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Abstract

We present dynamic trading strategies that target a predefined level of risk measured by

volatility, Value-at-Risk (VaR) or Conditional-Value-at-Risk (CVaR). Recent studies have

shown that volatility targeting increases the risk-adjusted performance and heightens utility

gains for mean-variance investors. We find that downside risk targeting outperforms volatil-

ity targeting in terms of a higher Sharpe Ratio, better drawdown protection and higher util-

ity gains for mean-variance, CRRA and loss-averse investors. In particular, a loss-averse

investor is not willing to pay a positive fee to switch from a static portfolio to a volatility

managed strategy, whereas this investor would pay a fee of 18% per year to have access to

the downside risk managed strategy. We also find that the performance of risk targeting can

further be enhanced by switching between volatility and CVaR targeting based on estimates

of whether the market will be in a bull or bear regime.

Keywords: Volatility; Value at Risk; Conditional Value at Risk; Risk targeting; Extreme Value Theory; Dynamic

trading strategies

JEL classification: C53; G11; G17

1 Introduction

During financial crises, due to an increase of correlations, diversification fails as a risk man-

agement tool. Especially when financial markets exhibit huge downturn periods correlations

significantly increase and thus lower the benefit of diversification just when it is most needed

(Ang and Bekaert, 2002, Butler and Joaquin, 2002, Chabi-Yo et al., 2018, Guidolin and Tim-

mermann, 2008, Karolyi and Stulz, 1996, Patton, 2004, Poon et al., 2004). Investors typically
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overestimate the benefits of diversification in bear markets and underestimate return potentials

in bull markets. This leads to too high equity exposures in bear markets whereas the equity

allocation is too low in bull markets (Ang and Chen, 2002, Longin and Solnik, 2001).

For that reason more tactical tools, such as volatility targeting, have become popular in

the financial industry and academic literature.1 The aim of volatility targeting is to build a

portfolio consisting of a risky and a riskless asset, that has a (predetermined) constant level of

portfolio volatility over time. In order to achieve this constant level of portfolio volatility, the

target volatility strategy allocates money between the risky and the riskless asset, based on a

forecast of the risky asset’s volatility: if the risky asset’s volatility is expected to be high, the

weight of the risky asset is decreased and vice versa (see Bollerslev et al. (2018) for example).

The economic value of volatility timing in terms of significant utility gains of investors who

allocate their money among several risky assets has been examined extensively by Fleming

et al. (2001), Fleming et al. (2003), Han (2005), Kirby and Ostdiek (2012) and Taylor (2014).2

Marquering and Verbeek (2004), Bollerslev et al. (2018) and Moreira and Muir (2017) examine

the economic value of volatility timing in a single asset scenario and find vast utility gains of

volatility timing and that volatility timing is superior to return timing. Moreira and Muir (2019)

assess the economic value of volatility timing for long-horizon investors and find that even

long-horizon investors should time short-term volatility, supporting the finding of Benartzi and

Thaler (1995) that long-horizon investors have short evaluation periods. Busse (1999) examines

the impact of volatility timing for the institutional fund industry and concludes that “funds

that reduce systematic risk when conditional market volatility is high earn higher risk-adjusted

returns” and that funds who time volatility the most are associated with higher Sharpe Ratios

(Busse, 1999, p. 1010 and 1027).

Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Barroso and Maio (2016)

examine volatility targeting by managing the volatility of different portfolio strategies, and find

1For academic research on target volatility strategies see Hocquard et al. (2013), Benson et al. (2014), Barroso

and Santa-Clara (2015), Bollerslev et al. (2018), Moreira and Muir (2017), Barroso and Maio (2016), Moreira and

Muir (2019), Cederburg et al. (2019) among others. For institutional research see e.g. Banerjee et al. (2016).
2Fleming et al. (2001), Fleming et al. (2003), Han (2005), Kirby and Ostdiek (2012) and Taylor (2014) assess

the economic value of volatility timing in a multivariate setting. This approach is slightly different to volatility

targeting but demonstrates that investment decisions relying on volatility (or more precisely covariances) solely

work well in empirical applications.
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significant improvements in risk-adjusted performance.3 This highlights a nice characteristic of

volatility targeting. Volatility targeting can be used for any underlying investment strategy, i.e.

volatility targeting can be separated from the fund manager’s asset allocation choice, where the

asset allocation is chosen first and is then overlayed by a volatility targeting strategy as market

timing tool (Hocquard et al., 2013, Zakamulin, 2015).

So far, studies on risk targeting focus on volatility as a risk measure: the weight of the

risky asset is a function of the risky asset’s volatility. However, since asset returns are typically

skewed, fat-tailed and non-normally distributed, the choice of volatility as a measure of mar-

ket risk is not appropriate (see Szegö (2002), Poon and Granger (2003), Kuester et al. (2006,

p. 56) and Bali et al. (2009)). Xiong and Idzorek (2011), Guidolin and Timmermann (2008),

Jondeau and Rockinger (2006), Jondeau and Rockinger (2012) and Ghysels et al. (2016) ex-

amine the impact of skewness and fat-tails on the asset allocation and show that incorporating

higher moments, as done by adequately measuring downside risk, is beneficial compared to

mean-variance optimization. Further, most investors have preferences for higher skewness and

lower kurtosis (see Kraus and Litzenberger (1976), Scott and Horvath (1980), Guidolin and

Timmermann (2008) among others). Kelly and Jiang (2014) find that an increase of tail risk

predicts higher kurtosis and lower (or more negative) skewness. Hence, investors who dislike

negative skewness and high kurtosis should better manage a portfolio’s downside risk. Simi-

larly, investors are more concerned about downside risk instead of volatility (Bollerslev et al.,

2015, Kelly and Jiang, 2014, Lee and Rao, 1988). Most investors weight losses higher than

gains, which implies that avoiding huge losses is crucial to increase a loss-averse investor’s util-

ity (Aı̈t-Sahalia and Brandt, 2001, Ang et al., 2005, 2006a, Benartzi and Thaler, 1995). Further,

avoiding crashes is important since investors are crash averse and have a demand for portfo-

lio insurance, especially in times of extremely negative returns (Bollerslev and Todorov, 2011,

3Barroso and Santa-Clara (2015) successfully use a target volatility strategy to manage the risk of the mo-

mentum portfolio and show that targeting a constant level of volatility extremely reduces the drawdowns of the

momentum portfolio, the so called “momentum crashes”, and translates into a superior risk-adjusted performance

(see also Daniel and Moskowitz (2016)). Moreira and Muir (2017) use a volatility timing strategy for different

factor portfolios and show that the risk-adjusted performance of the volatility managed portfolios is superior to the

non-managed portfolios. This finding is most pronounced for the momentum strategy. Barroso and Maio (2016)

use volatility targeting for several factor strategies and find huge improvements of the volatility targeting strategies

for all strategies except for the size factor. The best results are found for the momentum strategy and the “Betting

against Beta” strategy of Frazzini and Pedersen (2014).
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Chabi-Yo et al., 2018). Therefore, timing an asset’s downside risk instead of volatility fits better

to most investors’ preferences. Furthermore, Benson et al. (2014) find that the superior perfor-

mance of volatility targeting does result from mitigating drawdowns. Similarly, Harvey et al.

(2018) find that volatility targeting reduces the likelihood of extreme (negative) returns which

is an important source of the outperformance of volatility targeting. Consequently, if drawdown

protection is a main driver of the risk-adjusted performance of risk targeting, choosing the risky

asset’s weight based on a forecast of the risky asset’s downside risk should be more successful

in mitigating drawdowns and hence should result in a superior risk-adjusted performance.

In this paper we show how the idea of volatility targeting can be extended to targeting a con-

stant level of tail risk, measured by Value at Risk (VaR) or Conditional Value at Risk (CVaR).

These strategies aim to keep the VaR or CVaR of the portfolio constant over time by shifting

money between the risky and the riskless asset, based on a forecast of the risky asset’s tail risk.

This approach translates into a strategy that increases the weight of the risky asset if the risky

asset’s tail risk is expected to be low and vice versa. Basak and Shapiro (2001), Alexander and

Baptista (2004), Cuoco et al. (2008), Agarwal and Naik (2004) and Wang et al. (2012) demon-

strate the benefits of managing downside risk instead of volatility in an asset allocation context.

To compare the economic of volatility and downside targeting we follow the literature and as-

sess the economic value of risk targeting for a mean-variance investor. Further, to incorporate

preferences for higher moments like skewness and kurtosis we asses the economic value for

a CRRA investor (Jondeau and Rockinger, 2012). Finally, since most investors weight losses

higher than gains we assess the economic value of risk targeting for loss averse investors. We

find that risk targeting strategies deliver high utility gains compared to a static portfolio allo-

cation. This is in line with Cuoco et al. (2008) who find that frequently reallocating portfolio

weights based on estimates of downside risk is superior to static portfolio allocations. In partic-

ular, an investor should manage portfolio risk based on a conditional risk model using a dynamic

volatility model like the GARCH(1,1) or EWMA model. Simple risk estimation models like

Historical Sample Deviation, as used in Moreira and Muir (2017), Barroso and Maio (2016) and

Barroso and Santa-Clara (2015), or Historical Simulation typically fail to significantly increase
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an investor’s utility and produce lower Sharpe Ratios than the conditional approaches. More-

over, we find that the economic value of CVaR timing is significantly higher than the economic

value of volatility timing, especially when investors are highly risk or loss averse and in times of

bear markets. Further, even mean-variance investors should manage CVaR instead of volatility.

For example, we find that a mean-variance investor is willing to pay a fee of about 0.8% per year

to have access to a volatility targeting strategy and even 4.253% for the CVaR managed strategy.

In contrast, a loss averse investor is not willing to pay a positive fee for volatility targeting, but

the same investor would pay up to 18% per year to have access to the CVaR targeting strategy.

Since estimating downside risk is more sophisticated than estimating volatility, we addi-

tionally show how the target VaR and target CVaR strategies can be approximated by a target

volatility strategy. Further, we demonstrate how the accuracy of the target volatility, target VaR

and target CVaR strategies can be backtested. For assessing the accuracy of volatility target-

ing we resort to the approaches of Diebold and Mariano (1995), White (2000), Hansen (2005),

Romano and Wolf (2005), Hansen et al. (2003), Hansen et al. (2011), Hsu et al. (2010), Barras

et al. (2010) and Bajgrowicz and Scaillet (2012) that test for equal or superior predictive ability.

For assessing the accuracy of VaR and CVaR targeting we use the VaR backtest of Christof-

fersen (1998) and the CVaR backtests of McNeil and Frey (2000) and Embrechts et al. (2005).

With these backtests in hand, we assess the accuracy of approximating a target VaR or target

CVaR strategy by a target volatility strategy, i.e. we answer the question if controlling volatility

is sufficient when downside risk is targeted. We find that for investors who are interested in

targeting a constant VaR or CVaR over time, controlling volatility is not sufficient. Similarly,

for targeting a constant level of volatility an investor should manage volatility directly instead

of downside risk. Generally, risk should be managed by a dynamic risk model, based on a

dynamic volatility model like EWMA or GARCH(1,1). In contrast, using a static risk model

like Historical Standard Deviation or Historical Simulation fails to target the portfolio risk at a

constant level, achieves a worse risk-adjusted performance and lower utility gains. In line with

Bollerslev et al. (2018) we find a positive relation between forecasting accuracy, and hence a

more constant portfolio risk, and risk-adjusted performance and utility gains.
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Finally, we use strategies that switch between volatility and CVaR targeting, based on an

estimate of the market regime. If the market is expected to be in a down-market CVaR target-

ing is used whereas the portfolio’s risk is managed by volatility if an up-market is expected.

To determine up- and down-markets we use technical trading rules (Bajgrowicz and Scaillet,

2012, Moskowitz et al., 2012) and the asset’s expected volatility. We find that these switching

strategies further increase the risk-adjusted performance and utility gains of risk targeting. For

example, a mean-variance investor is willing to pay 5.667% per year to switch to a strategy that

dynamically switches between volatility and CVaR targeting. Further, a loss-averse investor is

even willing to pay 21.82% per year to have access to this strategy. Over the last 88 years a

100$ investment in the market would result into a portfolio value of 357,591$. By using the

volatility targeting strategy this amount can be raised to 4,420,160$. However, by switching

between volatility and CVaR targeting, the wealth would even increase to 28,313,411$.

This paper is structured as follows. In Section 2 we present the target volatility framework

and review the literature on volatility targeting. Section 3 presents the target VaR and CVaR

strategies and shows how VaR and CVaR are estimated. Furthermore, we show how the target

VaR and CVaR strategies can be approximated by a target volatility strategy. Section 4 demon-

strates how the accuracy of volatility, VaR and CVaR targeting can be tested. Section 5 shows

the empirical results and Section 6 concludes the paper.

2 Target Volatility Strategy

Throughout the paper, we consider a risky asset, e.g. an equity index, with price process

tSt✉tPt0,...,T ✉ over the period r0, T s, T P N and we define the return of the risky asset over

the period rt✁ 1, ts, representing one day, as

Rt :✏ St

St✁1

✁ 1. (1)

Further, we consider a riskless asset with returns tRf
t ✉tPt0,...T ✉. R

f
t describes the return of the

riskless asset over the period rt✁ 1, ts and we assume that R
f
t is known at time t✁ 1.4 The day

4More formally, we assume that R
f
t is measurable with respect to Ft✁1, where Ft✁1 is the σ-algebra generated

by the variables that are observed up to time t ✁ 1 (Hansen and Lunde, 2005, p. 875). Hence, Ft✁1 contains all

relevant information available at time t✁ 1.
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t return RP
t of the portfolio that invests a weight wt in the risky asset and 1✁ wt in the riskless

asset is then given by

RP
t :✏ wt ☎Rt � ♣1✁ wtq ☎Rf

t . (2)

The aim of the target volatility strategy is to determine the weight wt for each day t such that the

portfolio volatility is constant over time and equals a predefined value. We denote the portfolio

volatility, i.e. the (conditional) standard deviation of the portfolio return RP
t conditioned on the

information Ft✁1 available at time t ✁ 1, by σP
t :✏

❛
var♣RP

t ⑤ Ft✁1q, where the (conditional)

portfolio variance is denoted by var
�
RP

t ⑤ Ft✁1

✟
(see Hansen and Lunde (2005, p. 875)). In

order to achieve a constant volatility level σtarget for σP
t over time, the weight of the risky asset

has to be chosen as

wt ✏ σtarget

σt

, (3)

where σtarget is the desired volatility target and σt :✏ ❛
var♣Rt ⑤ Ft✁1q is the (conditional)

volatility of the risky asset at day t (see Bollerslev et al. (2018, p. 2757) for example). By

construction, the day t weight wt is known at day t✁ 1 since σt is Ft✁1-measurable. The use of

volatility targeting has several advantages which are summarized in Appendix A.

To implement a target volatility strategy, the volatility of the risky asset σt in Equation

(3) is needed, which is unobservable in practice. Therefore, the volatility for day t has to be

forecasted, based on the information available at time t ✁ 1.5 We denote this (one-step ahead)

forecast by σ̂t. Based on this volatility forecast the weight wt of the risky asset is given by

wt ✏ σtarget

σ̂t

. (4)

Consequently, the success of the target volatility strategy strongly depends on the quality of the

volatility forecast.6 Benson et al. (2014) show that a target volatility strategy with perfect fore-

sight, i.e. a strategy that knows the next period’s volatility, outperforms the benchmark by more

than 10% per year with a lower volatility and is successful in delivering a constant volatility

5See Bollerslev et al. (1992), Taylor (2005, Sec. 2), Poon and Granger (2003) and Hansen and Lunde (2005)

for surveys on volatility forecasting.
6Obviously, the volatility of the target volatility strategy is only constant over time and equals σtarget if and

only if the volatility forecast σ̂t equals the true (ex-post) realized volatility σt on each day t.
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indicated by an almost zero volatility of volatility (see also Bollerslev et al. (2018)). Marquer-

ing and Verbeek (2004) find that periods where volatility can be predicted well correspond to

periods where volatility timing generates high utility gains. Similarly, Moreira and Muir (2017)

and Bollerslev et al. (2018) show that using advanced volatility forecasting models in a volatility

targeting strategy improves the risk-adjusted performance and heightens utility gains compared

to simple and less accurate forecasting models. Taylor (2014) and Fleming et al. (2003) find

a similar observation in a multivariate volatility timing strategy. In particular, Bollerslev et al.

(2018) find a positive relation between forecasting accuracy, and hence a constant portfolio

volatility, and risk-adjusted performance and utility gains.7 Moreover, Dopfel and Ramkumar

(2013, p. 31) find that high volatility regimes concurrently occur with negative returns and

significantly lower Sharpe Ratios compared to regimes with normal volatility, but this result

reverses when returns of regimes with a high or normal volatility in the previous period are

compared.8 Similarly, Dachraoui (2018) finds a negative relation between σt and Rt but no

relation between σt✁1 and Rt. This result highlights that accurately forecasting future volatility

is crucial when volatility should be managed, since simply measuring today’s volatility is not

sufficient to determine tomorrow’s weight of the risky asset. Therefore, an accurate forecasting

model is important for the target volatility strategy to achieve an enhanced risk-return profile.

For that reason, we present methods to test the accuracy of different target volatility strategies

in Section 4.1.

For practical implementations, simple forecasting methods, like Historical Sample Devia-

tion (HSD) or Exponential Weighted Moving Average (EWMA) proposed by the RiskMetricsTM

group, can be used. Nevertheless, more advanced – and potentially more accurate – methods,

like the GARCH(1,1) model proposed by Bollerslev (1986), could be interesting e.g. for fund

managers. In this paper we use these three volatility models, where the HSD statically mea-

sures today’s volatility used as a forecast for tomorrow’s volatility and hence does not con-

7Similarly, in a cross-sectional setting, Baltussen et al. (2018) find that assets with a high volatility of volatility

(vol-of-vol) underperform assets with a more constant volatility. Further, higher vol-of-vol assets also exhibit

higher downside risk. This especially holds during down markets when high vol-of-vol assets underperform low

vol-of-vol assets by 0.83% per month.
8Interestingly, although returns of periods following a high volatility period are higher than returns following

a low volatility period, Sharpe Ratios are slightly higher for periods following a low volatility period. Thus, the

higher volatility is not compensated by an adequate higher return (Moreira and Muir, 2017).
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sider the aforementioned issue of forecasting next day’s volatility. In contrast, the EWMA and

GARCH(1,1) models dynamically forecast next day’s volatility and thus should result in a more

constant portfolio volatility and a higher risk-adjusted performance.9 All three models have sev-

eral advantages and disadvantages, therefore a possible extension could be to combine several

forecasting model as suggested by Taylor (2014).

The day t volatility using HSD is estimated by

σ̂t ✏
❞

1

m

m➳
i✏1

♣Rt✁i ✁ µ̂tq2, (5)

where µ̂t ✏ 1
m

➦m

i✏1 Rt✁i is an estimate of the expected mean return. For the EWMA and the

GARCH(1,1) models it is assumed that the day t return of the risky asset can be described by

Rt ✏ σt ☎ Zt, (6)

where Zt is iid with mean zero, variance one and cumulative distribution function FZ (see

McNeil and Frey (2000, p. 275)). As usual, when working with daily returns we assume that

the expected mean return is zero. This is a quite weak assumption, since (absolute) daily returns

are close to zero. Further, an accurate estimate of the expected daily return is not feasible (see

Merton (1980), Fleming et al. (2001, p. 332), Fleming et al. (2003, p. 476), Kirby and Ostdiek

(2012) among others). Christoffersen and Diebold (2006) show that the conditional mean is not

forecastable, since returns Rt conditioned on Ft✁1 do not fluctuate over time. Further, Hansen

and Lunde (2005) compare different mean specifications and find that all lead to an almost

identical performance of the volatility models.

For the EWMA model the volatility forecast σ̂t is given by

σ̂t ✏
❜
♣1✁ λq ☎R2

t✁1 � λ ☎ σ̂2
t✁1, (7)

where λ is typically chosen as 0.94 when working with daily returns (Christoffersen, 2012,

p. 70). The advantage of the EWMA model is that no parameters have to be estimated, what

9In the EWMA and GARCH(1,1) model past negative and positive returns have the same impact on future

volatility. A well-known stylized fact, the so-called leverage effect, states that past negative returns influence future

volatility more than past positive returns. We also used the GJR-GARCH model of Glosten et al. (1993) and the

EGARCH model of Nelson (1991) that account for the leverage effect, but results were quite similar to the results

of the EWMA and GARCH(1,1) model. This is in line with Taylor (2014) who comes to the same conclusion

in a multivariate setting. See also Poon and Granger (2003) and Hansen and Lunde (2005) for a comparison of

different volatility forecasting models.
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makes this model interesting for practical applications (Halbleib and Pohlmeier, 2012). How-

ever, frequently re-estimating the model parameters as in the GARCH(1,1) model should also

result in a more accurate volatility forecast. The volatility forecast in the GARCH(1,1) model

is given by

σ̂t ✏
❜
ω̂ � α̂ R2

t✁1 � β̂ σ̂2
t✁1, (8)

where the parameters ω̂, α̂, β̂ are estimated via Quasi Maximum Likelihood, i.e. we assume that

the innovations Zt in Equation (6) are iid standard normally distributed.10

Another field of current research that could be of high interest in the context of target volatil-

ity strategies is forecasting volatility based on the theory of realized volatility that measures

volatility using high-frequency-data (see Andersen et al. (2001) for example). Due to its sim-

plicity the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) proposed by

Corsi (2009) fits well to the target volatility framework (see Taylor (2014) who finds good re-

sults of the HAR model in a multivariate setting). Bollerslev et al. (2018) extend the HAR-RV

model in several directions and use these modifications in a volatility targeting framework. The

authors find good results in using these models compared to models that rely on daily data.

For example, an investor using a volatility targeting strategy would pay an annualized fee of

0.46% to switch from a simple strategy to a high frequency data based strategy. This again

demonstrates that the quality of a volatility targeting strategy strongly depends on the accu-

racy of the inherent volatility forecasting model. Similarly, Fleming et al. (2003) examine the

economic value of high-frequency-data based estimates of daily volatility. They find that using

high-frequency-data based volatility measures instead of daily data based measures can substan-

tially increase the economic value of volatility timing in a multivariate mean-variance context

(Fleming et al., 2003, p. 495-496).11

10The GARCH(p,q) model is defined for any lag order p and q. Bollerslev et al. (1992, p. 22) state that small

lag orders are sufficient to model the volatility of equity returns in empirical applications (see also Kellner and

Rösch (2016) in the context of VaR and CVaR forecasting). Since target volatility strategies are of high interest for

practical implementations, we restrict ourselves to the lag orders p ✏ 1 and q ✏ 1.
11The authors use a mean-variance framework with a constant mean which essentially translates into a volatility

timing strategies, i.e. the weights of the assets are determined by estimates of conditional volatility and correlation

solely. Although the authors use a multivariate setting – based on stocks, bonds, gold and cash – their findings, i.e.

that volatility timing adds economic value, is highly related to our approach using stocks and cash.
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For the implementation of the target volatility strategy we follow Barroso and Santa-Clara

(2015) who use an annualized volatility target σtarget of 12%. Typically, target volatility levels

used in the literature range from 5% to 40% as annualized volatility target. Clearly, the higher

the volatility target the higher the exposure to the risky asset. Therefore, risk-averse or loss-

averse investors will prefer a lower target volatility level whereas risk-seeking investors will

choose a high volatility target.12 Bollerslev et al. (2018) show how the volatility target can be

derived as a function of the investor’s risk aversion. An appealing alternative to choosing a fixed

target volatility level was introduced by Wang et al. (2012) in a slightly different setting. The

authors propose to switch between two target levels based on whether the market is expected in

a high risk or low risk regime.

Since the volatility of the risky asset is usually not constant over time, the weight of the risky

asset has to be rebalanced every day, which leads to high transaction costs. Several possibilities

are usually used in the literature to lower the turnover and, as a consequence, the transaction

costs (see for example Kirby and Ostdiek (2012), Moreira and Muir (2017) and Bollerslev et al.

(2018)).13 Moreira and Muir (2017) and Bollerslev et al. (2018) find that volatility targeting is

beneficial even after realistic transaction costs. Similarly, Harvey et al. (2018, Exhibit 8) find

that transaction costs hardly influence the Sharpe Ratio of volatility targeting. Marquering and

Verbeek (2004) find that transaction costs only marginally impact the utility gains of dynamic

trading strategies if short sales and leverage in the risky asset are not allowed. By definition, risk

targeting is a long-only strategy and by choosing a moderate target volatility level the strategy

12Since some investors have a threshold for the allocation in the risky asset, the weight wt is often capped by a

maximum allowed weight. Strub (2013), Moreira and Muir (2017) and the S&P Dow Jones Risk Control Indices

use a cap of 150% (Banerjee et al., 2016). Das and Uppal (2004) and Liu et al. (2003) find that investors should

face potential jump risk by not leveraging the risky asset, i.e. they should choose an equity cap of 100% (see also

Poon et al. (2004)). In this paper we restrict ourselves on uncapped target risk strategies since we are also interested

in the accuracy of different forecasting methods. Using an equity cap would distort this examination. Besides, by

choosing a quite low volatility target, the strategy usually does not need weights above 100%. See Moreira and

Muir (2017) on how a equity cap of 100% and 150% affects the utility gains of a mean-variance investor compared

to the unconstrained strategy. The authors find substantial utility gains of volatility timing even after a tight equity

cap is set.
13One possibility is to reallocate the weight less frequently, e.g. monthly or quarterly. Moreira and Muir (2017)

find a superior performance of the volatility timing strategy when portfolio weights are adjusted monthly. More-

over, in an earlier version of their paper, Bollerslev et al. (2018) find a trade-off between forecasting accuracy and

transaction costs and conclude that it may be better not to trade every change in the optimal weight. The authors

find better utility gains for the strategies that adjust the weight less frequently, especially when transaction costs are

high and/or when models induce high day-to-day changes in the optimal weight. Taylor (2014) presents a method

to decrease the changes in the optimal weight in order to lower transaction costs.
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is seldom leveraged. In this paper we will reallocate the weight on a daily basis to better assess

the accuracy of different risk models.14

3 Targeting a Constant Level of Tail Risk: Target VaR and

CVaR Strategies

3.1 Managing Volatility versus Managing Tail Risk

As motivated in the previous section due to the risk-averse nature of most investors, the demand

for risk-managed investment strategies is very high. Risk management emerged as a major topic

within the financial industry and is becoming more important for portfolio managers (Berkowitz

and O’Brien, 2002, Christoffersen and Diebold, 2000). We have summarized several justifica-

tions and advantages of volatility targeting as a tool to manage the risk of a portfolio of risky

assets in Appendix A. However, managing volatility does not necessarily mean managing risk

(Poon and Granger, 2003, Szegö, 2002).

Return distributions are typically skewed and fat-tailed (see Farinelli et al. (2008) among

others).15 A negative skewed return distribution implies a higher probability of extreme nega-

tive returns, whereas a positive skewed return distribution coincides with a higher probability

of extreme positive returns. A fat-tailed distribution implies that extreme (positive or negative)

returns are more common than would be expected if returns were normally distributed (see for

example Campbell and Hentschel (1992)). Gormsen and Jensen (2017) find that skewness be-

comes more negative when kurtosis increases, making extreme negative returns more likely.

Managing volatility can thus lead to too low weights in times of huge positive returns and too

high weights in times of extreme negative returns. Harvey and Siddique (2000, p. 1293) suggest

that instead of a mean-variance framework, a mean-variance-skewness framework should be

used in an asset allocation analysis (see also Ghysels et al. (2016)). Guidolin and Timmermann

14We also used a reallocation buffer of 5% and found a similar risk-adjusted performance to the strategies that

are rebalanced daily.
15Campbell and Hentschel (1992) explain the existence of negatively skewed and fat-tailed return distributions

by the volatility feedback effect and the arrival of news. That is, positive and negative news increase volatility

and thus lower stock prices. Negative news additionally cause a stock decline whereas positive news dampen the

volatility feedback induced stock decline. Hence, combining these effects produces negative skewness and excess

kurtosis.
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(2008) show that accounting for higher moments like skewness and kurtosis strongly affects the

investor’s asset allocation, and hence should be incorporated in asset allocation decisions (see

also Patton (2004), Ang et al. (2006a) and Jondeau and Rockinger (2012)). This is also con-

firmed by Xiong and Idzorek (2011) who highlight that accounting for skewness and kurtosis is

crucial and superior to mean-variance optimization especially in times of extreme negative re-

turns. Farinelli et al. (2008) show that maximizing the Sharpe Ratio, i.e. maximizing the mean-

variance trade-off, leads to a lower portfolio performance than maximizing the mean-downside

risk trade-off. Jarrow and Zhao (2006) compare mean-variance portfolios with mean-downside

risk portfolios and find huge differences in both portfolios when asset return distributions are

non-normally distributed. Similarly, Agarwal and Naik (2004) compare a mean-downside risk

framework to the mean-variance framework using hedge fund data and demonstrate that the

mean-variance framework significantly underestimates the downside risk and produces much

higher losses during downturn periods. Managing volatility is only suitable if asset returns are

normally distributed or investors have quadratic preferences (see Agarwal and Naik (2004) and

Bali et al. (2009) and references therein). This is confirmed by Jondeau and Rockinger (2006)

who show that mean-variance portfolios and portfolio allocations that account for higher mo-

ments are nearly indistinguishable if returns are approximately normally distributed. However,

both approaches produce significantly diverse allocations for non-normally distributed returns.

Packham et al. (2017) use the difference between Value at Risk (VaR) forecasts using a nor-

mality assumption and distributions that account for fat tails and skewness to manage tail risk,

and find huge improvements compared to buy-and-hold and other risk-protection strategies.

Further, Campbell and Hentschel (1992), Jondeau and Rockinger (2003), Harvey and Siddique

(1999) and Bali et al. (2008) show that conditional skewness and kurtosis are time-varying.

Hence continuously reallocating the risky asset’s weight based on an estimate of the current

downside risk, and hence incorporating time-variation in higher moments, is crucial. Managing

volatility or simply using static allocations fail to incorporate time-varying higher moments.

Cuoco et al. (2008) demonstrate the importance of dynamically managing tail risk and consid-

ering actual information on the return distribution compared to static models. Further, Jondeau
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and Rockinger (2012) demonstrate that incorporating time-variation in skewness and kurtosis

is crucial in portfolio selection problems and that higher moment timing outperforms volatility

timing.

Besides the existence of skewed and fat-tailed return distributions and the importance of in-

corporating this observation in asset allocation decisions, Scott and Horvath (1980) theoretically

show that, under some assumptions, investors have preferences for higher (or positive) skew-

ness and lower kurtosis (see also Guidolin and Timmermann (2008) and Bali et al. (2009)).16

Typically, investors have a preference for odd moments, e.g. higher returns and positive skew-

ness, but dislike even moments like variance and kurtosis. Bali et al. (2009) show that higher

downside risk predicts lower future skewness. Similarly, Kelly and Jiang (2014) show that an

increase of tail risk predicts higher kurtosis and lower skewness of future returns, i.e. an in-

vestor exhibiting preferences as in Scott and Horvath (1980) should lower the exposure to the

risky asset if tail risk – not necessarily volatility – is high. Generally, downside risk measures

increase if the return distribution is leptokurtic or negatively skewed (Bali et al., 2009, Ghysels

et al., 2016). By managing downside risk instead of volatility a higher kurtosis and/or a more

negative skewness of the risky asset’s return distribution induces a lower weight of the risky

asset and fits better to a typical investor’s preferences.

Bollerslev and Todorov (2011, p. 2187) find that the compensation of tail risk – called

“crash-o-phobia” by the authors – is extremely high and much higher than the compensation

for volatility, i.e. investors fear tail risk much more than volatility (see also Bollerslev et al.

(2015) and Chabi-Yo et al. (2018)). This is also confirmed by the earlier work of Lee and

Rao (1988) who find that investors are more concerned about downside risk and that managing

volatility is only sufficient when asset returns follow a symmetric distribution (see also Szegö

16See also Kraus and Litzenberger (1976), Harvey and Siddique (2000) and Patton (2004) on the preference

of positive skewness. Kraus and Litzenberger (1976) extend the traditional CAPM to a three moment CAPM

including mean, variance and skewness. Harvey and Siddique (2000) extend this model to a conditional version.

See also Section I.C in Harvey and Siddique (2000) on the geometry of the three moment efficient portfolios, where

investors demand higher expected returns for holding negatively skewed assets. Guidolin and Timmermann (2008)

examine optimal asset allocation under four-moment preferences and regime switching and demonstrate that the

asset allocation under four-moment preferences differs from the asset allocation of a mean-variance investor. See

also Jondeau and Rockinger (2006), Jondeau and Rockinger (2012) and Lempérière et al. (2017) and references

therein on preferences for higher moments and implications on asset allocation decisions.
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(2002) and Strub (2013)).17 Investors are not concerned about return deviations from a mean but

more about extreme negative returns which are described by higher moments and rare tail events

(see Lempérière et al. (2017) and references therein). Similarly, in a utility based setting Bali

et al. (2009, p. 892) find that “investors dislike VaR”. Further, most investors are loss averse,

i.e. they weight losses higher than gains (Benartzi and Thaler, 1995). Loss-averse investors

have a high demand for portfolio insurance methods that avoid huge losses and seek for risk

reduction especially in times of high market downturns (Aı̈t-Sahalia and Brandt, 2001, Ang

et al., 2006a, Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018). Consequently, for loss

averse investors controlling downside risk instead of volatility, i.e. controlling negative returns

instead of return deviation, is crucial to increase their utility (see Aı̈t-Sahalia and Brandt (2001,

p. 1298), Ang et al. (2005), Ang et al. (2006a) and references therein). Aı̈t-Sahalia and Brandt

(2001, p. 1315) state that the theory of loss aversion is related to the literature on downside risk-

based investment decisions. Jarrow and Zhao (2006) motivate that loss-averse investors should

manage downside risk instead of volatility when asset return distributions are non-normally

distributed. Timing downside risk instead of volatility also fits better to safety-first investors

which are concerned about avoiding disasters (see Bali et al. (2009) and references therein).

As mentioned in Appendix A, diversification fails as a risk-management tool due to the in-

crease of correlations in bear markets. This renders the benefits of diversification just when it is

most needed (Ang and Chen, 2002, Butler and Joaquin, 2002, Karolyi and Stulz, 1996, Longin

and Solnik, 2001, Poon et al., 2004). Chabi-Yo et al. (2018) find a stronger asymptotic depen-

dence in the left tail of stocks than in the right tail, i.e. stocks tend to crash simultaneously.

In particular, the left tail dependence increases in periods of market crashes (Chabi-Yo et al.,

2018, Figure 2). Therefore, lowering the exposure to the risky asset in bear markets is needed

to manage the risk of a portfolio. However, Longin and Solnik (2001) show, by using Extreme

Value Theory (EVT) and thus measuring tail risk, that increases in correlations do not neces-

sarily coincide with increases in volatility, but with huge negative returns, i.e. the portfolio risk

in bear markets should be better managed by tail risk measures instead of volatility. This is line

17For most investors “risk” is associated with low or even negative returns. Describing risk by volatility does

not differentiate between positive or negative returns (see Lee and Rao (1988, p. 452) or Poon and Granger (2003,

p. 480)).
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with Poon et al. (2004) and Kelly and Jiang (2014) who find that volatility standardized returns

still exhibit significantly tail dependency and tail risk. Similarly, Gormsen and Jensen (2017)

find that skewness and kurtosis typically co-move, i.e. when skewness becomes more negative,

kurtosis increases simultaneously. These periods often occur when market volatility is low, i.e.

in low volatile periods risk “hides in the tails”. Similarly, Ghysels et al. (2016) find that skew-

ness is typically hidden in the tails and that skewness in the tails has a high impact on portfolio

allocations. Gormsen and Jensen (2017) also show that volatility targeting strategies still exhibit

high tail risk, i.e. managing volatility does not mean managing extreme negative returns. Fur-

ther, the authors find that times of negative skewness and/or high kurtosis are typically followed

by low future returns. Similarly, Liu et al. (2003) and Das and Uppal (2004) find that in times

of huge price jumps, like the financial crisis, skewness and kurtosis are higher than in normal

times, which is again not captured by managing volatility. Jarrow and Zhao (2006) show that

the portfolio allocation between volatility and downside risk managed strategies can be vastly

different when returns exhibit price jumps. These rare tail events are not predictable and can

not completely be avoided by dynamically managing risk (Bollerslev and Todorov, 2011).18

However, rare events occur in the tail of the loss distribution and are often accompanied with

changes in moments higher than volatility (Poon et al., 2004, p. 582). To better manage the

potential event risk, combining an estimation method that reflects the current market condition,

measured by a dynamic volatility model, combined with an estimation method that directly

models the tail of the distribution, like EVT, should be used instead of volatility alone (Longin,

2000). Additionally, Jondeau and Rockinger (2003) show that skewness and kurtosis of risky

assets comove, i.e. large (negative) returns in different risky assets tend to occur simultaneously.

Simply combining several risky assets or managing volatility does not reduce the occurrence of

extreme (negative) returns.

Benson et al. (2014, p. 96) state that mitigating drawdowns by an investment strategy, as

done by the target volatility strategy, leads to a better absolute and risk-adjusted performance

compared to the benchmark-index even in the absence of a negative return-volatility correlation.

18Systematic event risk like unpredictable jumps effect the allocation between the risky and the riskless asset

(see Poon et al. (2004, p. 602) and Das and Uppal (2004)). Liu et al. (2003) find that investors should avoid

leveraged positions to account for the potential of unpredictable price jumps.
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By comparing arithmetic and geometric returns, they find that the enhanced risk-return profile

of volatility targeting comes from avoiding huge negative returns and not from a negative re-

lation between risk and future returns. Similarly, Harvey et al. (2018) find that risk targeting

successfully reduces extreme negative returns. Due to the asymmetric behavior of compounded

returns, mitigating high negative returns is more crucial than achieving high positive returns.19

This is confirmed by the results of Barroso and Santa-Clara (2015) who find that the superior

performance of the volatility managed momentum strategy is significantly driven by drawdown

reduction (see also Moreira and Muir (2017) and Barroso and Maio (2016)). This indicates

that a main driver of the superior performance of the target volatility strategy is drawdown pro-

tection and not the negative risk-return relation. Dachraoui (2018) theoretically show that a

negative risk-return relation is not needed in order to provide an enhanced risk-return profile of

risk targeting. Since asset returns usually are non-elliptically distributed, managing volatility

underestimates the potential of extreme losses (Szegö, 2002, p. 1255). Consequently, manag-

ing downside risk instead of volatility should be more successful in mitigating drawdowns and

hence should result into an even better (risk-adjusted) performance compared to both the target

volatility and buy-and-hold strategies.20

Concluding, the demand for tail risk hedging strategies is high since these strategies fit well

to the preferences of most investors and deliver an enhanced risk-return profile and drawdown

protection. Main approaches to reduce tail risk of a risky portfolio are derivative based and

cash based strategies (see Strub (2013, p. 1) and Happersberger et al. (2019)). Derivative based

strategies manage the tail risk by buying or selling derivatives, e.g. options or futures on the

risky asset, in order to achieve downside risk protection. Cash based strategies, as the here

presented target risk strategies, dynamically allocate the wealth invested in the risky and risk-

less asset, based on the expected risk of the risky asset and are related to portfolio insurance

strategies like CPPI (Happersberger et al., 2019). So far, almost all studies on cash based tail

risk hedging strategies focused on allocating money based on forecasted volatility instead of

19As stated above, besides obtaining a higher total return, this also fits better to the loss aversion of most in-

vestors.
20This is confirmed by Strub (2013, p. 6) who finds that “larger than normal tail risk is partly responsible for

the outsized drawdowns experienced in market downturns, thus being able to accurately measure and control it is

likely to yield significant improvements in risk adjusted performance” (see also Hocquard et al. (2013)).
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forecasted tail risk.21 Similarly, there exists a huge literature on the economic value of volatility

timing, whereas the economic value of downside risk timing is hardly examined (Basak and

Shapiro, 2001). Cuoco et al. (2008) find that dynamically reallocating the amount invested

in several assets based on downside risk is beneficial and superior to static approaches or ap-

proaches that do not account for downside risk. Therefore, we will assess the economic value

of downside risk timing and compare it to the economic value of volatility timing.

To account for the above mentioned drawbacks of the target volatility strategy we next

present the target Value at Risk (target VaR) and target Conditional Value at Risk (target CVaR)

strategies, which aim to achieve a constant VaR or CVaR of the portfolio over time. VaR is

a widely used tool to measure market risk (Alexander and Baptista, 2004, Bali et al., 2008,

Berkowitz et al., 2011, Berkowitz and O’Brien, 2002, Cuoco et al., 2008), however, CVaR is

getting more important in recent years from a regulatory and practical view (Du and Escan-

ciano, 2016). By construction both, the target VaR and CVaR strategy, automatically manage

the downside risk of the risky asset and thus correct for the drawbacks of the target volatility

strategy.22

3.2 Target Value at Risk Strategy

We again consider a portfolio that invests wt in a risky asset and 1 ✁ wt in a riskless asset.

The goal of the target VaR strategy is to determine wt such that the portfolio achieves a constant

Value at Risk over time. By definition, the Value at Risk at a significance level α is the maximum

loss defined as the negative daily return that is only exceeded with a probability of 100 ☎ α%
(see Szegö (2002), Yamai and Yoshiba (2005) among others). In order to achieve a constant

21Strub (2013) and Happersberger et al. (2019) use a cash based tail risk strategy that relies on a similar weight-

ing as in the target volatility strategy, but replaces the volatility in Equation (4) by an estimate of the risky asset’s

downside risk. Essentially, as we will see later, these strategies do not aim to target a constant level of portfolio

risk over time, and hence do not belong to the class of risk targeting strategies. See also Basak and Shapiro (2001),

Alexander and Baptista (2004), Cuoco et al. (2008) and Packham et al. (2017) for other tail risk based investment

strategies.
22These tail risk targeting strategies are similar to the approach of Basak and Shapiro (2001, p. 376) and Cuoco

et al. (2008) who incorporate downside risk measures in an asset allocation framework, but instead of targeting

a constant level of tail risk the authors require the downside risk to be below some prespecified limit (see also

Ang and Bekaert (2002), Wang et al. (2012) and Alexander and Baptista (2004)). Similar to our tail risk targeting

strategies, this downside risk managed strategy also allocates wealth between a riskless asset and an (optimal)

portfolio of risky assets (see Cuoco et al. (2008, Remark 3) for example). Basak and Shapiro (2001, p. 376) call

this approach a softer form of portfolio insurance.
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Value at Risk level VaRtarget
α , the investor specifies the desired (daily) Value at Risk level, i.e.

the critical loss or loss threshold the investor is willing to accept as well as the corresponding

significance level α, i.e. the exceedance probability. For example, a target VaR level VaRtarget
α

of 1% with a corresponding significance level α of 5% translates into a strategy, where daily

returns below ✁1% only occur with a probability of 5%. In other words, with a probability of

95% daily returns should be higher than ✁1%.23 Similar strategies are already available for retail

investors.24 The choice of α and VaRtarget
α strongly depends on the investor’s preferences and

degree of risk aversion (Alexander and Baptista, 2004). In summary, the target VaR strategy has

two advantages for an investor compared to a target volatility strategy. First, it manages extreme

losses instead of loss deviations. Second, it is an easy to interpret strategy where investors can

prescribe an acceptable loss limit.

As usual when working with tail risk measures we define the daily portfolio loss at day t as

LP
t :✏ ✁RP

t . (9)

Similarly, the day t loss of the risky asset is defined as Lt :✏ ✁Rt. Thus, the portfolio loss can

be written as

LP
t ✏ wt ☎ Lt ✁ ♣1✁ wtq ☎Rf

t . (10)

The day t VaR of the portfolio for a significance level α, denoted by VaRP,t
α , is defined through

the relation25

P
�
LP
t ↕ VaRP,t

α ⑤ Ft✁1

✟ ✏ 1✁ α. (11)

23The target VaR strategy has the advantage of being better interpretable for investors than the target volatility

strategy. Moreover, by choosing low values of VaRtarget
α and α, this strategy can also be used by hedge fund

managers as an alternative to absolute return strategies. These strategies typically have absolute return targets

which are independent of the current market environment whereas most mutual fund managers have relative return

targets that are compared to a benchmark asset (see Fung and Hsieh (1997) and Agarwal and Naik (2004)). For

example, assuming 250 trading days per year and by choosing VaR
target
α ✏ 0.5% and α ✏ 0.4%, a daily return

below✁0.5% should only occur once a year (see Figure III in Appendix D for a performance chart of this strategy).

Thus, regardless of if the underlying asset is in a bear or bull market the target VaR strategy aims to constantly

produce returns with limited downside risk. This is even advantageous to some hedge funds strategies since

some hedge funds strategies exhibit huge losses during market downturns and bear significant tail risk (Agarwal

and Naik, 2004). Similarly, the authors find low correlations between hedge funds and the market in times the

market moves upwards but higher positive correlations during market downturn periods and that hedge funds often

resemble a short Put payoff profile. Investors who are interested in an absolute return strategy should therefore

better use a risk targeting strategy.
24See for example the strategies offered by Scalable Capital (http://www.scalable.capital).
25Throughout the paper, we assume that the loss variables LP

t and Lt are continuously distributed.
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Therefore, the portfolio VaR is given by the ♣1✁ αq-quantile of the (conditional) portfolio loss

distribution, denoted by F✁1

LP
t ⑤Ft✁1

♣1 ✁ αq , i.e. VaRP,t
α ✏ F✁1

LP
t ⑤Ft✁1

♣1 ✁ αq. In Appendix B we

show that the portfolio VaR is given by

VaRP,t
α ✏ wt ☎ VaRt

α ✁ ♣1✁ wtq ☎Rf
t , (12)

where VaRt
α :✏ F✁1

Lt⑤Ft✁1
♣1 ✁ αq denotes the day t VaR of the risky asset.26 In order to achieve

a constant portfolio VaR level VaRtarget
α over time, i.e. VaRP,t

α ✏ VaRtarget
α for all t, the weight

of the risky asset has to be chosen as

wt ✏ VaRtarget
α �R

f
t

VaRt
α �R

f
t

. (13)

By construction, since VaRt
α and R

f
t are Ft✁1-measurable the weight wt is known at time t✁ 1.

Furthermore, the weight of the risky asset is increased, if the downside risk of the risky asset,

measured by VaR, is expected to be low and vice versa. By doing this, the tail risk of the

portfolio is managed by allocating money between the risky and the riskless asset.27 If a market

crash becomes more likely the amount invested in the risky asset is reduced. When market risk

declines the amount invested in the risky asset is subsequently increased.28

Similar to the volatility the VaR of the risky asset is not observable, and hence a forecast

of the risky asset’s VaR is needed.29 As first method we estimate VaR by Historical Simulation

(HS) using a rolling window of n days, i.e. we estimate VaRt
α by the empirical ♣1✁αq-quantile

of the past n daily losses (see Kuester et al. (2006, p. 56-57) or Halbleib and Pohlmeier (2012)).

26The representation in Equation (12) can directly be seen by positive homogeneity and translation invariance

of VaR (Szegö, 2002, p. 1259-1260).
27Many tail hedging strategies, that aim to reduce the tail risk, only work well when markets exhibit huge

drawdowns. In times the markets go up, the tail hedging strategy usually performs worse than a simple buy and

hold strategy, translating in a worse overall performance (Hocquard et al., 2013). The target VaR strategy has

the advantage that this strategy increases the weight of the risky asset as downside shrinks, and hence captures

the upside potential while downside risk is managed (Wang et al., 2012, p. 38). Dopfel and Ramkumar (2013)

show that the periods following high risk periods are the most attractive ones (see also Muir (2017)). Hence, risk

targeting delivers an option-like return profile similar to portfolio insurance strategies (see also Fung and Hsieh

(1997) who found a similar behavior of dynamic trading strategies used by hedge fund managers).
28Similarly, Chabi-Yo et al. (2018) show in a cross-sectional setting that assets with lower crash sensitivity

outperform during times of market distress but underperform when markets are calm (see also van Oordt and Zhou

(2016)). Moreover, assets with a high crash sensitivity exhibit higher returns after huge market declines. Thus,

during a crash period the amount invested in crash-sensitive assets should be decreased and then subsequently

increased when crash risk declines.
29See Taylor (2005, Sec. 3) and Kuester et al. (2006) for a survey of VaR estimation models.
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More formally, for a sample lt✁n, ..., lt✁1 of n realized losses the day t VaR is given by

②VaRt

α ✏ l♣rn♣1✁αqsq,t✁1, (14)

where l♣1q,t✁1 ↕ ... ↕ l♣nq,t✁1 denotes the order statistics of the sample lt✁n, ..., lt✁1.

Historical Simulation relies on the assumption that the loss distribution can be estimated by

the empirical distribution of past losses (McNeil and Frey, 2000, p. 273). Hence, Historical

Simulation assumes that losses are iid, an assumption that does not hold for losses of most risky

assets, since asset returns (or losses respectively) are known to exhibit a time-varying volatility

and volatility clustering (Pritsker, 2006, p. 563). Further, Pritsker (2006) shows that Historical

Simulation does not respond to the 1987 crash. Most VaR estimation models frequently used in

the financial industry, like Historical Simulation, work well in calm periods but fail to produce

accurate risk forecast in times of high downside risk just in that time when reliable forecasts are

most needed (Berkowitz et al., 2011, Halbleib and Pohlmeier, 2012). Using a static model that

does not account for the current market environment to manage portfolio risk can translate in

high probabilities of extreme losses (Cuoco et al., 2008). Hence, using Historical Simulation in

the context of a target VaR strategy can translate in a high exposure to the risky asset in times

when financial markets are very risky, although a good risk-managed investment strategy should

exhibit a low weight in the risky asset during times of high market risk. Thus, a fast adapting

estimation model is crucial for the quality of the target VaR strategy (see also Taylor (2014) and

Bollerslev et al. (2018) who find a similar result for volatility managed portfolios). However,

estimating VaR by Historical Simulation is easy, straightforward and is the current industry

standard for estimating VaR (see Berkowitz et al. (2011) and references therein). Thus, this

approach is in particular interesting for index providers and practitioners, who are interested

in a simple target VaR strategy. Consequently, the target VaR strategy based on Historical

Simulation deals as a benchmark strategy for more complex target VaR strategies.

Additionally, we use three VaR forecasting models based on a volatility forecast of the

EWMA or GARCH(1,1) model given in Equation (7) or (8), respectively. McNeil and Frey

(2000, p. 273-274) propose to reflect the current volatility background, estimated by a dynamic

volatility model, and account for heavy tails in the conditional loss distribution when estimating
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quantile risk measures (see also Longin (2000)). Christoffersen and Diebold (2000) find that

volatility is highly forecastable for short horizons of less than 10 days and thus is highly relevant

and should be incorporated when short-term risk is managed. Under the assumption that the

daily return can be described by Equation (6), the day t VaR of the risky asset is given by

VaRt
α ✏ σt ☎ F✁1

L✝ ♣1✁ αq, (15)

where L✝t :✏ ✁Zt is a random variable representing a standardized loss with expectation zero,

variance one and F✁1
L✝ ♣1 ✁ αq denotes the ♣1 ✁ αq-quantile of L✝t .30 We also denote dynamic

risk models that account for the current volatility as conditional models and static models like

Historical Simulation or HSD that are based on the assumption that returns are iid as uncondi-

tional models (Longin, 2000). The forecast ②VaRt

α for the day t VaR based on the information

at time t✁ 1 is then given by

②VaRt

α ✏ σ̂t ☎ F̂✁1
L✝,t♣1✁ αq, (16)

where F̂✁1
L✝,t♣1✁ αq denotes the estimator of F✁1

L✝ ♣1✁ αq given the available information at day

t ✁ 1. ②VaRt

α is then estimated in the following way, using a two-stage approach as described

by McNeil and Frey (2000, p. 277). In the first stage, we estimate the volatility σ̂t using the

EWMA or the GARCH(1,1) model given in Equation (7) or (8), respectively. The parameters of

the GARCH(1,1) model are estimated using a Quasi Maximum Likelihood (QML) approach,

i.e. assuming a standard normal distribution for the innovations Zt. In the second stage, the

standardized losses, i.e. l✝t ✏ ✁Rt④σ̂t are calculated and used to calculate F̂✁1
L✝,t♣1✁αq.31 In this

context, VaR is often estimated by assuming a standard normal distribution for Zt, and hence

F̂✁1
L✝,t♣1 ✁ αq is given by the ♣1 ✁ αq-quantile of the standard normal distribution. However,

even after standardizing returns or losses by a time-varying volatility, these observations exhibit

a non-zero skewness and fatter tails than a normal distribution (see Campbell and Hentschel

(1992), Bollerslev et al. (1992), Glosten et al. (1993), Harvey and Siddique (1999), Ghysels

30By assumption the quantile F✁1
L✝

♣1✁ αq of the standardized loss L✝t :✏ ✁Zt ✏ ✁Rt④σt does not depend on t

(McNeil and Frey, 2000, p. 276). We further follow Jondeau and Rockinger (2003) and Bali et al. (2008) and use

a more sophisticated approach below that does not assume that Zt is iid.
31The volatility σt as described in Section 2 is calculated using daily returns and thus represents a forecast for

the return volatility. However, since var ♣Rt⑤Ft✁1q ✏ var ♣✁Rt⑤Ft✁1q, the volatility forecast σ̂t can directly be

used as a forecast for the volatility of the losses.
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et al. (2016), Jondeau and Rockinger (2003) and Bali et al. (2008)).32 Similarly, Kelly and

Jiang (2014) find that volatility standardized returns still exhibit significant tail risk. There-

fore, we estimate F̂✁1
L✝,t♣1 ✁ αq based on a sample of n past standardized losses, denoted by

l✝t✁n, ..., l
✝
t✁1, using three different methods that account for that stylized fact. First, we use the

Filtered Historical Simulation (FHS) approach (Barone-Adesi et al., 2008, 1999), i.e. we es-

timate F̂✁1
L✝,t♣1 ✁ αq by the empirical ♣1 ✁ αq-quantile of the standardized losses l✝t✁n, ..., l

✝
t✁1

(Kuester et al., 2006, p. 57). The estimator for the day t VaR of the risky asset is then given by

②VaRt

α ✏ σ̂t ☎ l✝♣rn♣1✁αqsq,t✁1, (17)

where l✝♣1q,t✁1 ↕ ... ↕ l✝♣nq,t✁1 denotes the order statistics of the sample l✝t✁n, ..., l
✝
t✁1.

33 The

FHS approach easily combines the conditional heteroscedasticity and the non-normality of as-

set returns in a simple estimation method without any distributional assumption of the losses

(Giannopoulos and Tunaru, 2005, p. 983). As second estimation method, we use the Extreme

Value Theory (EVT) approach of McNeil and Frey (2000).34 The EVT approach is based on

the assumption that the tail of the distribution of the standardized losses can be described by a

Generalized Pareto Distribution (GPD).35 The tail of this distribution is defined in terms of a

threshold u.36 Then, the standardized losses above the threshold u follow a GPD, that is defined

32This stylized fact holds for standardized equity returns but does not hold in the foreign exchange rate market

(Bollerslev et al., 1992, p. 38).
33Pritsker (2006) states that the choice of n is not straightforward. However, n ✏ 1000 is frequently used in

applications (see Kuester et al. (2006) or Christoffersen (2012)). See also Halbleib and Pohlmeier (2012) on how

the window size impacts estimation results of VaR forecasts.
34See also McNeil et al. (2015, Section 5.2.6) for a survey of estimating quantile risk measures, when using

GARCH volatility models in the first stage and Kuester et al. (2006, Section 1.4) for a good survey of how to

estimate VaR using EVT. EVT is also used by Poon et al. (2004), Longin and Solnik (2001), Kelly and Jiang

(2014), Longin (2000) and van Oordt and Zhou (2016) in other related financial topics.
35The EVT approach assumes that the losses are iid. Therefore, when working with short horizons – in this

paper we work with daily losses – standardizing losses by a time-varying volatility is crucial for this approach. It

is a well-known stylized fact, that daily losses are far away from iid, whereas the iid assumption fits quite well to

standardized losses (Kuester et al., 2006, p. 62). McNeil and Frey (2000) state that when working with longer time

horizons, the EVT approach can be applied to the non-standardized losses directly.
36One drawback of EVT is the choice of the threshold u (Kellner and Rösch, 2016). If u is chosen too high,

the estimation of the parameters is based on only few exceedance observations, making the estimation less precise.

Choosing u too low contradicts to the approximation in Equation (18), since this approximation only holds for

the tails of the distribution (see Longin and Solnik (2001, Sec. II.A), Kuester et al. (2006, p. 62) and Yamai and

Yoshiba (2005, p. 1008)). Longin and Solnik (2001, Appendix 1) show how u can be optimally chosen based on

Monte Carlo Simulations. Packham et al. (2017, p. 740) find that their VaR-based tail risk protection strategy is

robust against changes in u. As in Kellner and Rösch (2016) we choose the threshold as the 90%-quantile.
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as

Gξ,β♣yq ✏
✧

1✁ ♣1� ξy④βq✁1④ξ, if ξ ✘ 0

1✁ exp♣✁y④βq, if ξ ✏ 0,
(18)

with β → 0. The support of this distribution is given by y ➙ 0 if ξ ➙ 0 and 0 ↕ ✁β④ξ if ξ ➔ 0

(McNeil and Frey, 2000, p. 280). The parameter ξ is usually called the shape parameter and β

is called the scale parameter (McNeil et al., 2015, p. 147). For the estimation of F̂✁1
L✝,t♣1✁αq we

again assume that the sample contains n standardized losses. Then, the estimator F̂✁1
L✝,t♣1 ✁ αq

is given by

F̂✁1
L✝,t♣1✁ αq ✏ u� β̂

ξ̂

✄✂
αn

Nu

✡✁ξ̂

✁ 1

☛
, (19)

where β̂ and ξ̂ are the Maximum Likelihood estimates and Nu denotes the number of standard-

ized losses that exceed the threshold u (McNeil et al., 2015, p. 154 and 349). The VaR forecast

is then given by Equations (16) and (19).

We will next use a further extension of the models presented above. The Historical Sim-

ulation approach assumes that returns are iid, which is not realistic in practice. The EVT and

FHS approaches defined above are more realistic by assuming that only volatility standardized

returns are iid. However, several studies show that even this assumption is too restrictive, since

even volatility standardized returns exhibit autoregressive patterns in conditional skewness and

kurtosis (Bali et al., 2008, Harvey and Siddique, 1999, Jondeau and Rockinger, 2003). Thus, we

follow Jondeau and Rockinger (2003) and Bali et al. (2008) and use the EWMA and GARCH

based approach combined with the skewed t distribution of Hansen (1994), where conditional

skewness and kurtosis are modeled autoregressively. Similar to Equation (6), we assume that

the daily return can be described by

Rt ✏ σt ☎ Zt, Zt ✒ stsk♣ηt, λtq, (20)

where Zt ✒ stsk♣ηt, λtqmeans that Zt is skewed t distributed with mean zero, variance one and

time-varying parameters ηt and λt. The skewed t distribution of Hansen (1994) is characterized

by the pdf

fstsk ♣z ⑤ η, λq ✏

✩✬✫✬✪ bc
✁
1� 1

η✁2

�
bz�a
1✁λ

✟2✠✁♣η�1q④2

if z ➔ ✁a
b

bc
✁
1� 1

η✁2

�
bz�a
1�λ

✟2✠✁♣η�1q④2

if z ➙ ✁a
b

(21)
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where

a :✏ 4λc
η ✁ 2

η ✁ 1
, b2 :✏ 1� 3λ2 ✁ a2, c :✏ Γ

�
η�1
2

✟❛
π♣η ✁ 2qΓ �η

2

✟ .
The parameters of this distribution are restricted to η → 2 and ✁1 ➔ λ ➔ 1 (see Hansen (1994,

p. 710) and Jondeau and Rockinger (2003, p. 1702)). Further, for λ ✏ 0 this distribution is sym-

metric and equals the standardized t distribution. For λ → 0 (λ ➔ 0) the distribution is positively

(negatively) skewed (Hansen, 1994). Moreover, skewness exists for η → 3 and kurtosis exists

for η → 4 (Jondeau and Rockinger, 2003). Jondeau and Rockinger (2003) show that although

η is often referred as the parameter that determines kurtosis and λ determines skewness, both

parameters, η and λ, affect both, skewness and kurtosis. In particular, the relation between the

parameters and higher moments is highly non-linear. The parameters ηt and λt of the skewed t

distribution are then modeled autoregressively by

η̃t ✏ a1 � b1Rt✁1 � c1η̃t✁1, (22)

λ̃t ✏ a2 � b2Rt✁1 � c2λ̃t✁1. (23)

To guarantee that the standardized skewed t distribution is well defined, the parameters have

to be restricted to fulfill the conditions ηt → 2 and ✁1 ➔ λt ➔ 1. We follow Jondeau and

Rockinger (2003) and Bali et al. (2008) and use a logistic transformation to guarantee that these

restrictions hold. The parameters ηt and λt are then given by

ηt ✏ 2� exp ♣η̃tq (24)

λt ✏ 2

1� exp
✁
✁λ̃t

✠ ✁ 1. (25)

The α-quantile of the skewed t distribution is given by

F✁1
stsk ♣α ⑤ η, λq ✏

✩✫✪
1
b

✁
♣1✁ λq

❜
η✁2
η
F✁1
t ♣ α

1✁λ
⑤ηq ✁ a

✠
if α ➔ 1✁λ

2

1
b

✁
♣1� λq

❜
η✁2
η
F✁1
t ♣α�λ

1�λ
⑤ηq ✁ a

✠
if α ➙ 1✁λ

2
,

(26)

where F✁1
t ♣z⑤ηq is the inverse of the t distribution’s cdf Ft♣z⑤ηq ✏

➩z
✁✽

ft♣u⑤ηqdu (Jondeau and

Rockinger, 2003). The t distribution’s pdf with η degrees of freedom is given by

ft♣z⑤ηq ✏
Γ
�
η�1
2

✟
Γ
�
η

2

✟❄
πη

✂
1� z2

η

✡✁♣η�1q④2

,

(27)
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where Γ♣☎q denotes the Gamma function. The VaR forecast for day t is then again given by

Equation (16), where

F̂✁1L✝,t♣1✁ αq ✏ F✁1stsk

✁
1✁ α ⑤ η̂t, λ̂t

✠
, (28)

and η̂t and λ̂t denote the Maximum Likelihood estimates of ηt and λt.

Kuester et al. (2006) compare several VaR forecasting approaches and find that the GARCH-

based EVT, FHS and skewed t distribution approaches always belong to the best conditional

models, where the authors only use the skewed t distribution with constant parameters instead

of time-varying parameters. The authors state that unconditional models, like Historical Simu-

lation, fail to produce adequate VaR forecast and that only conditionally heteroskedastic models

deliver acceptable VaR forecasts. Therefore, the authors prefer a conditional approach that ac-

counts for the volatility dynamics. Furthermore, the authors find that the VaR violations of

dynamic models are reasonably independent over time, which usually does not hold for His-

torical Simulation. This indicates the importance of a fast adapting model, which is crucial for

the target risk strategies, since wrong risk timing translates into a high exposure of the risky

asset when the market’s downside risk is high and vice versa.37 Moreover, McNeil and Frey

(2000, p. 283) state that using a symmetric distribution, like the normal or the t-distribution,

underestimates the loss potential (see also Szegö (2002)). Kellner and Rösch (2016) find that

only models that account for fat tails and/or skewness deliver accurate VaR forecasts. Since

standardized losses typically follow an asymmetric distribution, using an approach like EVT,

FHS or skewed t is a better choice for modeling the right tail of the standardized losses (Xiong

and Idzorek, 2011). In particular, modeling the right tail of the loss distribution directly instead

of modeling the whole distribution usually gives a better fit for tail risk forecasting (Longin,

2000). McNeil and Frey (2000, p. 290-291) compare the GARCH-EVT with the unconditional

EVT, the GARCH-normal and the GARCH-t models and find that in most cases the GARCH-

EVT is superior to the benchmark models and that the GARCH-EVT model is the only model

that is not rejected in all 15 cases. Packham et al. (2017) use several alternative generalized dis-

tributions for Zt and find that only the GPD distribution works well for tail risk management.

37We will come back to this point in Section 4.2, when we show how to backtest the accuracy of the target VaR

strategy.
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Halbleib and Pohlmeier (2012) also find convincing results of combining a dynamic volatil-

ity model like GARCH(1,1) with an estimate of F✁1L✝ ♣1 ✁ αq that accounts for skewness like

EVT or the skewed t-distribution. Bali et al. (2008) find convincing results of combining a dy-

namic volatility model with the skewed t-distribution. As a consequence, combining a dynamic

volatility model with the EVT, FHS or skewed t approach should result in portfolio VaRs that

are closer to the desired target VaR level than the portfolio VaRs of the simple Historical Simu-

lation approach. Moreover, Halbleib and Pohlmeier (2012) present an easy and straightforward

framework of combining several VaR forecasting models, which could also be an interesting

approach to improve the accuracy of VaR targeting in a simple manner. We answer the ques-

tion, which model delivers the most accurate portfolio VaR later, when we assess the accuracy

of several target VaR strategies using the backtesting method described in Section 4.2.

Since R
f
t is (typically) small compared to VaRtarget

α and VaRt
α, the weight wt of the target

VaR strategy can be approximated by38

wt ✓ VaRtarget
α

VaRt
α

. (29)

The structure in Equation (29) is similar to the weight of the target volatility strategy given in

Equation (3), but the volatility of the risky asset is replaced by the VaR of the risky asset. The

weighting in Equation (29) was also used by Happersberger et al. (2019). Using the approxima-

tion in (29) and the decomposition of the VaR in (15), the weight of the risky asset of the target

VaR strategy can be approximated by

wt ✓ VaRtarget
α

VaRt
α

✏
F✁1L✝ ♣1✁ αq ☎ VaRtarget

α

F✁1L✝ ♣1✁ αq
σt ☎ F✁1L✝ ♣1✁ αq ✏ σtarget

σt

, (30)

with σtarget :✏ VaRtarget
α ④F✁1L✝ ♣1 ✁ αq. Therefore, the weight of a target VaR strategy can be

approximated by the weight of a target volatility strategy, where the target volatility level is

determined by the target VaR level and the ♣1 ✁ αq-quantile of the standardized losses. Hence,

one could argue that every target VaR strategy based on the decomposition (15) can be ap-

38For our sample the mean of R
f
t and VaR

t
α is 0.007% and 4.0766%, respectively. Thus, for our VaRtarget

α of

1.947% and these averages the weight based on Equation (13) would be 0.4785 whereas the approximated weight

would be 0.4776.
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proximated by a target volatility strategy.39 Further, a constant portfolio volatility can also be

achieved by controlling VaR instead of volatility. Taylor (2005) shows that incorporating higher

moments in volatility forecasts is beneficial, since the shape of the conditional return distribu-

tion is not fix over time as shown by Jondeau and Rockinger (2003) and Bali et al. (2008).

However, the approximation in Equation (30) is not straightforward. First, Equation (29) is just

an approximation, which is only exact for R
f
t ✏ 0. Second, to transform a target VaR strategy

into the corresponding target volatility strategy the distribution of the standardized losses, or at

least the quantile F✁1L✝ ♣1 ✁ αq, has to be known. In practice both are unknown, and hence this

transformation is not directly feasible. As a rough approximation quantiles of the standard nor-

mal distribution can be used. Then, the target VaR strategy can be approximated by the target

volatility strategy, using a target volatility level of

σtarget ✏ VaRtarget
α

N1✁α
, (31)

where N1✁α denotes the ♣1✁ αq-quantile of the standard normal distribution.40

3.3 Target CVaR Strategy

The target VaR strategy presented in the previous section has the advantage that the weight

of the risky asset is a function of the expected downside risk instead of expected volatility.

As stated before, focusing on downside risk management instead of volatility management has

several advantages (see Lee and Rao (1988), Szegö (2002), Basak and Shapiro (2001), Bali et al.

(2009), Bollerslev et al. (2006), Ang et al. (2006a) among others). Although, VaR has become

the industry standard when downside risk is measured and managed in recent years (Bali et al.,

2008, Berkowitz et al., 2011, Berkowitz and O’Brien, 2002), Conditional Value at Risk (CVaR)

is becoming more important and is establishing as the more relevant risk measure for managing

market risk and from a regulatory perspective (Du and Escanciano, 2016, Kellner and Rösch,

2016). The reason for this development is that the CVaR corrects for several drawbacks of

39This is a contrarian approach to Taylor (2005) who uses VaR forecasts based on the CAViaR model and

Historical Simulation to obtain estimates of conditional volatility.
40Remind that the volatility target is usually denoted as an annualized volatility, whereas the VaR target is chosen

as a daily loss. For example, a target VaR strategy with α ✏ 5% and VaR
target
α ✏ 1% can be approximated by a

target volatility strategy with an (annualized) volatility target of σtarget ✏ ♣0.01④1.645q ☎ ❄252 ✏ 9.6%.
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VaR. VaR has been criticized in the academic literature due to its lack of subadditivity and the

disregarding of extreme losses, which are of main interest in risk-management (see Artzner et al.

(1999), Giannopoulos and Tunaru (2005, p. 980), McNeil and Frey (2000, p. 291-292) or Yamai

and Yoshiba (2005, p. 998)). VaR only contains information on a certain quantile whereas CVaR

contains information on the whole right tail of the loss distribution (Du and Escanciano, 2016,

p. 942). Moreover, VaR may underestimate risk in times of market stress, i.e. times of high

asset price fluctuations (see Yamai and Yoshiba (2005, p. 998) or Du and Escanciano (2016)).41

The CVaR corrects these drawbacks of VaR, and thus is often claimed as a better risk measure

than VaR (see Szegö (2002) and Cuoco et al. (2008) for example).42 Another disadvantage of

managing VaR instead of CVaR is that only the exceedance probability is managed instead of

the expected loss magnitude (see Basak and Shapiro (2001, p. 385) and Aı̈t-Sahalia and Brandt

(2001)). By managing CVaR, both the exceedance probability and the size of extreme losses are

manged. Berkowitz and O’Brien (2002), examining the VaR models of six commercial banks,

demonstrate that the size of a VaR violation can be surprisingly large. This is confirmed by the

study of Du and Escanciano (2016) who find that VaR responds less to extreme losses such as

those experienced during the recent financial crisis. Basak and Shapiro (2001) and Alexander

and Baptista (2004) find that managing CVaR is superior to managing VaR in an asset allocation

context, especially if a risk free asset is available. Therefore, in this section we extend the target

VaR strategy to the target CVaR strategy, that aims to have a constant portfolio CVaR over time.

As before, the weight of the risky asset is then a function of the expected CVaR of the risky

asset, i.e. if the CVaR of the risky asset is expected to be low, the weight of the risky asset is

increased and vice versa.

The CVaR is defined as the average loss in the worst 100 ☎ α% cases, i.e. the cases where

the loss exceeds the VaR (see Acerbi and Tasche (2002, p. 1488) or Yamai and Yoshiba (2005,

41See also Basak and Shapiro (2001) who demonstrate that in the context of asset allocation decisions VaR can

lead to portfolios exhibiting losses that exceed the desired VaR extremely (see also Alexander and Baptista (2004),

Berkowitz et al. (2011), Cuoco et al. (2008) and references therein). However, Cuoco et al. (2008) show that this

observation does no longer hold once risk is managed dynamically, i.e. taking the actual information into account

and reevaluating the risk level dynamically, instead of managing risk by a static model (see also Berkowitz et al.

(2011)). This highlights the importance of managing portfolio risk dynamically as done by risk targeting.
42See Yamai and Yoshiba (2005) for a good comparison of VaR and CVaR. Moreover, see Szegö (2002, p. 1261)

for a list of drawbacks of VaR. See Du and Escanciano (2016) for a good motivation of why CVaR is becoming

the more relevant risk measure for managing downside risk.
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p. 999)). More formally, we define the portfolio CVaR, denoted by CVaRP,t
α , as

CVaRP,t
α ✏ E

�
LP
t ⑤LP

t ➙ VaRP,t
α ,Ft✁1

✟
. (32)

In Appendix B.2 we show that the portfolio CVaR is given by

CVaRP,t
α ✏ wt ☎ CVaRt

α ✁ ♣1✁ wtq ☎Rf
t , (33)

where CVaRt
α :✏ E

�
Lt ⑤Lt ➙ VaRt

α,Ft✁1

✟
denotes the day t CVaR of the risky asset.43 In

order to achieve a constant portfolio CVaR of CVaRtarget
α over time, i.e. CVaRP,t

α ✏ CVaRtarget
α

for all t, the weight of the risky asset has to be chosen as

wt ✏ CVaRtarget
α �R

f
t

CVaRt
α �R

f
t

. (34)

Due to the definition of CVaR the target CVaR strategy manages expected losses, where the

acceptable loss magnitude can be governed by the investor by choosing the values α and

CVaRtarget
α . For example, a target CVaR level CVaRtarget

α of 2% with a corresponding signifi-

cance level α of 5% translates into a strategy with an average loss of 2% on the 5% worst days.

In other words, the target CVaR strategy’s average return on the worst 5 out of 100 days will

be ✁2%.44 The choices of α and CVaRtarget
α again strongly depend on the individual investor’s

preferences and risk aversion (Alexander and Baptista, 2004).

Again, since the CVaR of the risky asset is not observable, a forecast of CVaRt
α is needed.

We use the same estimation methods as we used for estimating the VaR of the risky asset. First,

and especially interesting for practical implementations, we use Historical Simulation. For this

method we again assume that a data set of n realized losses lt✁1, .., lt✁n with order statistics

l♣1q,t✁1 ↕ l♣2q,t✁1 ↕ ... ↕ l♣nq,t✁1 exists. Based on the ordered losses we estimate CVaRt
α by 45

④CVaRt

α ✏
1

n✁ rn♣1✁ αqs� 1
☎

n➳
j✏rn♣1✁αqs

l♣jq,t✁1. (35)

43The representation in Equation (33) again follows by positive homogeneity and translation invariance of CVaR.
44By choosing the value CVaRtarget

α and α adequately, this strategy can also be an alternative to absolute return

or hedge fund strategies examined in Fung and Hsieh (1997) and Agarwal and Naik (2004).
45See Ko et al. (2009, p. 719) or Giannopoulos and Tunaru (2005, p. 985-986).
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This estimator is motivated by Acerbi and Tasche (2002, Proposition 4.1),46 which demonstrates

that the estimator in (35) is only unbiased for n converging to infinity. For small n the estimator

in Equation (35) is biased. Methods that account for this estimation bias are presented in Ko

et al. (2009) among others. As before, the quality of the target CVaR strategy strongly depends

on the accuracy of the CVaR estimation.47 However, since Historical Simulation deals as a

benchmark model, which is interesting for practitioners in particular, we keep the estimation as

simple as possible.

For the return decomposition, given in Equation (6), the CVaR of the risky asset is given by

CVaRt
α ✏ σt ☎ CVaR✝

α, (36)

where we define CVaR✝
α :✏ E

�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟ and L✝ is again a continuously dis-

tributed random variable – representing a standardized loss – with expectation zero, variance

one and F✁1
L✝ ♣1 ✁ αq denotes the ♣1 ✁ αq-quantile of L✝ (see McNeil and Frey (2000, p. 276)

for example). As for the VaR, we next present the estimation of CVaR based on a two-stage

approach, where in the first stage the volatility is estimated by one of the volatility models

presented in Equation (7) or (8). In the second stage, we again consider a sample l✝t✁n, ..., l
✝
t✁1

of n standardized losses with order statistics l✝♣1q,t✁1 ↕ ... ↕ l✝♣nq,t✁1. We denote the estimator

for CVaR✝
α ✏ E

�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟ based on the available information at day t ✁ 1, by④CVaRt,✝

α . Hence, the estimator for the CVaR of the risky asset on day t, denoted by ④CVaRt

α, is

given by

④CVaRt

α ✏ σ̂t ☎④CVaRt,✝

α . (37)

By using the FHS approach the estimator ④CVaRt,✝

α is given by Equation (35), where the j-th

order statistic l♣jq,t✁1 of the loss variables is replaced by the j-th order statistic l✝♣jq,t✁1 of the

standardized losses (see Giannopoulos and Tunaru (2005) for example). By using the EVT

46In this paper we assume that losses are continuously distributed. This is confirmed by Giannopoulos and

Tunaru (2005, p. 982) who state that only continuous probability distributions are used in practice. In this case the

CVaR, defined as Tail Conditional Expectations (TCE) in Acerbi and Tasche (2002, Definition 2.3), is equal to the

Expected Shortfall (ES) (Acerbi and Tasche, 2002, Corollary 5.3).
47This is in line with Yamai and Yoshiba (2005, p. 999) who find that the “effectiveness of expected shortfall,

however, depends on the accuracy of estimation.”
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approach the estimator ④CVaRt,✝

α is given by

④CVaRt,✝

α ✏ F̂✁1
L✝,t♣1✁ αq
1✁ ξ̂

� β̂ ✁ ξ̂u

1✁ ξ̂
, (38)

where the estimator F̂✁1
L✝,t♣1✁αq is given in Equation (19), u denotes the predetermined thresh-

old and the parameters ξ̂ and β̂ are the QML estimators (see McNeil and Frey (2000, p. 293) or

McNeil et al. (2015, p. 154)).

We next also use the skewed t distribution with time-varying parameters to forecast next

day’s CVaR. Christoffersen (2012) and Rickenberg (2019, Appendix A) show that for Zt ✒
stsk♣η, λq it holds that

E
�
Zt⑤Zt ➔ F✁1

stsk ♣α⑤ η, λq
✟

✏

✩✬✬✫✬✬✪
1
α

♣1✁λq2

b

✂
fst
�
z♣✁q⑤η✟ ☎ η✁2�♣z♣✁qq2

1✁η
✁ a☎Fst♣z♣✁q⑤ηq

1✁λ

✡
for F✁1

stsk ♣α⑤ η, λq ➔ ✁a
b

1
α

♣1�λq2

b

✂
fst
�
z♣�q⑤η✟ ☎ η✁2�♣z♣�qq2

1✁η
� a☎♣1✁Fst♣z♣�q⑤ηqq

1�λ

✡
for F✁1

stsk ♣α⑤ η, λq ➙ ✁a
b
,

(39)

where z♣✁q and z♣�q are given by

z♣✁q ✏ b ☎ F✁1
stsk ♣α⑤ η, λq � a

1✁ λ
, z♣�q ✏ b ☎ F✁1

stsk ♣α⑤ η, λq � a

1� λ
.

Further, fst♣z⑤ηq and Fst♣z⑤ηq ✏
➩z
✁✽

fst♣u⑤ηqdu correspond to the pdf and cdf of the standard-

ized t distribution with mean zero and variance one. The pdf of the standardized t distribution

is given by (see Bollerslev (1987, p. 543) and Hansen (1994, p. 709))

fst♣z⑤ηq ✏
Γ
�
η�1
2

✟
Γ
�
η

2

✟❛
π♣η ✁ 2q

✂
1� z2

η ✁ 2

✡✁♣η�1q④2

.

(40)

For the cdf of the t and standardized t distributions it holds Fst ♣z⑤ηq ✏ Ft

✁❜
η

η✁2
z⑤η
✠

.48

Bollerslev (1987) uses the standardized t distribution in the context of the GARCH(1,1) model

and finds that the GARCH(1,1)-t model is superior to both, the GARCH(1,1)-normal and the

unconditional t distribution. The forecast of day t’s CVaR is then given by Equation (37). In

this case, ④CVaRt,✝

α is given by

④CVaRt,✝

α ✏ E

✁
Zt⑤Zt ➔ F✁1

stsk

✁
α⑤ η̂t, λ̂t

✠✠
, (41)

48This relation is advantageous since the cdf of the t distribution is often available in most software packages

whereas the cdf of the standardized t distribution is not available (Jondeau and Rockinger, 2003).
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where η̂t and λ̂t are again the Maximum Likelihood estimates of ηt and λt.

McNeil and Frey (2000, p. 292) find that the quality of the CVaR estimation strongly de-

pends on the model used for the tail of the loss distribution. Correctly modeling the tails, which

is crucial for the estimation of VaR, becomes even more important when CVaR is estimated

(Yamai and Yoshiba, 2005). Therefore, correctly modeling the tails of the loss distribution is

a central issue in achieving a constant portfolio CVaR over time. Again, Kellner and Rösch

(2016) find that only models that account for fat tails and/or skewness are able to produce ac-

curate CVaR forecasts.

As in Equation (29), since R
f
t is (typically) small compared to the CVaR values, the weight

of the risky asset can be approximated by

wt ✓ CVaRtarget
α

CVaRt
α

. (42)

By using Equation (42), similarly to Equation (30), we can approximate a target CVaR

strategy by a target volatility strategy. The weight of the risky asset for this target volatility

strategy is then given by

wt ✓ CVaRtarget
α

CVaRt
α

✏
E
�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟ ☎ CVaRtarget
α

E
�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟
E
�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟ ☎ σt

✏ σtarget

σt

, (43)

with σtarget ✏ CVaRtarget
α ④E�L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟. Again, since the distribution of the stan-

dardized losses, or at least E
�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟, is not known in practice, the volatility

target σtarget can not directly be calculated. An approximation can be done by using a standard

normal distribution for L✝. Then, E
�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟ is given by
ϕ♣N1✁αq

α
, where ϕ de-

notes the density function and N1✁α the ♣1 ✁ αq-quantile of the standard normal distribution.

The volatility target is then given by

σtarget ✏ CVaRtarget
α

ϕ♣N1✁αq④α. (44)

For example, a target CVaR strategy with a significance level of α ✏ 5% and desired CVaR

target CVaRtarget
α ✏ 2% can be approximated by a target volatility strategy with an annualized

volatility target of σtarget ✏ 0.02
2.063

☎ ❄252 ✏ 15.4%. Further, a constant volatility of 15.4% can
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be achieved by managing CVaR and thus incorporating skewness and kurtosis. Moreover, by

Equations (42) and (15) we obtain

wt ✓ CVaRtarget
α

CVaRt
α

✏ CVaRtarget
α

σt ☎ F✁1
L✝ ♣1✁ αq ☎ E

�
L✝ ⑤ L✝ ➙ F✁1

L✝ ♣1✁ αq✟
F✁1
L✝ ♣1✁ αq

✏ VaRtarget
α

VaRt
α

, (45)

with VaRtarget
α ✏ F✁1

L✝
♣1✁αq

E♣L✝⑤L✝➙F✁1

L✝
♣1✁αqq ☎ CVaR

target
α . Therefore, a target CVaR strategy can be

approximated by a target VaR strategy with an adjusted target VaR level.49 However, the ap-

proximation of the target CVaR strategy by a target volatility strategy given in Equation (43) is

appealing, since forecasting volatility is much easier than forecasting CVaR, but this argument

is only partly valid for the approximation by a target VaR strategy given in Equation (45).50

Nevertheless, Equation (45) is helpful for comparing target VaR and target CVaR strategies. By

assuming a standard normal distribution for L✝, we obtain the comparable target VaR level

VaRtarget
α ✏ N1✁α

ϕ♣N1✁αq④α ☎ CVaRtarget
α . (46)

A target CVaR strategy with α ✏ 5% and CVaRtarget
α ✏ 2% should then be compared to a target

VaR strategy with α ✏ 5% and VaRtarget
α ✏ 1.645

2.063
☎ 0.02 ✏ 1.6% which is again approximated

by a target volatility strategy with σtarget ✏ 0.016
1.645

☎ ❄252 ✏ 15.4%.

This approach of comparing a target CVaR strategy with a target volatility or target VaR

strategy is similar to the approach of Strub (2013). The author starts with a predefined volatility

target and transforms this volatility target to a CVaR target by using a normality assumption.

The weight of the risky asset is then obtained as the ratio of the transformed CVaR target and

the forecast of the risky asset’s CVaR. Strub (2013, p. 16) finds that the volatility and CVaR

managed strategies offer a substantial drawdown protection, especially in the years when the

underlying index suffers the most. By comparing a volatility managed strategy with a CVaR

managed strategy, Strub (2013, p. 17) finds that managing CVaR translates into a better risk-

adjusted performance and lower drawdowns. Moreover, he finds that even after transaction

49This approach is similar to Cuoco et al. (2008) who show how a VaR limit can be transformed in a CVaR limit

and vice versa.
50Yamai and Yoshiba (2005, p. 1012) state that the estimation error for CVaR is larger than for VaR, especially

when the return distribution exhibits fat tails. Similarly, Kellner and Rösch (2016) find that the model risk for

CVaR is higher than for VaR, which is mainly driven by fat tails in the return distribution. Especially in times of

financial market turmoils like the recent financial crisis, CVaR forecasts among different models are more volatile

than VaR forecasts.
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costs the risk managed strategies still deliver convincing performances, which makes the risk

managed strategies interesting for practical applications and an interesting alternative to hedge

fund strategies as examined in Fung and Hsieh (1997) and Agarwal and Naik (2004). Similarly,

the CVaR-managed strategy of Wang et al. (2012) reduces drawdowns without sacrificing re-

turns and hence captures the upside potential, while downside risk is limited (Wang et al., 2012,

p. 38).51 This is in line with Basak and Shapiro (2001) who also find convincing results by

managing expected losses, as done by managing CVaR, and conclude that managing expected

losses is superior to managing exceedance probabilities, as done by managing VaR (see also

Aı̈t-Sahalia and Brandt (2001, p. 1316)).

3.4 VaR and CVaR Targeting as Optimal Trading Strategies under Risk

Limits

In this section we motivate the VaR and CVaR targeting strategies from another perspective

as optimal trading strategies where a trader faces a risk limit as done by Basak and Shapiro

(2001), Wang et al. (2012), Cuoco et al. (2008) and Alexander and Baptista (2004).52 We again

consider a trader who invests wt in the risky and 1 ✁ wt in the riskless asset and define the

trader’s portfolio value by Wt :✏ Wt✁1 ☎ ♣1�RP
t q, W0 → 0. Further, we define the absolute loss

in t by Labs
t :✏ Wt✁1 ✁Wt ✏ ✁Wt✁1 ☎ RP

t . We now consider a portfolio optimization problem

under an (absolute) risk limit VaRt given by

max
wt

E
�
RP

t ⑤ Ft✁1

✟
s.t. VaRt,abs

α ↕ VaRt, (47)

where VaRt,abs
α ✏ Wt✁1 ☎ VaRP,t

α denotes the VaR of the absolute loss Labs
t . The risk limit

VaRt,abs
α ↕ VaRt can then be rewritten as VaRP,t

α ↕ VaRt④Wt✁1. From Equation (12) it follows

that the risk limit holds if

wt ↕ VaRt④Wt✁1 �R
f
t

VaRt
α �R

f
t

. (48)

Under the assumption E♣Rt ⑤ Ft✁1q → R
f
f , which is typically fulfilled in practice (Benartzi

and Thaler, 1995), the expected portfolio return E
�
RP

t ⑤ Ft✁1

✟
is increasing in wt. Hence, the

51Wang et al. (2012) call their strategy a target CVaR strategy. However, the authors do not target a constant

level of risk over time, but allow a maximum level of risk (see also Basak and Shapiro (2001) and Alexander and

Baptista (2004)).
52I thank Peter Albrecht and Markus Huggenberger for this helpful comment.
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investor chooses the highest possible equity exposure that still fulfills the risk limit VaRt,abs
α ↕

VaRt. Thus, wt is given by

wt ✏ VaRt④Wt✁1 �R
f
t

VaRt
α �R

f
t

. (49)

Consequently, by choosing a constant relative risk limit VaRt④Wt✁1 ✏ VaRtarget
α , the target VaR

strategy follows as optimal dynamic trading strategy under a risk limit. By the same arguments

as above, the weighting for the target CVaR strategy can be obtained if an investor faces a CVaR

limit.

4 Assessing the Accuracy of Target Risk Strategies

In this section we present methods to test the accuracy of the target risk strategies, i.e. we test

if the risk models are successful in targeting a constant level of portfolio risk over time. A

constant portfolio risk is important for several reasons. First, a constant risk of the strategies

should be achieved by definition of risk targeting. Second, an investor who chose a fund that

targets a volatility level that fits to his risk preferences would divest if it achieves a significantly

higher volatility as expected. Similarly, an investor who expects only a limited number of days

where the portfolio return is smaller than ✁VaRtarget
α would also divest if the fund exhibits

too many extremely negative returns. Third, risk-averse investors are willing to pay for hedges

against changing portfolio volatility (Adrian and Rosenberg, 2008, Ang et al., 2006b, Bollerslev

and Todorov, 2011). These investors are willing to pay higher fees for strategies with a more

constant portfolio risk. Fourth, several studies show that a higher forecast accuracy, and hence a

more constant portfolio risk, coincides with higher (risk-adjusted) performance and utility gains

(Bollerslev et al., 2018, Fleming et al., 2003, Marquering and Verbeek, 2004, Moreira and Muir,

2017, Taylor, 2014). Consequently, a fund that fails to target a constant risk over time typically

achieves a sub optimal risk-return profile. For example, Bollerslev et al. (2018, p. 2732) write:

“the investor achieves the maximum utility by successfully targeting a constant risk

level, while the utility decreases with the volatility-of-volatility. Hence, risk models

that help the investor achieve more accurate volatility forecasts are associated with

higher levels of utility”
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Bollerslev et al. (2018) find that an investor who uses volatility targeting is willing to pay a fee

of 0.48% per year to switch from an inaccurate to a more accurate volatility model. The authors

find that there exists a positive, non-linear relation between forecasting accuracy of volatility

models and utility benefits. Further, they find that a model with perfect foresight, i.e. a model

that produces a totally constant portfolio volatility over time, exhibits the highest utility benefit

(see also Benson et al. (2014)). Similarly, in a cross-sectional setting, Baltussen et al. (2018)

find that assets with a high volatility of volatility (vol-of-vol) underperform assets with a more

constant volatility. Further, higher vol-of-vol assets also exhibit higher downside risk. This

especially holds during down markets when high vol-of-vol assets underperform low vol-of-vol

assets by 0.83% per month. Further, targeting a constant level of portfolio risk is also frequently

used by practitioners (Barroso and Santa-Clara, 2015, p. 112). Consequently, forecasting ac-

curacy is an important driver of the investor’s benefit of risk targeting and should therefore be

tested. Besides backtesting the accuracy of volatility targeting we additionally show how the

accuracy of VaR and CVaR targeting can be tested. To assess the accuracy of several volatility

models, Bollerslev et al. (2018) use the R2 as well as the DM-test of Diebold and Mariano

(1995) which tests for equal predictive ability. However, both methods have several disadvan-

tages. Therefore, we use more powerful tools to assess the accuracy of volatility targeting as

presented in the next section.

4.1 Assessing the Accuracy of Volatility Targeting

Although several studies on volatility targeting have been made, only a few studies statistically

assess if it is possible to achieve the desired volatility target over time. To assess the accuracy

of volatility targeting for some set of models M, we measure the portfolio variance of model

k on day t by RV 2
k,t :✏ w2

k,t ☎ RV 2
t , where wk,t is the weight of strategy k, k P M, on day t

and RVt denotes the Realized Volatility on day t of the risky asset (see Andersen et al. (2001),

Patton (2011) or Bollerslev et al. (2018) for a definition of RVt).
53 Motivated by Hansen and

53The Realized Volatility data are downloaded from the Oxford Man Realized Library (https://realized.

oxford-man.ox.ac.uk/). As in Hansen and Lunde (2005) we scale the Realized Volatility to a measure of

the close-to-close volatility of day t. Bollerslev et al. (2018) simply add the squared overnight return to the Realized

Volatility to obtain a measure for the whole day’s variance. However, both methods deliver similar results.
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Lunde (2005) and Patton (2011) we define the QLIKE loss function of model k on day t by

Lk,t :✏ L
�
RV 2

k,t, σ
2
target,d

✟
:✏ RV 2

k,t

σ2
target,d

✁ ln

✄
RV 2

k,t

σ2
target,d

☛
✁ 1, (50)

where σtarget,d ✏ σtarget④❄252 (see Christoffersen (2012, p. 85) and Taylor (2014, p. 475)).

Patton (2011) shows that the QLIKE and the MSE loss functions are robust against noise in the

volatility proxy. The MSE relies on the absolute forecast error whereas the QLIKE relies on the

relative forecast error. We choose the QLIKE instead of the MSE since the QLIKE penalizes

models that underestimate risk and hence produce a portfolio volatility that is too high. We

use a slightly different representation than that used by Hansen and Lunde (2005) and Patton

(2011), which is also used by Christoffersen (2012). This representation has the advantage

that L
�
RV 2

k,t, σ
2
target,d

✟ ✏ L ♣RV 2
t , σ

2
t q holds, which is the usual choice that is made when

volatility forecasts are evaluated. Moreover, our loss function is normalized in the sense that

Lk,t ✏ 0 holds if the portfolio volatility on day t equals the desired volatility target, whereas the

representation of Hansen and Lunde (2005) and Patton (2011) is not normalized. In particular,

our representation still fulfills Proposition 1 of Patton (2011) by choosing C♣zq ✏ 1
z
, C̃♣zq ✏

log♣zq and B♣zq ✏ ✁ log♣zq. Thus, our representation is a robust loss function in the sense of

Patton (2011, Definition 1), and hence is robust against noise in the volatility proxy. Further,

Patton (2011) shows that using squared daily returns instead of Realized Volatility leads to quite

similar conclusions. We also used squared daily returns instead of the Realized Volatility in the

empirical part and found similar results for both methods.

We next define the relative loss between model i and j as Xij,t ✏ Li,t✁Lj,t and the average

relative loss as

X ij ✏ 1

T

T➳
t✏1

Xij,t. (51)

The basic idea of testing for predictive accuracy is that a positive value of X ij indicates that

model j is more accurate than model i, i.e. model j is more successful in targeting a constant

level of volatility.

To test for the accuracy of the different target volatility strategies we apply the test for equal

predictive ability (DM-test) of Diebold and Mariano (1995) which was also used by Patton
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(2011) and Bollerslev et al. (2018). Further, we use the Reality Check (RC-test) of White (2000)

and Sullivan et al. (1999) and its extension, the test for Superior Predictive Ability (SPA-test)

of Hansen (2005) and Hansen and Lunde (2005). Contrary to the DM-test both, the RC- and

SPA-test, test for superior predictive ability and can also be applied to more than two models

simultaneously. Both tests test the null-hypothesis that a chosen benchmark model is more

accurate than all the remaining models. Moreover, we use the stepwise extensions of the RC-

test and SPA-test presented in Romano and Wolf (2005) and Hsu et al. (2010), which we denote

by Step-RC and Step-SPA, respectively. These approaches can be used to construct sets of

models that are superior to a chosen benchmark model. Similarly, we also use the algorithm

based on the False Discovery Rate (FDR) presented in Barras et al. (2010) and Bajgrowicz and

Scaillet (2012). The authors show how the FDR can be used to identify models that are superior

to a chosen benchmark model. Finally, we use the Model Confidence Set (MCS) of Hansen

et al. (2011) and Hansen et al. (2003), where we mainly follow Hansen et al. (2003) who also

applied this algorithm to assess the accuracy of volatility models. The MCS also identifies a set

of superior models and has the advantage that no benchmark model is needed. A short summary

of the tests can be found in Rickenberg (2019, Appendix C).

For the DM-test, the Step-RC, Step-SPA and the FDR approach a certain benchmark model

has to be chosen to which the alternative models are compared. As benchmark model we choose

the easiest one which is the HSD. This model is similar to the one used by Barroso and Santa-

Clara (2015), Barroso and Maio (2016) and Moreira and Muir (2017). When applying the

RC- and SPA-test we choose each model once as the benchmark and test if this benchmark is

outperformed by any other model. Romano and Wolf (2005) and Bajgrowicz and Scaillet (2012)

argue that doing this has several disadvantages that are corrected by the Step-RC, Step-SPA, the

MCS and the FDR approaches.

4.2 Assessing the Accuracy of VaR Targeting

In Section 3 we have presented several VaR forecasting methods and we have shown how these

VaR forecasting methods can be used to derive the weight wt of the risky asset in a target VaR

strategy. Moreover, we have shown how a target VaR strategy can be approximated by a target
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volatility strategy with an adjusted target volatility level given in Equation (30). Next we want to

asses the quality of the forecasting methods and compare the “true” target VaR strategies based

on a proper VaR forecast for the risky asset with the approximated target VaR strategies, that

are based on the risky asset’s volatility solely. In other words, we want to assess if the different

target VaR strategies succeed to produce a constant portfolio VaR over time and if controlling

volatility is sufficient for this task. Similarly, Christoffersen and Diebold (2000) show how VaR

backtesting methods can be used to backtest the accuracy of volatility models.

To assess the quality of the target VaR strategies we define the hit variables

HP
t ✏

★
1, if LP

t → VaRtarget
α

0, if LP
t ↕ VaRtarget

α

(52)

i.e. HP
t is equal to one if the portfolio loss is higher than the VaR target VaRtarget

α , called a hit,

and zero else. An accurate target VaR strategy should exhibit two abilities. First, the percentage

of days when the portfolio loss is higher than the predefined VaR target, i.e. the proportion of

hits in the hit-series tHP
t ✉Tt✏1, should be equal to the desired significance level α. Second, the

days when the portfolio loss is higher than the VaR target should occur randomly over time

and should not be clustered (see Berkowitz and O’Brien (2002, p. 1101) and Berkowitz et al.

(2011, p. 2217)). Assume the hits of a target VaR strategy occur clustered on many subsequent

days, i.e. the portfolio losses are higher than the predefined VaR target on every day in a certain

period. As a consequence, investors would remove money from a fund using this strategy, since

this strategy seems to fail the aim of having a constant VaR over time.54

To test these two abilities we resort to the VaR backtesting method of Christoffersen (1998),

which is one of the most widely used VaR backtests in the academic literature (Du and Escan-

ciano, 2016).55 In Appendix C.1 we show that the variable HP
t is equivalent to

Ht ✏
★
1, if Lt → VaRt

α

0, if Lt ↕ VaRt
α,

(53)

54Besides this economic importance of independent hits, this ability should also hold by definition of VaR. See

for example McNeil et al. (2015, Lemma 9.5) who show that the process of hit variables is a process of iid Bernoulli

random variables with probability α (see also Christoffersen (1998), Berkowitz and O’Brien (2002) and Berkowitz

et al. (2011)).
55See also Berkowitz and O’Brien (2002), Berkowitz et al. (2011, p. 2217) and Kuester et al. (2006, Sec. 2) for

a short overview of this backtesting procedure.
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i.e. the hit variable based on the losses and VaRs of the risky asset solely, which are used in

the backtest of Christoffersen (1998). Consequently, the backtesting approach of Christoffersen

(1998) can directly be adopted for the variables HP
t . Moreover, this result directly provides crit-

ical values which allows us to draw conclusions on the accuracy of the target VaR strategies.56

The backtest of the target VaR strategy is then formed with the variables

ĤP
t ✏

★
1, if lPt → VaRtarget

α

0, if lPt ↕ VaRtarget
α ,

(54)

where lPt is the realized portfolio loss on day t. The first above mentioned ability, i.e. the correct

hit proportion, is then tested with the unconditional coverage test. The second ability, i.e. inde-

pendence of the hits, is tested with the test of independence and both abilities are simultaneously

tested by the conditional coverage test (Christoffersen, 1998).

4.3 Assessing the Accuracy CVaR Targeting

For backtesting the target CVaR strategy we again use backtesting methods developed in the

context of CVaR forecasting. For backtesting CVaR there does not exist a common backtesting

procedure (Du and Escanciano, 2016). Further, backtesting CVaR is more challenging than

backtesting VaR. Therefore, we will use two different CVaR backtesting procedures that help

us to draw more sound conclusions on the accuracy of the target CVaR strategies.57 For this

purpose, as first CVaR backtest, we use the CVaR backtesting procedure described in McNeil

and Frey (2000, Section 4.3). This backtesting method compares the loss of the risky asset with

the CVaR of the risky asset and is based on the result that the variables

Xt ✏ Lt ✁ CVaRt
α

σt

✏ L✝
t ✁ CVaRt,✝

α (55)

are iid with expectation zero, given the loss Lt exceeds VaRt
α. Based on this result a backtest

procedure using a distribution free bootstrap is derived. However, in this paper we are interested

in the (normalized) difference between the portfolio loss and target CVaR level CVaRtarget
α , i.e.

56Christoffersen (1998) shows that, under the null hypothesis, the test statistic asymptotically follows a χ2

distribution.
57Both backtests used in this paper are unconditional backtests which are less powerful than conditional back-

tests (Du and Escanciano, 2016). However, opposed to the VaR backtesting literature, there does not exist a widely

used conditional CVaR backtesting method.
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we are interested in the ratio

XP
t ✏ LP

t ✁ CVaRtarget
α❛

var♣RP
t ⑤ Ft✁1q

, (56)

where we normalize these differences by the portfolio volatility. In Appendix C.2 we show that

XP
t equals Xt and thus, given LP

t ✁ VaRt,P
α → 0, XP

t should be iid with expectation zero as

well. Hence, we can adopt the backtest procedure of McNeil and Frey (2000, Section 4.3) for

the variables XP
t . The backtest is then formed using the realizations

xP
t ✏ lPt ✁ CVaRtarget

α

wt ☎ σ̂t

, (57)

where lPt denotes the day t realized portfolio loss based on the weight wt. If the weight wt of

the risky asset is estimated correctly, the sample✦
xP
t : t ✏ 1, ..., T, lPt → ②VaRt,P

α

✮
(58)

should behave like an iid sample with mean zero.58

As second target CVaR backtesting procedure we use the backtest derived in Embrechts

et al. (2005). We again consider the days, where the portfolio loss is higher than the portfolio

VaR, i.e. we consider the days where LP
t → VaRt,P

α holds. In these cases, stemming from the

definition of CVaR, the mean between the portfolio loss and the portfolio CVaR should be zero.

Since the portfolio CVaR should be equal to CVaRtarget
α over time, the measure

V1 ✏
➦T

t✏1

�
LP
t ✁ CVaRtarget

α

✟ ☎ 1tLP
t →VaR

t,P
α ✉➦T

t✏1 1tLP
t →VaR

t,P
α ✉

(59)

should exhibit a low absolute value (Embrechts et al., 2005, p. 72).59 Nevertheless, Embrechts

et al. (2005) argue that the measure V1 has the drawback that it relies on an estimate of the

58We standardize the strategies that rely on Historical Simulation by the HSD volatility. Moreover, backtesting

the target CVaR strategies for which a proper VaR forecast, and hence portfolio VaR, exists is straightforward. For

the strategies that are only based on a volatility forecast, the time series of portfolio VaR is not available. Since in

these cases the target volatility level is derived by assuming a normal distribution for Zt, we solve this problem in

the following way. If a target CVaR strategy relies on a volatility forecast σ̂t solely, we estimate the corresponding

VaR by③VaR
t

α ✏ σ̂t ☎N1✁α, i.e. again assuming that Zt follows a standard normal distribution. Then, the portfolio

VaR is given by③VaR
t,P

α ✏ wt ☎ σ̂t ☎N1✁α✁♣1✁wtq ☎Rf
t . An alternative would be to use the VaR target VaRtarget

α

as proxy for the portfolio VaR, i.e.③VaR
t,P

α ✏ VaR
target
α .

59For the volatility based strategies we again use③VaR
t,P

α ✏ wt ☎ σ̂t ☎N1✁α ✁ ♣1 ✁ wtq ☎ Rf
t as forecast for the

portfolio VaR in this backtest.
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portfolio VaR. In the definition of the measure V1 the worst cases are defined as the days when

the portfolio loss exceeds the estimated portfolio VaR. If the risky asset’s VaR forecast, and

hence by Equation (12) the portfolio VaR, is not credible, the validity of the measure V1 is

doubtful. To account for this, the authors propose a second measure V2 that does not rely on a

proper forecast of VaR. The motivation of this measure stems from the interpretation, that the

CVaR is the expected loss in the α “worst” cases. Therefore, we denote the difference between

the portfolio loss and the CVaR target by Dt :✏ LP
t ✁CVaRtarget

α . Then, we define the worst α

cases as the 100 ☎ α% highest differences Dt, i.e. we define the worst cases as the cases when

the target CVaR level is exceeded the most. This has the advantage that the worst cases do not

depend on an estimate of the VaR, where we do not know if this estimate is credible. We denote

the ♣1✁ αq-quantile of tDt✉Tt✏1 by D1✁α and calculate V2 by

V2 ✏
➦T

t✏1 Dt ☎ 1tDt→D1✁α✉➦T

t✏1 1tDt→D1✁α✉

. (60)

Again, for a successful target CVaR strategy the absolute value of V2 should be low. As a third

measure, denoted by V , Embrechts et al. (2005, p. 72) combine the measures V1 and V2 and

define

V ✏ ⑤V1⑤ � ⑤V2⑤
2

, (61)

which again should be low for a good target CVaR strategy.

5 Empirical results

5.1 Data

To evaluate the performance of the different target risk strategies and to backtest the ability of

achieving a constant level of portfolio risk over time we use data for the DAX Performance

Index as risky asset. As a proxy for the risk free rate we use the three month Euribor.60 The

data range from 01.01.2000 to 31.12.2018 and are obtained from Datastream. Although many

60This is similar to Marquering and Verbeek (2004) who use the S&P 500 as risky asset and the three month US

T-bill rate as risk free asset to examine the economic value of volatility timing in the US market. For risk targeting

it is important to frequently reallocate the weight of the risky asset. Hence, it is crucial to use a highly liquid

asset as underlying risky asset since times of increasing volatility, which induce a portfolio reallocation, typically

coincide with times of lower market liquidity (Ang et al., 2006b).
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studies on investment or fund strategies use monthly data, we use daily data, since daily data

better capture the dynamics of the financial markets and are more close to the manner how funds

are managed (see Busse (1999, p. 1015) and Karolyi and Stulz (1996, p. 952)). Further, even

long-term investors typically reevaluate their portfolio frequently on short horizons (Benartzi

and Thaler, 1995) and should also time short-term volatility (Moreira and Muir, 2019). Since

extreme price changes can occur during short time intervals focusing on daily return data is

also beneficial to better manage potential extreme events (Longin, 2000, p. 1104). Most studies

on risk targeting – or more precisely volatility targeting – use data for the S&P 500, whereas

risk targeting for German stocks is not examined so far.61 Some additional results for US data

and small caps, proxied by the S&P 500 and the German small cap index SDAX, are given in

Appendix D. The chosen period is marked by changing periods of low and high risk containing

the collapse of the tech bubble, the global financial crisis and the European debt crisis, but also

times of continuously up-trending markets. This illustrates how risk targeting works in differ-

ent market environments and whether the models are successful in adapting to changing market

regimes. Dopfel and Ramkumar (2013) demonstrate how important portfolio risk management

was in the financial crisis, where volatility managing delivers higher returns with lower volatil-

ity. A well performing strategy should limit the downside, while the upside potential is captured

as found for many hedge fund strategies (Fung and Hsieh, 1997). We also show in Appendix

D how risk targeting works for a longer data set that covers about 88 years. As in Kellner and

Rösch (2016) we use an estimation window of n ✏ 1000 days for Historical Simulation, FHS,

EVT, the skewed t distribution and for estimating the GARCH(1,1) parameters. The HSD is

estimated with an estimation window of m ✏ 30 days. As benchmark portfolios for the risk tar-

geting strategies we use two buy-and-hold investment strategies. The first benchmark strategy

is fully invested in the risky asset, i.e. wt ✏ 1 for all t and the second strategy initially invests

w0 ✏ 60% of wealth in the risky asset and the remaining 1 ✁ w0 ✏ 40% in the risk-free asset

without rebalancing the weights over time. Benartzi and Thaler (1995) state that portfolios that

contain approximately 50% stocks and 50% bonds are optimal for loss-averse investors. Simi-

61Packham et al. (2017) examine data for German stocks as well but in a slightly different setting. Barroso and

Santa-Clara (2015) examine volatility targeting for a momentum portfolio consisting of German stocks. Ang et al.

(2009) examine the low volatility anomaly internationally including Germany.
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larly, Ang et al. (2005, Fig. 3) find that such portfolios are also held by moderately risk-averse

investors. Further, 60/40 portfolios are frequently used by pension funds (Benartzi and Thaler,

1995, p. 87) for which risk targeting can be an interesting alternative.

To better manage extreme losses and to better mitigate drawdowns we choose a low sig-

nificance level of α ✏ 0.5% for the target VaR and CVaR strategies. Low significance levels

are frequently used in practice and are important from a regulatory perspective. For example,

the Bank of Internal Settlements has set the significance level to 1% for measuring market risk

and only 0.1% for credit risk. Further, a significance level of α ✏ 0.5% is also set to calculate

the Solvency Capital Requirement under Solvency II. Bali et al. (2008) also use a significance

level of 0.5% in VaR forecasting. Happersberger et al. (2019) find better result for downside

risk managed strategies when a lower α is chosen. Further, Ghysels et al. (2016) find that skew-

ness information is hidden in the distribution’s tails and that this “tail skewness” is important

to determine the portfolio allocation. Thus, lower significance levels should be chosen to better

capture skewness risk. Additional results for significance levels of α ✏ 1%, 2.5% and 5% are

given in Appendix D. As in Barroso and Santa-Clara (2015) and Barroso and Maio (2016) we

choose an annualized volatility target of σtarget ✏ 12%. By using Equations (31) and (46) we

obtain VaR and CVaR target levels of VaRtarget
α ✏ 1.9471% and CVaRtarget

α ✏ 2.1861% for a

significance level of α ✏ 0.5%.62

5.2 Testing the Accuracy of Target Risk Strategies

We start by assessing the accuracy of the different target risk strategies. By definition the aim

of the target risk strategies is to achieve a predefined level of portfolio risk constantly over

time. In particular, we are interested in the question if more advanced models produce a more

constant portfolio risk over time and what kind of risk – volatility, VaR or CVaR – an investor

should manage if the investor targets a predefined level of volatility, VaR or CVaR, respectively.

62We have chosen the same α for both, the target VaR and target CVaR strategies, but different target risk levels.

Another possibility would be to choose the same target level, but different significance levels as in Alexander and

Baptista (2004, p. 1262), i.e. VaRtarget
α ✏ CVaR

target
α̃ with α ➔ α̃. Du and Escanciano (2016) suggest that

the significance level for CVaR should be about twice the significant level of VaR, i.e. 2α ✓ α̃. For example, a

significance level of α̃ ✏ 5% for the target CVaR strategy requires a significance level of about α ✏ 1.96% for the

target VaR strategy to guarantee that both strategies have the same target risk level when Equations (31) and (46)

are used.
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Further, we are interested in the question if managing volatility is sufficient or if incorporating

higher moments, as done by managing VaR and CVaR, leads to a higher accuracy as found

by Taylor (2005) in a different setting. Testing the accuracy of the different risk models is

also important from an economical perspective, since previous studies have shown that a higher

forecasting accuracy coincides with a higher risk-adjusted performance and economic value in

terms of utility gains (Bollerslev et al., 2018, Fleming et al., 2003, Marquering and Verbeek,

2004, Moreira and Muir, 2017, Taylor, 2014). Consequently, a high forecasting accuracy, and

hence a more constant portfolio risk, is beneficial for risk targeting. We first test the accuracy of

the strategies when the investor’s aim is to target a certain level of portfolio volatility over time.

Whenever a benchmark model is needed we choose the HSD as benchmark, which we denote

by model 0, to assess if more advanced models are more successful in volatility targeting than

the model used in Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Barroso and

Maio (2016). This model is then tested against the remaining models k ✏ 1, ..., 16. Bollerslev

et al. (2018) find that more advanced models produce more accurate forecasts and higher utility

gains than static forecasting models like HSD.

Tables I and II give the results for the tests presented in Section 4.1, where Table I shows

the results for the DM-, RC- and SPA-test. The first column of Table I contains the average

loss of all models, normalized by the average loss of the HSD model, i.e. L
norm

k ✏ 1

n

➦T
t✏1

Lk,t

1

n

➦T
t✏1

L0,t
,

k ✏ 1, ..., 16. A normalized loss smaller than 100% indicates that model k is more accurate

on average, whereas values greater than 100% indicate that the HSD model is more successful

in achieving a constant portfolio volatility. Table I clearly shows that the dynamic volatility

models, i.e. the EWMA and GARCH based target volatility strategies, are the most accurate

models, whereas managing VaR or CVaR typically leads to a less accurate portfolio volatility.

In particular, the Historical Simulation managed strategies (VaR-HS and CVaR-HS) are the least

accurate models when the aim is to target volatility. Further, the DM-test indicates that most of

the CVaR models are significantly less accurate in targeting a constant level of volatility with

values of less than ✁1.64. When using the RC test only three strategies – EWMA, GARCH

and VaR-GARCH-FHS – can not be rejected. The RC-test tests if a chosen benchmark model
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Table I. Testing the accuracy of volatility targeting

This table contains the results of the tests of predictive accuracy presented in Section 4.1. L
norm

k ✏ 1

n

➦
n
t✏1

Lk,t

1

n

➦
n
t✏1

L0,t

defines the average loss of model k normalized by the loss of model 0 and is given in percent. DM-test stands for

the test statistic of the Diebold and Mariano (1995) test. The null-hypothesis of equal predictive ability is rejected

for ⑤DM-test⑤ → 1.64, where positive values indicate that model k is more accurate than the HSD model. Bold

numbers of DM-test indicate that the model is significantly superior to the HSD model. pRC,n and pRC stand for

the naive p-value and p-value of the RC-test of White (2000) and Sullivan et al. (1999). pSPA,n and pSPA,c stand

for the naive p-value and p-value for the SPA-test of Hansen (2005) and Hansen and Lunde (2005). pSPA,l and

pSPA,u give lower and upper bounds for the p-value of the SPA-test. Bold numbers of these tests indicate that the

null-hypothesis that model k is the best model cannot be rejected at a test level of 10%. All p-values are given in

per cent.

Model L
norm
k DM-test pRC,n pRC pSPA,n pSPA,l pSPA,c pSPA,u

Vola Hist 100.00 - 0.00 0.45 0.00 0.00 0.00 0.00

Vola EWMA 83.47 5.49 3.07 64.48 3.07 3.07 3.07 13.26

Vola GARCH 80.88 4.04 100.00 100.00 100.00 100.00 100.00 100.00

VaR Hist 278.33 -7.43 0.00 0.00 0.00 0.00 0.00 0.00

VaR EWMA FHS 98.44 0.31 0.00 0.75 0.00 0.00 0.00 0.00

VaR EWMA EVT 108.13 -1.35 0.00 0.00 0.00 0.00 0.00 0.00

VaR EWMA Stsk 111.72 -2.41 0.00 0.00 0.00 0.00 0.00 0.00

VaR GARCH FHS 89.25 1.97 0.00 11.94 0.00 0.00 0.00 0.00

VaR GARCH EVT 98.76 0.20 0.00 0.28 0.00 0.00 0.00 0.00

VaR GARCH Stsk 119.79 -2.79 0.00 0.00 0.00 0.00 0.00 0.00

CVaR Hist 273.18 -7.72 0.00 0.00 0.00 0.00 0.00 0.00

CVaR EWMA FHS 119.44 -2.74 0.00 0.00 0.00 0.00 0.00 0.00

CVaR EWMA EVT 124.49 -3.32 0.00 0.00 0.00 0.00 0.00 0.00

CVaR EWMA Stsk 142.35 -5.76 0.00 0.00 0.00 0.00 0.00 0.00

CVaR GARCH FHS 100.38 -0.06 0.00 0.11 0.00 0.00 0.00 0.00

CVaR GARCH EVT 106.77 -1.03 0.00 0.00 0.00 0.00 0.00 0.00

CVaR GARCH Stsk 149.67 -5.88 0.00 0.00 0.00 0.00 0.00 0.00

is at least as accurate as all the remaining models. If for a model the null-hypothesis cannot

be rejected, i.e. the p-value is higher than the chosen test level of 10%, there is no indication

that any other model is more successful in targeting a constant level of portfolio volatility over

time than this model. The SPA-test, which extends the RC-test by using a studentized test

statistic and a sample dependent null distribution, is typically more powerful in determining

inferior models (Hansen, 2005, Hansen and Lunde, 2005). This is confirmed by our results,

since more null-hypotheses are rejected. The SPA-test rejects all null-hypotheses of superior

predictive ability except for the null-hypothesis when the GARCH model is used as benchmark

model. Concluding, Table I shows that the dynamic volatility models produce the most accurate

portfolio volatility.

Table II shows the sets of superior models identified by the stepwise RC-test, the stepwise

SPA-test, the MCS and the FDR approach. Whenever a benchmark model is needed we choose

the HSD model as benchmark strategy. The MCS has the advantage that no benchmark model

has to be chosen. The MCS, which is an extension of the SPA-test, produces similar results
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Table II. Sets of accurate volatility targeting models

This table contains the results of the stepwise RC-test of Romano and Wolf (2005), the stepwise SPA-

test of Hsu et al. (2010), the MCS of Hansen et al. (2003) and Hansen et al. (2011) as well as the FDR

method of Barras et al. (2010) and Bajgrowicz and Scaillet (2012). pR and pSQ stand for the p-values of

the MCS of Hansen et al. (2003) and Hansen et al. (2011) and are given in per cent. Bold values indicate

that the model is contained in the MCS for a test level of 10%. Step-RC and Step-RCst contain the step

in which the model is added to the set of superior models using the stepwise multiple testing of Romano

and Wolf (2005), where Step-RCst uses a studentized test statistic. Step-SPA and Step-SPAst contain the

step in which the model is added to the set of superior models using the stepwise multiple testing of Hsu

et al. (2010), where Step-SPAst uses a studentized test statistic. A value of zero means that the model is

not added to the set of superior models. The tests are performed for a test-level of 10%. The last column

contains the step in which the model is added to the set of superior models targeting an FDR� of 10%.

A value of zero indicates that the model is not contained in the superior set.

Model pR pSQ Step-RC Step-RCst Step-SPA Step-SPAst FDR� ✏ 10%

Vola Hist 0.00 0.00 - - - - -

Vola EWMA 4.90 4.90 1 1 1 1 1

Vola GARCH 100.00 100.00 1 1 1 1 2

VaR Hist 0.00 0.00 0 0 0 0 0

VaR EWMA FHS 0.00 0.00 0 0 0 0 4

VaR EWMA EVT 0.00 0.00 0 0 0 0 0

VaR EWMA Stsk 0.00 0.00 0 0 0 0 0

VaR GARCH FHS 0.00 0.00 1 1 1 1 3

VaR GARCH EVT 0.00 0.00 0 0 0 0 0

VaR GARCH Stsk 0.00 0.00 0 0 0 0 0

CVaR Hist 0.00 0.00 0 0 0 0 0

CVaR EWMA FHS 0.00 0.00 0 0 0 0 0

CVaR EWMA EVT 0.00 0.00 0 0 0 0 0

CVaR EWMA Stsk 0.00 0.00 0 0 0 0 0

CVaR GARCH FHS 0.00 0.00 0 0 0 0 0

CVaR GARCH EVT 0.00 0.00 0 0 0 0 0

CVaR GARCH Stsk 0.00 0.00 0 0 0 0 0

to the SPA-test for all reasonable test levels, since only the GARCH model is contained in the

MCS for a test level of 10%. The Step-RC and Step-SPA produce larger sets than the MCS

and contain the EWMA, GARCH and VaR-GARCH-FHS models. This result is similar to the

result of the RC-test. There are no differences between the sets of the Step-RC and Step-SPA

test. Further, studentizing does not lead to different results. The FDR approach, which is known

to typically produce sets of superior models that are at least as large as the sets of the Step-RC

and Step-SPA approaches, chooses one additional model. Besides the three models that are

identified by stepwise multiple testing, the set that targets an FDR� of 10% also contains the

VaR-GARCH-EVT. However, the volatility models (EWMA and GARCH) are chosen in the

first two steps and the VaR-GARCH-EVT is chosen the last.

To summarize the results of Tables I and II we find convincing results of the EWMA,

GARCH and VaR-GARCH-FHS model, where the GARCH model delivers the best results.
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Hence, an investor who wants to achieve a constant portfolio volatility over time should man-

age volatility directly by a dynamic risk model. Managing downside risk typically fails to target

a constant level of volatility. Further, unconditional models, i.e. HSD or Historical Simulation,

produce a portfolio volatility that significantly deviates from the desired volatility target. Since

a higher forecast accuracy typically coincides with a higher risk-adjusted performance and util-

ity gains we expect higher risk-adjusted performance and utility gains for conditional models,

i.e. models that are based on a dynamic volatility model. Bollerslev et al. (2018) also find that

static models like HSD are inaccurate and, due to their inaccuracy, produce lower utility gains

for an investor who targets a constant level of volatility.

Table III reports results for the VaR backtest of Christoffersen (1998) presented in Section

4.2, where we report p-values for the unconditional and conditional coverage test for signifi-

cance levels of α ✏ 0.5%, 1%, 1.5% and 5%. These significance levels are also frequently used

in the literature on VaR forecasting (see Bali et al. (2008) for example). The VaR backtesting

results demonstrate that for all significance levels controlling volatility is not sufficient when

an investor’s aim is to target a constant portfolio VaR over time. Contrary, managing CVaR is

feasible for an investor who targets a constant VaR over time. However, VaR-based strategies

are more successful in targeting a constant portfolio VaR over time than strategies that manage

CVaR. Only two of the VaR-based strategies that rely on a conditional volatility model can be

rejected for a significance level of α ✏ 0.5% and a test level of 10%. Further, for higher sig-

nificance levels of α unconditional models based on Historical Simulation also fail to target a

constant VaR, whereas these models cannot be rejected for low significance levels. A possible

explanation for this result is that low significance levels produce only a limited number of hits.

Historical Simulation is known for typically producing adequate hit ratios, but these hits are

usually clustered over time. Hence, when testing for unconditional coverage, Historical Sim-

ulation usually delivers convincing results. However, Historical Simulation is often rejected

once the independence or conditional coverage test is applied, due to a failure of producing in-

dependent hits (Kuester et al., 2006). Since the independence test of Christoffersen (1998) only

regards successive hits, low significance levels, and hence only very few hits over the whole
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sample, imply that the independence test fails to detect the lack of independence. This explains

why Historical Simulation seems to perform well for low levels of α. Pritsker (2006) also finds

that VaR backtests fail to identify inferior models when only few exceedances occurred over the

sample.

Table III. VaR backtesting results

The table reports the backtesting results of the Christoffersen (1998) VaR backtest for significance levels

of α ✏ 0.5%, 1%, 2.5% and 5%. puc and pcc are the p-values for the unconditional coverage and con-

ditional coverage test and are given in percent. Bold numbers mark the models that are not rejected at a

test level of 10%.

α ✏ 0.5% α ✏ 1% α ✏ 2.5% α ✏ 5%

Model puc pcc puc pcc puc pcc puc pcc

Vola Hist 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Vola EWMA 0.01 0.03 0.00 0.00 0.00 0.01 0.02 0.04

Vola GARCH 1.46 2.90 2.09 6.87 0.10 0.40 5.98 18.22

VaR Hist 82.09 25.17 68.80 27.71 55.22 0.00 51.14 0.00

VaR EWMA FHS 43.75 27.08 41.01 63.71 49.33 25.13 64.51 59.47

VaR EWMA EVT 27.94 10.06 22.13 30.36 67.98 71.83 15.16 8.21

VaR EWMA Stsk 66.34 21.64 79.56 80.76 3.53 5.07 0.17 0.34

VaR GARCH FHS 56.13 29.04 58.70 74.75 61.45 86.73 64.51 90.32

VaR GARCH EVT 19.21 6.95 28.47 37.41 96.32 99.90 39.42 72.83

VaR GARCH Stsk 19.21 6.95 12.52 18.43 74.79 85.83 26.64 50.57

CVaR Hist 19.21 39.97 4.45 1.13 0.61 0.08 0.00 0.00

CVaR EWMA FHS 27.94 10.06 12.52 18.43 6.43 12.41 2.57 4.24

CVaR EWMA EVT 12.57 4.51 1.96 3.17 0.32 1.12 0.99 2.10

CVaR EWMA Stsk 19.21 6.95 12.52 18.43 28.10 52.96 69.05 14.61

CVaR GARCH FHS 27.94 10.06 35.88 44.91 11.92 26.42 8.03 19.06

CVaR GARCH EVT 4.57 1.55 3.00 4.80 1.46 5.08 5.06 12.92

CVaR GARCH Stsk 4.57 1.55 0.15 0.24 0.16 0.68 0.99 2.55

Table IV shows the backtesting results for the two CVaR backtests presented in Section 4.3.

We again choose the four significance levels α ✏ 0.5%, 1%, 1.5% and 5%. The p-value of the

backtest of McNeil and Frey (2000) is denoted by pCV aR. All target volatility and nearly all

target VaR strategies fail to accurately target the portfolio CVaR and are rejected at a test level

of 10%. In contrast, only one of the target CVaR strategies for a significance level of α ✏ 0.5%

can be rejected, indicating that by controlling the CVaR of the risky asset it is possible to

achieve a constant portfolio CVaR over time. This finding is also supported by the results

of the CVaR backtest of Embrechts et al. (2005), which exhibits the lowest values for CVaR

managed strategies. Further, the values V of the dynamically managed target CVaR strategies

are systematically lower than the values of the remaining models, indicating that when the

objective is to achieve a constant portfolio CVaR over time, the CVaR of the risky asset should

be managed dynamically. Interestingly, the CVaR-HS cannot be rejected by the backtest of
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McNeil and Frey (2000). However, this backtest is an unconditional backtest which only tests

if the produced CVaR is correct on average (Du and Escanciano, 2016). As mentioned above,

Historical Simulation is typically rejected once a conditional backtest is applied. The lower

values of V of the conditionally managed strategies indicate a higher accuracy of conditional

models.

Table IV. CVaR backtesting results

This table reports the backtesting results of the McNeil and Frey (2000) and Embrechts et al. (2005)

CVaR backtests for significance levels of α ✏ 0.5%, 1%, 2.5% and 5%. V denotes the measure given

in Equation (61) of the backtest of Embrechts et al. (2005). Bold numbers mark the lowest value of V .

pCV aR denotes the p-value of the backtest of McNeil and Frey (2000) and is given in percent. Bold

numbers mark the models that are not rejected at a test level of 10%.

α ✏ 0.5% α ✏ 1% α ✏ 2.5% α ✏ 5%

Model V pCV aR V pCV aR V pCV aR V pCV aR

Vola Hist 0.5825 1.11 0.4257 0.39 0.2840 0.04 0.2097 0.00

Vola EWMA 0.4934 1.85 0.3164 1.93 0.2068 0.42 0.1527 0.09

Vola GARCH 0.3337 10.03 0.2150 7.84 0.1163 9.48 0.0917 1.66

VaR Hist 0.5699 3.30 0.4179 3.69 0.3849 0.20 0.3169 0.00

VaR EWMA FHS 0.3621 2.30 0.2282 2.62 0.0843 11.46 0.0891 1.05

VaR EWMA EVT 0.3145 3.94 0.1842 3.94 0.0898 8.12 0.0957 1.16

VaR EWMA Stsk 0.3356 5.53 0.2182 3.53 0.1506 1.37 0.1472 0.06

VaR GARCH FHS 0.2825 10.42 0.1369 13.93 0.0681 16.24 0.0688 3.30

VaR GARCH EVT 0.2318 14.41 0.1094 16.87 0.0637 14.92 0.0738 2.50

VaR GARCH Stsk 0.1955 26.53 0.1219 13.24 0.0732 12.96 0.0867 1.60

CVaR Hist 0.3052 12.97 0.1376 51.87 0.0848 77.77 0.0526 15.62

CVaR EWMA FHS 0.1814 28.01 0.0772 63.80 0.0200 93.16 0.0085 90.92

CVaR EWMA EVT 0.2305 5.81 0.0857 17.86 0.0209 35.76 0.0186 14.09

CVaR EWMA Stsk 0.1913 27.28 0.0894 34.94 0.0390 54.87 0.0384 47.23

CVaR GARCH FHS 0.1602 44.38 0.0691 57.07 0.0133 99.67 0.0070 94.12

CVaR GARCH EVT 0.1936 17.85 0.0508 41.94 0.0211 49.32 0.0139 32.10

CVaR GARCH Stsk 0.0634 70.90 0.0387 73.45 0.0455 14.36 0.0315 4.93

The backtesting results presented in this section demonstrate two important issues. First,

if an investor is interested in targeting portfolio risk in terms of volatility, VaR or CVaR the

investor should directly manage volatility, VaR or CVaR, respectively. In particular, when the

aim is to target a certain level of tail risk, it is not sufficient to manage volatility. Second,

when portfolio risk is managed, the investor should use a fast-adapting dynamic risk model

instead of simpler empirical models like HSD or Historical Simulation as done by Barroso and

Santa-Clara (2015), Barroso and Maio (2016) and Moreira and Muir (2017).

5.3 Performance of Target Risk Strategies

We next assess the performance of the different risk targeting strategies and the two benchmark

portfolios. Results of the performance analysis are given in Table V. All target risk strategies
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except for the Historical Simulation managed target VaR strategy deliver higher returns than the

60/40 portfolio with a risk, measured by volatility, drawdown, VaR or CVaR, that is lower – or

comparable in the case of the volatility managed strategies – than the risk of the 60/40 portfo-

lio. Further, the risk targeting strategies deliver higher returns with lower risk compared to the

DAX. Therefore, dynamically managing the portfolio risk can significantly reduce the portfo-

lio risk measured by volatility, drawdown, VaR and CVaR without simultaneously sacrificing

returns (see Fung and Hsieh (1997) who found a similar behavior for dynamic trading strate-

gies used by hedge funds). This is also reflected in higher Sharpe Ratios for the dynamically

managed target risk strategies compared to the two benchmark portfolios. Moreover, within the

(dynamically) managed target risk strategies, returns are quite similar, however, the downside

risk managed strategies exhibit a significantly lower risk than the volatility managed strategies.

The highest Sharpe Ratio is found for the CVaR-EWMA-Stsk strategy, which is about 287.5%

higher than the Sharpe Ratio of the DAX and 51.96% higher that the Sharpe Ratio of the HSD

model. The Sharpe Ratio of the best volatility managed strategy is still 205% higher than the

Sharpe Ratio of the DAX. That is, the Sharpe Ratio of the best CVaR managed strategy is

0.155④0.122✁1 ✏ 27.05% higher than the Sharpe Ratio of the best volatility managed strategy.

In particular, Sharpe Ratios of the dynamically managed CVaR strategies are all higher than the

Sharpe Ratios of the volatility managed strategies. This can also be seen by the modified Sharpe

Ratio which measures the risk-adjusted annualized excess return (see Jondeau and Rockinger

(2012) for a definition of the modified Sharpe Ratio). Best results in terms of Sharpe Ratios

are found for the strategies based on the skewed t distribution of Jondeau and Rockinger (2003)

and Bali et al. (2008). Generally, managing risk dynamically instead of statically by HSD or

Historical Simulation is crucial in order to increase the risk-adjusted performance. Sharpe Ra-

tios of the statically managed strategies are significantly lower than the Sharpe Ratios of the

dynamically managed strategies. This finding is also in line with Bollerslev et al. (2018) since

models that produce a more constant portfolio risk over time, as shown in Section 5.2, also

yield a higher risk-adjusted return. Although the differences in the Sharpe Ratio seem small,

the results indicate significant performs gains of portfolio risk management, especially when

52

 Electronic copy available at: https://ssrn.com/abstract=3444999 



downside risk is managed. This is because our strategies are highly correlated, which results

in very small standard errors for the relative Sharpe Ratios as highlighted in Kirby and Ostdiek

(2012). For example, the average correlation between all risk targeting models is 97.34% and

the maximum correlation between two strategies is 99.98%. This high correlation between the

risk targeting strategies demonstrates that even small differences in the Sharpe Ratios indicate a

striking improvement in performance. For example, Kirby and Ostdiek (2012) find Sharpe Ra-

tios for their strategies in the range of 0.47 to 0.49, compared to the benchmark’s Sharpe Ratio

of 0.46, and they conclude that, due to the high correlation of the strategies, “[t]hese differ-

ences translate into significant performance gains”. The performance gains of CVaR targeting

compared to volatility targeting are even higher in magnitude than the gains found by Kirby

and Ostdiek (2012), demonstrating the vast performance gains of managing CVaR instead of

volatility. To test if any model produces a statistically higher Sharpe Ratio than the HSD man-

aged model, we use the corrected version of the Sharpe Ratio test of Jobson and Korkie (1981)

which is also used by DeMiguel et al. (2009, p. 1928). This test could also be applied to more

strategies simultaneously as shown by Jobson and Korkie (1981, II.C). However, we apply more

sophisticated approaches to test for higher performance gains in Section 5.4 to all portfolios si-

multaneously and only test each strategy with respect to the HSD model here. The test of Jobson

and Korkie (1981) indicates that only the VaR-EWMA-Stsk model exhibits a Sharpe Ratio that

is significantly higher than the Sharpe Ratio of HSD model when using a test level of 10%.

We now turn to the drawdown protection ability of risk targeting. Several studies demon-

strate that volatility targeting is an easy but successful method to significantly reduce draw-

downs (see Benson et al. (2014), Barroso and Santa-Clara (2015), Harvey et al. (2018) and

Moreira and Muir (2017) among others). As expected, all risk targeting strategies and the 60/40

portfolio are successful in mitigating portfolio drawdowns. The maximum drawdown (MDD)

of the risk targeting strategies and the 60/40 portfolio is about half of the maximum drawdown

of the DAX, whereby the risk targeting strategies exhibit a slightly higher drawdown reduc-

tion than the 60/40 portfolio. This can be seen by ∆MDD which measures the percentage

drawdown reduction compared to the drawdown of the DAX. Managing downside risk, espe-
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Table V. Performance results of risk targeting

This table shows the performance results of all target risk strategies and the two benchmark portfolios

over the whole period. Return and Vola stand for the annualized return and volatility, respectively. SR

stands for the annualized Sharpe Ratio, zJK stands for the test statistic of the corrected version of the test

of Jobson and Korkie (1981) and mSR is the modified Sharpe Ratio defined in Jondeau and Rockinger

(2012). MDD and ∆MDD stand for the maximum drawdown and the reduction of the maximum draw-

down in contrast to the maximum drawdown of the DAX. Calmar Ratio stands for the drawdown adjusted

return and is defined in Farinelli et al. (2008) and Eling and Schuhmacher (2007). VaR and CVaR are the

in-sample VaR and CVaR, which are estimated with Historical Simulation using all data. Min and Max

stand for the minimum and maximum daily return, respectively. Return, Vola, MDD, ∆MDD, Min. and

Max. are given in percent. Bold numbers of zJK show significance at a level of 10%, i.e. zJK ➙ 1.6449.

Model Return Vola SR zJK mSR MDD ∆MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 1.49 41.24 41.45 0.032 1.38 1.82 -5.64 5.14

Vola EWMA 3.33 12.50 0.122 0.95 1.97 40.55 42.42 0.038 1.34 1.76 -5.28 4.98

Vola GARCH 3.19 11.97 0.116 0.38 1.81 39.28 44.23 0.035 1.29 1.67 -5.29 4.03

VaR Hist 2.07 9.69 0.029 -0.68 -0.25 31.62 55.10 0.009 0.97 1.44 -4.99 5.29

VaR EWMA FHS 3.23 11.09 0.128 0.87 2.12 37.09 47.33 0.038 1.19 1.56 -4.33 4.24

VaR EWMA EVT 3.23 10.43 0.136 1.29 2.30 35.28 49.91 0.040 1.11 1.47 -4.24 4.01

VaR EWMA Stsk 3.43 10.83 0.150 1.68 2.63 35.07 50.20 0.046 1.16 1.53 -4.76 4.11

VaR GARCH FHS 3.11 11.33 0.115 0.34 1.81 38.32 45.59 0.034 1.22 1.59 -4.67 3.52

VaR GARCH EVT 3.13 10.63 0.125 0.62 2.04 36.55 48.10 0.036 1.15 1.49 -4.63 3.37

VaR GARCH Stsk 3.34 10.39 0.147 1.10 2.58 34.68 50.75 0.044 1.11 1.46 -4.84 3.32

CVaR Hist 2.43 9.26 0.069 -0.33 0.70 28.51 59.52 0.022 0.95 1.37 -5.12 4.17

CVaR EWMA FHS 3.22 10.16 0.139 1.13 2.38 34.35 51.22 0.041 1.07 1.43 -4.01 3.79

CVaR EWMA EVT 3.23 9.93 0.143 1.32 2.48 33.80 52.00 0.042 1.05 1.40 -3.90 3.74

CVaR EWMA Stsk 3.38 10.14 0.155 1.53 2.77 33.12 52.97 0.048 1.09 1.44 -4.67 3.70

CVaR GARCH FHS 3.23 10.68 0.134 0.79 2.25 37.00 47.47 0.039 1.14 1.49 -4.58 3.26

CVaR GARCH EVT 3.26 10.33 0.141 0.99 2.42 35.51 49.58 0.041 1.10 1.44 -4.41 3.19

CVaR GARCH Stsk 3.21 9.74 0.145 0.94 2.51 33.02 53.11 0.043 1.04 1.38 -4.75 2.98

DAX 2.73 23.46 0.040 -0.57 - 70.42 - 0.013 2.36 3.46 -8.49 11.40

60/40 2.37 11.94 0.048 -0.59 0.21 40.07 43.10 0.014 1.24 1.74 -4.32 5.10

cially managing CVaR, instead of volatility results in a higher drawdown reduction without

simultaneously sacrificing returns. Interestingly, the Historical Simulation managed strategies

exhibit the highest drawdown reduction. However, this superior drawdown protection comes

along with significantly lower returns. This is confirmed by the Calmar Ratio which measures

the drawdown-adjusted return and takes the highest values for the dynamically managed target

CVaR strategies, whereas the Calmar Ratios of the Historical Simulation managed strategies

are significantly lower.63

63Since asset returns are usually non-normally distributed, performance measurement based on the Sharpe Ratio

solely can lead to wrong conclusions (see Farinelli et al. (2008) or Eling and Schuhmacher (2007) for example).

Only for elliptical distributions, a class of distributions that contains the normal distribution, Sharpe Ratio is an

adequate risk-adjusted performance measure (Eling and Schuhmacher, 2007, p. 2633). Therefore, besides the

Sharpe Ratio as risk-adjusted performance measure we additionally use the Calmar Ratio. This measure replaces

the volatility in the Sharpe Ratio by the Maximum Drawdown. For a motivation of enhanced risk-adjusted per-

formance measures and definitions see Eling and Schuhmacher (2007). Further, Jobson and Korkie (1981, Sec. I)

gives an overview on several performance measures. We also used other performance measures which are not

reported here, since results were quite similar to the Sharpe Ratio and Calmar Ratio. Similarly, Eling and Schuh-

macher (2007) find a similar ranking order across hedge funds when several risk-adjusted performance measures

are used.
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The highest (least negative) minimum daily return is achieved by the CVaR managed strate-

gies, which is in line with the results of the maximum drawdown. The minimum return of

the VaR managed strategies is also comparable to the minimum return of the CVaR managed

strategies but slightly lower. The minimum return of the volatility managed strategies is sig-

nificantly more negative than the minimum return of the downside risk managed strategies.

Further, the minimum daily return of the Historical Simulation based strategies is significantly

more negative than the minimum return of the dynamically managed strategies. This is some-

what surprising since the Historical Simulation based strategies exhibit the lowest drawdowns

which indicates that these models are the most conservative. Further, the Historical Simulation

based strategies also have the lowest average equity weights which are not shown here. The

lower average equity exposure of the Historical Simulation managed strategies is consistent

with Berkowitz and O’Brien (2002) who find that banks – who often use Historical Simulation

as risk measurement tool – typically exhibit too conservative, i.e. too high, risk estimates that

translates in lower equity weights of strategies that are managed by Historical Simulation. Fur-

ther, Berkowitz and O’Brien (2002) find that although commercial banks’ internal risk models

produce more conservative risk estimates than a GARCH-based VaR model, the banks’ models

deliver comparable – or even more – VaR violations. This explains the somewhat surprising

result of lower equity exposure and drawdown but a more negative minimum return of the

Historical Simulation managed strategies. The Historical Simulation based strategies are more

conservative on average but fail to correctly manage downside risk, just when downside risk

protection is most needed. This result again highlights the need of a fast adapting risk model

when portfolio risk is managed. Again, a higher forecast accuracy, as examined in Section 5.2

coincides with a better performance. However, even the dynamically managed strategies ex-

hibit minimum daily returns of the size of the 60/40 portfolio. This highlights the fact, that

unpredictable negative price jumps cannot be completely avoided by risk targeting, but as sup-

posed by Longin (2000), these jumps are best managed by models using EVT. By comparing

the minimum return of the EVT, FHS and skewed t distribution based approaches that use the

same volatility model, the minimum return of the EVT based model is always higher (less nega-
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tive) than the minimum return of the other models. Results found for the minimum daily return

reverse when the maximum daily return is compared. Now, the volatility managed strategies

exhibit higher maximum returns than the downside risk managed strategies. This indicates that

downside risk timing seems superior in crash periods but volatility timing is superior in bull

markets, motivating a strategy that switches between downside risk targeting in down periods

and volatility targeting in up periods as examined later.

The performance evaluation in Table V does not consider transaction costs. However, many

studies demonstrated that volatility managing is also beneficial after realistic transaction costs

were considered (see Moreira and Muir (2017), Kirby and Ostdiek (2012), Fleming et al. (2003),

Fleming et al. (2001), Marquering and Verbeek (2004), Harvey et al. (2018) and Bollerslev

et al. (2018)). In unreported results, we find that most downside risk managed strategies exhibit

lower turnovers than the volatility managed strategies (see Kirby and Ostdiek (2012, p. 442)

for a definition of the turnover). Hence, the superiority of downside risk managed strategies,

especially CVaR managed strategies, in contrast to volatility managed strategies would be even

more striking if realistic transaction costs were considered. However, the skewed t distribution

based strategy produces a higher turnover compared to the FHS and EVT based approaches.

Hence, the outperformance of the skewed t distribution based strategy over the FHS and EVT

based strategies will be lowered after transaction costs.

To better assess the mitigation of extreme negative returns and how risk targeting works

in different market environments we next consider the days when the underlying risky asset,

i.e. the DAX, suffers the highest losses or obtains the highest gains. Table VI reports the five

lowest and five highest daily DAX returns in conjunction with the corresponding returns of the

target risk strategies and the 60/40 portfolio. On the days with the worst DAX returns, both the

target risk strategies and the 60/40 portfolio deliver significantly higher, i.e. less negative, daily

returns. The returns of the target risk strategies are usually higher than the returns of the DAX,

with the exception of the day with the third lowest DAX return. This day indicates a day with

an unpredictable negative price jump in the DAX as examined in Liu et al. (2003) and Das and

Uppal (2004). On this day, returns of the Historical Simulation based strategies are higher than
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the returns of the remaining models, which is in line with our earlier finding. However, for the

days with the two most negative DAX returns, the dynamic risk models produce higher returns,

which shows that these models are better in timing (partly) predictable losses. Further, the

returns of the downside risk managed strategies, in particular the CVaR managed strategies, are

significantly higher than the returns of the volatility managed strategies. Hence, for mitigating

extreme negative returns, an investor should manage CVaR instead of volatility.

Table VI. Lowest and highest DAX returns

Panel A shows the five days with the lowest DAX returns and the corresponding returns of the target

risk strategies and the 60/40 portfolio on these days. Panel B shows the five days with the highest DAX

returns and the corresponding returns of the target risk strategies and the 60/40 portfolio on these days.

All entries correspond to daily returns and are given in percent.

Model Panel A: Low DAX Return (%) Panel B: High DAX Return (%)

Vola Hist -5.638 -4.125 -4.142 -2.829 -2.736 3.092 3.204 2.517 3.157 5.141

Vola EWMA -5.279 -3.466 -3.910 -2.813 -2.659 2.928 2.679 2.600 2.857 4.978

Vola GARCH -5.292 -3.114 -3.333 -2.408 -2.164 2.979 2.301 2.493 2.451 4.030

VaR Hist -4.989 -3.211 -1.692 -1.187 -0.875 3.679 5.291 1.438 1.757 1.843

VaR EWMA FHS -4.331 -3.157 -3.318 -2.857 -2.496 2.412 1.985 2.370 2.604 4.238

VaR EWMA EVT -4.235 -3.038 -3.358 -2.649 -2.341 2.203 1.976 2.234 2.214 4.010

VaR EWMA Stsk -4.764 -3.072 -3.233 -2.697 -2.637 2.416 2.276 2.437 2.738 4.106

VaR GARCH FHS -4.668 -2.998 -2.943 -2.630 -2.054 2.760 1.956 2.423 2.448 3.515

VaR GARCH EVT -4.633 -2.945 -2.984 -2.340 -2.012 2.418 1.855 2.303 2.047 3.370

VaR GARCH Stsk -4.838 -2.799 -2.767 -2.366 -2.333 2.315 1.919 2.345 2.467 3.319

CVaR Hist -5.123 -3.037 -1.706 -1.185 -0.874 2.834 4.165 1.453 1.721 1.653

CVaR EWMA FHS -4.006 -2.987 -3.260 -2.734 -2.224 1.958 1.770 2.296 2.015 3.791

CVaR EWMA EVT -3.895 -2.998 -3.111 -2.588 -2.219 1.958 1.765 2.271 2.001 3.742

CVaR EWMA Stsk -4.666 -2.969 -2.934 -2.656 -2.609 2.187 2.239 2.344 2.698 3.697

CVaR GARCH FHS -4.583 -2.964 -2.988 -2.464 -1.998 2.248 1.718 2.409 1.943 3.260

CVaR GARCH EVT -4.407 -2.907 -2.905 -2.327 -1.969 2.183 1.684 2.358 1.884 3.192

CVaR GARCH Stsk -4.749 -2.715 -2.532 -2.358 -2.316 2.041 1.885 2.253 2.438 2.979

DAX -7.164 -8.492 -2.959 -3.455 -2.552 5.562 11.402 4.331 5.299 3.373

60/40 -4.098 -4.167 -1.688 -1.553 -1.180 2.848 5.097 2.208 2.636 2.260

The aforementioned results reverse when the highest daily DAX returns are regarded. Now,

the DAX delivers higher returns than all the remaining models.64 However, in order to achieve a

high long-term performance avoiding high negative returns is more crucial than achieving high

positive returns.65 This also fits better to the preferences of most investors who treat losses and

gains asymmetrically by weighting losses higher than gains (Aı̈t-Sahalia and Brandt, 2001, Ang

et al., 2005, Benartzi and Thaler, 1995, Chabi-Yo et al., 2018)). Aı̈t-Sahalia and Brandt (2001)

conjecture that loss aversion is highly related to downside risk managed portfolio strategies.

64Remind that we have chosen low risk targets. Risk-seeking or less risk-averse investors should use a higher

risk target to better capture the upside potential of high DAX returns and to lower the underperformance on days

with high DAX returns.
65For example, a return of ✁5% has to be compensated by a return of 5.26% to achieve a compounded return of

zero.
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This is confirmed by our results since managing CVaR delivers the most convincing mitigation

of extreme losses.

Table VII. Performance during and after the financial crisis

Panel A shows the performance of all strategies from 15.07.2008 to 15.07.2009, i.e. during the height of

the financial crisis. Panel B shows the performance of all strategies from 16.07.2009 to 15.07.2011, i.e.

the time following the financial crisis and before the European debt crisis. See Table V for a description

of Return, Volatility, SR, MDD, Min, Max. - marks a negative Sharpe Ratio.

Panel A: 15.07.2008 - 15.07.2009 Panel B: 16.07.2009 - 15.07.2011

Model Return Volatility SR MDD Min Max Return Volatility SR MDD Min Max

Vola Hist -3.51 13.16 - 16.94 -2.75 3.20 9.84 12.47 0.708 12.35 -3.03 3.16

Vola EWMA -3.40 12.83 - 16.91 -2.66 2.93 10.49 12.21 0.776 11.91 -2.85 2.86

Vola GARCH -4.07 13.56 - 17.71 -2.62 2.98 10.22 11.46 0.803 9.97 -2.35 2.45

VaR Hist -8.53 17.20 - 22.38 -4.11 5.29 7.12 6.11 1.003 4.17 -1.10 1.76

VaR EWMA FHS -1.22 10.29 - 12.94 -2.19 2.41 9.09 11.12 0.727 11.52 -2.78 2.60

VaR EWMA EVT -1.53 9.63 - 12.36 -2.00 2.20 8.20 9.49 0.759 9.66 -2.29 2.21

VaR EWMA Stsk -0.16 10.81 - 12.02 -1.96 2.42 8.48 10.10 0.740 10.68 -2.69 2.74

VaR GARCH FHS -2.93 12.23 - 15.71 -2.45 2.76 9.46 10.98 0.770 9.95 -2.39 2.45

VaR GARCH EVT -2.55 11.08 - 14.26 -2.15 2.42 8.70 9.59 0.803 8.48 -1.99 2.05

VaR GARCH Stsk -0.08 11.49 - 12.52 -2.02 3.26 8.70 9.51 0.809 8.96 -2.28 2.47

CVaR Hist -5.92 14.99 - 19.01 -3.42 4.17 6.99 5.98 1.003 4.09 -1.08 1.72

CVaR EWMA FHS -0.96 8.56 - 10.79 -1.77 1.96 7.28 8.76 0.718 9.55 -2.28 2.02

CVaR EWMA EVT -0.93 8.55 - 10.76 -1.77 1.96 7.46 8.62 0.751 8.95 -2.12 2.00

CVaR EWMA Stsk 0.67 9.72 - 10.73 -1.56 2.24 7.49 9.23 0.704 10.08 -2.60 2.70

CVaR GARCH FHS -2.13 10.24 - 13.09 -1.99 2.25 8.09 9.12 0.778 8.52 -2.00 1.94

CVaR GARCH EVT -1.95 10.01 - 12.74 -1.92 2.18 8.04 8.84 0.797 7.97 -1.87 1.88

CVaR GARCH Stsk 0.05 10.13 - 11.52 -1.75 2.10 8.00 8.70 0.805 8.45 -2.20 2.44

DAX -18.36 41.48 - 44.53 -7.07 11.40 19.41 18.43 0.993 12.29 -3.33 5.30

60/40 -8.15 18.80 - 23.13 -3.58 5.10 9.89 9.48 0.936 6.86 -1.72 2.64

Table VI demonstrates that volatility and downside risk targeting behave differently in dif-

ferent market environments. In up-trending markets, volatility targeting delivers higher returns

whereas in bear markets downside risk targeting is more convincing. This again motivates a

strategy that switches between CVaR and volatility targeting as examined later. To strengthen

this observation we next assess risk targeting in two sub samples, one high risk and one low

risk period. Table VII shows the performance of the strategies in the period from 15.07.2008

to 15.07.2011, i.e. during the height of the financial crisis and the time following the financial

crisis, which is split into two sub-periods. The first sub period, given in Panel A, covers the

financial crisis and ranges from 15.07.2008 to 15.07.2009. This period is marked by high neg-

ative returns and high risk. During the financial crisis, the dynamically managed risk targeting

strategies have significantly higher (less negative) returns and significantly lower risk measured

by volatility, drawdown and minimum return than the two benchmark portfolios. For example,

the DAX and the 60/40 portfolio exhibit a return of✁18.36% and✁8.15% as well as a volatility
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of 41.48% and 18.80%, respectively. In contrast, return and volatility of the EWMA managed

target volatility strategy are ✁3.40% and 12.83%, respectively. However, the CVaR-EWMA-

Stsk strategy is even more convincing and achieves a positive return of 0.67% with a volatility

of only 9.72%. Hence, managing CVaR performs significantly outperform the two benchmark

portfolios and the volatility managed strategies by producing higher returns with lower risk.

The statically managed target VaR and target CVaR strategies (VaR-HS and CVaR-HS) exhibit

significantly lower returns with higher risk than the dynamically managed strategies. Further-

more, there are significant differences between the EWMA and GARCH managed strategies.

The EWMA managed strategies achieve higher returns with lower risk than the GARCH man-

aged strategies. A possible explanation for the better results of the EWMA model could be the

higher estimation risk of the GARCH model during highly volatile periods.

The second sub-period, ranging from 16.07.2009 to 15.07.2011, covers the time following

the financial crisis, but excludes the European financial debt crisis. This period is marked by

a continuously uptrending market with high returns and low risk. Results for the second sub-

period are given in Panel B. For this period the DAX clearly outperforms the remaining strate-

gies. Further, in this period, the different target risk strategies perform significantly diverse. The

unconditional models, VaR-HS and CVaR-HS, perform very well in this calm market by taking

less risk. Moreover, the volatility targeting strategies produce higher returns than the down-

side risk targeting strategies, again motivating a strategy that switches between volatility and

CVaR targeting. However, volatility targeting has also much higher risk measured by volatility,

drawdown and minimum return. Consequently, the Sharpe Ratios of the dynamically managed

target volatility, VaR and CVaR strategies are only slightly different. The Sharpe Ratios of the

two benchmark portfolios are slightly higher than the Sharpe Ratios of the target risk strategies.

However, the differences in risk-adjusted performance are only small compared to the differ-

ences in Panel A. This demonstrates that risk targeting strategies are able to extremely lower

the downside risk but still capture the upside potential of the DAX. In particular, the downside

risk managed strategies significantly outperform the remaining strategies in bear markets but

exhibit an only slightly worse risk-adjusted performance in uptrending markets compared to the
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volatility managed strategies.

5.4 Economic Value of Risk Targeting

In the previous section we examined the (risk-adjusted) performance and drawdown protection

ability of risk targeting and found that CVaR targeting is superior to volatility targeting. How-

ever, conclusions solely based on unconditional risk-adjusted performance measures like the

Sharpe Ratio can be misleading, since these measures do not account for a time-varying volatil-

ity (Han, 2005, Marquering and Verbeek, 2004).66 Therefore, we next assess the economic value

of volatility, VaR and CVaR timing, where we define the economic value as the annualized fee

an investor is willing to pay to switch from a static portfolio allocation to a risk-managed port-

folio. The economic value of volatility timing has already been examined by Fleming et al.

(2001), Fleming et al. (2003), Kirby and Ostdiek (2012), Marquering and Verbeek (2004), Tay-

lor (2014), Han (2005), Moreira and Muir (2017) and Bollerslev et al. (2018).67 All authors

find huge improvements of volatility timing in terms of high utility gains. Fleming et al. (2001),

Fleming et al. (2003), Kirby and Ostdiek (2012), Han (2005) and Taylor (2014) examine utility

gains in a multivariate framework using several asset classes, whereas Marquering and Verbeek

(2004), Moreira and Muir (2017), Moreira and Muir (2019) and Bollerslev et al. (2018) work

with only one risky asset. Further, Jondeau and Rockinger (2006) examine the economic value

of portfolio strategies that incorporate higher moments and find that the opportunity costs of ig-

noring higher moments can become very large when asset returns are non-normally distributed

or investors are highly risk-averse. Similarly, Jondeau and Rockinger (2012) assess the eco-

nomic value of dynamic timing strategies that also incorporate higher moments like skewness

and kurtosis and find a higher economic value of these strategies compared to strategies that only

time volatility. Ghysels et al. (2016) find that investors are willing to pay high fees to switch

66Marquering and Verbeek (2004, p. 419-421) write: “It is important to realize that the Sharpe ratio does not ap-

propriately take into account time-varying volatility. The risk of the dynamic strategies is typically overestimated

by the sample standard deviation, particularly in the presence of volatility timing, because the ex post (uncondi-

tional) standard deviation is an inappropriate measure for the (conditional) risk an investor was facing at each point

in time. This indicates a potentially severe disadvantage of the use of Sharpe ratios to evaluate dynamic strategies.”
67Calculating the economic value, defined as fee an investor is willing to pay to switch from one strategy to

another strategy, is similar to calculating the certainty equivalent as done by Ang and Bekaert (2002), Ghysels

et al. (2016), Das and Uppal (2004), Guidolin and Timmermann (2008), DeMiguel et al. (2009) and Moreira and

Muir (2019).
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from mean-variance optimization to mean-variance-skewness optimization. In most studies, the

economic value is defined as the maximum fee (in percent) a mean-variance investor is willing

to pay to switch from one strategy to another strategy. We further follow Jondeau and Rockinger

(2012) and also calculate the economic value for an investor with constant relative risk aversion

(CRRA). CRRA utility is frequently used in portfolio selection problems (see Ang and Bekaert

(2002), Liu et al. (2003), Das and Uppal (2004), Aı̈t-Sahalia and Brandt (2001), Guidolin and

Timmermann (2008), Ghysels et al. (2016) among others). Guidolin and Timmermann (2008),

Jondeau and Rockinger (2012) and Bali et al. (2009) show that, for reasonable levels of risk

aversion, CRRA utility implies that investors prefer higher skewness and lower kurtosis which

is in line with Scott and Horvath (1980). That is, by calculating the economic value of risk

targeting for an investor with CRRA utility, we explicitly take preferences for higher moments

into account. Guidolin and Timmermann (2008) compare the asset allocation under CRRA

preferences with portfolio allocations under four moment preferences and find only minor dif-

ferences. Hence, portfolio selection under CRRA utility is mainly driven by preferences for the

first four moments. A similar result also holds for investors with constant absolute risk aver-

sion (CARA) as shown by Bali et al. (2009) and Jondeau and Rockinger (2006). Jondeau and

Rockinger (2006) show that portfolio allocation under CARA utility is mainly driven by pref-

erences for the first four moments and that portfolio allocations under CARA and CRRA utility

produce similar results. For that reason, we do not calculate the economic value for CARA util-

ity. Finally, we calculate the economic value for loss-averse investors. Portfolio selection for

loss-averse investors has been examined by Benartzi and Thaler (1995), Aı̈t-Sahalia and Brandt

(2001) and Ang et al. (2005). Aı̈t-Sahalia and Brandt (2001) compare portfolio selection for

mean-variance investors, CRRA investors and loss-averse investors and find that mean-variance

and CRRA preferences produce only slightly different optimal portfolio selections (see also

Guidolin and Timmermann (2008)), but loss-aversion leads to a significantly different portfolio

selection. Ang et al. (2005) examine portfolio selection under disappointment aversion prefer-

ences, which also treat gains and losses asymmetrically, and CRRA preferences. The authors

find more realistic asset allocations for disappointment aversion preferences and that disap-
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pointment aversion preferences can resemble portfolio allocations under CRRA preferences,

whereas the opposite does not hold. Generally, portfolio allocations under loss-aversion are

more realistic than portfolio allocation under mean-variance or CRRA preferences, since eq-

uity holdings of investors are typically much lower than predicted for mean-variance or CRRA

investors (see Benartzi and Thaler (1995) and Ang et al. (2005)).

As first method to calculate the economic value of risk targeting we follow Fleming et al.

(2001), Fleming et al. (2003) and Kirby and Ostdiek (2012) and assume that the investor’s true

utility function can be approximated by quadratic utility. For this investor the realized day t

utility is given by

UMV ♣Rt,aq ✏ Wt✁1♣1�Rt,aq ✁ 1

2
γabsW

2
t✁1♣1�Rt,aq2, (62)

where γabs is the investor’s absolute risk aversion, Wt✁1 denotes the investor’s wealth on day

t✁ 1 and Rt,a denotes the day t return of strategy a. We call an investor with preferences given

in Equation (62) a mean-variance investor since this approach is highly related to the mean-

variance theory (Fleming et al., 2001, p. 334). By assuming that this investor has a constant

relative risk aversion γ, Equation (62) can be rewritten as

UMV ♣Rt,aq ✏ W0

✂
♣1�Rt,aq ✁ γ

2♣1� γq♣1�Rt,aq2
✡
. (63)

The economic value of a strategy a is then given by the percentage fee ∆MV the investor

with utility in Equation (62) is willing to pay to switch from the 60/40 portfolio to the strategy

a. The fee ∆MV is defined by equating the expected utilities

E♣UMV ♣Rt,a ✁∆MV qq ✏ E♣UMV ♣Rt,bqq , (64)

where Rt,b denotes the return of the 60/40 portfolio. The expected utility in (64) is then esti-

mated by the average realized utility. Hence, the fee ∆MV is calculated by solving

UMV ♣R1,a ✁∆MV , ..., RT,a ✁∆MV q ✏ UMV ♣R1,b, ..., RT,bq . (65)

where UMV ♣R1, ..., RT q ✏
➦T

t✏1♣1 � Rtq ✁ γ

2♣1�γq
♣1 � Rtq2. We calculate the fee ∆MV for

levels of risk aversion given by γ ✏ 2, 5, 10 and 15 which are in line with previous studies using
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this approach (see Marquering and Verbeek (2004), Aı̈t-Sahalia and Brandt (2001), Jondeau

and Rockinger (2006) and Jondeau and Rockinger (2012) for example).

In the case of the CRRA investor, the realized day t utility is given by

UCRRA♣Rt,aq ✏
★

♣1�Rt,aq♣1✁γq

1✁γ
, if γ → 1

ln♣1�Rt,aq, if γ ✏ 1.
(66)

Since we choose the same levels of γ as stated above, the investor’s utility simplifies to the case

UCRRA♣Rt,aq ✏ ♣1�Rt,aq♣1✁γq

1✁γ
. Following Jondeau and Rockinger (2012) the economic value for

an investor with CRRA utility is defined by equating the expected utilities

E♣UCRRA♣Rt,a ✁∆CRRAqq ✏ E♣UCRRA♣Rt,bqq , (67)

which is again estimated by the average realized utility. The percentage fee ∆CRRA is then

calculated by solving

UCRRA ♣R1,a ✁∆CRRA, ..., RT,a ✁∆CRRAq ✏ UCRRA ♣R1,b, ..., RT,bq , (68)

where UCRRA♣R1, ..., RT q ✏
➦T

t✏1
♣1�Rtq♣1✁γq

1✁γ
.

Lastly, to account for the loss-aversion of investors, we use a utility function that gives more

weight on negative returns. Following Aı̈t-Sahalia and Brandt (2001) and Benartzi and Thaler

(1995) we define the investor’s day t utility by

ULA♣Rt,aq ✏
✧ ♣Rt,aqb, if Rt,a ➙ 0

✁l♣✁Rt,aqb, if Rt,a ➔ 0,
(69)

where l → 1 determines the loss aversion and b measures the degree of risk seeking for negative

returns and risk aversion for positive returns (see Aı̈t-Sahalia and Brandt (2001, p. 1314) or

Benartzi and Thaler (1995, p. 79)).68 Typical values of l and b are in the range of l ✏ 2.25 and

b ✏ 0.88, which are motivated empirically. Similar to Aı̈t-Sahalia and Brandt (2001) we choose

the four combinations of l ✏ 2.0, 3.0 and b ✏ 0.8, 1. A loss aversion of l ✏ 2 implies that

the disutility of a loss is twice as great as the utility of a positive return of the same magnitude

(Benartzi and Thaler, 1995, p. 74). Another possibility to assess the economic value of an

investor with unexpected utility would be to use preferences of an ambiguity-averse investor

68We also used the risk-free rate instead of a zero return to define the cut off point which determines a loss or a

gain. Results for the economic value were nearly identical for both choices and are not reported here.
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as in Aı̈t-Sahalia and Brandt (2001) and Jondeau and Rockinger (2012) or preferences of a

disappointment averse investor as in Ang et al. (2005). See also Jondeau and Rockinger (2012,

Footnote 17) for a list of studies that incorporate ambiguity aversion in asset allocation. The

economic value for a loss-averse investor is then given by equating the expected utilities

E♣ULA♣Rt,a ✁∆LAqq ✏ E♣ULA♣Rt,bqq . (70)

As above, we calculate ∆LA by solving

ULA ♣R1,a ✁∆LA, ..., RT,a ✁∆LAq ✏ ULA ♣R1,b, ..., RT,bq , (71)

where ULA♣R1, ..., RT q ✏
➦T

t✏1 R
b
t ☎ 1tRt➙0✉ ✁ l♣✁Rtqb ☎ 1tRt➔0✉.

Table VIII shows the values ∆i for the three utility functions, i.e. ∆i gives the annualized

percentage fee a mean-variance, CRRA or loss-averse investor is willing to pay to switch from

the 60/40 strategy to one of the risk timing strategies. In addition, we examine the economic

value of risk timing during and after the financial crisis by choosing the same sub-periods as

in Table VII. For these sub-periods we only report the results for a risk aversion of γ ✏ 5

and γ ✏ 10 in the case of the mean-variance and CRRA investor as well as l ✏ 2 and l ✏ 3

combined with b ✏ 0.8 for the loss-averse investor.

Panel A of Table VIII shows the economic value for a mean-variance investor. The economic

value over the whole sample is positive for almost all risk targeting strategies and levels of risk

aversion. Further, we find that downside risk timing delivers a significantly higher economic

value than volatility timing and that managing CVaR delivers the highest economic value. In

other words, a mean-variance investor should manage CVaR instead of volatility. Interestingly,

as in Marquering and Verbeek (2004) we find that the economic value of volatility timing is

decreasing in the level of risk aversion γ. This result reverses when the economic value of

downside risk timing is assessed. Now, the economic value is increasing in the risk aversion,

that is, for a highly risk-averse mean-variance investor, timing CVaR instead of volatility or

using a static portfolio allocation becomes more important. For example, a mean-variance

investor with risk-aversion of γ ✏ 15 would pay an annualized fee of 0.756% to switch from

the 60/40 portfolio to the GARCH managed strategy, but is not willing to pay a positive fee to
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Table VIII. Economic value of risk targeting
This table shows the economic value given as annualized percentage fee ∆i an investor is willing to pay to switch
from the 60/40 portfolio to a risk timing strategy for a given utility function Ui, i P tMV,CRRA,LA✉. Panel A
shows results for a mean-variance investor. Panel B shows results for an investor with CRRA utility. Panel C shows
results for a loss-averse investor. γ indicates the investor’s risk aversion. l determines the investor’s loss aversion
and b measures the investor’s degree of risk seeking for negative returns and risk aversion for positive returns.

Whole Sample Crash Recovery

Panel A: ∆MV γ ✏ 2 γ ✏ 5 γ ✏ 10 γ ✏ 15 γ ✏ 5 γ ✏ 10 γ ✏ 5 γ ✏ 10

Vola Hist 0.618 0.280 -0.283 -0.843 8.881 13.836 -1.343 -2.953

Vola EWMA 0.876 0.669 0.323 -0.021 9.184 14.394 -0.637 -2.100

Vola GARCH 0.799 0.789 0.772 0.756 8.018 12.641 -0.527 -1.556

VaR Hist -0.049 0.682 1.912 3.158 0.731 2.172 -1.493 -0.186

VaR EWMA FHS 0.940 1.237 1.735 2.236 12.968 20.081 -1.396 -2.227

VaR EWMA EVT 1.009 1.521 2.381 3.248 12.906 20.407 -1.540 -1.542

VaR EWMA Stsk 1.168 1.552 2.194 2.841 13.930 20.780 -1.527 -1.828

VaR GARCH FHS 0.799 1.015 1.375 1.737 10.057 15.743 -0.995 -1.752

VaR GARCH EVT 0.898 1.346 2.098 2.856 11.070 17.580 -1.121 -1.171

VaR GARCH Stsk 1.126 1.653 2.537 3.430 13.672 20.057 -1.099 -1.114

CVaR Hist 0.347 1.206 2.653 4.121 5.073 8.469 -1.581 -0.236

CVaR EWMA FHS 1.031 1.629 2.634 3.648 14.001 22.157 -2.121 -1.798

CVaR EWMA EVT 1.066 1.733 2.856 3.992 14.038 22.200 -1.900 -1.513

CVaR EWMA Stsk 1.196 1.800 2.816 3.841 15.384 22.992 -2.093 -1.977

CVaR GARCH FHS 0.991 1.424 2.150 2.881 11.954 19.037 -1.503 -1.337

CVaR GARCH EVT 1.057 1.602 2.517 3.440 12.253 19.490 -1.453 -1.161

CVaR GARCH Stsk 1.068 1.794 3.016 4.253 14.491 21.799 -1.441 -1.088

Panel B: ∆CRRA γ ✏ 2 γ ✏ 5 γ ✏ 10 γ ✏ 15 γ ✏ 5 γ ✏ 10 γ ✏ 5 γ ✏ 10

Vola Hist 0.731 0.387 -0.197 -0.793 7.878 12.680 -1.022 -2.649

Vola EWMA 0.945 0.733 0.371 0.000 8.130 13.173 -0.345 -1.820

Vola GARCH 0.803 0.789 0.759 0.723 7.076 11.540 -0.322 -1.358

VaR Hist -0.292 0.438 1.668 2.917 0.430 1.810 -1.753 -0.452

VaR EWMA FHS 0.841 1.135 1.625 2.117 11.550 18.457 -1.232 -2.074

VaR EWMA EVT 0.839 1.348 2.202 3.065 11.418 18.707 -1.542 -1.551

VaR EWMA Stsk 1.041 1.422 2.057 2.697 12.566 19.230 -1.469 -1.775

VaR GARCH FHS 0.728 0.940 1.292 1.645 8.910 14.410 -0.845 -1.610

VaR GARCH EVT 0.749 1.194 1.939 2.692 9.768 16.084 -1.112 -1.167

VaR GARCH Stsk 0.952 1.476 2.355 3.247 12.401 18.629 -1.097 -1.115

CVaR Hist 0.062 0.918 2.365 3.837 4.384 7.688 -1.849 -0.510

CVaR EWMA FHS 0.833 1.427 2.426 3.438 12.390 20.322 -2.187 -1.873

CVaR EWMA EVT 0.844 1.509 2.627 3.762 12.426 20.363 -1.979 -1.599

CVaR EWMA Stsk 0.995 1.596 2.606 3.630 13.877 21.285 -2.118 -2.006

CVaR GARCH FHS 0.847 1.277 1.996 2.721 10.543 17.423 -1.538 -1.377

CVaR GARCH EVT 0.876 1.418 2.327 3.248 10.814 17.844 -1.513 -1.226

CVaR GARCH Stsk 0.828 1.550 2.768 4.005 13.040 20.150 -1.512 -1.162

b ✏ 0.8 b ✏ 1 b ✏ 0.8 b ✏ 0.8

Panel C: ∆LA l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3

Vola Hist -4.057 -6.599 -4.707 -7.490 19.566 28.406 -9.141 -13.852

Vola EWMA -3.191 -5.377 -3.606 -5.932 20.476 29.792 -8.289 -12.770

Vola GARCH -1.786 -3.157 -1.865 -3.224 17.193 25.036 -6.377 -9.761

VaR Hist 8.009 12.568 10.125 15.791 6.462 10.148 9.090 15.170

VaR EWMA FHS 1.423 1.749 1.978 2.617 31.116 45.090 -5.690 -8.333

VaR EWMA EVT 3.564 5.064 4.635 6.710 32.736 47.798 -1.133 -1.114

VaR EWMA Stsk 2.641 3.537 3.426 4.733 30.469 43.812 -2.489 -3.272

VaR GARCH FHS 0.251 0.013 0.613 0.591 22.955 33.377 -5.268 -7.836

VaR GARCH EVT 2.574 3.590 3.473 4.971 26.938 39.426 -1.381 -1.666

VaR GARCH Stsk 3.851 5.479 5.013 7.230 28.531 40.709 -0.666 -0.561

CVaR Hist 9.139 14.167 11.688 18.014 13.800 20.473 9.395 15.689

CVaR EWMA FHS 4.589 6.648 5.887 8.645 36.478 53.296 0.674 2.023

CVaR EWMA EVT 5.332 7.800 6.836 10.110 36.525 53.359 1.188 2.758

CVaR EWMA Stsk 5.171 7.479 6.541 9.562 34.719 50.002 -0.055 0.858

CVaR GARCH FHS 2.565 3.526 3.439 4.864 30.050 43.969 -0.239 0.328

CVaR GARCH EVT 3.752 5.352 4.918 7.129 30.919 45.186 0.620 1.669

CVaR GARCH Stsk 6.149 9.106 7.867 11.715 32.692 47.158 1.759 3.466
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switch to the HSD managed strategy. However, the same investor would even pay an annualized

fee of 4.253% to switch from the 60/40 portfolio to the CVaR-GARCH-Stsk strategy. The

differences between volatility and downside risk timing become even more striking during the

financial crisis. An investor with risk-aversion γ ✏ 5 would pay an annualized fee of 9.184%

to switch from the 60/40 portfolio to the EWMA managed strategy during the financial crisis.

However, the same investor is even willing to pay an annualized fee of 15.384% to switch to the

CVaR-EWMA-Stsk strategy. During crash periods mean-variance investors are willing to pay

extremely high fees to switch to a risk targeting strategy, where the willingness to pay for CVaR

managed strategies is significantly higher than the willingness to pay for volatility managed

strategies. Hence, investors are willing to pay extremely high fees to mitigate crashes as best

done by managing CVaR. This is in line with the results of Bollerslev and Todorov (2011) and

Chabi-Yo et al. (2018) that investors are crash-averse. We further find that during the financial

crisis the EWMA model is again superior to the GARCH model, what is in line with the results

of Table VII. Further, during the financial crisis, investors are willing to pay much lower fees

to switch to the static VaR-HS and CVaR-HS models. Hence, static models fail to achieve a

good downside risk protection just when it is most needed. As expected, results reverse when

the period following the financial crisis is assessed. Now, all risk targeting strategies exhibit a

negative economic value. Panel B shows the results of risk timing for an investor with CRRA

utility, i.e. incorporating preferences for higher moments like skewness and kurtosis. However,

results are quite similar to the results of a mean-variance investor in Panel A. Again, managing

CVaR is superior to managing volatility, especially in times of bear markets and for highly

risk-averse investors. However, results reverse during the uptrending period.

Panel C shows the economic value of risk targeting for a loss-averse investor. The eco-

nomic value for a loss-averse investor is significantly different to the economic value of a

mean-variance or CRRA investor. This result is in line with Aı̈t-Sahalia and Brandt (2001)

who find similar results when mean-variance or CRRA preferences are used in portfolio selec-

tion problems but vastly different allocations for loss-averse investors. Interestingly, over the

whole period the economic value of the target volatility strategies is negative, regardless of the
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level of loss-aversion and volatility model. In other words, a loss-averse investor would pay a

positive fee to switch away from a target volatility strategy to the 60/40 portfolio. In contrast,

the economic value of downside risk targeting is always positive and typically very high. We

again find that managing CVaR produces the highest economic value, i.e. a loss-averse investor

should time CVaR or at least VaR instead volatility. Somewhat surprising, we find a higher

economic value for the unconditional models (VaR-HS and CVaR-HS). However, this finding

can be explained by the lower equity exposure of these strategies, what makes these strategies

more conservative, and hence, more appealing for loss-averse investors. The extremely high

economic value for loss-averse investors that manage downside risk can partly be explained by

the daily evaluation period used in calculating the economic value. Benartzi and Thaler (1995)

show that loss-aversion is more pronounced for shorter evaluation periods, i.e. the shorter the

evaluation period for a loss-averse investor the less attractive are investments with higher risk.

Similar horizon effects have been found by Aı̈t-Sahalia and Brandt (2001) for loss aversion, but

not for mean-variance and CRRA preferences. The authors conclude that loss-aversion implies

that short term investors are extremely risk-averse, whereas long-term investors become more

risk-neutral.69 During the financial crisis the economic value becomes extremely high, i.e. a

loss-averse investor is willing to pay extremely high fees for downside risk protection during

crash periods. This again confirms the result of Bollerslev and Todorov (2011) and Chabi-Yo

et al. (2018) that investors are crash-averse. For example, a loss-averse investor with param-

eters b ✏ 0.8 and l ✏ 3 would pay an annualized fee of 29.792% to switch from the 60/40

portfolio to the EWMA managed target volatility strategy. However, the same investor would

even pay a fee of 53.359% per year to switch to a CVaR managed strategy. Further, during the

crash period we find a significantly higher economic value for dynamically managed strategies,

what indicates that these models are more successful in managing extreme negative returns in

69We also calculated the economic value of a loss-averse investor by first aggregating the daily returns to monthly

returns. As expected, the economic value for a loss-averse investor calculated with monthly returns is smaller than

the economic value calculated with daily data. The economic value of volatility targeting is still negative for all

combinations. The economic value of downside risk targeting is still positive for all combinations except for the

VaR-GARCH-FHS model for b ✏ 0.8. The highest economic value is again obtained by managing CVaR. The

economic value for a CRRA investor is nearly unchanged when using monthly returns instead of daily returns. This

result is also found by Aı̈t-Sahalia and Brandt (2001) for the optimal portfolio choice under CRRA preferences

and loss-aversion.
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crash periods. Interestingly, opposed to the results of the mean-variance and CRRA investor,

we even find a positive economic value of almost all CVaR targeting strategies in the uptrending

market, whereas the economic value of volatility is negative and high in magnitude. That is, a

loss-averse investor should time CVaR instead of volatility regardless of whether there is a bull

or a bear regime.

The fees given in Table VIII are extremely high compared to the fees found by Bollerslev

et al. (2018). The authors argue that even their fees, in the range of 0.5%, are extremely bene-

ficial for investors. This highlights the advantage of risk targeting, especially CVaR targeting,

found for our data set. However, there are several differences between our study and the study

of Bollerslev et al. (2018) which explain the differences in the magnitude of the fees. First,

Bollerslev et al. (2018) calculate utility gains of several volatility targeting strategies, relying

on different volatility models, against a benchmark volatility targeting strategy. That is, the

authors choose a certain target volatility strategy as benchmark model, whereas we choose the

60/40 portfolio as benchmark similar to Marquering and Verbeek (2004). Second, the authors

only compare the differences between several forecasting models, whereas we also compare the

differences between volatility and downside risk targeting. In line with the results of Bollerslev

et al. (2018) differences within the volatility targeting strategies are only small, whereas the dif-

ferences between volatility and CVaR targeting are significantly higher. For example, a mean-

variance investor with a risk-aversion of γ ✏ 5 would pay a fee of 0.789✁ 0.280 ✏ 0.509% per

year to switch from the HSD managed strategy to the GARCH managed strategy. This result is

comparable to the finding of Bollerslev et al. (2018) and again demonstrates the positive relation

between accuracy – or equivalently constant portfolio volatility – and utility gains. However,

the same investor would even pay 1.800 ✁ 0.280 ✏ 1.52% per year to switch from the HSD

managed strategy to the CVaR-EWMA-Stsk strategy. Third, Bollerslev et al. (2018) rebalance

the weight of the volatility targeting strategy monthly, whereas we use daily rebalancing. Since

the authors show that a higher accuracy typically coincides with higher utility gains, daily rebal-

ancing should also produce a higher economic value. However, daily rebalancing also induces

higher transaction costs, which dampens the extremely high fees of Table VIII. Rickenberg
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(2019) examines volatility and downside risk targeting with monthly rebalancing. Fourth, ad-

ditionally to mean-variance preferences we also calculate the economic value for loss-averse

investors, who are willing to pay extremely high fees to mitigate extreme losses, as best done

by the target CVaR strategy.

We next assess if the economic value found in Table VIII is also statistically significant.

Bollerslev et al. (2018) use the DM-test to statistically compare the utility benefit of several

volatility models used in a volatility targeting strategy. Taylor (2014, Sec. 2.2) presents a con-

ditional test, that extends the DM-test, to asses if advanced forecasting models produce higher

utility gains than simple forecasting models. Kirby and Ostdiek (2012) also use a bootstrap

based test to assess the significance of the utility gain. A similar approach is also used by

DeMiguel et al. (2009) to test differences in the certainty-equivalent return for mean-variance

investors. We follow these approaches and also apply the tests presented in Section 4.1 to test if

a strategy produces a significantly higher utility. These tests are also frequently used to test for

a superior (risk-adjusted) performance of technical trading rules or mutual funds (see Sullivan

et al. (1999), Hsu et al. (2010), Barras et al. (2010), Bajgrowicz and Scaillet (2012) among

others). Results of these tests are shown in Table IX, where only results for γ ✏ 10 for the

mean-variance and CRRA investor as well as l ✏ 2 and b ✏ 1 for the loss-averse investor are

shown. Whenever a benchmark model is needed, we choose the 60/40 portfolio as benchmark.

Panel A shows results for the mean-variance investor. The DM-test indicates that almost all

downside risk targeting strategies produce higher utility gains than the 60/40 portfolio whereas

all target volatility strategies do not produce statistically higher utilities. The RC-test fails to

reject any null hypotheses which again demonstrates the weaknesses of the RC-test. In con-

trast, the SPA-test rejects the null-hypotheses of all target volatility and target VaR strategies,

whereas for most target CVaR strategies, the null-hypotheses can not bet rejected. Thus, the

SPA-test indicates that the target CVaR strategies produce significantly higher utilities. Results

of the MCS are quite similar to the results of the DM-test. All target volatility strategies are

not contained in the MCS, which is also confirmed by the stepwise approaches, where we only

show results for the studentized versions. The Step-SPA approach identifies all downside risk
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Table IX. Testing the utility gain of risk targeting
This table shows the results of the tests presented in Section 4.1 used to test the significance of the utility gains.

Panel A shows results for a mean-variance investor with γ ✏ 10. Panel B shows results for a CRRA investor with

γ ✏ 10. Panel C shows results for a loss-averse investor with b ✏ 1 and l ✏ 2. The description of the columns is

given in Tables I and II.

Panel A: MV DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -0.24 20.35 0.02 0.06 0 0 0

Vola EWMA 0.29 26.86 0.04 0.18 0 0 16

Vola GARCH 0.79 31.00 0.06 0.10 0 0 15

VaR Hist 2.30 56.04 1.70 21.12 1 1 3

VaR EWMA FHS 1.56 47.29 0.61 3.98 0 2 13

VaR EWMA EVT 2.12 64.73 0.82 21.26 1 1 9

VaR EWMA Stsk 1.93 58.56 0.93 16.45 1 1 12

VaR GARCH FHS 1.38 39.83 0.09 0.76 0 3 14

VaR GARCH EVT 2.05 56.61 0.39 7.23 1 1 10

VaR GARCH Stsk 2.40 76.88 3.40 36.56 1 1 4

CVaR Hist 3.04 74.46 42.71 92.81 1 1 1

CVaR EWMA FHS 2.25 75.59 1.34 39.87 1 1 8

CVaR EWMA EVT 2.43 86.58 55.78 92.81 1 1 5

CVaR EWMA Stsk 2.34 86.24 48.81 92.81 1 1 7

CVaR GARCH FHS 2.05 59.26 0.04 9.72 1 1 11

CVaR GARCH EVT 2.36 75.53 20.76 36.56 1 1 6

CVaR GARCH Stsk 2.66 100.00 100.00 100.00 1 1 2

Panel B: CRRA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -0.27 21.08 0.01 0.14 0 0 0

Vola EWMA 0.27 27.27 0.02 0.36 0 0 16

Vola GARCH 0.76 31.50 0.07 0.21 0 0 15

VaR Hist 2.29 56.86 2.15 21.21 1 1 4

VaR EWMA FHS 1.55 47.84 0.64 4.17 0 2 13

VaR EWMA EVT 2.11 65.93 0.98 21.21 1 1 9

VaR EWMA Stsk 1.92 59.03 0.83 16.01 2 1 12

VaR GARCH FHS 1.36 39.89 0.11 0.88 0 0 14

VaR GARCH EVT 2.04 57.78 0.53 7.36 1 1 11

VaR GARCH Stsk 2.40 77.12 3.61 36.32 1 1 6

CVaR Hist 3.03 75.18 42.33 91.85 1 1 1

CVaR EWMA FHS 2.24 76.41 1.59 39.36 1 1 8

CVaR EWMA EVT 2.43 86.69 55.11 91.85 1 1 3

CVaR EWMA Stsk 2.34 85.77 47.38 91.85 1 1 7

CVaR GARCH FHS 2.04 60.09 0.05 9.79 1 1 10

CVaR GARCH EVT 2.35 76.90 21.89 36.32 1 1 5

CVaR GARCH Stsk 2.65 100.00 100.00 100.00 1 1 2

Panel C: LA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -2.64 0.00 0.00 0.00 0 0 0

Vola EWMA -2.21 0.00 0.00 0.00 0 0 0

Vola GARCH -1.44 0.00 0.00 0.00 0 0 0

VaR Hist 7.09 51.73 0.00 0.20 1 1 1

VaR EWMA FHS 0.94 0.23 0.00 0.00 0 0 13

VaR EWMA EVT 2.30 2.51 0.00 0.00 1 1 9

VaR EWMA Stsk 1.77 1.00 0.00 0.00 1 1 12

VaR GARCH FHS 0.20 0.04 0.00 0.00 0 0 14

VaR GARCH EVT 1.93 0.77 0.00 0.00 1 1 10

VaR GARCH Stsk 2.87 2.74 0.00 0.00 1 1 7

CVaR Hist 7.77 100.00 100.00 100.00 1 1 2

CVaR EWMA FHS 2.81 6.08 0.00 0.00 1 1 6

CVaR EWMA EVT 3.25 9.83 0.02 0.20 1 1 5

CVaR EWMA Stsk 3.24 8.52 0.03 0.14 1 1 3

CVaR GARCH FHS 1.87 0.82 0.00 0.00 1 1 11

CVaR GARCH EVT 2.65 2.66 0.00 0.00 1 1 8

CVaR GARCH Stsk 4.17 14.37 0.01 0.20 1 1 4

targeting strategies as superior whereas the target volatility strategy strategies are not identified

as superior. As expected, the FDR approach produces the largest set of superior models and
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picks all models except for the HSD model. Panel B shows results for the CRRA investor. As

in Table VIII, these are again quite similar to the results of the mean-variance investor.

Panel C shows results for the loss-averse investor. The DM-test again indicates that almost

all downside risk targeting strategies produce statistically higher utility gains. In contrast, the

volatility targeting strategies produce lower utilities where the utility of the HSD and EWMA

based strategies are even statistically lower with a test statistic lower than ✁1.64. Results for

the RC- and SPA-test as well as for the MCS approach are very distinct to the findings of the

DM-test. These tests indicate that the Historical Simulation based target CVaR strategy clearly

outperforms the remaining models. This result is also in line with the high economic value of

this strategy shown in Table VIII. In contrast, the stepwise approaches and the FDR approach

produce large sets of optimal models and pick (almost) all downside risk targeting strategies

whereas none of the target volatility strategies is chosen. The FDR approach further shows that

the target CVaR strategies are typically picked in the first steps. The differences between the

results of the MCS and the stepwise approaches can be explained by their construction. Whereas

the stepwise approaches identify superior models and then test the remaining models, the MCS

eliminates bad performing models and then tests the remaining models. Hence, in the MCS

approach a good performing model remains in the test set until the last step and thus identifies

all other models as inferior if one model clearly outperforms the remaining models. Due to

the significantly higher economic value of the CVaR-HS model for a loss-averse investor, all

other models are clearly eliminated in the first steps. In total, results of Panel C demonstrate

that loss-averse investors should time downside risk instead of volatility where CVaR timing

produces the best results. This again confirms the suggestion of Aı̈t-Sahalia and Brandt (2001,

p. 1315-1316) that loss aversion is similar to portfolio construction using CVaR as examined by

Basak and Shapiro (2001).

5.5 Switching Strategies

Results so far indicate that volatility targeting produces higher returns in uptrending markets

whereas CVaR targeting provides a better drawdown protection. However, in uptrending mar-

kets the CVaR targeting approach is typically too conservative. For that reason, we next examine
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strategies that switch between volatility and CVaR targeting, based on an estimate if the follow-

ing day is an up- or down day. Combining different portfolio strategies is frequently examined

in the literature (DeMiguel et al., 2009, Garlappi et al., 2006, Kan and Zhou, 2007, Tu and

Zhou, 2011). Further, Wang et al. (2012) switches between different target levels where a more

conservative target is chosen if a crash regime is expected. This is similar to our approach of

switching to a more conservative strategy when a down-market is expected. Taylor (2014) pro-

poses to switch between several forecasting models based on the current market environment,

which is similar to switching between target risk strategies. A combined strategy, that manages

portfolio risk by CVaR in times of bear markets and switches to a volatility based strategy in

bull markets should be successful in mitigating drawdowns and simultaneously capturing the

upside potential. Another possibility would be to buy the risky asset, i.e. wt ✏ 1, in bull markets

and use a CVaR based strategy in bear markets. Following Tu and Zhou (2011) we define the

weight of day t as

wswitch
t ✏ δt ☎ wCV aR

t � ♣1✁ δtq ☎ wvol
t , (72)

where δt P R is the weight placed on the target CVaR strategy, wCV aR
t is the day t weight of the

CVaR targeting strategy and wvol
t is the day t weight of the volatility targeting strategy. Several

possibilities to define the crash indicator δt are possible. For example, a regime-switching

process as in Ang and Bekaert (2002), Guidolin and Timmermann (2008) and Wang et al.

(2012) could be used to determine bull and bear regimes. However, since risk targeting is also

relevant for practical implementations we will rely on simple models to determine δt. For our

first two switching strategies we model the parameter δt as a crash indicator that equals one if

a negative return on day t is expected and zero else, given information up to day t ✁ 1. Hence,

these approaches use either volatility or CVaR targeting. To determine δt P t0, 1✉, we use

methods from the literature on technical analysis (Bajgrowicz and Scaillet, 2012, Hsu et al.,

2010, Moskowitz et al., 2012, Sullivan et al., 1999), where we use the two most prominent

methods, i.e. Moving Averages (MA) and Time Series Momentum (TSMOM). Based on the
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MA approach the indicator δt is given by

δt ✏
★
1, if St✁1 ↕ MAt✁1,n

0, if St✁1 → MAt✁1,n,
(73)

where MAt✁1,n ✏ 1
n

➦n

i✏1 St✁i denotes the Moving Average with a length of n days. Hence, if

the risky asset is in an uptrend, given if the price of day t✁ 1 is higher than the average price of

the days t✁ 1 to t✁ n, the portfolio is manged by volatility. In contrast, if the risky asset is in a

downtrend, given by St✁1 ↕ MAt✁1,n, the portfolio is manged by the more conservative CVaR

targeting approach.

Using the TSMOM approach of Moskowitz et al. (2012) the indicator δt is given by

δt ✏
★
1, if St✁1 ↕ St✁1✁n

0, if St✁1 → St✁1✁n.
(74)

Hence, the portfolio on day t is managed by volatility if the price of day t✁ 1 is higher than the

price of day t✁ 1✁ n and thus the risky asset is in an uptrend. In contrast, during a downtrend

(St✁1 ↕ St✁1✁n) the more conservative CVaR targeting approach is used. We show results for

n ✏ 200 which is the most often used length in the literature and by practitioners.70

The two indicators defined above are dummy variables, taking a value δt ✏ 1 if a negative

return is likely and zero else. As a consequence, the weight of day t is either given by the

volatility targeting strategy or the CVaR targeting strategy. We next define a third indicator,

where the weight of day t is given as a combination of the volatility and CVaR targeting strategy.

This is similar to combining different forecasting approaches (Halbleib and Pohlmeier, 2012,

Taylor, 2014). If market risk increases, measured by expected volatility of day t, we place a

higher weight on the CVaR targeting strategy, whereas CVaR targeting becomes less important

when market risk decreases.71 More formally, we define δt as

δt ✏ σ̂t

σtarget
, (75)

70Moskowitz et al. (2012) find good results for the TSMOM strategy for periods between one and 36 months,

which corresponds to windows of approximately 21 and 756 days. We also used other lengths and found good

results for other choices of n. For example, choosing n ✏ 150 produces even higher risk-adjusted returns compared

to n ✏ 200. However, since n ✏ 200 is the most relevant length, we only show results for this choice.
71We also used an indicator based on the two indicators defined above given by δt ✏ ♣δMA

t � δTSMOM
t q④2.

Thus, this strategy uses either volatility targeting, CVaR targeting or an equally weighted combination of both.

However, results where quite similar to the previous approaches and are not reported.
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Table X. Performance results of risk targeting: Switching strategies

This table shows the performance results of the strategies that switch between the GARCH volatility

targeting strategy and the CVaR targeting strategies for three different indicators. Panel A shows results

for the indicator δt based on a 200 days Time-Series-Momentum rule. Panel B shows results for the

indicator δt based on a 200 days Moving Average rule. Panel C shows results for the indicator δt based

on the GARCH(1,1) volatility forecast. Descriptions of the columns are given in Table V.

Panel A: TSMOM Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.24 0.032 1.38 1.82 -5.64 5.14

DAX 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40

60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

GARCH/CVaR Hist 4.09 11.74 0.193 1.57 31.17 0.073 1.23 1.66 -5.12 4.17

GARCH/CVaR EWMA FHS 3.65 11.09 0.166 1.73 36.59 0.050 1.18 1.56 -4.01 4.03

GARCH/CVaR EWMA EVT 3.70 11.01 0.171 1.84 36.17 0.052 1.17 1.55 -3.90 4.03

GARCH/CVaR EWMA Stsk 3.97 11.11 0.194 2.48 34.50 0.062 1.18 1.56 -4.67 4.03

GARCH/CVaR GARCH FHS 3.56 11.46 0.153 1.38 38.38 0.046 1.22 1.60 -4.58 4.03

GARCH/CVaR GARCH EVT 3.66 11.32 0.163 1.66 37.24 0.050 1.20 1.58 -4.41 4.03

GARCH/CVaR GARCH Stsk 3.92 11.14 0.189 2.15 34.92 0.060 1.18 1.56 -4.75 4.03

Panel B: MA Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.24 0.032 1.38 1.82 -5.64 5.14

DAX 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40

60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

GARCH/CVaR Hist 3.97 11.78 0.183 1.35 31.18 0.069 1.23 1.67 -5.12 4.17

GARCH/CVaR EWMA FHS 3.56 11.09 0.158 1.49 36.47 0.048 1.18 1.56 -4.01 4.03

GARCH/CVaR EWMA EVT 3.61 11.01 0.163 1.61 36.08 0.050 1.17 1.55 -3.90 4.03

GARCH/CVaR EWMA Stsk 3.76 11.15 0.174 1.98 34.96 0.056 1.18 1.57 -4.67 4.03

GARCH/CVaR GARCH FHS 3.54 11.44 0.151 1.31 38.07 0.045 1.22 1.59 -4.58 4.03

GARCH/CVaR GARCH EVT 3.63 11.29 0.161 1.56 36.92 0.049 1.20 1.57 -4.41 4.03

GARCH/CVaR GARCH Stsk 3.77 11.14 0.175 1.80 34.58 0.056 1.18 1.56 -4.75 4.03

Panel C: Volatility Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.24 0.032 1.38 1.82 -5.64 5.14

DAX 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40

60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

GARCH/CVaR Hist 2.41 12.07 0.051 -0.27 36.72 0.017 0.89 1.78 -10.17 11.61

GARCH/CVaR EWMA FHS 3.12 9.02 0.146 0.51 30.29 0.044 0.95 1.34 -3.55 3.83

GARCH/CVaR EWMA EVT 3.08 8.67 0.148 0.51 29.06 0.044 0.91 1.29 -3.40 3.79

GARCH/CVaR EWMA Stsk 3.75 9.19 0.210 1.16 26.45 0.073 0.97 1.35 -4.45 5.01

GARCH/CVaR GARCH FHS 3.27 9.94 0.148 0.70 35.29 0.042 1.06 1.42 -4.33 3.38

GARCH/CVaR GARCH EVT 3.26 9.30 0.156 0.81 32.01 0.045 1.00 1.33 -4.09 3.33

GARCH/CVaR GARCH Stsk 3.44 8.87 0.184 0.76 27.54 0.059 0.93 1.24 -4.56 11.05

where σtarget is again the chosen volatility target and σ̂t is the volatility forecast of one of the

volatility models. Defining δt with respect to the chosen volatility target is appealing since more

risk-averse investors choose lower levels of σtarget, which implies higher values of δt. Further,

as shown above, more risk-averse investors obtain higher utility gains from CVaR targeting

compared to volatility targeting. Hence, by choosing δt as a function of σtarget more risk-averse

investors place higher weights on CVaR targeting whereas risk-seeking investors place higher

weights on volatility targeting.

The weight of the switching strategy under the indicator given in Equation (75) can be
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rewritten as

wswitch
t ✏ wvol

t �
✂
wCV aR

t

wvol
t

✁ 1

✡
. (76)

Hence, this switching strategy is similar to the volatility targeting strategy with weight wvol
t ,

but places more (less) weight on the risky asset when the weight of the CVaR targeting strategy

is higher (lower) than the weight of the volatility targeting strategy. This strategy is similar

to the approach of Packham et al. (2017) who examine tail risk hedging strategies based on

the difference of VaR forecasts under a normality assumption and forecasting methods that

take non-normalities into account. By definition the CVaR takes non-normalities into account

and wCV aR
t should be higher (lower) than wvol

t when the market is in an up-market (down-

market) with lower (higher) left tail risk. Thus, this switching strategy should be similar to

the volatility targeting strategy but reacts more sensitive to the market environment where the

weight is lowered in a down-market and increased in an up-market.

Results for the three indicators are given in Table X, where we only show results for the

strategies that switch between the GARCH model and the CVaR targeting strategies. For a

better comparison to previous results we also show results for the HSD based target volatility

strategy, the DAX and the 60/40 given in Table V. Panel A shows results for the indicator δt

based on the TSMOM strategy. Switching between the GARCH and the target CVaR strategies

successfully heightens the return while volatility is reduced compared to the HSD model. The

switching strategies provide an enhanced risk-return profile indicated by a higher Sharpe Ratio

and Calmar Ratio than the individual strategies given in Table V. For example, the strategy that

switches between the GARCH model and the CVaR-EWMA-Stsk strategy increases the Sharpe

Ratio of the HSD model by 0.194④0.102✁1 ✏ 90.2%. The high increase of the Sharpe Ratio can

also be seen by the Sharpe Ratio test of Jobson and Korkie (1981). Most switching strategies

provide a statistically higher Sharpe Ratio than the HSD model, whereas only one model in

Table V was able to provide a statistically higher Sharpe Ratio. Further, the switching strategies

also provide a higher drawdown protection indicated by the lower MDD and minimum return.

Panel B shows results for the indicator based on the 200 day Moving Average. Results are

quite similar to the TSMOM based indicator, however, results for the TSMOM based strategies
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Table XI. Economic value of risk targeting: Switching strategies

This table shows the economic value given as annualized percentage fee ∆i an investor is willing to

pay to switch from the 60/40 portfolio to a strategy that switches between volatility and CVaR targeting

for a given utility function Ui, i P tMV,CRRA,LA✉. Panel A shows the economic value for a mean-

variance investor. Panel B shows the economic value for an investor with CRRA utility. Panel C shows

the economic value for a loss-averse investor. γ indicates the investor’s risk aversion. l determines the

investor’s loss aversion and b measures the investor’s degree of risk seeking for negative returns and risk

aversion for positive returns.

Whole Sample Crash Recovery

Panel A: ∆MV γ ✏ 2 γ ✏ 5 γ ✏ 10 γ ✏ 15 γ ✏ 5 γ ✏ 10 γ ✏ 5 γ ✏ 10

GARCH/CVaR Hist 0.021 -0.027 -0.107 -0.187 -17.684 -29.044 -4.000 -2.060

GARCH/CVaR EWMA FHS 1.048 1.979 3.549 5.143 18.973 28.798 -3.858 -2.974

GARCH/CVaR EWMA EVT 1.042 2.068 3.803 5.565 19.049 28.861 -3.644 -2.677

GARCH/CVaR EWMA Stsk 1.643 2.532 4.030 5.549 30.228 39.512 -3.926 -3.381

GARCH/CVaR GARCH FHS 1.108 1.775 2.897 4.031 16.608 26.172 -2.846 -2.140

GARCH/CVaR GARCH EVT 1.157 2.012 3.454 4.915 17.129 26.828 -2.929 -2.065

GARCH/CVaR GARCH Stsk 1.374 2.349 3.995 5.667 28.440 34.591 -3.081 -2.202

Panel B: ∆CRRA γ ✏ 2 γ ✏ 5 γ ✏ 10 γ ✏ 15 γ ✏ 5 γ ✏ 10 γ ✏ 5 γ ✏ 10

GARCH/CVaR Hist 0.038 0.003 -0.073 -0.253 -15.156 -27.065 -4.384 -2.457

GARCH/CVaR EWMA FHS 0.740 1.666 3.230 4.823 17.046 26.590 -4.036 -3.164

GARCH/CVaR EWMA EVT 0.702 1.724 3.452 5.217 17.124 26.655 -3.838 -2.882

GARCH/CVaR EWMA Stsk 1.349 2.235 3.734 5.263 28.434 37.634 -4.034 -3.493

GARCH/CVaR GARCH FHS 0.887 1.550 2.666 3.799 14.734 24.040 -2.988 -2.290

GARCH/CVaR GARCH EVT 0.874 1.725 3.162 4.625 15.230 24.668 -3.102 -2.246

GARCH/CVaR GARCH Stsk 1.052 2.039 3.743 5.514 27.592 35.013 -3.256 -2.381

b ✏ 0.8 b ✏ 1 b ✏ 0.8 b ✏ 0.8

Panel C: ∆LA l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3 l ✏ 2 l ✏ 3

GARCH/CVaR Hist 11.127 17.064 13.333 20.235 -7.410 -9.874 15.241 25.294

GARCH/CVaR EWMA FHS 9.987 14.961 12.484 18.822 49.459 71.461 4.675 9.222

GARCH/CVaR EWMA EVT 11.197 16.822 14.115 21.331 49.518 71.462 5.308 10.135

GARCH/CVaR EWMA Stsk 10.536 15.568 13.226 19.588 52.597 72.702 3.082 6.721

GARCH/CVaR GARCH FHS 5.885 8.617 7.391 10.933 45.944 67.806 3.056 6.217

GARCH/CVaR GARCH EVT 8.054 11.986 10.165 15.233 47.181 69.430 4.273 8.181

GARCH/CVaR GARCH Stsk 11.146 16.814 14.568 21.820 49.962 69.412 5.682 10.319

are slightly better. Panel C shows results for the volatility based indicator δt. Interestingly,

although some strategies based on this indicator produce the highest Sharpe Ratios in Table

X, none of these strategies produces a significantly higher Sharpe Ratio for the test of Jobson

and Korkie (1981). The volatility based indicator δt exhibits the lowest drawdowns among the

three indicators which is in line with Equation (76) that this strategy is similar to the volatility

targeting strategy, but more sensitive to up- and down-markets.

Table XI shows the economic value of the switching strategies that use the volatility based

indicator δt for the three investors. We only show results for the volatility based indicator δt

since Table X indicates that none of the switching strategies based on this indicator produces

significant performance gains for the test of Jobson and Korkie (1981). We will test in Table
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XII if the same result also holds when testing for higher utilities of the volatility based indicator.

The economic value is calculated with respect to the 60/40 portfolio, i.e. the numbers in this

table correspond to the annual percentage fee an investor is willing to pay to switch from the

60/40 portfolio to one of the switching strategies and can be compared to results of Table VIII.

Results of Panel A and B in Table XI are similar to the results of Table VIII but higher in

magnitude. That is, mean-variance and CRRA investors are willing to pay higher fees for the

switching strategies over the whole sample and the crash period compared to the individual

strategies. However, during the calm period these investors prefer the 60/40 portfolio. Thus, a

possible extension of our switching approach would be to switch between the CVaR managed

strategy and a non-managed static portfolio. Panel C shows results for the loss-averse investor.

Results are again similar to Table VIII but higher in magnitude for the whole period and the

period capturing the financial crisis. Interestingly, during the crisis period the economic value

of the strategy that switches to the Historical Simulation based target CVaR strategy is negative,

although this strategy was quite convincing in Table VIII. More interestingly are the results

during the calm period. Now, the economic value of all switching strategies becomes positive

and high in magnitude. This holds especially for the strategy that switches to the Historical

Simulation based strategy. Thus, loss-averse investors are willing to pay high fees to have

access to a strategy that switches between volatility and CVaR targeting even when the market

is in a calm period. In contrast, a loss-averse investor is not willing to pay a positive fee to use

the GARCH based volatility strategy as shown in Table VIII.

To summarize Table XI switching between volatility and CVaR targeting heightens utility

gains for all three investors compared to the static 60/40 portfolio. Further, utility gains of the

switching strategies are higher in magnitude compared to the economic value of the individual

risk targeting strategies shown in Table VIII. This confirms the earlier finding of Table X that

the switching strategies exhibit an enhanced risk-return profile. We will next test, if these higher

utilities are also statistically significant. Table XII shows results for the tests that test for higher

utility gains of the switching strategies. For comparison we also include the three volatility

targeting strategies. Table XII shows that the switching strategies produce statistically higher
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Table XII. Testing the utility gain of risk targeting: Switching strategies
This table shows the results of the tests presented in Section 4.1 used to test the significance of the utility gains.

Panel A shows results for a mean-variance investor with γ ✏ 10. Panel B shows results for a CRRA investor with

γ ✏ 10. Panel C shows results for a loss-averse investor with b ✏ 1 and l ✏ 2. The description of the columns is

given in Tables I and II.

Panel A: MV DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -0.24 5.16 0.33 0.73 0 0 0

Vola EWMA 0.29 7.95 0.47 1.66 0 0 0

Vola GARCH 0.79 10.31 0.61 4.36 0 0 7

GARCH/CVaR Hist -0.05 12.20 14.52 19.91 0 0 0

GARCH/CVaR EWMA FHS 2.19 76.03 11.96 62.96 1 1 6

GARCH/CVaR EWMA EVT 2.29 83.87 54.92 94.49 1 1 4

GARCH/CVaR EWMA Stsk 2.16 100.00 100.00 100.00 1 1 3

GARCH/CVaR GARCH FHS 2.12 56.80 1.22 23.75 1 1 5

GARCH/CVaR GARCH EVT 2.40 80.96 42.27 62.96 1 1 1

GARCH/CVaR GARCH Stsk 2.38 88.54 64.08 95.61 1 1 2

Panel B: CRRA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -0.27 5.33 0.38 0.66 0 0 0

Vola EWMA 0.27 8.27 0.55 1.61 0 0 0

Vola GARCH 0.76 10.56 0.57 3.38 0 0 7

GARCH/CVaR Hist -0.05 12.40 14.69 19.67 0 0 0

GARCH/CVaR EWMA FHS 2.18 75.36 12.40 59.93 1 1 5

GARCH/CVaR EWMA EVT 2.29 83.45 54.81 91.25 1 1 3

GARCH/CVaR EWMA Stsk 2.16 87.54 61.20 92.79 1 1 4

GARCH/CVaR GARCH FHS 2.12 55.68 1.10 22.79 1 1 6

GARCH/CVaR GARCH EVT 2.39 79.01 37.64 59.93 1 1 1

GARCH/CVaR GARCH Stsk 2.36 100.00 100.00 100.00 1 1 2

Panel C: LA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� ✏ 10%

Vola Hist -2.64 0.00 0.00 0.00 0 0 0

Vola EWMA -2.21 0.00 0.00 0.00 0 0 0

Vola GARCH -1.44 0.00 0.00 0.00 0 0 0

GARCH/CVaR Hist 5.52 100.00 100.00 87.75 1 1 1

GARCH/CVaR EWMA FHS 4.19 33.82 0.00 0.08 1 1 2

GARCH/CVaR EWMA EVT 4.54 77.05 64.98 87.75 1 1 3

GARCH/CVaR EWMA Stsk 4.39 53.82 35.97 53.28 1 1 4

GARCH/CVaR GARCH FHS 3.07 0.17 0.00 0.00 1 1 7

GARCH/CVaR GARCH EVT 3.92 4.36 0.00 0.01 1 1 5

GARCH/CVaR GARCH Stsk 5.14 81.86 72.42 100.00 1 1 6

utility gains whereas the volatility targeting strategies do not. Only the GARCH managed strat-

egy produces a significant higher utility than the 60/40 portfolio for some test procedures. For

the mean-variance and CRRA investors the strategies that switch to a conditionally managed

strategies clearly provide higher utility gains, whereas the volatility targeting strategies and the

strategy that switches to the Historical Simulation based strategy do not. For the loss-averse

investor all switching strategies clearly produce higher utility gains than the volatility targeting

strategy. Thus, whereas the test of Jobson and Korkie (1981) does not indicate that the switch-

ing strategies based on the volatility indicator δt exhibit statistically higher performance gains,

results of Table XII show that switching between volatility and CVaR targeting produces signif-

icantly higher utility gains for all three investors. This again highlights the disadvantage of the
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Sharpe Ratio as performance measure for dynamic trading strategies (Han, 2005, Marquering

and Verbeek, 2004).

Figure I. One and five year rolling economic value for a mean-variance investor. This figure plots

the one and five year rolling economic value measured by ∆MV with respect to the 60/40 portfolio for a

mean-variance investor with a risk aversion of γ ✏ 10. Panel A shows the economic value for an investor

with an investment horizon of one year, whereas Panel B shows the economic value for an investor with

an investment horizon of five years. The dates on the x axes correspond to the end date of the one or five

year investment horizon.

So far, we only calculated the economic value over the whole sample. However, most in-

vestors typically have short evaluation periods (Benartzi and Thaler, 1995). Further, timing

short term risk is also beneficial for long-term investors, thus even long-term investors should

be concerned about short term utility gains (Moreira and Muir, 2019). For that reason, similar

to Figure 2 of Marquering and Verbeek (2004) we next plot in Figure I the rolling one and five

year economic value of a mean-variance investor for our risk targeting and switching strate-

gies. Thus, this figure plots the rolling annualized fee a mean-variance investor is willing to

pay to switch from the 60/40 portfolio to the risk targeting strategies, when the investor has to

be invested for one or five years. Panel A shows the rolling annualized percentage fee for an

investor with a risk aversion of γ ✏ 10 and an investment horizon of one year, whereas Panel

B shows the rolling economic value for an investor with an investment horizon of five years.
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Figure I shows that a mean-variance investor with an investment horizon of one year is almost

always willing to pay a positive fee to have access to risk targeting. This holds especially for

the strategies that target a constant level of downside risk and the switching strategy. The utility

gains in the crises are substantially higher than the utility losses in the low risk periods. Hence,

investors are willing to pay very high fees to avoid crash periods, whereas their utility loss of

lower returns in uptrending markets is significantly smaller. In particular, during crash periods,

the economic value of downside risk timing and the switching strategy is significantly higher

than the economic value of volatility timing, whereas in calm periods the economic values of

volatility targeting, downside risk timing and the switching strategy is comparable. Interest-

ingly, we find that during crises the switching strategy outperforms all other strategies. Thus,

even during crises switching between volatility and CVaR targeting outperforms downside risk

targeting. Results in Panel B are similar to the results in Panel A but the difference between

volatility targeting, downside targeting and the switching strategy becomes larger. Thus, for

investors with longer investment horizons downside risk targeting becomes far more impor-

tant than volatility targeting. This again holds especially for the strategy that switches between

volatility and CVaR targeting. In particular, we find that on average the switching strategy pro-

duces the highest economic value, followed by CVaR targeting. In contrast, volatility targeting

exhibits on average the lowest economic value, but there are also periods when volatility target-

ing produces the highest economic value. Results for the CRRA investor are again similar to

the results of Figure I and are not shown here.

Figure II shows the rolling one and five year economic value for a loss-averse investor with

parameters b ✏ 0.8 and l ✏ 3. Panel A shows results for an investor with an investment horizon

of one year. For a loss-averse investor the economic value of downside risk targeting is always

higher than the economic value of volatility targeting and the economic value of the switching

strategy is always the highest. As in Figure I the economic value significantly increases for the

periods that contain a crisis. Again, especially during crises, switching between volatility and

CVaR targeting outperforms all the remaining strategies. Panel B shows results for a loss-averse

investor with an investment horizon of five years. Interestingly, the economic value of volatility
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Figure II. One and five year rolling economic value for a loss-averse investor. This figure plots the

one and five year rolling economic value measured by ∆LA with respect to the 60/40 portfolio for a

loss-averse with parameters b ✏ 0.8 and l ✏ 3. Panel A shows the economic value for an investor with

an investment horizon of one year, whereas Panel B shows the economic value for an investor with an

investment horizon of five years. The dates on the x axes correspond to the end date of the one or five

year investment horizon.

targeting is always negative, i.e. a loss-averse investor with an investment horizon of five years

is never willing to pay a fee to switch from the 60/40 portfolio to the HSD managed strategy.

This contradicts the finding of Moreira and Muir (2019) that even long-term investors should

time volatility.72 In contrast, the economic value of downside risk targeting and the switching

strategy is only negative for a short time period. Thus, a loss-averse investor with an investment

horizon of five years should almost always target downside risk or, even more advantageous,

should switch between volatility and CVaR targeting.

6 Conclusion

This paper studies dynamic trading strategies that target a predefined level of risk measured by

volatility, Value at Risk (VaR) or Conditional Value at Risk (CVaR). We derive weights for these

72In contrast to our examination in Figure II, Moreira and Muir (2019) do not assess the economic value for

loss-averse investors.
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trading strategies and present several methods to estimate volatility, VaR and CVaR. Based on a

dataset for the German stock market, we find that risk targeting offers an enhanced risk-return

profile, better drawdown protection and significant utility gains compared to a buy and hold eq-

uity investment and a static portfolio consisting of equities and bonds. Most convincing results

are found for strategies that target a constant level of portfolio CVaR over time. In particular,

we find that mean-variance investors, CRRA investors and loss-averse investors should time

downside risk, measured by CVaR, instead of volatility. This result especially holds for highly

risk-averse or loss-averse investors and during crises. Generally, we find that risk should be

managed by a conditional risk model instead of simple models as done by Barroso and Santa-

Clara (2015), Barroso and Maio (2016) and Moreira and Muir (2017). This is in line with the

result of Bollerslev et al. (2018) that a higher forecasting accuracy, and hence a more constant

portfolio risk, typically coincides with higher performance benefits compared to static forecast-

ing models.

The risk-return profile and utility gains of risk targeting can further be improved by switch-

ing between volatility and CVaR targeting, where CVaR targeting is only used when a negative

market return is expected. Based on three different crash indicators we show that these switch-

ing strategies produce higher returns with lower risk compared to the volatility targeting strate-

gies. Further, the mean-variance, CRRA and loss-averse investors are willing to pay high fees

to have access to these switching strategies. When compared to the utility of a static portfolio

allocation, utility gains of the switching strategies are statistically significant whereas the utility

gains of volatility targeting are insignificant.

Appendices

A Advantages of Volatility Targeting

This section summarizes several reasons why investors should target a constant level of volatil-

ity. Most of these advantages presented here also hold for the target VaR and target CVaR

strategies presented in Section 3. Further, Section 3.1 presents several advantages of managing
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downside risk instead of volatility.

First, using the weight given in Equation (3) implies that the weight of the risky asset is

decreased in times of high volatility and increased in low volatile times. Since volatility is

often associated with risk and investors are typically risk-averse (Scott and Horvath, 1980),

targeting a constant level of volatility fits well to these investors’ preferences. By choosing an

adequate volatility target σtarget investors can choose an investment strategy that fits well to their

preferences and risk aversion (Bollerslev et al., 2018). Zakamulin (2015) and Moreira and Muir

(2017) show that mean-variance investors should, under some assumptions, optimally choose

the weight of the risky asset as wt ✏ ♣σtarget④σtq2 (see also Dopfel and Ramkumar (2013)).73

Building on this result, as suggested by Kirby and Ostdiek (2012), decreasing the sensitivity

of wt to volatility changes, and hence lowering transaction costs, leads to the weight given in

Equation (3).74

Second, especially during bear markets, which are associated with increases in volatility

and correlations, investors seek for risk reduction methods (Ang and Bekaert, 2002).75 The

last financial crises were all accompanied by higher than normal volatilities (Liu et al., 2003,

Moreira and Muir, 2017). In particular, times of high volatility typically coincide with times

of downward moving markets (Ang et al., 2006b, Campbell and Hentschel, 1992, French et al.,

1987). Similarly, Moreira and Muir (2017) find that the probability of a recession is higher

in times of high market volatility, i.e. recessions coincide with times of high market volatility.

Muir (2017) shows that in financial crises and recessions asset prices decline and stock market

73The mean-variance framework is only suitable for elliptical distributions. Since asset returns usually do not

follow an elliptical distribution this weighting is not optimal for realistic return distributions (Szegö, 2002, p.1254).

We will revisit this issue in Chapter 3 where we present a similar weighting scheme based on risk measures that

account for non-normalities in the asset return distribution.
74Since volatility can only be estimated with an estimation error, and to lower transaction costs, Kirby and Ost-

diek (2012) suggest to scale the weight by a parameter η, called tuning parameter, that determines how aggressively

the weight wt reacts to changes in σt. By choosing η ✏ 0.5 we obtain the weight of the target volatility strategy

(see also Zakamulin (2015, p. 91)). Moreira and Muir (2017) compare the weight of the volatility and variance

managed strategies and find less extreme weights and lower transaction costs for the volatility managed strategy.
75Liu et al. (2003) find that most events with extremely negative returns are accompanied with high increases in

volatility. Guidolin and Timmermann (2008) find a bear regime with low returns, negative alphas, high volatility

and highly correlated assets and a bull regime with higher returns, positive alphas, lower volatility and less corre-

lated returns (see also Wang et al. (2012, p. 27) and Hocquard et al. (2013)). Similarly, Ang and Bekaert (2002,

p. 1139) find “a normal regime with low correlations, low volatilities, and a bear regime with higher correlations,

higher volatilities, and lower conditional means.” The bear states occurred during financial crises and/or global

recessions indicating that periods of market distress are associated with high volatilities and low returns (Muir,

2017).
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volatility increases but these effects reverse subsequently. Thus, times of significantly higher

volatility coincide with declining asset prices, and hence these times should be avoided by in-

vestors. Further, since volatilities and correlations between different equity markets increase

simultaneously during bear markets, drawdowns in crises can not simply be managed by di-

versification (Ang and Bekaert, 2002, Ang and Chen, 2002, Butler and Joaquin, 2002, Karolyi

and Stulz, 1996, Longin and Solnik, 2001, Patton, 2004). Chabi-Yo et al. (2018) find that ex-

treme negative returns of stocks are more related than extreme positive returns, i.e. stocks tend

to crash simultaneously. In particular, the authors show that the relation of extreme negative

returns among stocks increases in crash periods (Chabi-Yo et al., 2018, Figure 2). By incorpo-

rating a risk-free asset Ang and Bekaert (2002) find for their model that in the normal regime,

the risky asset should be leveraged by being short in the risk-free asset, whereas in the bear

regime money should dramatically be shifted to the risk-free asset. Furthermore, they find sig-

nificant drawbacks of ignoring information about the regime, once the possibility of shifting

money to the risk-free asset is introduced (see also Patton (2004)). Bollerslev et al. (2018) find

co-movements, spillover effects and simultaneous spikes of volatilities between equities, bonds,

commodities and currencies. Thus, risk characteristics between assets and asset classes are quite

similar. Jondeau and Rockinger (2003) find that also higher moments like (negative) skewness

and kurtosis increase simultaneously between markets during bear regimes. This indicates that

the probability of an occurrence of large (negative) returns cannot be reduced by simply com-

bining several risky assets. As a consequence, during high risk periods, the portfolio should be

managed by simultaneously decreasing the exposure to a portfolio of risky assets and increasing

exposure to the riskless asset, as done by the target volatility strategy. This also solves the prob-

lem identified by Ang and Chen (2002) and Longin and Solnik (2001) that investors incorrectly

assess the benefits of diversification, and thus typically hold too much equities in bear markets

whereas they are underinvested in bull markets. However, by managing volatility an investor is

not protected against unpredictable tail events marked by periods with extreme jumps in asset

prices.76

76See Liu et al. (2003) for a study on how jump risk in both equity prices and volatility effects the dynamic

asset allocation between a risky and a riskless asset. In order to face jump risk investors should avoid leveraged

positions in the risky asset, and hence an equity cap of 100% or a low volatility target should be used (see also Das

84

 Electronic copy available at: https://ssrn.com/abstract=3444999 



Third, an often proclaimed justification of volatility targeting is the relation between volatil-

ity and future return. Although classical finance models like the CAPM indicate that higher

risk should be compensated by higher expected returns (see Merton (1980) for example), many

empirical studies find a negative relation between volatility and returns, i.e. a higher volatility

coincides with lower or negative future returns (Glosten et al., 1993).77 A possible explanation

for the negative volatility-return relation is the volatility feedback effect, which is sometimes

called time-varying risk premium and is opposed to the well-known leverage effect (see Glosten

et al. (1993, p. 1786) for an explanation of the leverage effect).78 Based on this observation an

increase in volatility induces an immediate stock decline. In other words, if tomorrow’s volatil-

ity σt�1 is expected to be higher than today’s volatility σt, then tomorrow’s weight wt�1 should

be lower than today’s weight wt.
79 However, results in the academic literature on the relation

between volatility and future returns are very mixed and a relation between volatility and returns

is hard to confirm (Bollerslev et al., 2013, Glosten et al., 1993). Lundblad (2007) shows that for

examining the relation of volatility and future returns very long datasets are needed. The au-

thor, using a dataset ranging from 1836 to 2003, finds a positive relation between volatility and

and Uppal (2004)). Jarrow and Zhao (2006) show that managing volatility differs from managing downside risk

when asset returns exhibit jump risk.
77A similar observation has also been found in cross-sectional analyses. See for example Frazzini and Pedersen

(2014) who show that buying low beta assets and selling high beta assets produces high returns, although classical

finance theory indicates a contrary result. Similarly, Ang et al. (2006b) and Ang et al. (2009) show that assets with

high past sensitivity to volatility changes, high idiosyncratic volatility or high total volatility have significantly

lower returns than assets with low past sensitivity to volatility changes, low idiosyncratic volatility or low total

volatility, respectively. Haugen and Heins (1975) find that the risk-return relation strongly depends on the sample

period and whether the sample period is dominated by a bull or bear regime. Using a long data set, the authors find

that “over the long run, stock portfolios with lesser variance in monthly returns have experienced greater average

returns than their “riskier” counterparts” (Haugen and Heins, 1975, p. 782).
78Bollerslev et al. (2006, p. 354) describe the volatility feedback effect as: “If volatility is priced, an anticipated

increase in volatility would raise the required rate of return, in turn necessitating an immediate stock-price decline

to allow for higher returns. Therefore, the causality underlying the volatility feedback effect runs from volatility

to prices, as opposed to the leverage effect that hinges on the reverse causal relationship” (see also Campbell and

Hentschel (1992) and Glosten et al. (1993) for an explanation of leverage and volatility feedback effect). For

additional studies on the relation between volatility and return see also French et al. (1987), Bali and Peng (2006),

Bollerslev et al. (2006), Bollerslev and Zhou (2006), Ghysels et al. (2005), Lundblad (2007), Bollerslev et al.

(1992) among others. See Muir (2017) for an examination why risk premiums or expected returns vary over time,

rise modestly in recessions and spike in financial crises. See Glosten et al. (1993) on how the leverage effect

influences results on the volatility feedback effect.
79The volatility feedback effect is reflected by the construction of the target volatility weighting given in Equa-

tion (3). More formally, from σt�1 → σt it follows wt�1 ✏ σtarget④σt�1 ➔ σtarget④σt ✏ wt, i.e. an increase in

volatility induces a decrease in the weight of the risky asset. Due to this relation, Harvey et al. (2018) find that un-

der the leverage effect, volatility targeting induces momentum, i.e negative returns induce higher future volatilities

and lower future weights of the risky asset. The authors find that this observations explains a part of the increase

of the Sharpe Ratio of the volatility targeting strategy.
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return. Bali and Peng (2006) using high frequency data based volatility measures find a signif-

icant and positive relation,80 whereas Bollerslev et al. (2006) using similar volatility measures

find an insignificant or even negative relation. Bollerslev and Zhou (2006, p. 124-125) state that

the risk-return relation in empirical investigations strongly depends on the volatility measure

used in this investigation, which partly explains the inconsistent results in the academic litera-

ture (see also Glosten et al. (1993), Ghysels et al. (2005) and Bollerslev et al. (2013)). Adrian

and Rosenberg (2008) show that the risk-return relation depends strongly on the examined time

frequency of volatility. In line with the volatility feedback effect, the authors find a negative

volatility-return relation for short-term volatility but a positive relation for long-term volatility.

To summarize results in the academic literature, the relation between volatility and future re-

turns is hard to identify and results in the literature are too mixed to draw a distinct conclusion

(see also Harvey and Siddique (1999) and references therein). Backus and Gregory (1993) the-

oretically confirm this observation (see also Glosten et al. (1993) who argue that both a positive

and negative relation would be consistent with theory). However, Moreira and Muir (2017)

show that the relation between volatility and future risk-adjusted returns should be of main in-

terest instead of the risk-return relation (see also Dopfel and Ramkumar (2013)). Moreira and

Muir (2017) find that the alpha of the volatility managed strategy is mainly driven by the neg-

ative relation between volatility and volatility adjusted returns. In particular, they theoretically

show that an alpha of zero is obtained if movements of expected returns and volatility coincide.

In other words, volatility targeting produces positive alphas, since an increase in volatility is not

compensated by an adequate increase in expected return. Hence, high volatility periods exhibit

an unattractive risk-return profile and should be avoided by investors. This is also empirically

confirmed by the authors: although the authors cannot confirm a negative volatility-return rela-

tion, they find that volatility timing increases the Sharpe Ratio. The reason for the increasing

Sharpe Ratio is that “changes in volatility are not offset by proportional changes in expected

returns” (Moreira and Muir, 2017, p. 1611), i.e. the mean variance trade off is higher in times

of low volatility and vice versa. Both observations combined indicate that a high volatility in

80Similarly, Ghysels et al. (2005) using daily data to measure monthly volatility by advanced volatility measures

find a positive and significant relation.
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t ✁ 1 is related to a low Sharpe Ratio in t. Dachraoui (2018, Eq. (2)) shows that the Sharpe

Ratio of the target volatility strategy is given by the Sharpe Ratio of the risky asset and the

correlation between the volatility and the risk-adjusted return of the risky asset. In particular, if

volatility and risk-adjusted return of the risky asset are negatively correlated, the Sharpe Ratio

of the target volatility strategy is higher than the Sharpe Ratio of the risky asset. A sufficient

condition for this negative correlation is that volatility and return are negatively correlated or

uncorrelated. Moreira and Muir (2019) find that an increase of volatility coincides with higher

expected returns, but that the increase in expected return is much more persistent than the in-

crease in volatility. Thus, investors should reduce the weight of the risky asset if short-term

volatility increases and then subsequently increase the risky exposure when volatility begins to

decline. Barroso and Maio (2016) find that volatility targeting works well since risk and future

returns are nearly uncorrelated and risk is highly forecastable due to its persistent nature. Sim-

ilarly, Harvey et al. (2018) find no clear pattern between volatility of day t ✁ 1 and the return

of day t. However, due to the persistence of volatility, they find that a high volatility in t✁ 1 is

related to a high volatility in t. Hence, an investor should be higher invested in the risky asset if

the risky asset’s volatility is low and vice versa and thus should time volatility. These results do

not fundamentally contradict the assumption that higher risk is compensated by higher expected

returns. In the long run, assets with higher volatility typically earn higher risk premiums, but

risk premiums typically fluctuate over time (Lempérière et al., 2017, Muir, 2017). In the long

run a higher volatility is related to higher expected return whereas in the short run a higher

volatility is related to low or negative returns (Adrian and Rosenberg, 2008). Stocks typically

have higher long-term returns than bonds, i.e. investors with a long investment horizon should

participate in the stock market. However, most investors fail to capture the long-term potential

of stocks, due to too short evaluation periods and the higher volatility of stocks (Benartzi and

Thaler, 1995). A nice characteristic of risk targeting is that even highly risk averse investors can

participate at the huge long-term return potential of risky assets, where the investor can choose

the risk tolerance he is willing to accept. Further, besides making stock market investments

available for all investors, volatility targeting can even enhance the risk-adjusted performance
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for long-term investors by dynamically timing the risky asset’s short-term risk (Moreira and

Muir, 2019).

Fourth, many studies have shown that volatility timing can add substantial economic value

and delivers an enhanced risk-return profile. Fleming et al. (2001), Fleming et al. (2003), Han

(2005), Kirby and Ostdiek (2012) and Taylor (2014) examine the utility gain of volatility timing

strategies, i.e. strategies that rely on estimates of the covariance matrix solely, in a multivari-

ate setting and find that these strategies are superior to non-volatility managed portfolios even

after transaction costs. Moskowitz et al. (2012) and Kim et al. (2016) use volatility timing to

manage the risk of the time series momentum strategy. Asness et al. (2013) and Goyal and

Jegadeesh (2017) use volatility timing to weight the assets in the momentum portfolio. Al-

though these studies use multivariate data sets they demonstrate how important volatility timing

is in the context of portfolio management. Marquering and Verbeek (2004) find substantial

increases in Sharpe Ratio and utility if volatility timing is added to return timing when a port-

folio of risky assets and a riskless asset in managed (see also Moreira and Muir (2019) who

find a similar observation for long-horizon investors). Moreira and Muir (2017) and Bollerslev

et al. (2018) using a similar framework as in our paper also demonstrate vast utility gains of

volatility targeting. Additionally, in a univariate setting, Barroso and Santa-Clara (2015), Mor-

eira and Muir (2017) and Barroso and Maio (2016) demonstrate the vast potential of volatility

timing overlayed on several portfolio strategies, especially in terms of drawdown reduction and

improvement of risk-adjusted returns. Harvey et al. (2018) find that volatility targeting works

well for risky assets like equities or portfolios that contain risky assets. Busse (1999) examines

volatility timing used by mutual funds and finds higher Sharpe Ratios for funds using volatil-

ity timing. Volatility targeting strategies often deliver “benchmark-comparable levels of return

with lower risk” (Benson et al., 2014, p. 89). Generally, the potential of volatility timing does

not only exist for short-horizon investors but also for investors with a long investment horizon

as shown by Moreira and Muir (2019). Benartzi and Thaler (1995) show that the evaluation

period of long term investors is typically much shorter than their investment horizon. That

is, investors with an investment horizon of years act like investors with a horizon of several
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months. This renders these investor to fully participate at the long term performance potential

of stocks, since investors with a short evaluation period are more sensitive to changes in market

volatility (Moreira and Muir, 2019). For these long-term investors timing short-term volatility

can also be beneficial to capture the long-term potential of stocks and simultaneously manage

short-term risk. Ang and Bekaert (2002) show that even for investors with longer horizons it

is possible to act myopically, as done by risk targeting, instead of solving complex long term

portfolio problems.

Fifth, the target volatility strategy focuses on the risk, measured by volatility of the risky as-

set solely ignoring information about future returns (Bollerslev et al., 2018). This is appealing

since future volatility can be estimated much more precisely than future returns, which min-

imizes the estimation risk of this approach (Merton, 1980). Kirby and Ostdiek (2012) show

that portfolio allocations that rely on estimates of returns and volatilities exhibit very high es-

timation risk, whereas estimation risk is only small for volatility based allocations. Generally,

portfolio allocation under estimation risk, especially for mean returns, is frequently examined

in the financial literature (DeMiguel et al., 2009, Garlappi et al., 2006, Kan and Zhou, 2007, Tu

and Zhou, 2011). Moreover, a forecast of the whole return distribution is not needed, which is a

tenuous task (Aı̈t-Sahalia and Brandt, 2001). Moreira and Muir (2017) find higher utility gains

for timing volatility as for timing expected returns. Marquering and Verbeek (2004) examine

both return and volatility timing and find that timing return and volatility is superior to strategies

that only time return (see also Moreira and Muir (2019)).

Sixth, investors are typically crash averse and dislike periods of huge negative returns

(Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018, van Oordt and Zhou, 2016). Volatility

timing has proven to be a good and easy method for drawdown protection which makes this ap-

proach appealing for investors who typically dislike huge drawdowns (Barroso and Maio, 2016,

Barroso and Santa-Clara, 2015, Benson et al., 2014, Moreira and Muir, 2017). Harvey et al.

(2018) find that volatility targeting successfully reduces the likelihood of extreme negative re-

turns. Thus, volatility targeting also fits well to the loss-aversion of most investors (Aı̈t-Sahalia

and Brandt, 2001, Benartzi and Thaler, 1995). In particular, risk targeting is an easy way to
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manage portfolio risk dynamically. Cuoco et al. (2008) highlight the importance of managing

portfolio risk dynamically, i.e. reevaluating portfolio weights frequently.

Seventh, risk-averse investors typically want to hedge against changes in volatility (see Ang

et al. (2006b), Adrian and Rosenberg (2008) and references therein). Bollerslev and Todorov

(2011) and Bollerslev et al. (2015) examine the variance risk premium which measures the

“compensation for the risk associated with temporal changes in the variation of the price level”.

Adrian and Rosenberg (2008) find that investors are willing to pay for methods that protect them

from changes in volatility. Similarly, in a cross-sectional setting, Baltussen et al. (2018) find that

assets with a high volatility of volatility (vol-of-vol) underperform assets with a more constant

volatility. Thus, assets with lower volatility changes produce higher returns than assets that

exhibit higher volatility changes. Further, higher volatility changes are also related to higher

downside risk. The investors’ demand to hedge against these changes in volatility has led to the

introduction of many new financial instruments like variance swaps (Bollerslev and Todorov,

2011, Footnote 11). Volatility targeting is an easy way to hedge against this volatility risk

without using any financial derivatives.

Eighth, liabilities of institutional investors like insurance companies or pension funds are

often less volatile than investments in risky assets. Targeting a constant level of volatility can

help to match the volatility of the investments with the volatility of the liabilities.81

Ninth, a skill of a portfolio manager can typically be separated in his abtility to time the

market and the ability to pick the right stocks (see Agarwal and Naik (2004) and references

therein). Risk targeting can be used separately as market timing tool, which is independent of

the asset selection (Zakamulin, 2015). Traditionally market timing and volatility timing are fun-

damentally related as documented by Christoffersen and Diebold (2006). The authors state that

market timing strategies based on measures of volatility are frequently used by practitioners.

Hence, a portfolio manager can focus himself on picking the right assets without accounting

for the current market environment, which is separately managed by an overlayed risk target-

ing strategy. Barroso and Santa-Clara (2015), Barroso and Maio (2016) and Moreira and Muir

81Banerjee et al. (2016, p. 1) write that “a risk control strategy may provide a smoother path of asset returns and

could more closely align the performance of the institution’s assets to the characteristics of its liabilities.”
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(2017) use volatility targeting for several portfolio strategies.

B Portfolio Risk

B.1 Portfolio Value at Risk

In this section we derive the Value at Risk (VaR) for the portfolio loss given in Equation (10).

We denote the conditional cumulative distribution function of the risky asset’s loss Lt, based on

the information Ft✁1 available at time t✁ 1, by FLt⑤Ft✁1
. Moreover, we assume that FLt⑤Ft✁1

is

continuous and strictly increasing and denote the corresponding ♣1✁αq-quantile by F✁1
Lt⑤Ft✁1

♣1✁
αq. For a positive weight wt the day t VaR of the portfolio loss, denoted by VaRP,t

α , is given by

P
�
LP
t ↕ VaRP,t

α ⑤ Ft✁1

✟ ✏ 1✁ α

ô P
✁
wt ☎ Lt ✁ ♣1✁ wtq ☎Rf

t ↕ VaRP,t
α ⑤ Ft✁1

✠
✏ 1✁ α

ô P
✁
Lt ↕ ♣VaRP,t

α � ♣1✁ wtq ☎Rf
t q④wt ⑤ Ft✁1

✠
✏ 1✁ α

ô FLt⑤Ft✁1

✁
♣VaRP,t

α � ♣1✁ wtq ☎Rf
t q④wt

✠
✏ 1✁ α

ô ♣VaRP,t
α � ♣1✁ wtq ☎Rf

t q④wt ✏ F✁1
Lt⑤Ft✁1

♣1✁ αq

ô VaRP,t
α ✏ wt ☎ F✁1

Lt⑤Ft✁1
♣1✁ αq ✁ ♣1✁ wtq ☎Rf

t .

(77)

Since the VaR of the risky asset, denoted by VaRt
α, is given by the ♣1✁αq-quantile of the risky

asset’s (conditional) loss distribution, i.e. VaRt
α ✏ F✁1

Lt⑤Ft✁1
♣1 ✁ αq, the VaR of the portfolio is

given by

VaRP,t
α ✏ wt ☎ VaRt

α ✁ ♣1✁ wtq ☎Rf
t . (78)

B.2 Portfolio Conditional Value at Risk

In this section we derive the Conditional Value at Risk (CVaR) for the portfolio loss given in

Equation (10). The CVaR of the portfolio loss LP
t , denoted by CVaRP,t

α , is given by

CVaRP,t
α ✏ E

�
LP
t ⑤LP

t ➙ VaRP,t
α ,Ft✁1

✟
(79)

✏ E

✁
wt ☎ Lt ✁ ♣1✁ wtq ☎Rf

t ⑤wt ☎ Lt ✁ ♣1✁ wtq ☎Rf
t ➙ VaRP,t

α ,Ft✁1

✠
(80)
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From Equation (78), i.e. VaRP,t
α ✏ wt ☎ VaRt

α ✁ ♣1✁ wtq ☎ Rf
t , and since the weight wt and the

riskless return R
f
t are Ft✁1-measurable, it follows

CVaRP,t
α ✏ E

✁
wt ☎ Lt ✁ ♣1✁ wtq ☎Rf

t ⑤Lt ➙ VaRt
α,Ft✁1

✠
✏ wt ☎ E

�
Lt ⑤Lt ➙ VaRt

α,Ft✁1

✟✁ ♣1✁ wtq ☎Rf
t ,

✏ wt ☎ CVaRt
α ✁ ♣1✁ wtq ☎Rf

t ,

(81)

where CVaRt
α :✏ E

�
Lt ⑤Lt ➙ VaRt

α,Ft✁1

✟
denotes the CVaR of the risky asset.

C Backtesting Target Risk Strategies

C.1 Backtesting Target VaR Strategies

By definition, the variable HP
t is equal to one, if LP

t ✁ VaRtarget
α → 0 and zero else. From

Equation (10) it follows that the portfolio loss is given by

LP
t ✏ wt ☎ Lt ✁ ♣1✁ wtq ☎Rf

f . (82)

Moreover, given the weight wt, the portfolio VaR equals the predefined VaR level VaRtarget
α ,

and hence from Equation (78) we obtain

VaRtarget
α ✏ VaRP,t

α ✏ wt ☎ VaRt
α ✁ ♣1✁ wtq ☎Rf

t . (83)

Consequently, we have

LP
t ✁ VaRtarget

α ✏ wt ☎ Lt ✁ wt ☎ VaRt
α ✏ wt ☎ ♣Lt ✁ VaRt

αq. (84)

Since the weight wt is strictly positive, it follows

LP
t ✁ VaRtarget

α → 0 ô Lt ✁ VaRt
α → 0. (85)

Therefore, the variable HP
t is equal to Ht.

C.2 Backtesting Target CVaR Strategies

Given the weight wt, the target CVaR equals the portfolio CVaR, and hence from Equation (81)

it follows

CVaRtarget
α ✏ CVaRt,P

α ✏ wt ☎ CVaRt
α ✁ ♣1✁ wtq ☎Rf

t . (86)
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Therefore, the difference between the portfolio loss and the target CVaR is given by

LP
t ✁ CVaRtarget

α ✏ wt ☎ Lt ✁ wt ☎ CVaRt
α ✏ wt ☎ ♣Lt ✁ CVaRt

αq. (87)

Moreover, from Equation (2) and since wt and R
f
t are Ft✁1-measurable we obtain❜

var♣RP
t ⑤ Ft✁1q ✏

❛
var♣wt ☎Rt ⑤ Ft✁1q ✏ wt ☎

❛
var♣Rt ⑤ Ft✁1q ✏ wt ☎ σt. (88)

Consequently, from Equations (87), (88) and (37) it follows

LP
t ✁ CVaRtarget

α❛
var♣RP

t ⑤ Ft✁1q
✏ wt ☎ ♣Lt ✁ CVaRt

αq
wt ☎ σt

✏ Lt ✁ CVaRt
α

σt

✏ L✝t ✁ CVaRt,✝
α . (89)

D Additional Results

D.1 Risk Targeting as Absolute Return Strategy

This section presents additional results for the risk targeting strategies. Figure III demonstrates

that downside risk targeting can be used as an alternative to absolute return and other hedge

fund strategies as examined in Fung and Hsieh (1997) and Agarwal and Naik (2004). This

figure plots a target VaR strategy with a VaR target of VaRtarget
α ✏ 0.5% and a significance level

of α ✏ 0.4%. Hence, this strategy should exhibit a daily return lower than ✁0.5% only once a

year. Days with a return lower than ✁0.5% are marked with a red cross. As can be seen from the

figure, the strategy is successful in mitigating extreme negative returns and produces positive or

moderately negative returns with a very high probability. The target VaR strategy’s long-term

return is as high as the return of the 60/40 portfolio and only slightly lower than the return of

the DAX. However, the target risk strategy also takes much lower risk with significantly lower

drawdowns. Hence, this strategy is appealing for highly risk-averse or loss-averse investors

who nevertheless are interested in capturing the long-term potential of equity markets. We only

show the VaR-EWMA-FHS strategy in Figure III since this strategy is easy to estimate and

implement, and hence, could be interesting for practitioners. Other risk targeting strategies

produce similar or even superior performance charts.
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Figure III. Cumulative return of VaR targeting. This figure plots the cumulative return of a target VaR

strategy and two benchmark portfolios. The target VaR strategy uses the EWMA volatility model com-

bined with Filtered Historical Simulation (FHS), a VaR target of VaRtarget
α ✏ 0.5% and a significance

level of α ✏ 0.4%. Days when the portfolio return is lower than ✁0.5% are marked with a red cross.

D.2 Downside Risk Targeting for Different Significance Levels

In Table XIII we show additional performance results of risk targeting for significance levels

of 1%, 2.5% and 5%. These significance levels are frequently used in the literature on VaR and

CVaR forecasting (see Bali et al. (2008) for example). The target VaR and CVaR levels are

recalculated to match the chosen volatility target by using Equations (31) and (46). For reasons

of clarity we only report the Sharpe Ratio, the maximum drawdown and the economic value

∆MV of risk timing for a mean-variance investor with a moderate risk aversion of γ ✏ 5. The

economic value ∆MV measures the annualized fee in percent an investor is willing to pay to

switch from the 60/40 portfolio to a risk targeting strategy. In line with the results of Tables V

and VIII we find that downside risk targeting is superior to volatility targeting in terms of higher

Sharpe Ratios, lower drawdowns and a higher economic value. Further, also in line with the

previous results, we find that managing risk by conditional models outperforms the strategies

based on HSD or Historical Simulation. This result is most pronounced for high significance
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levels. Generally, downside risk targeting becomes less attractive if a higher significance level

α is chosen. This result is in line with Happersberger et al. (2019). The higher the significance

level the more downside risk targeting resembles volatility targeting. This result highlights that

when portfolio risk is managed, an investor should best manage extreme losses as found by

Basak and Shapiro (2001). Hence, an investor should choose CVaR as risk measure and a low

significance level. However, even for a significance level of α ✏ 5% CVaR targeting is typically

superior to volatility targeting. Interestingly, the strategies based on the skewed t distribution

are very stable in terms of the Sharpe Ratio for different levels of α. However, drawdown and

economic value indicate that low levels of α are superior.

Table XIII. Additional performance results for different significance levels

This table reports additional performance results of risk targeting for the DAX as risky asset and sig-

nificance levels α of 1%, 2.5% and 5%. SR denotes the annualized Sharpe Ratio, MDD the maximum

drawdown in per cent and ∆MV the economic value of risk targeting for a mean-variance investor with

risk aversion γ ✏ 5, i.e. the annualized fee in per cent a mean-variance investor is willing to pay to

switch from the 60/40 portfolio to a risk targeting strategy. - marks a negative Sharpe Ratio.

α ✏ 1% α ✏ 2.5% α ✏ 5%

Model SR MDD ∆MV SR MDD ∆MV SR MDD ∆MV

Vola Hist 0.102 41.237 0.280 0.102 41.237 0.280 0.102 41.237 0.280

Vola EWMA 0.122 40.553 0.669 0.122 40.553 0.669 0.122 40.553 0.669

Vola GARCH 0.116 39.277 0.789 0.116 39.277 0.789 0.116 39.277 0.789

VaR Hist 0.009 35.559 0.191 - 38.415 -0.482 0.022 40.808 -0.697

VaR EWMA FHS 0.126 38.693 1.106 0.119 38.372 1.030 0.124 38.120 0.970

VaR EWMA EVT 0.131 36.365 1.354 0.124 37.873 1.091 0.120 38.902 0.868

VaR EWMA Stsk 0.146 36.304 1.379 0.142 38.030 1.118 0.139 39.464 0.890

VaR GARCH FHS 0.120 38.160 1.085 0.110 38.803 0.928 0.109 38.507 0.821

VaR GARCH EVT 0.116 37.325 1.169 0.108 38.366 0.927 0.106 38.972 0.762

VaR GARCH Stsk 0.148 35.729 1.539 0.148 37.168 1.348 0.146 38.344 1.159

CVaR Hist 0.055 30.298 0.982 0.027 33.217 0.462 0.022 35.590 0.116

CVaR EWMA FHS 0.132 35.754 1.443 0.129 37.056 1.287 0.126 37.421 1.179

CVaR EWMA EVT 0.139 34.685 1.609 0.133 36.002 1.413 0.129 37.018 1.242

CVaR EWMA Stsk 0.152 34.268 1.659 0.147 35.830 1.449 0.143 37.056 1.270

CVaR GARCH FHS 0.126 37.396 1.279 0.120 37.919 1.151 0.115 38.026 1.046

CVaR GARCH EVT 0.132 36.157 1.452 0.121 37.086 1.240 0.115 37.773 1.079

CVaR GARCH Stsk 0.145 34.017 1.707 0.146 35.353 1.570 0.145 36.386 1.445

D.3 Results for US Data and Small Caps

Table XIV shows additional performance results for US data and small caps, proxied by the

S&P 500 and the German small cap index SDAX, respectively. The data are also obtained from

Datastream, where we use the three month treasury bill rate as risk free rate for the US data

as also used by Marquering and Verbeek (2004). Panel A contains results for the S&P 500,

which are mainly in line with the results of Tables V and VIII for the DAX. The dynamically

95

 Electronic copy available at: https://ssrn.com/abstract=3444999 



managed target risk strategies exhibit higher returns than the 60/40 portfolio with comparable

risk. Further, returns of the dynamically managed strategies are slightly lower than the return

of the S&P 500 but with only about half of the volatility. The Historical Simulation based

strategies perform again significantly worse than the dynamically managed strategies. This

is also regarded by the Sharpe Ratios. The downside risk managed strategies, especially the

CVaR managed strategies, produce higher Sharpe Ratios than the volatility managed strategies.

Only the Historical Simulation based target VaR strategy has a lower Sharpe Ratio than the

S&P 500. However, the Sharpe Ratio test of Jobson and Korkie (1981) indicates that only

the strategies based on the EWMA model combined with the skewed t distribution produce a

statistically higher Sharpe Ratio. Similar results also hold for the maximum drawdown. The

highest drawdown reduction, given by ∆MDD, is obtained by the dynamically managed CVaR

strategies, whereas statically or volatility managed strategies are less successful in reducing the

drawdown. The economic value for a risk aversion of γ ✏ 5 is even negative for the HSD

managed strategy and the target VaR strategy based on Historical Simulation. For γ ✏ 15 the

economic value becomes negative for all target volatility strategies and the Historical Simulation

based target VaR strategy. That is, a mean-variance investor with risk aversion γ ✏ 15 is not

willing to pay a positive fee to switch away from the 60/40 portfolio to a volatility managed

strategy. In contrast, the economic value of the dynamically downside risk managed strategies

is always positive and the highest for the CVaR managed strategies.

Panel B shows the results for the German small cap index SDAX. Interestingly, the dy-

namically downside risk managed strategies exhibit higher returns with lower risk than the

60/40 portfolio and the SDAX. The volatility managed strategies produce even higher returns

than the downside risk managed strategies, but also exhibit higher risk. As before, the highest

Sharpe Ratios are obtained by the dynamically managed VaR and CVaR strategies. The test

of Jobson and Korkie (1981) shows that three target VaR, four target CVaR strategies but none

of the target volatility strategies exhibit statistically significant higher Sharpe Ratios than the

HSD managed strategy. Similarly, drawdown reduction is the highest for the CVaR managed

strategies, whereas the drawdown reduction of the volatility managed strategies is only small.
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Table XIV. Performance results for S&P 500 and SDAX

This table shows additional performance results for the S&P 500 and the SDAX for the period 01.01.2000

to 31.12.2018. Return and Volatility denote the annualized return and volatility in percent. SR denotes

the annualized Sharpe Ratio. zJK denotes the test statistic of the Sharpe Ratio test of Jobson and Korkie

(1981). MDD and ∆MDD denote the maximum drawdown and the reduction of the maximum drawdown

in relation to the drawdown of the risky asset. ∆
γ✏5
MV and ∆

γ✏15
MV denote the economic value of a mean-

variance investor with risk-aversion of γ ✏ 5 and γ ✏ 15, respectively. Return, Volatility, MDD,

∆MDD, ∆
γ✏5
MV and ∆

γ✏15
MV are given in percent.

Panel A: Results for S&P 500

Model Return Volatility SR zJK MDD ∆MDD ∆
γ✏5

MV ∆
γ✏15

MV

Vola Hist 4.758 13.092 0.236 - 36.594 36.753 -0.060 -3.447

Vola EWMA 4.916 12.653 0.257 0.874 34.989 39.527 0.316 -2.530

Vola GARCH 4.356 11.949 0.226 -0.213 33.525 42.058 0.126 -1.863

VaR Hist 3.028 10.147 0.137 -0.834 35.535 38.583 -0.358 -0.367

VaR EWMA FHS 4.617 10.598 0.279 0.976 27.207 52.978 0.990 0.509

VaR EWMA EVT 4.353 10.037 0.268 0.840 26.898 53.512 0.969 1.074

VaR EWMA Stsk 5.015 10.763 0.311 2.186 28.338 51.023 1.303 0.642

VaR GARCH FHS 4.402 10.797 0.254 0.337 29.831 48.443 0.697 0.003

VaR GARCH EVT 4.183 10.223 0.247 0.228 27.856 51.855 0.729 0.643

VaR GARCH Stsk 4.339 10.173 0.263 0.520 29.922 48.285 0.900 0.865

CVaR Hist 3.083 9.103 0.159 -0.651 33.242 42.546 0.097 1.102

CVaR EWMA FHS 4.471 9.591 0.293 1.224 23.061 60.144 1.260 1.810

CVaR EWMA EVT 4.369 9.248 0.293 1.134 22.515 61.087 1.292 2.172

CVaR EWMA Stsk 5.123 9.934 0.347 2.519 25.619 55.722 1.755 1.965

CVaR GARCH FHS 4.527 10.050 0.285 0.924 26.064 54.953 1.132 1.223

CVaR GARCH EVT 4.404 9.736 0.282 0.863 24.509 57.640 1.138 1.545

CVaR GARCH Stsk 4.550 9.383 0.308 1.222 27.602 52.294 1.417 2.170

S&P 500 4.338 19.220 0.139 -0.750 57.859 - -4.335 -16.409

60/40 3.395 10.139 0.173 -0.569 33.295 42.455 - -

Panel B: Results for SDAX

Model Return Volatility SR zJK MDD ∆MDD ∆
γ✏5

MV ∆
γ✏15

MV

Vola Hist 8.474 13.524 0.486 - 69.223 -2.530 1.658 -2.309

Vola EWMA 8.388 12.656 0.513 1.021 64.100 5.059 2.039 -0.811

Vola GARCH 8.572 12.109 0.551 1.182 57.488 14.851 2.490 0.309

VaR Hist 4.724 8.937 0.323 -1.619 41.755 38.155 0.185 1.397

VaR EWMA FHS 6.711 9.335 0.519 1.095 50.749 24.834 1.938 2.796

VaR EWMA EVT 6.927 9.162 0.552 2.176 49.228 27.086 2.210 3.235

VaR EWMA Stsk 6.527 10.029 0.465 -0.502 52.839 21.737 1.489 1.656

VaR GARCH FHS 8.046 9.908 0.621 2.380 44.342 34.323 2.986 3.279

VaR GARCH EVT 7.581 9.559 0.596 2.039 46.223 31.537 2.682 3.327

VaR GARCH Stsk 6.439 9.661 0.473 -0.141 47.153 30.159 1.552 2.089

CVaR Hist 4.727 8.172 0.354 -1.296 38.189 43.436 0.451 2.335

CVaR EWMA FHS 6.809 8.667 0.570 2.263 46.291 31.436 2.277 3.762

CVaR EWMA EVT 6.673 8.389 0.573 2.259 45.036 33.296 2.245 3.975

CVaR EWMA Stsk 5.822 9.139 0.434 -1.106 47.413 29.774 1.162 2.199

CVaR GARCH FHS 7.671 9.204 0.628 2.543 43.768 35.173 2.905 3.897

CVaR GARCH EVT 7.487 8.901 0.630 2.521 42.341 37.286 2.843 4.121

CVaR GARCH Stsk 5.503 8.861 0.413 -1.116 42.852 36.529 0.958 2.249

SDAX 6.489 15.792 0.293 -1.705 67.515 - -1.523 -8.496

60/40 5.033 10.190 0.313 -1.534 47.612 29.479 - -

Interestingly, the drawdown of the HSD managed strategy is even higher than the drawdown of

the SDAX. The economic value of risk targeting is again positive for the downside risk managed

strategies, the highest for the CVaR managed strategies and negative for the volatility managed

strategies when the investor is highly risk-averse. Further, the annualized fees are typically
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higher when SDAX is used as underlying asset compared to the S&P 500. We also find that the

skewed t distribution does not work well for the SDAX although this strategy works well for

the DAX and the S&P 500. Hence, the estimation methods can perform quite differently when

different assets are used. A possibility to obtain more robust results for different assets would

be to combine several forecasting methods (Halbleib and Pohlmeier, 2012, Taylor, 2014). In

summary, the additional results for S&P 500 and SDAX confirm the result of the DAX. That is,

portfolio risk is best managed by using CVaR as risk measure and a conditional risk model.

Table XV. Performance results for S&P 500 and SDAX: Switching strategies

This table shows additional performance results for the S&P 500 and the SDAX for the period 01.01.2000

to 31.12.2018 for the strategies that switch between volatility and CVaR targeting. The description of the

columns is given in Table XIV.

Panel A: Results for S&P 500

Model Return Volatility SR zJK MDD ∆MDD ∆
γ✏5

MV ∆
γ✏15

MV

Vola Hist 4.758 13.092 0.236 - 36.594 36.753 -0.060 -3.447

S&P 500 4.338 19.220 0.139 -0.750 57.859 - -4.335 -16.409

60/40 3.395 10.139 0.173 -0.569 33.295 42.455 - -

GARCH/CVaR Hist 2.239 12.100 0.051 -0.993 49.617 14.246 -1.975 -4.099

GARCH/CVaR EWMA FHS 4.522 8.753 0.327 0.903 19.646 66.044 1.622 2.964

GARCH/CVaR EWMA EVT 4.445 8.461 0.329 0.822 18.847 67.427 1.649 3.250

GARCH/CVaR EWMA Stsk 6.003 9.493 0.455 2.440 23.150 59.989 2.783 3.439

GARCH/CVaR GARCH FHS 4.610 9.264 0.318 1.090 20.855 63.955 1.520 2.387

GARCH/CVaR GARCH EVT 4.462 8.917 0.314 0.954 21.334 63.127 1.504 2.696

GARCH/CVaR GARCH Stsk 5.060 8.833 0.384 1.580 26.067 54.947 2.116 3.391

Panel B: Results for SDAX

Model Return Volatility SR zJK MDD ∆MDD ∆
γ✏5

MV ∆
γ✏15

MV

Vola Hist 8.474 13.524 0.486 - 69.223 -2.530 1.658 -2.309

SDAX 6.489 15.792 0.293 -1.705 67.515 - -1.523 -8.496

60/40 5.033 10.190 0.313 -1.534 47.612 29.479 - -

GARCH/CVaR Hist 10.271 11.269 0.740 3.623 40.745 39.651 4.503 3.294

GARCH/CVaR EWMA FHS 9.897 10.826 0.736 4.097 48.113 28.738 4.353 3.655

GARCH/CVaR EWMA EVT 10.012 10.769 0.751 4.189 47.135 30.186 4.489 3.855

GARCH/CVaR EWMA Stsk 9.253 11.043 0.665 3.140 48.362 28.369 3.644 2.706

GARCH/CVaR GARCH FHS 10.410 11.083 0.765 4.491 46.524 31.090 4.723 3.729

GARCH/CVaR GARCH EVT 10.550 11.005 0.783 4.649 45.611 32.443 4.891 3.984

GARCH/CVaR GARCH Stsk 10.014 11.079 0.730 3.903 44.924 33.461 4.349 3.362

We next assess if our switching approach also works for the S&P 500 and SDAX. Results

of the switching strategies are shown in Table XV where we only show results for one indicator

δt for each asset. The switching strategies are again successful in producing higher returns

compared to the individual strategies and thus provide an enhanced risk-return profile. The

Sharpe Ratios of the switching strategies in Table XV are higher than the Sharpe Ratios of the

individual strategies reported in Table XIV. For the SDAX, the test of Jobson and Korkie (1981)

shows that all switching strategies produce statistically higher Sharpe Ratios than the HSD
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strategy with extremely high values of zJK . The switching strategies not only exhibit higher

returns than the individual strategies, they also provide a better drawdown protection measured

by ∆MDD. Further, the economic value is also increased by switching between volatility and

CVaR targeting. Concluding, our simple switching approach does not only work well for the

DAX but also for the S&P 500 and SDAX.

D.4 Risk Targeting in the Long Run

So far, we only examined a period of 18 years which was marked by several crises. To assess if

risk targeting is also beneficial in the long run we use data for the US market from 1929 to 2018.

Data for the US market and the risk-free rate are obtained from the website of Kenneth French

and are also used by Moreira and Muir (2017).82 Results for the long sample are shown in Table

XVI. The strategies that switch between volatility and CVaR targeting exhibit similar levels of

return as the US market but take significantly less risk in terms of volatility and drawdown. This

translates into a significantly higher Sharpe Ratio and large utility gains for a mean-variance

investor. Interestingly, although the skewed t distribution works well for the S&P 500, the same

approach does not work well for the long US sample.

Table XVI. Performance results for US market in the long run: Switching strategies

This table shows additional performance results for the US market for the period November 1929 to

December 2018 for the strategies that switch between volatility and CVaR targeting. The description of

the columns is given in Table XIV.

Model Return Volatility SR zJK MDD ∆MDD ∆
γ✏5

MV ∆
γ✏15

MV

Vola Hist 9.779 13.283 0.481 - 55.886 30.248 1.241 1.671

US market 9.215 16.839 0.347 -2.216 80.121 0.000 -1.424 -6.219

60/40 8.620 13.597 0.387 -1.632 54.299 32.229 - -

GARCH/CVaR Hist 9.643 11.534 0.543 1.961 42.724 46.676 1.996 4.690

GARCH/CVaR EWMA FHS 9.529 10.999 0.559 3.101 41.725 47.922 2.136 5.469

GARCH/CVaR EWMA EVT 9.537 10.936 0.563 3.178 41.052 48.763 2.172 5.579

GARCH/CVaR EWMA Stsk 9.044 11.264 0.504 1.044 48.097 39.970 1.563 4.568

GARCH/CVaR GARCH FHS 9.399 11.312 0.532 2.068 46.561 41.887 1.872 4.829

GARCH/CVaR GARCH EVT 9.416 11.235 0.538 2.236 45.571 43.123 1.924 4.973

GARCH/CVaR GARCH Stsk 8.713 11.255 0.476 -0.105 52.580 34.374 1.260 4.266

Similar to Moreira and Muir (2017, Figure 3), Figure IV shows the cumulative return of

the US market, the 60/40 portfolio, the HSD strategy and the strategy that switches between

volatility and CVaR targeting for a 100$ investment. For a better comparison, we rescale all

82http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Figure IV. Cumulative return of risk targeting. This figure plots the cumulative return of the US mar-

ket, the 60/40 portfolio, the HSD target volatility strategy and a strategy that switches between volatility

and CVaR targeting for the period 1929 to 2018.

strategies to the volatility of the US market. Figure IV shows the clear outperformance of

the risk targeting strategies. Both strategies successfully capture the upside potential of the

market while downside risk is limited. However, the strategy that switches between volatility

and CVaR targeting clearly outperforms the HSD managed strategy. A 100$ investment in

the market portfolio would result in a terminal wealth of 357,591.55$. Invested in the target

volatility strategy terminal wealth would increase to 4,420,160.75$. However, the strategy that

switches between volatility and CVaR targeting produces a final wealth of even 28,313,411.79$.

This is in line with the results of Moreira and Muir (2019) that even long-term investors should

time short-term risk.
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Kellner, R. and Rösch, D. (2016). Quantifying market risk with value-at-risk or expected

shortfall?–consequences for capital requirements and model risk. Journal of Economic Dy-

namics and Control, 68, 45–63.

Kelly, B. and Jiang, H. (2014). Tail risk and asset prices. Review of Financial Studies, 27,

2841–2871.

Kim, A. Y., Tse, Y. and Wald, J. K. (2016). Time series momentum and volatility scaling.

Journal of Financial Markets, 30, 103–124.

Kirby, C. and Ostdiek, B. (2012). Its all in the timing: simple active portfolio strategies that

outperform naive diversification. Journal of Financial and Quantitative Analysis, 47, 437–

467.

Ko, B., Russo, R. P. and Shyamalkumar, N. D. (2009). A note on nonparametric estimation of

the CTE. Astin Bulletin, 39, 717–734.

Kraus, A. and Litzenberger, R. H. (1976). Skewness preference and the valuation of risk assets.

Journal of Finance, 31, 1085–1100.

Kuester, K., Mittnik, S. and Paolella, M. S. (2006). Value-at-risk prediction: A comparison of

alternative strategies. Journal of Financial Econometrics, 4, 53–89.

Lee, W. Y. and Rao, R. K. (1988). Mean lower partial moment valuation and lognormally

distributed returns. Management Science, 34, 446–453.

Lempérière, Y., Deremble, C., Nguyen, T.-T., Seager, P., Potters, M. and Bouchaud, J.-P. (2017).

Risk premia: Asymmetric tail risks and excess returns. Quantitative Finance, 17, 1–14.

106

 Electronic copy available at: https://ssrn.com/abstract=3444999 



Liu, J., Longstaff, F. A. and Pan, J. (2003). Dynamic asset allocation with event risk. Journal

of Finance, 58, 231–259.

Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets. Journal

of Finance, 56, 649–676.

Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal

of Banking & Finance, 24, 1097–1130.

Lundblad, C. (2007). The risk return tradeoff in the long run: 1836–2003. Journal of Financial

Economics, 85, 123–150.

Marquering, W. and Verbeek, M. (2004). The economic value of predicting stock index returns

and volatility. Journal of Financial and Quantitative Analysis, 39, 407–429.

McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic

financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271–300.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative risk management: Concepts,

techniques and tools. Princeton university press.

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory inves-

tigation. Journal of Financial Economics, 8, 323–361.

Moreira, A. and Muir, T. (2017). Volatility-managed portfolios. Journal of Finance, 72, 1611–

1644.

Moreira, A. and Muir, T. (2019). Should long-term investors time volatility? Journal of Finan-

cial Economics, 131(3), 507–527.

Moskowitz, T. J., Ooi, Y. H. and Pedersen, L. H. (2012). Time series momentum. Journal of

Financial Economics, 104(2), 228–250.

Muir, T. (2017). Financial crises and risk premia. The Quarterly Journal of Economics, 132,

765–809.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econo-

metrica, 59, 347–370.

Packham, N., Papenbrock, J., Schwendner, P. and Woebbeking, F. (2017). Tail-risk protection

trading strategies. Quantitative Finance, 17, 729–744.

Patton, A. J. (2004). On the out-of-sample importance of skewness and asymmetric dependence

for asset allocation. Journal of Financial Econometrics, 2(1), 130–168.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal

of Econometrics, 160(1), 246–256.

Poon, S.-H. and Granger, C. W. (2003). Forecasting volatility in financial markets: A review.

Journal of Economic Literature, 41, 478–539.

107

 Electronic copy available at: https://ssrn.com/abstract=3444999 



Poon, S.-H., Rockinger, M. and Tawn, J. (2004). Extreme value dependence in financial mar-

kets: Diagnostics, models, and financial implications. Review of Financial Studies, 17, 581–

610.

Pritsker, M. (2006). The hidden dangers of historical simulation. Journal of Banking & Finance,

30, 561–582.

Rickenberg, L. (2019). Risk-managed momentum strategies. Working Paper.

Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data snooping.

Econometrica, 73(4), 1237–1282.

Scott, R. C. and Horvath, P. A. (1980). On the direction of preference for moments of higher

order than the variance. Journal of Finance, 35, 915–919.

Strub, I. S. (2013). Tail hedging strategies. Available at SSRN 2261831.

Sullivan, R., Timmermann, A. and White, H. (1999). Data-snooping, technical trading rule

performance, and the bootstrap. The Journal of Finance, 54(5), 1647–1691.
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