
Forecasting recovery rates on non-performing loans with machine
learning

Anthony Bellottia, Damiano Brigoa, Paolo Gambettib,∗, Frédéric Vrinsb

aDepartment of Mathematics, Imperial College London, London, SW7 2AZ, UK
bLFIN, UCLouvain, Louvain-la-Neuve, B-1348, Belgium

Abstract

We compare the performances of a wide set of regression techniques and machine
learning algorithms for predicting recovery rates on non-performing loans, using a pri-
vate database from a European debt collection agency. We find that rule-based algorithms
such as Cubist, boosted trees and random forests perform significantly better than other
approaches. In addition to loan contract specificities, the predictors referring to the bank
recovery process – prior to the portfolio’s sale to the debt collector – are also proven to
strongly enhance forecasting performances. These variables, derived from the time-series of
contacts to defaulted clients and clients’ reimbursements to the bank, help all algorithms to
better identify debtors with different repayment ability and/or commitment, and in general
with different recovery potential.
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1. Introduction

Lending is, by far, the primary business in retail banking. Whereas most loans are paid

back in full and in due time, some others default, in the sense that the borrower violates

the repayment schedule. The latter, commonly labeled as non-performing loans (NPLs),

have been the focus of European regulators’ attention in recent years, as many banks still

face difficulties to dispose of those materialized on their balance sheets during the financial

crisis. To limit impairment losses and financial stability concerns, regulators recommend

banks to pool their NPLs and sell them to specialized investors, such as debt collection

agencies. However, the prompt disposal of NPLs is hampered by the large bid-ask spreads

characterizing their market, determined by discrepancies in data availability between banks

and investors, and by poor valuation methodologies (ECB, 2017; ESRB, 2017, 2018).

One of the most important variables governing the price of NPLs portfolios is the

recovery rate, the percentage of exposure that can be recovered from each borrower through
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the debt collection process. The recovery rates achievable by the debt collector are unknown

at the time of purchase of the portfolio and need to be predicted. Clearly, in order to fairly

evaluate the portfolio, both parties should rely on a set of information that best allows

identifying borrowers’ recovery potential, and on effective forecasting methodologies. To

that end, several regression methods have been proposed. More recently, machine learning

techniques also started to be successfully applied to this field of research. However, most

of the existing studies focus on corporate bonds or loans. Models focusing on retail credit

products such as mortgages and credit cards still largely need to be investigated.

Several gaps in this specific stream of literature urge to be filled. For instance, while

most references model the recovery rate obtainable by the same bank originating the loan,

only the study of Ye and Bellotti (2019) focuses on the recovery rate achievable, at a second

stage, by the specialized investor purchasing the NPL on secondary markets. More research

is now needed in this latter direction, given the systematic character of the NPL issue.

Similarly, there is no precise research quantifying the impact of asymmetries of exposures’

information on recovery rates forecasting. Providing such a study would contribute to

the regulator’s objective of designing macro-prudential policies aimed at improving the

functioning of NPL markets (ESRB, 2018).

The literature on retail loans also lacks an up-to-date benchmark study involving ma-

chine learning methods. The last research of this kind was conducted in Loterman et al.

(2012), where the authors compared twenty-four different techniques and conclude that

nonlinear and two-stage algorithms are associated with better predictive performances with

respect to linear models used in previous analyses (Bellotti and Crook, 2007; Caselli and

Querci, 2009). Nevertheless, they also document particular difficulties in forecasting recov-

ery rates on retail loans, for which model performances are generally aligned across models

and often unsatisfactory. Two-stage algorithms for consumer loans are also proposed by

Bellotti and Crook (2012) and Ye and Bellotti (2019) to accommodate the multi-modal

character of recovery rate distributions. The spectrum of machine learning algorithms in-

volved in this literature is however still limited; many alternative models that have proven

to be effective in other domains still have to be applied to the recovery rate problem.

Eventually, general data constraints – added to privacy protection norms and confi-

dentiality policies promoted by banks – did not allow previous references to identify many

potential predictors of recovery rates for retail loans. The literature is indeed very limited

in this respect. For example, Grippa et al. (2005) and Querci (2005) understand the impor-

tance of taking regional differences into account on top of the loans characteristics or the

debtor’s socio-demographics which are typically used for credit scoring. Besides account’s

information, Bellotti and Crook (2012) further consider three macroeconomic variables mea-

sured at the time of default to model credit cards’ recovery rates in the UK. They report

modest improvements in forecasting performances for models including macroeconomic fac-
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tors and stress that their effectiveness is strictly dependent on having enough training data

to span the entire business cycle. As for the inclusion of macroeconomic factors, we observe

that predictive models for retail loans’ recovery rates have not reached the same level of

complexity of the most recent bond-related models (Nazemi and Fabozzi, 2018; Nazemi

et al., 2018).

Another critical reflection of Bellotti and Crook (2012) is the possibility of extracting

information on clients’ recovery potential from the account behavioral patterns observed

during the debt repayment period. This is partially investigated in Ye and Bellotti (2019)

thanks to a private database from a debt collection agency that purchased a large portfolio

of NPLs from a European bank. The authors show that pre-purchase recovery rates and

the total number of calls between the bank and defaulted clients are significant predictors

of post-purchase recovery rates. Despite these novel results, however, their study does not

fully exploit account behavior data in the spirit of what Bellotti and Crook (2012) suggest.

Indeed, the literature still lacks a systematic study that takes into account the behavioral

dynamics of reimbursements and/or contacts observed on defaulted accounts during the

debt repayment period.

The objective of our paper is to fill all the aforementioned gaps. We structure this

research as a benchmark study of machine learning methods for forecasting NPL recovery

rates. This approach, together with the unique proprietary dataset in our possession, allow

us to provide two key contributions to this field of research.

First, we consider four new techniques for recovery rates forecasting: Gaussian pro-

cesses, relevance vector machines, conditional inference trees, and Cubist. The latter are

increasingly popular in the machine learning community and have been successfully applied

in various fields, such as image processing, robotics, mechanical engineering, and epidemi-

ology. We benchmark a total of twenty different models belonging to the classes of linear,

nonlinear and rule-based algorithms. In this respect, we find that the capability of rule-

based algorithms to isolate sub-groups of clients is an important quality to consider when

modeling retail loan recovery rates. Cubist, boosted trees and random forests outperform

all the other methods in predicting debt collector’s recovery rates. This evidence is pre-

served across all model specifications and is found to be statistically significant by the model

confidence set procedure.

Second, we extend the spectrum of retail loan recovery rates predictors in two directions.

On the one hand, we enlarge the number of economic indicators involved in the models. We

consider more than one-hundred financial, macroeconomic, and housing market indicators

measured at the time of default for each loan. We find the latter two types of indicators

to be always selected as important predictors of recovery rates. On the other hand, and

most importantly, we enhance the framework of Ye and Bellotti (2019) by also taking

into account the dynamics of the time-series of contacts to defaulted clients and clients’
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reimbursements to the bank, prior to the portfolio’s sale to the debt collector. Using feature

engineering, we seek to extract knowledge on clients’ behavior that proxies for their ability

or willingness to repay the debt and to characterize the pressure exercised by the bank in

soliciting each client. We find that these features help all models to better identify debtors

with different repayment ability and/or commitment, and in general with different recovery

potential. Models having access to the bank recovery process information exhibit better

performances in predicting debt collector’s recovery rates according to all performance

measures. Variable importance metrics further emphasize the role of these predictors, as

well as the one of contract specifications. We eventually bring evidence that rule-based

algorithms should be preferred to the other methods when recovery process data are not

disclosed by the selling bank. Their forecasting ability, although is impacted, remains very

performing.

The remainder of this paper is structured as follows. Section 2 includes a description

of the data. Section 3 includes an overview of the different algorithms we employ, together

with the relative model specifications. Section 4 discusses the results of our study. Section

5 concludes.

2. Data

The dataset involved in this study refers to a large transaction of NPLs between a

European bank (on the sell-side) and a debt collection agency (on the buy-side)1. All

exposures are entirely represented by defaulted consumer loans: mortgages and credit cards.

The data we consider represent an extension of the sample used in Ye and Bellotti (2019)

and derive from the connection among four different databases that we now describe.

2.1. Socio-demographic and loan file data

The first database, partly retrieved from the reference state’s Bad Debt Bureau, includes

socio-demographic and loan file information for the defaulted borrowers. The main socio-

demographic features included in this database are the borrowers’ age, gender, marital

status, as well as their province of residence. All borrowers have the same nationality and

are representative of all state’s provinces. The database also provides further personal

details that are instead not used due to excess of granularity (e.g. city of residence, postal

code), class imbalance (e.g. language spoken) and redundant content (e.g. title vs gender).

Loan file information contained in this first database refers to the credit application

process and the default event. As for loan applications, we recover contractual details such

as the type of credit product (e.g. mortgages vs credit cards), the amount of principal and

1Due to a confidentiality agreement, we cannot mention the name of the two parties, nor their specific
country of domicile.
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interest, the over-limit and late payment fees, as well as the account open date. Similarly,

we can access detailed features that express borrowers’ credit risk: these include the Credit

Bureau Score, credit limit and an indicator signaling whether an employer reference was

provided at the time of application. As for the information related to default instead, we

can retrieve the loans’ default date and the outstanding exposures at the time the debt

collector purchased the loans.

2.2. Bank recovery history

The second database contains information relative to the recovery process promoted

by the bank that originated the loans, before the portfolio is sold to the debt collector.

For each borrower, the database includes monthly summaries of net repayment amounts

computed as the difference between the borrower’s i repayment and the administrative fees

registered at a given month t:

NRAit = P it −Ait . (1)

Additionally, the database also includes information on the evolution of borrowers’

outstanding exposure during the bank recovery period. Given this information, we hence

define the recovery rate obtained by the bank on a given loan as:

RRBanki =

∑τ
t=ti NRA

i
t

OBi
max

, (2)

where ti denotes the start of borrower i’s recovery process, τ is the selling date of

the NPL, and OBi
max represents the maximum outstanding balance recorded for the i-th

borrower during the bank recovery process2.

Furthermore, this second database also provides monthly information on the number of

calls, visits and contacts between the bank and the defaulted borrower. As will be explained

in section 3.1, many variables of interest for this study will be feature engineered from those

latter.

2.3. Debt collector’s recovery rates

The third database includes information on the recovery amounts obtained by the debt

collector which purchased the NPLs from the originating bank: only positive recovery

amounts are registered. The main quantity of interest derived from this database is the

recovery rate obtained by the debt collector, after the purchase of the NPLs. We compute it

as the sum of recovery payments made by a given borrower i, between the time of purchase

2We consider the maximum instead of the initial balance because the exposure is not monotonically
decreasing for each NPL. This would be the case, for instance, if additional penalty fees are debited to the
defaulted borrower during the bank recovery process.
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of the NPL τ and the last repayment date T , and divided by the outstanding balance

measured at the time of purchase of the NPL:

RRDebt collectori =

∑T
t=τ P

i
t

OBi
τ

. (3)

The recovery rate obtained by the debt collector is the target variable for our study.

2.4. Business cycle variables

Eventually, in order to capture the systematic component underlying recovery rate vari-

ations, we connect a fourth database of business cycle variables. Data are compiled by the

reference state’s National Bank and comply with the international quality standards estab-

lished in the ESCB’s Public Commitment on European Statistics. The original database

includes more than 400 macroeconomic, financial, structural and housing market indicators

for the reference state, measured at different frequencies.

Additionally, we also consider a news-based measure of economic-related uncertainty

for the Euro area (Baker et al., 2016) and two uncertainty measures specific to the ref-

erence state. As it is shown by several references, in fact, economic uncertainty is a key

determinant of the economic outlook (Kose and Terrones, 2012; ECB, 2016; Gieseck and

Largent, 2016; Ludvigson et al., 2019). Measures of economic uncertainty have also proved

to be particularly effective to model bond recovery rates (Gambetti et al., 2019). Their

usefulness for retail loans is instead first investigated in this study.

2.5. Dataset definition and pre-processing

We merge the first three databases using borrowers’ identifiers. 34,807 identifiers from

the second database can be matched with the ones included in the first one. These are

the NPLs for which some recovery attempt was registered by the bank (independently of

whether the attempt was successful or not). Of these, only 10,232 can also be matched

with the third database which includes debt collector recovery information.

We instead connect systematic variables to the other data using the borrowers’ default

dates3. A visual summary of the loans origination, default and recovery periods for the

NPL data we consider is included in Fig. 1.

The resulting dataset is then submitted to preprocessing. Several steps are needed to

correct wrongly encoded information, to remove missing values, and to discard uninforma-

tive or zero-variance predictors. We also filter the predictors’ space to remove variables

3Given that not every measure is available for each default date, we need to subset the sample. In this
respect, the knowledge provided by industry participants suggests us to prioritize the availability of housing
market indicators, which are mostly accessible after March 2007. We hence retain only the loans defaulted
after that date.
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Figure 1: Time lines of loans origination, default issues and recovery periods. All borrowers opened a
loan account between October 1988 and May 2014, which subsequently defaulted between August 1990 and
March 2015. After default on a given loan, the originating bank started an internal recovery procedure. The
bank eventually interrupted all recovery processes in August 2015 and sold all NPLs to an external investor,
a specialized debt collection agency. This entity tried to recover the maximum amount out of the remaining
outstanding balance for each NPL. The debt collector recovery process covers more than three years.

with perfect collinearity. Categorical predictors are eventually dummy coded. After pre-

processing, the dataset features 10,152 recovery rate observations and 344 predictors. The

definition of training and test samples is then undertaken using a standard 75%–25% ran-

dom split. Summary statistics for both samples of recovery rates are reported in Table 1.

Table 1: Summary statistics of RRDebt collector for training and test sets.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Training set 7,614 0.395 0.298 0.0001 0.107 0.630 1.000
Test set 2,538 0.408 0.303 0.0002 0.115 0.650 1.000

We now proceed with the description of the methodology.

3. Methodology

3.1. Feature engineering on bank recovery information

We assume that much of the information about recovery potential during the debt

collector recovery period can be extracted from the variables relating to the bank recovery

process. By applying feature engineering, we seek to capture behavioral patterns that relate

to the capacity and commitment of each borrower in reimbursing the defaulted debt. By

investigating the dynamics of interactions between the bank and defaulted clients instead,

we attempt to extract knowledge on the difficulty of imposing repayments on the latter.

Similarly, we can gain insights about the approaches the bank used for softening potential

clients’ resistances, and about the relative spillover effects during the debt collector recovery

period.
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For each exposure, we hence undertake feature engineering to derive potentially mean-

ingful quantities, such as the average and the variation of monthly repayments and/or calls,

visits or contacts. Further examples include these variables’ minimum and maximum, their

first and last values, the total number of repayments, or the time, out of the total recovery

period, in which the bank had the initiative of contacting the client. To the best of our

knowledge, none of these features was considered in previous studies.

3.2. Model specifications and training

The identification of the best class of machine learning methods for forecasting NPL

recovery rates is undertaken through a benchmark study. We compare 20 models belonging

to the classes of linear, nonlinear and rule-based algorithms. In order to assess the predictive

power of the bank recovery process information, we train each model using two different

specifications of the predictors’ space. The first specification (specification 1 ) represents the

full space of predictors described above: socio-demographic variables, loan file information,

bank recovery period information and systematic variables. As for the second specification

(specification 2 ) instead, we define it by removing from the predictors’ space all the variables

related to – or derived from – the bank recovery process.

When required, model hyper-parameters are tuned by 10-fold cross-validation on the

training set. In these cases, mean squared error (MSE) is used as cost function. Training

routines for all models can be efficiently reproduced through the latest version of the caret

R library (Kuhn, 2008; Kuhn and Johnson, 2013; Kuhn, 2018). We provide more details

on the specific algorithms we used in Table A1 in the appendix.

3.3. Linear models

We consider seven linear models in this study: ordinary least squares regression (OLS),

OLS regression with backward stepwise selection, two different versions of ridge and lasso

regression, and the elastic net regression. All these linear models can be defined as particular

configurations of the following minimization problem:

arg min
β

‖Y −Xβ‖22 + λ
(
(1− α)‖β‖22 + α‖β‖1

)
(4)

where Y = (Y1, ..., YN ) denotes the vector of training set observations, X denotes the

(N × p) model matrix of regressors and β = (β1, ..., βp) denotes the vector of unknown

regression coefficients. Different specifications of the penalty factor λ ≥ 0 and the mixing

factor 0 ≤ α ≤ 1 give rise to different models. In particular, we have that:

• λ = 0 defines the standard ordinary least squares regression (OLS) where the full

model matrix X is considered. Backward stepwise selection is an iterative procedure

where the predictor that has the least impact on the fit is sequentially removed from

the model.;
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• λ > 0 defines a penalized model. By specifying α = 0, the model coincides with the

ridge regression. By specifying α = 1, the model generates the lasso. Elastic net

regression is instead a weighted average of ridge and lasso where 0 < α < 1.

The OLS model does not feature any hyper-parameter and it is tuned on the overall training

set. The maximum number of predictors in the backward stepwise selection is tuned by

cross-validation. The same applies to the hyper-parameter λ in ridge and lasso regression.

As for these latter, we also take a heuristic choice of λ based on the ”one standard error

rule” (Hastie et al., 2009): we choose the highest lambda (i.e. the most regularized model)

for which the corresponding MSE is within one standard error of the optimum MSE. As

for the elastic net, the hyper-parameters λ and α are also tuned by cross-validation.

3.4. Nonlinear models

3.4.1. Multivariate adaptive regression splines (MARS)

MARS (Friedman, 1991) is an adaptive algorithm which involves piecewise linear trans-

formations of the original predictors. Each predictor Xj is expanded into a set of reflected

pairs that is determined by specific cut points t according to:

(Xj − t)+ =

Xj − t, if Xj > t

0, otherwise
and (t−Xj)+ =

t−Xj , if Xj > t

0, otherwise
(5)

where j = (1, 2, ..., p) and t ∈ {x1j , x2j , ..., xNj}. A standard linear regression model

is then created by applying forward-stepwise selection on the elements of the set H =

{(Xj − t)+, (t−Xj)+}, that is, the set of all predictor/cut point combinations.4 To avoid

overfitting, the MARS algorithm further applies a backward deletion procedure to the

individual features that, if removed, are associated with the smallest error rate. The best

model of each size is then produced. In this study, we apply a MARS algorithm of degree

one and we tune the number of terms to be retained in the final model by cross-validation.

3.4.2. K-nearest neighbors

K-nearest neighbors is a non-parametric method that produces a prediction of the target

variable by using the average of the K training observations that are closest in the input

space. A new prediction is hence computed as:

f̂(x) =
1

K

∑
xi∈NK(x)

yi , (6)

4The degree of the MARS algorithm represents the number of reflected pairs that are selected for each
predictor during the forward-stepwise procedure. Multiple reflected pairs for the same predictor can be
selected by MARS models of degree higher than one.
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where NK(x) denotes the neighborhood of x, the set of the K closest observations in the

training set. The notion of closeness between samples is generally based on the Euclidean

distance. The parameter K, denoting the size of the neighborhood, can be tuned by cross-

validation.

3.4.3. Model averaged neural networks

Model averaged neural networks (Ripley, 1996) is an ensemble method where the outputs

of multiple neural networks are averaged to form a unique prediction. Neural networks

composing the ensemble are initialized by using different starting values for the parameters

to estimate. This moderates the effects of the back-propagation algorithm’s convergence

to local optima, and reduces the model variance with respect to that of a single neural

network that may tend to over-fit the data. Individual neural networks can also be modified

to include a weight decay λ that penalizes large coefficients. This amounts to solving the

following minimization problem:

arg min
β, γ

N∑
i=1

(yi − fi(x))2 + λ

h∑
k=1

p∑
j=0

β2jk + λ

h∑
k=0

γ2k (7)

where fi(x) is the i-th fitted value from a neural network model involving p predictors and

h hidden units. In this work we apply model averaging by using 5 neural networks with

weight decay. The number of hidden units and the weight decay parameter are both tuned

by cross-validation.

3.4.4. Support vector machine

Support vector regression (Vapnik, 1995) is a kernel-based algorithm that has proven

to be particularly effective to limit the effect of outliers on the model fit. Coefficients

for support vector regression can be estimated starting from the following minimization

problem:

arg min
β0, β

C
N∑
i=1

Lε(yi − f(xi)) +

p∑
j=1

β2j , (8)

where Lε is an ε-insensitive loss function and C is the penalty assigned to residuals of size

larger or equal to ε. The solution of (8) can be written in terms of a set of unknown weights

wi, and a positive definite kernel function K(·) that depends on the training set data points:

f(x) = w0 +
N∑
i=1

wiK(x, xi) . (9)

Training samples associated to non-zero weights (i.e. the support vectors) determine the

model fit. The most common choice for the kernel function is the radial basis kernel
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K(x, x′) = exp(−σ‖x − x′‖). We estimate the scaling parameter σ following the method-

ology of Caputo et al. (2002); we instead tune the cost parameter C via cross-validation.

3.4.5. Relevance vector machine

Relevance vector regression (Tipping, 2001) is a kernel method whose functional form

is identical to (9) but where the model weights are estimated using a Bayesian learning

framework. This approach has the advantage of leading to much sparser models than

SVM regression because the posterior distribution of the weights is essentially zero in many

cases. Additionally, it leads to a probabilistic interpretation of the model predictions. In

particular, the predictive distribution of the target variable y∗ for a new input vector x∗ is

given by:

p(y∗|x∗, X, y) ∼ N (µTφ(x∗), s2 + φ(x∗)TΣφ(x∗)) , (10)

where µ is the vector of posterior mean weights, φ(x∗) = [1,K(x∗, x1), ...,K(x∗, xN )]T , s2 is

the estimated variance of the output noise, and Σ takes account of the uncertainty around

the model weights. The radial basis function is the standard choice for the kernel, but

unlike SVM, the RVM kernel function is not constrained to be positive definite.

3.4.6. Gaussian processes

Gaussian processes (Williams and Rasmussen, 1996) is another Bayesian kernel method

that can be considered as a non-sparse non-parametric generalization of the RVM model.

In contrast to the RVM in fact, Gaussian processes impose a prior distribution directly

on the function values (instead of the model weights). The joint prior distribution of the

function values is assumed to be Gaussian with zero mean and covariance matrix equal

to the kernel matrix Kij = K(xi, xj). Gaussian processes are entirely determined by this

covariance matrix, the underlying assumption being that samples that are close in input

space should also have similar values for the target variable. Given a new input vector x∗,

the approach leads to the following predictive distribution of the target variable y∗:

p(y∗|x∗, X, y) ∼ N (φ(x∗)TK−1y, s2 + φ∗(x∗)− φ(x∗)TK−1φ(x∗)) , (11)

where φ(x∗) and s2 have the same meaning as above and φ∗(x∗) = K(x∗, x∗). We implement

Gaussian processes by using radial basis kernel in this study.

3.5. Rule-based models

3.5.1. Regression trees

By using conditional statements, regression trees (Breiman et al., 1984) partition the

predictors’ space into a set of non-overlapping regions and fit a simple model to each of

them. In their simplest version, they fit an intercept-only model which amounts to use

the average of the target variables associated with each region. To build the regions, the
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algorithm employs a top-down recursive partitioning. It starts with the full dataset and

divides it into two groups according to the predictor/cut point combinations that achieve

the largest decrease in RSS. The process is recursively applied within the new regions until a

certain stopping criterion is satisfied, such as the number of samples in the terminal nodes.

To limit over-fitting, the tree is then pruned back by using cost-complexity pruning. The

amount of regularization is determined by a complexity parameter that can be tuned via

cross-validation.

3.6. Conditional inference trees

Regression trees often suffer from selection bias: predictors featuring a higher number

of candidate cut points have a higher probability of being chosen during the tree growing

step. Conditional inference trees (Hothorn et al., 2006a) have been conceived to overcome

this limitation. For each predictor, the algorithm employs statistical hypothesis testing to

assess the difference between the means of the two samples created by a candidate split. To

reduce the selection bias for highly granular predictors, multiple comparison corrections are

applied (Westfall and Young, 1993). The p-value threshold determining the implementation

of a new split, as well as the hyper-parameter controlling the tree maximum depth, can be

tuned by cross-validation.

3.6.1. Bagged trees

Bagged trees (Breiman, 1996) is an ensemble method resulting from the aggregation of

the outputs of multiple regression trees that are trained on bootstrapped versions of the

training set. Given a new sample of predictors, the predictions of the individual trees are

then averaged to deliver a unique predicted value for the target variable. The individual

trees composing the ensemble are generally not pruned, which results in low bias but high

variance. The latter concern is then mitigated by the aggregation effect. The number

of trees composing the ensemble, equal to the number of bootstrap samples that need

to be generated, can be tuned by cross-validation. However, model training can become

computationally expensive for large datasets.

3.6.2. Random forests

Random forests (Breiman, 2001) is a rule-based algorithm that was conceived to over-

come the problem of high correlations among individual trees in bagged models. For bagged

trees, in fact, all predictors are considered at each split during the tree-growing process,

which translates in trees with very similar structures (especially in the top nodes). For

random forests instead, only a subset of m < p randomly selected predictors is considered

at each split. This reduces tree correlation and also the variance of the ensemble prediction.

The number of randomly selected predictors for this model can be tuned by cross-validation.
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3.6.3. Boosted trees

Contrarily to bagging and random forests, boosted trees is an ensemble method where

the base learners (i.e. regression trees) are sequentially fitted. The model is based on the

gradient boosting machines algorithm (Friedman, 2001), a powerful procedure where the

model residuals are iteratively fitted by many weak learners. To avoid overfitting, only

a percentage of each fitted value (called learning rate) is added to the residual from the

previous learner. The main hyper-parameters for this model are represented by the number

of boosting iterations (equal to the number of trees), the learning rate, and the individual

trees’ depth. Stochastic gradient boosting is an improved version of the algorithm that also

includes a random sampling scheme of the training data at each iteration step.

3.6.4. Cubist

Cubist (Quinlan, 1993) is a rule-based algorithm that extends the M5 model tree ap-

proach (Quinlan, 1992) with features borrowed from boosting and K-nearest neighbors.

Similarly to M5, cubist features a tree-structure where each node contains a linear regres-

sion model. The predictors of the linear models are the same variables that satisfy the

rule defining a specific node. After the tree is grown, the fits in each node are recursively

smoothed by using the fit from the corresponding parent node.5 Rules are then pruned

and/or combined using the adjusted error rate criterion as in M5. Given a new sample, the

cubist model computes a prediction as the average of the models from all the corresponding

parent rules. Eventually, it can adjust the prediction using a weighted average of sample

neighbors, were the weight attributed to each neighbor is proportional to the distance in

input-space. Committees can be created by connecting several model trees in a particular

boosting-like framework, that iteratively try to correct for positive/negative prediction er-

rors. The number of neighbors for instance-based correction and the number of committees

can be tuned via cross-validation.

3.7. Performance assessment

The best configuration of each model is used to forecast the sample of recovery rates in

the test set. Model performances are assessed according to three different performance met-

rics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2, where the

latter is computed as the squared correlation between the predictions Ŷ and the correspond-

ing test set observations Y . Additionally, we complement the comparison of performance

metrics with the model confidence set (MCS) procedure proposed by Hansen et al. (2011).6

5Smoothing involves a linear combination of the two models where the one with the smallest RMSE has
the largest weight. See Quinlan (1992) and Kuhn and Johnson (2013) for details.

6In particular, we refer to the algorithmic implementation by Bernardi and Catania (2018) included in
the MCS R library. By default, the MSC procedure is undertaken with a value of α = 0.15 but this quantity
can be changed by the user.

13



Given a collection of competing models M0, the MCS procedure aims at identifying a

superior set of models M̂∗1−α ⊆M0 with a confidence level 1−α. The procedure is based on

sequential hypothesis testing and on the null hypothesis of equal predictive ability for the

set of models under consideration. At each step, a model associated with poor forecasting

performances is removed from the set of candidate best models. The test statistic and

the elimination rule both depend on an arbitrary loss function L(Y, Ŷ ), which allows the

procedure to be applied to a wide spectrum of problems. The strongest result for this

procedure is represented by the case in which only one model belongs to the superior set

of models.

4. Results and Discussion

4.1. Benchmarking regression algorithms

We visually document the out-of-sample performances of our algorithms in the right

column of Fig. 2. White dots refer to the case in which models were allowed to access all

types of variables during training, there included the ones feature engineered from the bank

recovery process information (i.e. specification 1 models). Black dots instead refer to the

case where models were allowed to learn from all variables except from those referring to

the bank recovery process (i.e. specification 2 models). Following previous references, we

mainly discuss model performances in terms of R2 figures in what follows. In fact, while the

RMSE is more expressive of forecasting performances, the R2 remains the most intuitive

measure of explanatory power. Our observations in terms of R2 values remain valid in the

case we use RMSE metrics.

By analyzing the metrics profiles for specification 1, we first notice that four models

stand out for their better forecasting performances. Cubist, random forests and boosted

trees (with and without random sampling) have a clear advantage on the other models in

terms of lower RMSE and MAE values. They also feature a sensibly higher proportion

of explained variation, with R2 measures ranging from 18.54% to 19.79%. The gap with

the remaining group of models is noticeable, with the latter barely reaching R2 values of

15.52% and 15.70% associated with MARS and bagged trees respectively. We also find that

the R2 values of the algorithms trained on specification 1 are generally superior to those

obtained in previous analyses on personal loans, and regardless of the fact the latter were

based on linear regression (Bellotti and Crook, 2012; Leow et al., 2014) or more refined

methods (Loterman et al., 2012).7 This is a first indication of the importance of involving

bank recovery period information in the modeling exercise by the debt collector.

7For example, when modeling personal loans with linear regression, Bellotti and Crook (2012) and Leow
et al. (2014) obtain test set R2 measures of 11% and 14.28%, respectively. Similarly, Loterman et al. (2012)
reach 13.79% of R2 using a combination of linear regression and support vector machines.
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Figure 2: Comparison of model performances across models and model specifications on the test set. Spec-
ification 1 corresponds to the white dots, specification 2 to the black dots instead. Blue rectangles identify
the superior set of models tested on specification 1 using the squared errors as loss function. Red rectangles
instead represent the superior set of model tested on specification 2.
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Moreover, when we use the squared error loss function in the model confidence set proce-

dure, the superior set of models (depicted by blue squares) on the test set precisely coincides

with Cubist, random forests and the two versions of boosted trees.8 These four rule-based al-

gorithms are hence significantly associated with better forecasting performances and should

be preferred to other methods when the debt collector needs to forecast NPL recovery rates.

This result also essentially suggests that groups of borrowers with substantially different

recovery potential are included in the portfolio and that once a group is determined, the

recovery potential of the borrowers inside the group is relatively homogeneous. Considering

the set of predictors our models are allowed to access during training, we expect this

segmentation to be largely derived on the basis of behavioral features emerged during the

bank recovery process. The results of specification 2 models, discussed below, seem to point

in that direction.

As we expected in fact, when we prevent the algorithms to access the predictors derived

and/or referable to the bank recovery process, we observe a sudden deterioration in all

model performances.9 This difference is suggestive of the high informational content all

models were deprived of, prior to training them.

Nevertheless, we observe that Cubist and the two versions of boosted trees are again

associated with lower RMSE and MAE values, and larger R2 metrics with respect to those

of other regression methods. We also find the MARS algorithm to be competitive in this

respect, in what it even outperforms random forests.

In terms of explanatory power, the best four models trained on specification 2 feature

test set R2 ranging from 14.28% for MARS to 15.48% obtained by Cubist. We now observe

that most algorithms exhibit R2 values much more aligned with the ones reported by the

aforementioned references which did not exploit our particular set of predictors.

On this specification, the model confidence set procedure with squared error loss iden-

tifies a superior set of models (represented by the red squares) still composed by Cubist,

boosted trees and random forests, and augmented with MARS. However, we can also ob-

serve that the advantage of the superior set of models, with respect to the other group, is

less clear cut compared to the previous case. In fact, we report a spread in the test set R2

of 18.54% to 15.70% (between boosted trees with stochastic gradient boosting and MARS)

for specification 1, and only a spread of 13.37% to 12.95% (between random forests and

linear regression with backward selection) for specification 2. Similar evidence also applies

in terms of forecasting performances, quantified by the other two metrics.

In particular, we observe that most of the largest losses in forecasting power are associ-

8In the case we use the absolute error instead, only Cubist is identified as the single best performing
model.

9This evidence applies to all algorithms with the exception of OLS regression, whose RMSE decreases.
This means that the model is now better at capturing extreme observations.
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ated with the four rule-based algorithms that best performed on specification 1. It appears

that these models lost most of the relevant information that was determining their advan-

tage. We notice that declines in forecasting performances are also particularly evident for

other two rule-based models: regression trees and bagged trees. Hence, while all models

seem to be affected by the lack of relevant information about borrowers’ repayment ability

and/or commitment, the methods that group borrowers based on those features are the

most affected ones.

Despite this, the superiority of rule-based algorithms in forecasting these data remains

evident, especially in the case of models relying on ensembles and tree-like structures.10

The practical consequence is that, when forecasting NPL recovery rates, debt collector

agencies can still rely on the ability of these models to correctly identify sub-groups of

clients with different recovery potential, even in the case bank recovery information is not

available. While the segmentation would be performed less efficiently in this case, the

specific architecture of rule-based ensembles still represents an advantage with respect to

that of other approaches merely implying linear or non-linear relationships.

4.2. Variable importance rankings

The evidence reported so far suggests that groups of clients with different recovery

potential can be discovered much more efficiently when the algorithms can access bank

recovery information; but also that some adequate segmentation can still be made without

those variables.

In this section, we answer the question on what are the specific predictors used by

our algorithms and what is their relative importance inside the model. We provide this

evidence in Fig. 3, which includes the top 20 variable importance rankings for the three

models that best performed on the test set. Given that we use model-specific variable

importance metrics, and for the sake of interpretability, all values are scaled relative to the

largest inside each model.11

Variable importance rankings for specification 1 models are displayed in the left column

of Fig. 3. In this case, we observe that the top 20 ranking is always composed by a

mixture of bank recovery process information and loan file data. The recovery rate obtained

by the bank, as well as the outstanding balance of the NPL when the bank started the

recovery process, seem to play a particularly important role among the former type of

variables. Compared to Cubist, random forest and boosted trees seem to make larger use

of the information relating to the dynamics of borrowers’ repayments to the bank (i.e. the

10We hence extend in two directions the findings of Bastos (2014) regarding the superiority of horizontal
ensembles in forecasting recovery rates on defaulted corporate debt. First, by validating the aforementioned
result also in the context of retail NPLs. But most importantly, by extending the analyses to non-horizontal
ensembles, such as boosted trees and Cubist.

11See Kuhn (2018) for the details about model-specific variable importance metrics.
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Figure 3: Top 20 variable importance rankings for Random forests, boosted trees and Cubist on the two
specifications of the predictors set.

summary statistics of the net paid amounts). Variables relating to contacts with defaulted

clients are present in the top 20 ranking for all models, with a particular focus on call data
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in the case of Cubist. This latter is also the only model that explicitly attributes high

importance to systematic variables already on specification 1, and in particular to interest

rates data.

With regard to loan file information instead, the largest importance is always attributed

to the loan principal. This evidence is not surprising because this variable is highly corre-

lated with the exposure used to compute the recovery rate obtained by the debt collector.

Additional loan file data figuring in the top 20 ranking for specification 1 are mostly associ-

ated with the creditworthiness of the debtor. These include the credit limit, interest, Credit

Bureau score, survival time, and a proxy for clients’ experience with the loan product.

The right column of Fig. 3 displays variable importance rankings for specification 2

models. We clearly recognize that bank recovery period information is substituted by

socio-demographic and business cycle variables, although these latter have a significantly

lower importance than the former factors. In general, loan-specific variables are the ones

that play the most important role in this specification.

In terms of socio-demographic factors that gain positions in the variable importance

ranking instead, we can observe that the borrowers’ age is now present in the top 20 for all

models, and the marital status is further displayed by random forests and boosted trees.

Particularly interesting are the business cycle variables that are displayed in the top 20

ranking on this specification. The algorithms seem in fact to understand that the NPLs

for which we forecast recovery rates are referred to consumers, and also include residential

mortgages. Importance rankings of boosted trees and Cubist display different measures

of labor market conditions (e.g. participation rate, rate of employment and workers reg-

istered for social security) and inflationary pressure (e.g. consumer and producer price

indexes). The rankings of boosted trees and random forests also feature several housing

market indicators: production in construction, number of dwellings and house started, and

consumption of cement.

Eventually, we observe that the random forest features less systematic variables in

its top 20 ranking than the other two algorithms, but also that it displays the economic

uncertainty index. We report a similar behavior also for boosted trees with stochastic

gradient boosting. This latter algorithm actually includes the same economic uncertainty

index also on specification 1, together with a housing market indicator. It hence appears

that the findings of Gambetti et al. (2019) about the usefulness of economic uncertainty

proxies for modeling recovery rates are also validated in the context of NPLs. We attribute

this result to the well-established capability of uncertainty measures to anticipate economic

fluctuations (see references in Section 2.4).

4.3. Effect of the variables on model predictions

In the previous sections, we have highlighted the superiority of rule-based ensembles

in forecasting the recovery rates achievable by the debt collector. We have also shown

19



that algorithms should be trained using predictors referring to the bank recovery process, if

available. The latter increase the capability of the model to understand borrowers’ recovery

potential, and ultimately increase its forecasting performances. When not available, the

modeler should mainly refer to loan file data instead.

Especially for practical purposes, it is then appealing to investigate the relationship be-

tween model forecasts and the predictors, to understand if relationships are different across

models, and also to give them an interpretation. We do this thanks to the accumulated

local effects (ALE) plots displayed in Fig. 4 and 5.12 They represent how individual inputs

influence the model predictions on average: the vertical axes measure the differences with

respect to the mean prediction (close to 40% for all algorithms in our case). Flat lines

centered at zero indicate that the feature is not used by the algorithm. We select the plots

based on their interpretability and the importance of the corresponding variables.

From the plots selected for specification 1 models (Fig. 4), we notice that the rule-

based algorithms with higher forecasting power also generally agree on the shape of the

approximated prediction-variable relationships. The flexibility of these models allows them

to better approximate the true relationship compared to the best linear or nonlinear models

(backward stepwise selection and MARS), which only capture general trends.

Some interesting intuitions that can be derived from these plots. Proceeding row-wise

in the figure, we infer that the debt collector should expect higher recovery rates for those

borrowers who have already shown their repayment ability and/or commitment during

the bank recovery period. In particular, she should expect to collect higher than average

recoveries for those borrowers with bank recovery rates higher than a threshold of roughly

30%. NPLs with outstanding balance higher than 5000 euros at the beginning of the bank

recovery period also seem to promise recovery rates higher than the average for the debt

collector. There are also indications of higher recovery rates for those NPLs associated

with a larger number of net repayments to the bank (independently of their value). As for

the interactions between the bank and defaulted borrowers, all models seem to understand

that an increase in the average number of contacts (different from calls and visits) has

not a positive connotation in terms of recovery potential. On the other side, borrowers

that have been the object of larger efforts to enforce repayments through calls, seem to

promise higher recovery rates to the debt collector. Eventually, it seems that the last

registered net repayment – before the bank sold the portfolio to the debt collector – is

quite representative of the recovery potential for a given client. A possible explanation is

the fact that the bank has probably notified the clients before transferring their NPLs to

12ALE plots were developed by Apley (2016) to visualize the effects of different input variables on the
model predictions also for complex algorithms. Relative to common alternatives (i.e. partial dependence
and marginal plots), ALE plots do not suffer from bias in the presence of correlated predictors, do not
require extrapolation and are more computationally efficient.
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Figure 4: Accumulated local effects plots for selected predictors among bank recovery period data. Plots
are derived from specification 1 models.

the specialized debt collector; borrowers with ”latent” repayment ability tried to avoid this

situation or to largely limit their exposure before the transfer.

By analyzing the ALE plots of Fig. 5, relative to specification 2 models, we find that the

principal of the loan contributes negatively to the model predictions. We also observe one of

the main shortcomings of applying algorithms that are not tailored to model recovery rates

data: linear regression with backward stepwise selection and MARS can predict recovery

rate values largely below the zero boundary. The credit limit clearly conveys information

relative to borrowers’ repayment ability: the higher the limit they were granted, the higher

the recovery rate the debt collector can obtain. With respect to borrowers age, most models

21



−0.6

−0.3

0.0

0.3

0 5000 10000 15000

principal

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

−0.1

0.0

0.1

0.2

0.3

0 5000 10000 15000

creditlimit

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

−0.15

−0.10

−0.05

0.00

40 60 80

Age

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

−0.5

0.0

0.5

1.0

0 2500 5000 7500

Survival_time

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

−0.010

−0.005

0.000

0.005

0.010

0.00 0.25 0.50 0.75 1.00

maritalStatus.S

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

−0.01

0.00

0.01

0.02

0.03

0 100 200 300 400

DelphiScore

p
re

d
ic

ti
o

n

Model
Backward sel.

Boosted trees

Boosted trees (SGB)

Cubist

MARS

Random forests

Figure 5: Accumulated local effects plots for selected predictors among socio-demographic and loan file
data. Plots are derived from specification 2 models.

seem to identify a slightly negative downtrend after 65 years, which roughly corresponds

to the retirement age for the reference state. These models suggest that the debt collector

has to expect proportionally lower recovery rates for borrowers only perceiving a retirement

income. As for the survival time, the relation displayed by all models is overshadowed by

the large response of Cubist but is always positive: the more time passed before a client

defaulted on his loan, the higher is the recovery rate the debt collector can expect to obtain.

All algorithms also capture a positive signal, in terms of higher expectation of recovery, if

the borrower is single (only the extremes of the corresponding ALE plot matter in this

case). It is in fact well-known that collections are largely slowed down, in several European
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legislations, when the borrower has dependent family members and especially in the case

of mortgages. Furthermore, we can observe that most models predict proportionally higher

recovery rates for those NPLs whose borrower was attributed a higher score by the Credit

Bureau. In particular, the algorithms suggest that the debt collector should expect recovery

rates higher than the average if the score was higher than 350 points.

5. Conclusion

We undertook a large scale benchmark study of machine-learning algorithms for fore-

casting recovery rates on non-performing loans for retail clients. We carried out model

comparisons under two perspectives. First, we compared algorithms belonging to three dif-

ferent classes – namely linear, nonlinear and rule-based – with the objective of identifying

the model structure best suited to the recovery rate problem. Second, we compared those

algorithms across different specifications of the predictors set in order to shed light on the

variables that should be involved in the forecasting exercise by the debt collection agency,

whenever she purchases a portfolio of NPLs from a bank.

We collected a large database of predictors for this study. We involved factors that pre-

vious literature identified as important determinants of recovery rates; these latter include

socio-demographic characteristics of defaulted borrowers, loan file information and business

cycle variables. But most importantly, we considered a novel type of predictors feature en-

gineered from the data relative to the recovery procedure promoted by the selling bank. We

derived these predictors to characterize the dynamics of borrowers’ repayments to the bank

and those relative to the bank’s contacts for enforcing repayments. We in fact assumed

that the dynamics observed during the bank recovery process convey important informa-

tion relative to borrowers’ repayment ability and/or commitment, and are also informative

of recovery potential during the recovery process promoted by the debt collector.

We found that rule-based algorithms of ensemble type, especially random forests and

the newly added boosted trees and Cubist, displayed the best forecasting performances.

This superiority was also found to be statistically significant by the model confidence set

procedure. Regardless of the type, we found all models to perform much better when they

were allowed to access the variables relative to the bank recovery process during training.

Variable importance metrics highlighted the primary role of these variables in influencing

the models and stressed the priority to employ loan file data when the latter factors were not

available. We believe that the superiority of rule-based algorithms in forecasting recovery

rates has to be explained with their natural capability to segment defaulted borrowers

based on their recovery potential. This segmentation ability is much more evident when

the algorithms could learn from borrowers’ past repayment behavior and the bank’s loan

enforcement strategy.
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Our research sheds light on some best practices that should be implemented to con-

tribute to a better valuation and management of non-performing loans. It invites regula-

tors to implement policies to limit information asymmetries on secondary markets, and in

particular to encourage banks to disclose the information about the traded NPLs’ recov-

ery procedure. Furthermore, it bolsters debt collectors’ interest to refine NPL assessment

processes for trying to extract as much knowledge as possible about borrowers’ recovery

potential from bank recovery data. Eventually, it highlights the importance of involving

enhanced modeling techniques in the valuation exercise.
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Appendix A. List of algorithms

Table A1: List of prediction algorithms for linear, nonlinear and rule-based models.

Algorithm Caret method Description Author

lm lm Linear regression R Core Team (2017)
leaps leapsBackward Backward stepwise selection Lumley (2017)
glmnet ridge Ridge regression Friedman et al. (2010a)

Friedman et al. (2010b)
glmnet lasso Lasso regression ''
glmnet glmnet Elastic net regression ''

earth earth Multivariate Adaptive Regression Splines Milborrow (2018)
Hastie and Tibshirani (2017)

knn knn K-Nearest neighbors Venables and Ripley (2002)
nnet avnnet Model averaged neural networks ''
ksvm svmRadial Support vector regression Karatzoglou et al. (2004)
rvm rvmRadial Relevance vector regression ''
gausspr gaussprRadial Gaussian processes ''

rpart rpart Regression trees Therneau et al. (2017)
ctree ctree2 Conditional inference trees Hothorn et al. (2006b)
bag treebag Bagged trees Kuhn (2018)
bst bstTree Boosted tree Wang (2018)
gbm gbm Stochastic gradient boosting Greenwell et al. (2018)
randomForest rf Random forests Liaw and Wiener (2002)
cubist cubist Cubist Kuhn and Quinlan (2018)
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Appendix B. Description of variables appearing in the plots

Table B1: Explanation of variables names appearing in the plots of the main text. The second column
identifies the variables that are also present in the second specification of the predictor set.

Variable name Included in specification 2 Description

RRb over maxB Recovery rate obtained during the bank recovery process
last paid amount Last net paid amount registered
init balance Initial total balance for a loan at time of bank recovery
sum npa Sum of the net paid amounts
sd balance St. deviation of the outstanding balance during the bank recovery process
mean npa Borrower’s average net paid amount
num paym Number of monthly summaries registered
mean contacts Average monthly contacts (different from calls and visits)
sd npa St. deviation of the net paid amounts
max npa Maximum net paid amount registered
median npa Median of the monthly net paid amounts
sd all contacts St. deviation of all the monthly contacts
sum contacts Total number of contacts (different from calls and visits)
accOpenDate Date of opening of the loan account
length proc Length of the bank recovery process
median all contacts Median of all the monthly contacts
min contacts Minimum number of contacts (different from calls and visits)
sd all contacts St. deviation of all monthly contacts
max calls Maximum number of calls
median calls Median number of calls
sd calls St. deviation of the calls
principal Original amount of the loan
Total.amount Total amount borrowed by an individual on all accounts
creditlimit Credit limit
interest Interest rate payments
DelphiScore Credit Bureau Score
Survival time Time of survival for a given loan
billingCycle Number of months since repayments began
Total.number Number of loan accounts for a borrower
Age Age of the borrower
overlimit fees Penalty fees for exceeding the credit limit
Hous. starts last 12m Reg. House started in the last 12 months (relative to default date) in a given region
G State Unc Economic policy uncertainty index for the reference state
maritalStatus.S Identifier for borrowers that are single
Experience time Proxy for the borrower’s experience with the loan product
In.our.bureau.submission.Yes Identifier for loans that are in the debt collector bureau
tin pct Percentage interest rate
Hous. stock - N. of dwellings Housing stock - Number of dwellings
Exp of goods & services Export of goods and services
insurance Insurance fees
Prod. In construction Production in construction
Producer price Index Producer price index
Decade.30s Identifier of borrowers in their 30s
Consumption of cement Consumption of cement for the reference state
Hous. starts last 12m Subs. House started in the last 12m subsidized by the government
Participation rate 16-64 Participation rate of citizens of age range 16-64
10y.German.Bund.rate Interest rate on the 10y German Bund
Exp.Int.rates.10y Expected interest rate on the 10y reference state’s bond
Workers registered for S.S. Number of workers registered for social security
Rate of employm. 16-64 F Rate of employment of females in the age range 16-64
Retail.confidence.Indicator Retail confidence indicator
Consumer price Index Consumer price index
Particip. rate youth 20-29 Participation rate of people in the age range 20-29
Order.books Orders of books
CPI..energy Consumer price index: energy
Foreign travellers stays Foreign travellers hotel stays
GVA in agriculture Gross value added for agriculture
Industrial production index Industrial production index
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