneral
i (E) = Ae

i − xi +
∑
j∈M

LjiVGeneral
j

(
Ej + L̄j
L̄j

)
− L̄i ≥ Ae

i − xi − L̄i ≥ −L̄i

for all i ∈ N .

2. The result follows immediately from VGeneral being nondecreasing and E 7→ E+l
l

being nondecreasing for all l ∈ RN and L ≥ 0.

Proof of Theorem 3.4. 1. By Lemma A.1 ΦGeneral is an non-decreasing function on
E(x) to E(x). Furthermore, E(x) is a complete lattice with respect to the component
wise partial order ≤.

Hence by Tarksi’s fixed point theorem, see (Tarski, 1955, Theorem 1), the set of all
fixed points of ΦGeneral is not empty and is a complete lattice with respect to ≤.
Hence, there exists fixed points E∗∗, E

∗∗ of ΦGeneral such that for all fixed points E
of ΦGeneral: E∗∗ ≤ E ≤ E∗∗.

2. It remains to show that the fixed point iteration yields the greatest fixed point. We
set E(0) := w − x and recursively E(κ+1) = ΦGeneral(E(κ)) for all κ ∈ N0.

From Lemma A.1 Part 1. we have that E(1) ≤ E(0) = w−x. We prove by induction
that E(κ+1) ≤ E(κ) for all κ ∈ N0. Let E(κ+1) ≤ E(κ) for a κ ∈ N0. We show
that E(κ+2) ≤ E(κ+1). By the definition of the sequence (E(κ))κ∈N0 it holds that
E(κ+2) = ΦGeneral(E(κ+1)) and E(κ+1) = ΦGeneral(E(κ)). Furthermore,

E(κ+2) = ΦGeneral(E(κ+1)) ≤ ΦGeneral(E(κ)) = E(κ+1),

since by the induction hypothesis E(κ+1) ≤ E(κ) and ΦGeneral is non-decreasing as
shown in Lemma A.1 Part2.
Since by Lemma A.1 Part 1. the sequence (E(κ)) is also bounded from below by
−L̄, there exists a monotone limit Ê := limκ→∞E

(κ).

It remains to show that indeed Ê = E∗∗. Note that Ê is a fixed point of ΦGeneral,
since

ΦGeneral(Ê) = ΦGeneral( lim
κ→∞

E(κ)) = lim
κ→∞

ΦGeneral(E(κ)) = lim
κ→∞

E(κ+1) = Ê.

Here the second equality follows from the fact that ΦGeneral is right-continuous and
(E(κ)) is non-increasing and the third equality follows from the recursive definition
of the E(κ).
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Next we show that E(k) ≥ E∗∗ for all κ ∈ N0 by induction. Obviously, E(0) =
w − x ≥ E∗∗. Suppose E(κ) ≥ E∗∗ for a fixed κ ∈ N0. Then,

Eκ+1 = ΦGeneral(Eκ) ≥ ΦGeneral(E∗∗) = E∗∗,

where the first equality follows from the definition of the sequence (E(κ))k∈N0 , the
second equality follows from the monotonicity of ΦGeneral (Lemma A.1 Part 2.) and
the induction hypothesis and the third equality holds because E∗∗ is a fixed point
of ΦGeneral.

Hence,

Ê = lim
κ→∞

E(κ) ≥ E∗∗

and since Ê = ΦGeneral(Ê), indeed Ê = E∗∗.
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