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Abstract

We analyse the consequences of portfolio compression on systemic risk. Portfolio com-
pression is a post-trading netting mechanism that reduces gross positions while keeping net
positions unchanged and it is part of the financial legislation in the US (Dodd-Frank Act)
and in Europe (European Market Infrastructure Regulation). We derive necessary struc-
tural conditions for portfolio compression to be harmful and discuss policy implications. In
particular, we show that the potential danger of portfolio compression comes from defaults
of firms that conduct portfolio compression. If no defaults occur among those firms that
engage in compression, then portfolio compression always reduces systemic risk.
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1 Introduction

Portfolio compression is a mechanism in which multiple offsetting contracts are replaced by
fewer contracts to reduce the gross exposure of each institution while keeping its net exposure
unchanged. Reducing gross exposure is beneficial for a wide range of reasons including com-
plying with regulatory requirements such as the minimum leverage ratio introduced under the
Basel III regulation and margin requirements (Duffie, 2017). The new contracts that replace
the old contracts, however, lead to a new network structure of exposures between the market
participants. It is not clear, a priori, what the consequences for systemic risk are - this is what
we analyse here.

The main contribution of this paper is to derive general theoretical results on the conse-
quences of portfolio compression on systemic risk. To the best of our knowledge these con-
siderations have been absent from the literature so far. The European Securities and Markets
Authority (ESMA) has published a consultation paper in 2020, see European Securities and
Market Authority (2020), on post trade risk reduction services (PTRR) of which portfolio com-
pression is an important example. They ask: “Would you agree with the description of the
benefits (i.e. reduced risks) derived from PTRR services? Are there any missing? Could PTRR
services instead increase any of those risks? Are there any other risks you see involved in using
PTRR services?” Hence, there remains uncertainty about the risks of post trade risk reduction
services such as portfolio compression.

In this paper we derive structural conditions for portfolio compression to be harmful or to
reduce systemic risk in a sense that we will formally define in Definition 3.11. Theorem 4.7
contains the main results. It establishes a relationship between defaults and payment abilities
of those nodes conducting compression and systemic risk in the system. One conclusion is that
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as long as only nodes that are not at risk of defaulting (in the non-compressed) system conduct
portfolio compression, portfolio compression will always reduce systemic risk. We will derive
and discuss more fine-tuned results. We will also show both theoretically and in numerical case
studies that there are situations under which portfolio compression can indeed be harmful.

We will proceed as follows. In Section 2 we introduce the theoretical model for the financial
market and formally define what we refer to as portfolio compression (Definition 2.1 and Defi-
nition 2.3) building on D’Errico & Roukny (2019). We only consider portfolio compression that
(potentially repeatedly) removes one cycle from a network and also consider an optimisation
framework for portfolio compression in this context. In Section 3 we explain how we measure
systemic risk. We use the framework by Veraart (2020) which generalises the approaches by
Eisenberg & Noe (2001) and Rogers & Veraart (2013). We assess how different types of pay-
ments obligations associated with derivative positions arise and might lead to loss cascades if a
node fails to satisfy their payment obligations. Our analysis includes variation margins become
due building on the models by Paddrik et al. (2020) and Ghamami et al. (2020). Section 4
contains all results on the consequences of portfolio compression on systemic risk. Theorem
4.7 is the main result, providing structural conditions that are necessary for portfolio compres-
sion to be harmful. We discuss these conditions in detail, derive some additional results that
contribute to our understanding of the consequences of portfolio compression and use them
to discuss policy implications. In Subsection 4.6 we illustrate the results using some example
networks. Section 5 concludes.

1.1 Policy framework and related literature

Understanding the consequences of portfolio compression on systemic risk is of fundamental
importance since it is used both in Europe under the European Market Infrastructure Regulation
on derivatives, central counterparties and trade repositories (EMIR), and in the US under the
Dodd-Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank Act). Under EMIR
portfolio compression is one of the risk mitigation mechanisms for non-centrally cleared OTC
derivative contracts (European Union, 2012). In the US portfolio compression is used as a risk
management tool in the swap market (Commodities Futures Trading Commission, 2012).

Portfolio compression plays an important role in today’s financial markets. It is performed by
private providers - a well-known one is the company TriOptima. It states that “OTC derivative
market participants have eliminated more than $973 trillion in notional principal through April
2017”, TriOptima (2017). Portfolio compression is currently available for “cleared and uncleared
interest rate swaps in 28 currencies, cross currency swaps, credit default swaps, FX forwards,
and commodity swaps”, TriOptima (2017). Its compression service triReduce is currently used
by over 260 institutions worldwide.

Regulatory reforms such as the Basel III minimum leverage ratio provide strong incentives
for market participants to engage in compression activities, see e.g. Duffie (2017). The Basel
III leverage ratio is defined as tier 1 capital divided by the total exposure. Since compression
reduces the exposure, compression increases the leverage ratio making it easier to satisfy the
lower bound, see also Haynes et al. (2019) for further discussions and Remark A.1.

The introduction of margin requirements (also for non-centrally cleared derivatives, see
BCBS IOSCO (2015, 2020)) provides incentives for market participants to engage in portfolio
compression since lower total exposures are associated with both lower initial margin and also
lower variation margin requirements (Duffie, 2017). Despite margin requirements risk of con-
tagion in derivative markets remains as demonstrated empirically in Paddrik et al. (2020) and
Bardoscia et al. (2019).

The literature on regulatory reforms and their consequences on systemic risk in the deriva-
tives markets has mainly focussed on the role of central counterparties, see e.g. Duffie & Zhu
(2011); Cont & Kokholm (2014). Amini et al. (2016b) analysed different netting mechanisms
but not in the context of portfolio compression in centrally cleared markets.
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The literature on portfolio compression is still in its infancy. In particular it mainly focuses
on the actual algorithms to perform the portfolio compression rather than the potential conse-
quences of portfolio compression. O’ Kane (2017) proposes and analyses different multilateral
netting algorithms. Among the algorithms studied an algorithm based on the L1-norm is shown
to be particularly beneficial to eliminate a high fraction of bilateral connections and to retain
the greatest common divisor of existing positions.
D’Errico & Roukny (2019) introduce different types of portfolio compression mechanisms to
show theoretically how the size of over-the-counter markets can be reduced without affect-
ing the net positions of the market participants. In addition they show empirically the large
potential for compression to reduce exposure size using a transaction-level dataset for Credit-
Default-Swaps (CDS) derivatives. They do not use any risk measures to study the effect of
compression on systemic risk.
Schuldenzucker et al. (2018) provide one example that shows that portfolio compression can be
harmful for the system but do not provide any general results.
Duffie (2018) used ideas from portfolio compression in his new auction mechanism (compres-
sion auctions) that convert centrally cleared contracts on the London Interbank Offer Rate to
contracts on the Secured Overnight Financing Rate.

2 Portfolio compression

2.1 The network of liabilities

We consider a financial network consisting of N financial institutions with indices in N =
{1, 2, . . . , N} representing the nodes. We denote by Xij the nominal liability of financial in-
stitution i to financial institution j and write X = (Xij) ∈ [0,∞)N×N for the corresponding
liabilities matrix. Furthermore, we assume that Xii = 0 for all i ∈ N , i.e., nodes do not have
liabilities to themselves. The set of edges is given by E = {(i, j) ∈ N 2 | Xij > 0}.

The liabilities can arise due to entering into derivative contracts such as Interest Rate Swaps
or Credit Default Swaps (CDS), see e.g. Schuldenzucker et al. (2018) 1. We assume that all
these positions are fungible. Our framework would also apply to other types of liabilities such
as interbank lending.

We assume that all contracts are established at time t = 0 and have the same maturity date
t = T > 0. A generalisation to the situation with multiple maturities in the spirit of Kusnetsov
& Veraart (2019) would also be possible.

We denote by L̄
(X)
i =

∑N
j=1Xij the total nominal liabilities of node i and write L̄(X) ∈

[0,∞)N for the vector of total liabilities arising within the network. Similarly, we write Ā
(X)
i =∑N

j=1Xji for the total assets of financial institution i from within the network and write Ā(X) ∈
[0,∞)N for the vector of these total assets. Then we refer to Ā(X) + L̄(X) as gross positions in
the network and to η = Ā(X) − L̄(X) ∈ RN as net positions in the network.

2.2 Defining portfolio compression

Portfolio compression is a mechanisms that nets trades between two or more counterparties
such that the net positions stay the same for all nodes but the gross positions decrease for
all market participants. We only consider a method of compression that would be referred to
as conservative portfolio compression in D’Errico & Roukny (2019). Intuitively, conservative
compression is a mechanism that eliminates cycles in networks.

1Note that in the context of CDS exposures, we exclude the situation in which nodes write CDSs on each
other as in Schuldenzucker et al. (2018). We refer to Schuldenzucker et al. (2020) for more details on clearing in
a network with CDSs if this situation is not excluded.
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Figure 1 provides an example of a network consisting of four nodes in which three perform
multilateral portfolio compression by reducing their exposures along a cycle.

Firm 2

Firm 3

Firm 1 Firm 4

3

3-µ

122-µ

5

5-µ

1

Figure 1: Example of compressing a cycle in a network: The cycle in red with solid lines is
replaced by the cycle in blue with dashed lines where µ ∈ (0, 2].

Definition 2.1 (Portfolio compression). Consider a liabilities matrix X ∈ [0,∞)N×N with
corresponding nodes N = {1, . . . , N} and edges E = {(i, j) ∈ N 2 | Xij > 0}.

1. A cycle is a sequence of distinct vertices Cnodes = {i1, . . . , in} ∈ N with n ≤ N with
(iν , iν+1) ∈ E for all ν ∈ {1, . . . , n− 1} and (in, i1) ∈ E. We denote the corresponding set
of edges by Cedges = {(i1, i2), . . . , (in−1, in), (in, i1)} and write C = (Cnodes, Cedges).

2. Let Cnodes be a cycle with Cedges the corresponding set of edges such that

µmax = min
(i,j)∈Cedges

Xij > 0.

We then refer to C = (Cnodes, Cedges, µmax) as a conservative compression network cycle of
X with maximal capacity µmax.

3. Let C = (Cnodes, Cedges, µmax) be a conservative compression network cycle of X with max-
imal capacity µmax. For any 0 < µ ≤ µmax, we refer to the matrix XC,µ with

XC,µij =

{
Xij − µ if (i, j) ∈ Cedges,
Xij otherwise,

as the µ-compressed liabilities matrix (using cycle C). We refer to L̄
(X),C,µ
i =

∑
j∈N X

C,µ
ij

as the total µ-compressed nominal obligations of node i (using cycle C).

Conservative compression network cycles may or may not exist for a given liability matrix.
Throughout this paper we assume that for any liabilities matrix that we analyse, there exists
at least one conservative compression network cycle.

We show in Lemma B.1 in the Appendix that conservative compression does indeed reduce
gross positions while keeping net positions fixed. Portfolio compression reduces the size of the
balance sheet of a participating node. Its total assets are reduced by µ and its total liabilities
are reduced by µ. Its net worth remains the same.

Remark 2.2 (Compression tolerances). In practice firms provide so-called compression toler-
ances to the compression provider (D’Errico & Roukny, 2019). These are restrictions on the
changes that can be made to the original positions. Mathematically they can be characterised
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by requiring that any new position XC,µij that might replace the original position Xij needs to
satisfy

aij ≤ XC,µij ≤ bij (1)

for some 0 ≤ aij ≤ bij , see (D’Errico & Roukny, 2019, Definition (Compression tolerance)). For
example, if a firm does not want to change a particular position it could set aij = bij = Xij . In
such a case we could just set the corresponding µmax = 0.

Since we only consider conservative compression in this paper we will assume that bij = Xij

for all i, j ∈ N . This in particular implies that no new edges can be creates as part of a
compression exercise (since if Xij = 0 then under this assumption Xij = bij = 0). It might be
the case that a node does not want to remove an edge completely but only wants to reduce the
weight of an edge, i.e., this would correspond to setting aij > 0 as lower bound for the weight
of this particular edge. It is clear from the definition of µmax that if one sets µ = µmax in a
compression exercise then at least one edge (and possibly more) would be removed. To avoid
this, one could change the definition of µmax by setting µ̃max = min(i,j)∈Cedges

(Xij − aij) > 0.

Obviously, µ̃max ≤ µmax. Since all our results will hold for all choices of µ ∈ (0, µmax] they in
particular hold for all µ ∈ (0, µ̃max]. Therefore there is no need for us to explicitly add such
constraints in our analysis.

These compression tolerances are not considered to be functions of any other parameters of
the network and are restrictions on the individual positions. Neither D’Errico & Roukny (2019)
nor O’ Kane (2017) indicate any global constraints when considering the actual compression
mechanism. We will come back to this when we discuss systemic risk in compressed networks.

2.3 Portfolio compression as an optimisation problem

Next we consider conservative portfolio compression as an optimisation problem as described
in D’Errico & Roukny (2019). Its objective is to minimise the total gross exposures of all nodes
participating in the compression exercise while satisfying some constraints.

Definition 2.3 (Conservative compression optimisation problem). Let X ∈ [0,∞)N×N be a
liability matrix. We refer to the following optimisation problem as the conservative compression
optimisation problem. It is given by

min
X̃ij ,i,j∈N

N∑
i=1

N∑
j=1

X̃ij , (2)

subject to

N∑
j=1

(X̃ji − X̃ij) =

N∑
j=1

(Xji −Xij) ∀i ∈ N , (3)

0 ≤X̃ij ≤ Xij ∀i, j ∈ N . (4)

This is a linear programming problem and can be solved using standard methods. Since
X̃ = X satisfies both constraints ((3) and (4)) a feasible solution to these constraints exists.
Furthermore, since the constraint set is bounded, it is clear that a solution exists.

Constraint (3) says that the net exposures of the nodes are not allowed to change by com-
pression. Constraint (4) ensures that the compression is indeed conservative. Since in the new
network the value of any edge is between 0 and its original value, this means that this type of
compression can only reduce liabilities along existing edges but cannot create new edges. As
pointed out in D’Errico & Roukny (2019) the resulting network is therefore a subnetwork of the
original one.
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One could replace the condition (4) by a condition representing the compression tolerance
of the market participants by e.g. requiring that

aij ≤X̃ij ≤ bij ∀i, j ∈ N , for 0 ≤ aij ≤ bij . (5)

Setting e.g., aij = 0 and bij = +∞ would correspond to non-conservative compression, see
D’Errico & Roukny (2019), which would in principle allow for the underlying network to be
rewired. Therefore new trading relationships could be established which is not possible under
conservative compression. As argued in D’Errico & Roukny (2019), setting aij = 0 and bij = Xij

for all i, j ∈ N , is “arguably close to the way most compression cycles take place in derivatives
markets. We thank Per Sjöberg, founder and former CEO of TriOptima, for fruitful discussion
on these particular points”, (D’Errico & Roukny, 2019, p. 19). We will therefore focus on this
setting.

Remark 2.4 (Relationship of solution to optimisation problem and compressing one cycle).
As shown in (D’Errico & Roukny, 2019, Proposition 7) a solution to the optimisation problem
in Definition 2.3 is a directed acyclical graph, i.e., that is a graph that does not contain any
cycles. In particular, one can obtain a solution by repeatedly compressing along one compression
network cycle, see (D’Errico & Roukny, 2019, Subsection 12.2 Conservative Algorithm). As
discussed there it will matter in which order this is done, since it is possible that some edges
are part of several cycles. An algorithm for choosing the ordering is given in (D’Errico &
Roukny, 2019, Subsection 12.2 Conservative Algorithm). They always choose µ = µmax in each
compression step.

3 Measuring systemic risk

We consider different types of payment obligations that arise from the network of liabilities X
and describe how we measure the systemic risk associated with them.

3.1 Payment obligations, margins and liquidity buffer

We assume that all payment obligations that arise from the original liabilities matrix X can
be expressed by using a suitable function fV that maps the original liabilities matrix X into
payment obligations L = fV (X).

Definition 3.1 (Payment function and payment obligation matrix). Let X ∈ [0,∞)N×N be a
liabilities matrix. Consider a function fV : [0,∞)N×N → [0,∞)N×N where fV (x) = V x for
V ∈ [0,∞), x ∈ [0,∞)N×N . We refer to fV as payment function.
We define a matrix L = (Lij) ∈ [0,∞)N×N where each element Lij = fVij (X) = V Xij represents
the payments that are due from i to j, i, j ∈ N at a given point in time. We refer to L
as payment obligation matrix. We refer to L̄ ∈ [0,∞)N , where L̄i =

∑N
j=1 Lij, as the total

payment obligations.

Payment obligations can in principle arise throughout the lifetime of the contract. We
restrict our analysis to only one point in time at which payments are due. In principle, our
analysis could be extended to allow for multiple points in times at which payments are due.

If we set V = 1 in the definition of fV , then L = X and hence the payments due are the
original liabilities. In practice, this does not need to be the case. Payment obligations can for
example arise from variation margins becoming due (BCBS IOSCO, 2015). One distinguishes
between variation and initial margins. Variation margins reflect current exposures and are
settled regularly, initial margins reflect potential future exposures and are usually required at
the outset of a derivatives transaction. By choosing an appropriate payment function fV , our
payment obligation matrix can represent variation margins that are due on a given day.
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Consider for example a situation in which the original network X represents Credit Default
Swaps contracts. In particular Xij represents the amount of protection sold from i to j in case
of a credit event occurring to the underlying reference entity over a given time period. If there
is shock to this reference entity that increases its probability of default for example, variation
margins will be due from the seller of the CDS protection to the buyer of the protection since
the value of the CDS contracts becomes more valuable to the protection buyer and increases
the liabilities of the protection seller. This change is reflected in the variation margin that
is then due from the protection seller to the protection buyer, see Paddrik et al. (2020) who
discussed such a situation in detail. As in their model, we will also allow for the existence of
initial margins.

Definition 3.2 (Initial margins). Let X be a liabilities matrix and let J ∈ [0,∞). The initial
margin that node i sets aside to protect its liabilities to node j is given by JXij, where i, j ∈ N .

Setting J = 0, would imply that there are no initial margins available, and for J > 0 initial
margins are available which are proportional to the notional size of the contract. This pro-
portionality assumption is referred to as the standard schedule and was introduced in (BCBS
IOSCO, 2015). There have been alternative proposals since then, see e.g. Cont (2018) who high-
lighted that the standard schedule typically overestimates margin requirements. For tractability
purposes we will still consider the proportional case.2

To complete our modelling framework we assume that at the time when payment obligations
become due each node is equipped with external assets, i.e., assets from outside the network,
only a part of which, the liquidity buffer, is available to satisfy any payment obligations.

Definition 3.3 (External assets and liquidity buffer). We denote by A(e) ∈ [0,∞)N the vector
of external assets and by b ∈ [0, A(e)] the liquidity buffer.

We analyse how portfolio compression affects payment obligations and liquidity buffers.

Definition 3.4 (Payment obligations, initial margins, liquidity buffer under compression).
Let X be a liabilities matrix for which there exists a conservative compression network cycle
C = (Cnodes, Cedges) of X with maximal capacity µmax. Let 0 < µ ≤ µmax and let XC,µ be the
µ-compressed liabilities matrix. Let L = fV (X) = V X be the payment obligation matrix, where
V ∈ [0,∞).

1. We refer to the matrix LC,µ with

LC,µij = fVij (XC,µ) =

{
V Xij − V µ if (i, j) ∈ Cedges,

V Xij otherwise,
=

{
Lij − V µ if (i, j) ∈ Cedges,

Lij otherwise,

(6)

as the µ-compressed payment obligation matrix (using cycle C). We refer to L̄C,µi =∑
j∈N f

V
ij (XC,µ) = V

∑
j∈N X

C,µ
ij as the total µ-compressed payment obligations of node

i ∈ N (using cycle C).

2. The µ-compressed initial margins are given by JXC,µ, where

JXC,µij =

{
JXij − Jµ if (i, j) ∈ Cedges,
JXij otherwise.

2When modelling initial and variation margins we should keep in mind that for the purpose of this analyses we
consider fungible derivative positions, meaning portfolio compression can actually be done since these contracts
are completely comparable. Hence, assuming that margin requirements are proportional to exposure size is
reasonable. Initial margins are often set as 99% loss quantile for a 10-days period and hence represent a Value-
at-risk which is known to be positive homogeneous, i.e., scales with position size. (This would also apply if other
risk measures were used such as the expected shortfall.)
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3. The µ-compressed liquidity buffer bC,µ,γ ∈ [0,∞)N , where γ ∈ [0, 1], is given by

bC,µ,γi =

{
bi + γJµ if i ∈ Cnodes,

bi, if i ∈ N \ Cnodes.
(7)

Hence, we see that portfolio compression reduces the payment obligations, and therefore
variation margins, since the payment function fV is non-decreasing. Furthermore, portfolio
compression also reduces the initial margins. Therefore there are strong incentives for market
participants to engage in portfolio compression. This is particularly relevant for initial margins
which can never be netted.

Regarding the liquidity buffer we allow for different effects of compression. If γ = 0, then
the liquidity buffer is not affected by portfolio compression, which can be interpreted as the
corresponding assets that are no longer tied up in initial margins are considered as illiquid
assets. If γ = 1 then we assume that the liquidity buffer of those nodes taking part in portfolio
compression increases by exactly the amount that is no longer required as initial margins since
the position was reduced. For γ ∈ (0, 1) we have some increase of the liquidity buffer for those
nodes taking part in portfolio compression but this is less than the corresponding reduction in
initial margins.

We now formally define a payment system in which we will analyse systemic risk.3

Definition 3.5 (Payment system). Let X be a liabilities matrix for which there exists a con-
servative compression network cycle C = (Cnodes, Cedges) of X with maximal capacity µmax. Let
0 < µ ≤ µmax and let XC,µ be the µ-compressed liabilities matrix. Let V ∈ [0,∞) and L = V X
the corresponding payment obligation matrix and b the liquidity buffer. We will refer to (L, b)
as payment system and to (LC,µ, bC,µ,γ) as µ-compressed payment system, where LC,µ and bC,µ,γ

are defined in (6) and (7) respectively and µ ∈ [0, µmax].

3.2 Clearing the payment obligations

To measure systemic risk we consider a suitable extension of the Eisenberg & Noe (2001)
framework for clearing payments in financial networks. In particular, we incorporate ideas
developed by Paddrik et al. (2020) and Ghamami et al. (2020) for clearing with collateral (i.e.,
initial margins) into the the framework developed by Veraart (2020) to measure systemic risk.

In the following we define the notion of equity revaluation which is a slightly modified version
of (Veraart, 2020, Definition 2.4) which is related to the approach developed in Barucca et al.
(2020).

Definition 3.6 (Re-evaluated equity). Consider a payment system (L, b) and let (LC,µ, bC,µ,γ)
be the corresponding µ-compressed payment system where µ ∈ (0, µmax].

1. A valuation function is a function V : R→ [0, 1], given by

V(y) =

{
1, if y ≥ 1 + k,
r(y), if y < 1 + k,

(8)

where k ≥ 0 and r : (−∞, 1+k)→ [0, 1] is a non-decreasing and right-continuous function.

3The payment system characterises all payments due and hence serves as the basis for analysing systemic risk.
It is related to the original liabilities X via the payment function fV . We assumed that Lij = fV (X) = V Xij
for all i, j ∈ N and V ∈ [0,∞). The analysis on systemic risk does not rely on this proportionality assumption,
since it is conducted on the payment system directly. Therefore, one could consider more general functions fV as
long as they are meaningful from an economic perspective. Since we assume that the liabilities X are fungible,
the proportionality assumption makes sense and is consistent with approaches used to derive initial margins as
outlined before.
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2. Consider a valuation function V. We define a function Φ = Φ(·;V) : E → E where

Φi(E) = Φi(E;V) = bi +
∑
j∈M

LjiV
(
Ej + L̄j
L̄j

)
− L̄i, (9)

M = {i ∈ N | L̄i > 0}, E = [b − L̄, b + Ā − L̄], Āi =
∑N

j=1 Lji, L̄i =
∑N

j=1 Lij ∀i ∈ N .
The re-evaluated equity in the non-compressed network is a vector E ∈ E satisfying

E = Φ(E). (10)

3. Consider a valuation function V. We define a function ΦC,µ,γ = Φ(·;V) : EC → EC where

ΦC,µ,γi (E) = ΦC,µ,γi (E;V) = bC,µ,γi +
∑
j∈MC

LC,µji V

(
Ej + L̄C,µj

L̄C,µj

)
− L̄C,µi , (11)

MC = {i ∈ N | L̄C,µi > 0}, EC = [bC,µ,γ − L̄C,µ, bC,µ,γ + ĀC − L̄C,µ], ĀCi =
∑N

j=1 L
C,µ
ji ,

L̄C,µi =
∑N

j=1 L
C,µ
ij ∀i ∈ N . The re-evaluated equity in the compressed network is a vector

E ∈ EC satisfying

E = ΦC,µ,γ(E). (12)

Since r is non-decreasing and right-continuous, V is also non-decreasing and right-continuous.
Therefore (Veraart, 2020, Theorem 2.5) guarantees the existence of the re-evaluated equities in
(10) and (12) as fixed points of Φ and ΦC,µ,γ respectively.

Similar to Veraart (2020), for a given node i ∈ N , the function Φi models the difference

between the liquid assets bi +
∑

j∈M LjiV
(
Ej+L̄j
L̄j

)
and the total payment obligations L̄i. The

liquid assets consist of the liquidity buffer bi and the payments received from the other financial

institutions given by
∑

j∈M LjiV
(
Ej+L̄j
L̄j

)
. If the function value of V is strictly less than 1 this

implies that not the full amount of payment obligations are paid by j to i which reduces the
liquid assets that i has. The interpretation for the terms appearing in ΦC,µ,γ is the same as for
Φ with the only exceptions that the compressed network is considered.

If L = X and A(e) = b, then the positive part of the re-evaluated equity would correspond
to the equity of the node, as in Eisenberg & Noe (2001).

In this re-evaluation approach all payment obligations are treated equally. In particular, no
netting takes place prior to clearing. Any type of netting (such as bilateral netting, compression
etc.) would effectively introduce a seniority structure, where liabilities that are netted have
implicitly a higher seniority than those that are not netted, see Elsinger (2009) for a clearing
approach with different seniorities of debt.

As described earlier, we refer to a tuple (L, b) as a payment system, where L is a payment
obligation matrix and b is a vector of liquidity buffers. If we use such a system to make any
statements about its associated systemic risk based on a valuation function V, we write (L, b;V)
and also refer to it as a payment system.

We consider special choices of valuation functions next to give some intuition on what they
can represent. All results we derive, however, will hold for general valuation functions defined
in (8).

Remark 3.7 (Special choices for V from the literature). 1. The Eisenberg & Noe (2001) model
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can be recovered4 by setting k = 0 and

VEN(y) = min{1, y+}. (13)

2. The special case of the model by Rogers & Veraart (2013) with bankruptcy costs param-
eters α = β ∈ [0, 1] can be recovered by setting k = 0 and

VRV(y) =

{
1 if y ≥ 1,
βy+ if y < 1.

(14)

3. In Veraart (2020); Glasserman & Young (2015) it was argued that contagion can be
triggered prior to the point where the equity of an institution is zero and it was proposed
to consider k > 0.

4. The zero recovery rate valuation function is defined by

Vzero(y) = I{y≥1+k}, where k ≥ 0. (15)

All special choices of valuation functions mentioned so far do not account for initial margins.
In the following we define a special case of a valuation function that incorporates initial margins.

Definition 3.8 (Valuation function accounting for initial margins). Let J ∈ [0,∞) and β ∈
[0, 1]. We define the initial margin valuation function by VInitialMargin : R→ [0, 1], where ∀y ∈ R

VInitialMargin(y) =

{
1, if y ≥ 1,

min{1, J + βy+}, if y < 1.
(16)

One can easily check that VInitialMargin is a valuation function. Using (Veraart, 2020, The-
orem 2.11), we conclude that higher values of initial margins lead to a better outcome for the
system in the following sense: Let 0 ≤ J1 ≤ J2 be two possible parameters for J in (16), then the
greatest re-evaluated equity corresponding to parameter J2 would be greater or equal than the
greatest re-evaluated equity corresponding to J1. In particular, a system with initial margins
has better outcomes than a system without initial margins.

The choice of VInitialMargin is motivated by the approaches developed in Paddrik et al. (2020);
Ghamami et al. (2020) for clearing in collateralised networks. We are essentially using these
ideas but rewrite them to fit a slightly different mathematical framework that is more tractable
for the purpose of our analysis. The first difference between Paddrik et al. (2020); Ghamami
et al. (2020) and our formulation here is that we express the clearing problem in terms of the
re-evaluated equity, i.e., within the framework of Veraart (2020), and not in terms of the clearing
payments, since this makes the analysis in the compression context more tractable.5 The second
difference is that we include bankruptcy costs modelled in terms of the parameter β ∈ [0, 1],
whereas the other approaches mainly focus on β = 0 and β = 1.

4In Veraart (2020) it was shown how the corresponding clearing vector considered in Eisenberg & Noe
(2001); Rogers & Veraart (2013) can be derived from the re-evaluated equity and how the re-evaluated eq-
uity can be derived from the clearing vector. In particular, if E∗ is the greatest re-evaluated equity, then

L∗i = V
(
E∗

i +L̄i

L̄i

)
L̄i ∀i ∈ M and L∗i = 0 for all i ∈ N \M denotes the corresponding clearing payments, i.e.,

these are the total payments that node i makes, which ideally would be its total nominal obligations L̄i but it
could be less than that.

5When initial margins are used it is possible that a defaulting node satisfies its payment obligations in full
by covering a potential shortfall with the initial margins, see also Ghamami et al. (2020). Therefore, one cannot
infer who defaults from the payments made. In the classical Eisenberg & Noe (2001) framework this is indeed
possible: There a node defaults if and only if it does not pay its liabilities in full. By analysing the re-evaluated
equity we can distinguish between defaulting and non-defaulting nodes and the corresponding payments follow
from there.
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We provide some intuition for the choice of VInitialMargin next. If we set J = 0, VInitialMargin

reduces to VRV. We therefore consider J > 0 for now. Let E∗ be a fixed point of Φ. Suppose

y =
E∗j+L̄j

L̄j
< 1 for a j ∈ N . Then, the payment that node j makes to node i is given by

LjiVInitialMargin

(
E∗j + L̄j

L̄j

)
= min

{
Lji, JLji + βLji

(
E∗j + L̄j

L̄j

)+}
=: (?).

Now if J ≤ 1, then (?) ≥ JLji implying that node j will always at least pay the amount

corresponding to the initial margin to i but possibly even more if βLji

(
E∗j+L̄j

L̄j

)+

> 0. Under

no circumstances can i receive more than Lji from j. If J ≥ 1, then the initial margins guarantee
full payment of Lji.

3.3 Definition of default, reduction of systemic risk and harmfulness of port-
folio compression

In the following we will compute the greatest re-evaluated equity both in the original network
and in the compressed network, i.e., we will always consider the greatest fixed point of Φ and
ΦC,µ,γ in (10) and (12) respectively. They correspond to the best possible outcome for the
economy. Based on these quantities we can then infer which nodes are in default in the network
with compression and in the network without compression. Hence, we take an ex-post point of
view. We ask what would happen if no compression takes place and we then evaluate the network
at a point in time when payments are due. Then we consider the case where compression has
taken place and we then evaluate the network when payments are due and compare the outcome
to the situation without compression. We summarise the mathematical setting as follows.

Assumption 3.9 (Market setting ). • Let X be a liabilities matrix for which there exists
a conservative compression network cycle C = (Cnodes, Cedges, µ

max) with maximal capacity
µmax > 0.

• Let V be a valuation function and k ≥ 0.

• Let (L, b;V) be the corresponding payment system with total payment obligations L̄.

• Let 0 < µ ≤ µmax. Let LC,µ be the µ-compressed payment obligation matrix. Let L̄C,µ be
the total µ-compressed payment obligations.

• Let E∗ be the greatest re-evaluated equity in the non-compressed network.

• Let EC,µ;γ;∗ be the greatest re-evaluated equity in the compressed network with γ ∈ [0, 1].

• Let EC,µ;0;∗ be the greatest re-evaluated equity in the compressed network with γ = 0.

We can now define what it means for an institution to be in default.

Definition 3.10 (Definition of default). Consider the market setting of Assumption 3.9. Then,
the set of defaulting financial institutions in the non-compressed system is

D(L, b;V) = {i ∈ N | E∗i < kL̄i} (17)

and the set of defaulting financial institutions in the compressed system is

D(LC,µ, bC,µ,γ ;V) = {i ∈ N | EC,µ;γ;∗
i < kL̄C,µi }. (18)

11

Electronic copy available at: https://ssrn.com/abstract=3688495



The definition above defines default (in the non-compressed system) as the point when

the quantity

(
E∗j+L̄j

L̄j

)
< 1 + k. For k = 0, this is equivalent to saying that the available

liquid assets are strictly smaller than the payment obligations which is equivalent to E∗j < 0.
This is the situation we have in mind when considering variation margin payments, i.e., for
V = VInitialMargin. This is the situation we have in mind when considering variation margin
payments, i.e., for V = VInitialMargin, as in Paddrik et al. (2020); Ghamami et al. (2020).

If k > 0, then the default condition is equivalent to saying that the available liquid assets
are strictly less than the required payment obligations plus an additionally required buffer. In
Remark A.1 we show that to be able to account for certain capital requirements it is sometimes
beneficial to allow for an earlier start point of default, i.e., k > 0.

Recall that the payments from j to i are LjiV
(
E∗j+L̄j

L̄j

)
. If j is in default, then we are in

the default branch of the valuation function6, i.e., V(y) = r(y) and this value can be strictly
less than 1 implying that payment obligations from j to i are no longer satisfied completely. In
the case of initial margins, i.e., if V = VInitialMargin, then it is possible (but this will depend on

the magnitude of the initial margins) that LjiV
(
E∗j+L̄j

L̄j

)
= Lji even though j defaults.

We are now in a position to formally define what we mean by saying that a particular
compression reduces systemic risk or is harmful. We do this by comparing the defaults in the
non-compressed network to the defaults in the compressed network (see Definition 3.10).

Definition 3.11 ((Strong) reduction of systemic risk and harmfulness). Consider the market
setting of Assumption 3.9. We say that the compression network cycle C reduces systemic risk
if D(LC,µ, bC,µ,γ ;V) ⊆ D(L, b;V). We say that the compression network cycle C strongly reduces
systemic risk if D(LC,µ, bC,µ,γ ;V) ( D(L, b;V). We say that the compression network cycle C is
harmful if D(LC,µ, bC,µ,γ ;V) \ D(L, b;V) 6= ∅.

Based on this definition, we say that compression reduces systemic risk if every node that
defaults in the compressed network also defaults in the non-compressed network. In the same
spirit, we classify compression as harmful if there are nodes in the network that default in the
compressed network that would not have defaulted in the non-compressed network.

4 Consequences of portfolio compression on systemic risk

We now analyse the consequences of portfolio compression for systemic risk. One might think
that portfolio compression reduces systemic risk since it reduces gross exposures while not
changing the net exposures. Indeed we will show that in many realistic scenarios portfolio
compression reduces or even strongly reduces systemic risk.

There are circumstances, however, in which compression can be harmful. Portfolio optimisa-
tion is an optimisation problem that aims to reduce gross exposures subject to some constraints
such as keeping net exposures unchanged (O’ Kane, 2017; D’Errico & Roukny, 2019). As long
as these constraints do not explicitly account for systemic risk there is no reason why a solution
to such an optimisation problem should automatically reduce systemic risk.

4.1 Who can be affected by portfolio compression?

We identify those nodes that can in principle be affected by portfolio compression by defining
a compression risk orbit7.

6Veraart (2020) distinguishes between default and distress, but we do not make this distinction here.
7A risk orbit for an individual node has been considered in Eisenberg & Noe (2001).
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Definition 4.1 (Compression risk orbit). Consider the market setting of Assumption 3.9. The
compression risk orbit of C is

O = Cnodes ∪ {j ∈ N | ∃i ∈ Cnodes and ∃ a directed path from i to j in Ĝ}, (19)

where Ĝ is the graph with nodes N and edges Ê = {(i, j) ∈ N 2 | Lij > 0}.

The compression risk orbit contains all nodes on the compression network cycle and all
nodes that can be reached from nodes on the compression network cycle; compression could in
principle affect their outcome (both positively or negatively). All nodes in N \ O cannot be
affected (positively or negatively) by compression, i.e., the greatest re-evaluated equity with or
without compression coincides for those nodes.

Proposition 4.2. Consider the market setting of Assumption 3.9. Then, E∗i = EC,µ;γ;∗
i ∀i ∈

N \ O, where O is given in (19).

The proof of this proposition and proofs of all following results are provided in Appendix B.

4.2 Fundamental versus contagious defaults

We will distinguish between two types of default: fundamental default and contagious default.
Fundamental defaults are defaults that occur even if all nodes pay their payment obligations in
full. Contagious defaults are all default that are not fundamental defaults. In order to formally
define these two types of default we consider the difference between nominal liquid assets and
total payment obligations and refer to it as initial equity (even though the assets and liabilities
considered here might not reflect the full balance sheet).

Definition 4.3 (Initial equity). Consider the market setting of Assumption 3.9. For all i ∈ N
define the initial equity in the non-compressed and in the compressed network (for parameters
γ = 0 or γ ∈ [0, 1]) by

E
(0)
i = bi +

∑
j∈N

Lji − L̄i, E
C(0);0
i = bC,µ,0i +

∑
j∈N

LC,µji − L̄
C
i , E

C(0);γ
i = bC,µ,γi +

∑
j∈N

LC,µji − L̄
C
i .

(20)

Hence, the initial equity corresponds to the best possible situation, namely all nodes repaying
their payment obligations in full. Recall, that bC,µ,0 = b.

Definition 4.4 (Fundamental and contagious defaults). Consider the market setting of As-
sumption 3.9. Let E(0), EC(0);γ be the initial equity defined in (20). We refer to F = {i ∈ N |
E

(0)
i < kL̄i} and D(L, b;V) \F as the fundamental defaults and contagious defaults in the non-

compressed network, respectively. Similarly, we refer to FC = {i ∈ N | EC(0);γ < kL̄C,µi } and
D(LC,µ, bC,µ,γ ;V) \ FC as the fundamental defaults and contagious defaults in the compressed
network (where γ ∈ [0, 1]), respectively.

We will show in Lemma B.4 that F ⊆ D(L, b;V) and FC ⊆ D(LC,µ, bC,µ,γ ;V). We show how
portfolio compression affects fundamental defaults using properties of the initial equity.

Lemma 4.5. Consider the market setting of Assumption 3.9. The initial equities E
(0)
i , E

C(0);0
i ,

E
C(0);γ
i , i ∈ N , are as in (20). Then, E

(0)
i = E

C(0);0
i ≤ EC(0);γ

i ∀i ∈ N , ∀γ ∈ [0, 1].

Proposition 4.6 (Fundamental defaults and compression). Consider the market setting of
Assumption 3.9. Then, FC ⊆ F . If F \ FC 6= ∅, then kV + γJ > 0 and F \ FC ⊆ Cnodes.
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Hence compression can only improve fundamental defaults, in the sense that every node
that is in fundamental default in the compressed network also is in fundamental default in
the non-compressed network. For a strict improvement under compression certain parameter
constraints are required. For example, if portfolio compression increases the liquidity buffer of
a node (which would happen for γ > 0) then portfolio compression could potentially avoid a
fundamental default. Similarly, portfolio compression could move a node further away from the
default boundary if k > 0 in which case portfolio compression could also potentially avoid a
fundamental default.

For compression to be harmful we need at least one firm that defaults in the compressed
network that does not default in the non-compressed network. Since according to Proposition
4.6 portfolio compression cannot cause any fundamental defaults, such an additional default
would have to be a contagious default.

4.3 Structural conditions for the consequences of portfolio compression

The following theorem contains the main theoretical results of this paper. It identifies three key
structural conditions that are necessary for portfolio compression to be harmful.

Theorem 4.7 (Necessary conditions for compression to be harmful). Consider the market
setting of Assumption 3.9. Suppose that compressing cycle C is harmful. Then,

1.

D(L, b;V) ∩ Cnodes 6= ∅; (21)

2. there exists an i ∈ D(LC,µ, bC,µ,γ ;V) ∩ Cnodes such that

V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
< V

(
E∗i + L̄i
L̄i

)
; (22)

3. the valuation function satisfies

V 6= Vzero. (23)

In the following we discuss the three structural conditions (21), (22) and (23) in more detail.

4.3.1 Defaults on the compression network cycle in the non-compressed network

Condition (21) tells us, that for portfolio compression to be potentially harmful one needs at
least one default on the compression network cycle in the non-compressed network. Compressing
such a cycle can be harmful. The following proposition is used to prove part 1. of Theorem
4.7 and identifies the relationship between the re-evaluated equity in the compressed and non-
compressed network.

Proposition 4.8. Consider the market setting of Assumption 3.9 and let D(L, b;V)∩Cnodes = ∅.
Then, E∗i = EC,µ;0;∗

i ≤ EC,µ;γ;∗
i ∀i ∈ N and D(LC,µ, bC,µ,γ ;V) ⊆ D(LC,µ, bC,µ,0;V) ⊆ D(L, b;V).

Hence, compression can only increase the re-evaluated equity if there are no defaults on the
compression network cycle in the non-compressed system. Under this assumption, if additionally
γ = 0, implying that compression does not increase the liquidity buffer, then the re-evaluated
equities with and without compression coincide. In both cases systemic risk is reduced.

We do an ex-post analysis here. In practice, firms would conduct portfolio compression
prior to payment obligations becoming due. Hence, at the time compression is done, (21) is a
condition on the future state of the network. In this spirit, we conclude that if the probability
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that condition (21) is satisfied in the future is low, meaning that it is unlikely for firms who
took part in compression to default in the future, then it is likely that this compression reduces
systemic risk.

4.3.2 Repayment proportions

The condition (22) in Theorem 21, is a statement about repayment proportions of nodes on the
compression network cycle that default in the compressed network. The total payments that
node i makes to the other nodes in the non-compressed network are∑

j∈M
LijV

(
E∗i + L̄i
L̄i

)
= V

(
E∗i + L̄i
L̄i

)
L̄i,

and hence it repays the proportion V
(
E∗i +L̄i
L̄i

)
L̄i/L̄i = V

(
E∗i +L̄i
L̄i

)
of its total payment obliga-

tions if no compression is used. Similarly, the repayment proportion of node i in the compressed

network is V
(
EC,µ;γ;∗
i +L̄C,µi

L̄C,µi

)
. Condition (22) therefore says that there exists a node i ∈ Cnodes

that repays a smaller proportion of its total payment obligations in the compressed network com-
pared to the non-compressed network. Any node i ∈ N satisfying (22) is in D(LC,µ, bC,µ,γ ;V),

since from (22) V
(
EC,µ;γ;∗
i +L̄C,µi

L̄C,µi

)
< V

(
E∗i +L̄i
L̄i

)
≤ 1 and hence

EC,µ;γ;∗
i +L̄C,µi

L̄C,µi
< 1 + k by (8).

Hence condition (22) says, that for portfolio compression to be potentially harmful one needs
at least one node on the compression network cycle that repays a strictly smaller proportion of
its total payment obligations in the compressed network than in the non-compressed network.

Consider such an i ∈ D(LC,µ, bC,µ,γ ;V)∩ Cnodes satisfying (22). Since i repays a smaller pro-
portion of its debt after compression, it can transmit larger losses to other nodes in the network.

The payment that node i makes to any node j ∈ N without compression is LijV
(
E∗i +L̄i
L̄i

)
and

with compression it is LC,µij V
(
EC,µ;γ;∗
i +L̄C,µi

L̄C,µi

)
. Then, for all j ∈ N with LC,µij > 0 it holds that

Lij > 0 and hence

LC,µij V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
≤ LijV

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
< LijV

(
E∗i + L̄i
L̄i

)
.

Hence, node j receives less from i in the compressed network than in the non-compressed
network.

Therefore, as long as all nodes on the compression network cycle repay a greater or equal
proportion of their debt in the compressed network compared to the non-compressed network
(as stated in 24) then compression reduces systemic risk. From this statement we can derive
several implications which are of interest for interpreting the results.

Proposition 4.9. Consider the market setting of Assumption 3.9. Suppose that at least one of
the following three conditions is satisfied:

1.

V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
≥ V

(
E∗i + L̄i
L̄i

)
∀i ∈ Cnodes; (24)

2.

V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
= 1 ∀i ∈ Cnodes; (25)
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3.

D(LC,µ, bC,µ,γ ;V) ∩ Cnodes = ∅. (26)

Then, E∗i ≤ E
C,µ;γ;∗
i for all i ∈ N and D(LC,µ, bC,µ,γ ;V) ⊆ D(L, b;V).

Condition (26) says that for compression to be potentially harmful one needs to have a
default on the compression network cycle not just in the non-compressed network (condition
(21)) but also in the compressed network. Hence, there cannot be a situation in which financial
institutions engage in conservative compression such that none of them defaults in the com-
pressed network but a financial institution outside the compression network cycle is worse off
(in the sense that it defaults only in the compressed network). Hence, if compression is harmful
for a node outside the compression network cycle, then there must exist a defaulting node on
the compression network cycle.

Now consider the situation where at least one node on the compression network cycle defaults
in the compressed network. Then condition (25) implies that as long as all nodes on the
compression network cycle repay their debt in full - this could happen due to sufficient initial
margins - then compression cannot be harmful.

Next we provide an intuitive explanation how portfolio compression can change the distri-
bution of losses in the network. In several approaches in the literature such as Eisenberg & Noe
(2001); Rogers & Veraart (2013); Veraart (2020) the valuation function V is a capped piecewise
linear function. Also our newly introduced function VInitialMargin falls in this class. A key idea
of the Eisenberg & Noe (2001) clearing approach (which also applies to more general capped
piecewise linear functions) is that all defaulting nodes repay their debt according to the propor-
tions according to which their nominal payment obligations are distributed. These proportions
are specified in terms of a relative liabilities matrix.

Proposition 4.10. Consider the market setting of Assumption 3.9. Consider the relative pay-
ment obligation matrices Π,ΠC,µ ∈ RN×N , where

Πij =

{
Lij
L̄i
, if L̄i > 0,

0, if L̄i = 0,
ΠC,µij =


LC,µij

L̄C,µi
, if L̄C,µi > 0,

0, if L̄C,µi = 0.

For i ∈ Cnodes we denote by suc(i) (successor) the node in Cnodes that satisfies (i, suc(i)) ∈ Cedges.
Then, for all i ∈ Cnodes

ΠC,µisuc(i) ≤ Πisuc(i),

ΠC,µij ≥ Πij ∀j ∈ N \ {suc(i)};

and for all i ∈ N \ Cnodes and for all j ∈ N ΠC,µij = Πij.

We see that for nodes that are not on the compression network cycle, the proportions
according to which they distribute their payments to the other nodes in the system do not
change. For the nodes on the compression network cycle these proportions do change: Smaller
(or equal) proportions are paid to the immediate successor of a node on the compression network
cycle. To all other nodes larger (or equal) proportions are used to allocate the payments.

Note that if proportions increase, this can also imply that a larger proportion of losses
hits neighbouring nodes and this is where the danger is coming from. As long as there are
no defaults on the compression network cycle, the fact that the proportions change for nodes
on the compression network cycle is irrelevant because they still satisfy the required payment
obligations. As soon as that is no longer the case, and the proportions determine how losses
are spread, the change in these proportions starts to matter.
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4.3.3 Recovery rates

According to part 3. of Theorem 4.7 one needs non-zero recovery rates for portfolio compression
to be potentially harmful.

Proposition 4.11. Consider the market setting of Assumption 3.9 and assume that V = Vzero.
Then, E∗i ≤ E

C,µ;γ;∗
i for all i ∈ N and D(LC,µ, bC,µ,γ ;Vzero) ⊆ D(L, b;Vzero).

Hence, under zero recovery rates portfolio compression leads to a greater re-evaluated equity.
In practice, the recovery rates will depend on the time-horizon considered. Assuming a zero
recovery rate is reasonable when considering short-term consequences of default, see e.g. Amini
et al. (2016a) and the references therein for a discussion. For mid- to long-term consequences
of default it is important to consider models that allow for positive recovery rates.

If recovery rates are positive we can have a worse default of a node on the compression
cycle meaning that it defaults both in the non-compressed and in the compressed network but
it repays a strictly smaller proportion of its debt in the compressed network (satisfying (22)).
If recovery rates are zero we cannot have such a worse default.

4.4 Compressing multiple cycles

All results so far (Theorem 4.7, Propositions 4.8, 4.9, Proposition 4.11, are statements about
compressing a single cycle. In practice, multiple cycles would/could be compressed. The results,
nevertheless, carry over to the multiple cycle case in the following sense. Suppose there are
multiple cycles C1, . . . , Cm such that conservative compression could be carried out along those
cycles sequentially starting from C1 and finishing at Cm. This in particular implies that Ci,
i ∈ {1, . . . ,m} is still a possible compression network cycle after the cycles Cj , j = 1, . . . , i− 1
have been compressed. If V = Vzero then we know from Proposition 4.11 that compressing
one cycle after the other cannot be harmful. Suppose now that V 6= Vzero. Then according to
Theorem 4.7 (part 1. and part 2.) we need to check properties of the nodes on the compression
cycle. Suppose that at least one of the conditions in part 1. and part 2. is not satisfied for
compression cycle C1, then compressing this cycle cannot be harmful. Next one would need
to check the conditions for the nodes on the compression network cycle C2 after C1 has been
compressed. Again, if at least one of the conditions in part 1. and part 2. is not satisfied, then
compressing C2 cannot be harmful, etc.. This can be formalised as follows.

Proposition 4.12 (Compressing multiple cycles). Let X be a liabilities matrix. Suppose there
exist m ∈ N compression network cycles C(1), . . . , C(m) such that conservative compression can
be carried out along those cycles sequentially starting from C1 and finishing at Cm. This in
particular implies that C(i), i ∈ {1, . . . ,m} is still a possible compression network cycle after the
cycles C(j), j = 1, . . . , i − 1 have been compressed. We assume that each compression network
cycle i ∈ {1, . . . ,m} is compressed by a quantity µi ∈ (0, µmax

i ] where µmax
i is the maximal

compression capacity on cycle i after the cycles C1, . . . , Ci−1 have been compressed. Let Callnodes =

C(1)
nodes∪. . .∪C

(m)
nodes. Let (L, b;V) denote the corresponding payment system (without compression)

and denote by E∗ the greatest re-evaluated equity in the non-compressed system. We denote by
EC

1,...,Ci,? the greatest re-evaluated equity that corresponds to the payment system in which the
cycles C1, . . . , Ci, i ∈ {1, . . . ,m} have been compressed. The total payment obligation of node i

in this system is denoted by L̄C
1,...,Ci
i . Suppose at least one of the following three conditions is

satisfied:

1.

D(L, b;V) ∩ Callnodes = ∅; (27)
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2.

V

(
EC

(1),?
i + L̄C

(1)

i

L̄C
(1)

i

)
≥ V

(
E∗i + L̄i
L̄i

)
∀i ∈ C(1)

nodes;

∀n ∈ {2, . . . ,m} it holds that

V

(
EC

(1),...,C(n)?
i + L̄C

(1),...,C(n)

i

L̄C
(1),...,C(n)

i

)
≥ V

(
EC

(1),...,C(n−1)?
i + L̄C

(1),...,C(n−1)

i

L̄C
(1),...,C(n−1)

i

)
∀i ∈ C(n)

nodes.

(28)

3. V = Vzero.

Then, compressing sequentially C(1), . . . , C(m) reduces systemic risk.

By combining the results from Proposition 4.12 above with the results derived in (D’Errico
& Roukny, 2019, Section 12) for the characterisation of X̃ we immediately obtain the following
corollary (of which statement 1 can be found in (D’Errico & Roukny, 2019, Section 12)).

Corollary 4.13 (Compression as optimisation problem). Let X be a liabilities matrix and let
X̃ be a solution to the conservative compression optimisation problem defined in Definition 2.3.
Let (L, b;V) and (L̃, b̃;V) be the payment systems corresponding to X and X̃, respectively.

1. There exists a finite sequence of conservative compression network cycles C(1), . . . , C(m),
m ∈ N, such that conservative compression can be carried out along those cycles se-
quentially starting from C1 and finishing at Cm, such that X̃ is obtained by sequentially
compressing C(1), . . . , C(m) starting from the liabilities matrix X.

2. Consider the m conservative compression network cycles from part 1. of this Corollary in
Proposition 4.12. If at least one of the three conditions in Proposition 4.12 is satisfied,
then the systemic risk in the payment system (L̃, b̃;V) is reduced compared to the systemic
risk in the payment system (L, b;V).

3. Part 2. of this Corollary remains valid if condition (4) in the Definition 2.3 of X̃ is
replaced by aij ≤ X̃ij ≤ Xij ∀i, j ∈ N , where aij ∈ [0, Xij ] ∀i, j ∈ N .

4.5 Policy implications

We have provided necessary conditions for portfolio compression to be harmful. Since we
have shown that portfolio compression cannot cause fundamental defaults, these are necessary
conditions for portfolio compression to cause contagious defaults. This implies that policy
measures that reduce the likelihood and severity of financial contagion automatically mitigate
potentially negative effects of portfolio compression.

Key mitigation mechanism for financial contagion are for example sufficient liquidity buffers
and sufficient collateral in form of initial margins. Higher levels of liquidity buffers and initial
margins would make it less likely that condition (24) would be satisfied in practice, decreasing
the probability of portfolio compression having negative consequences.

Could one address possible negative consequences from portfolio compression more directly?
We have shown that for portfolio compression to be potentially harmful, we need to have at
least one node defaulting in the non-compressed network that takes part in compression (see
conditions (21) and (27)). A possible conclusion from this result would be to exclude firms with
high default risk from compression activities. While there is currently no regulatory framework
to do this, it might not even be desirable. This would severely restrict the possible reduction in
gross exposure that can be achieved, which would lead to other disadvantages such as operational
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risks etc.. We will show that allowing high risk firms to participate in portfolio compression can
sometimes even strongly reduce systemic risk.

So a more nuanced approached might be more promising. As discussed in Remark 2.2,
institutions participating in compression provide compression tolerances to manage their risk
associated with portfolio compression. Currently these tolerances are specified on the individual
contract level as in (1), and hence do not account for network spillover effects. To mitigate
systemic risk, it would be beneficial to take a network perspective when deciding on compression
tolerances and setting constraints in portfolio compression exercises. This is something that
usually cannot be done by the individual institution requesting portfolio compression.

We will show in our case study that portfolio compression can be harmful for nodes not
taking part in portfolio compression. These nodes would never provide any information or
compression tolerances to the compression provider, which shows that there is a need for a
financial regulator to oversee such an exercise or to provide a suitable framework for it. This
could involve, for example stress testing exercises, checking the validity of conditions like (24)
and (28). Alternatively, one could add conditions of this nature to the portfolio compression
optimisation problem.

4.6 Illustration of the theoretical results

We illustrate our theoretical results by considering a network that allows for different conser-
vative compressions. Figure 2 highlights the nine different cycles. The liabilities matrix X is
defined as

X =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 0 0

 .

The only node that will never default is node 5 since it does not have any liabilities. Whether
any of the nodes 1, . . . , 4 default will depend on the liquidity buffer b, the actual payment
obligations arising from X and the choice of compression network cycles. In the following we
will assume that the corresponding payment obligations are given by L = X (i.e., V = 1 in
the definition of fV ). For this liabilities matrix the total net positions are Ā(X) − L̄(X) =
(−1, 0, 0, 0, 1)>. Hence, any compressed network will have the same net positions. In particular
we see, that there are nine different ways of how conservative compression could be applied to
this particular liabilities matrix. Formally these compression network cycles given by:

• Red cycle (red solid line in Figure 2(a)): Cnodes = {1, 2, 3}, Cedges = {(1, 2), (2, 3), (3, 1)};

• Blue cycle (blue dashed line in Figure 2(a)): Cnodes = {1, 2, 3}, Cedges = {(1, 3), (3, 2), (2, 1)};

• Green cycle (green dashed line in Figure 2(b)): Cnodes = {1, 2}, Cedges = {(1, 2), (2, 1)};

• Yellow cycle (yellow solid line in Figure 2(b)): Cnodes = {2, 3}, Cedges = {(2, 3), (3, 2)};

• Pink cycle (pink dotted line in Figure 2(b)): Cnodes = {1, 3}, Cedges = {(1, 3), (3, 1)}.

We can compress one or more of these cycles. We only consider compression with the
maximal capacity which is µ = µmax = 1 for all cycles. We can see that node 1 has fewer
internetwork assets than liabilities. Hence, in the absence of any liquidity buffer for node 1 it
will default.

We will now show that compression can have very different consequences depending on the
liquidity buffer and depending on the recovery rates. Hence, an optimal compression in the
sense of reducing the number of defaults will not just depend on the network structure but also
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(a) Cycles involving 3 financial institutions.
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Firm 3

Firm 1 Firm 4 Firm 5

1

1

1

1

1

1

1 1

1

(b) Cycles involving 2 financial institutions.

Figure 2: Illustration of possible compression network cycles.

ν Defaulting financial institutions when the following cycles are removed
none red blue r & b green yellow pink g & y g & p y& p

1

2 1,2,3 1, 3 1, 2 1 ,4 1 ,3,4 1, 2, 3 1 ,2,4 1, 3 ,4 1 ,4 1, 2 ,4

3 1 1 ,3,4 1 ,2,4 1 ,4 1 ,3,4 1 1 ,2,4 1 ,3,4 1 ,4 1 ,2,4

Table 1: Results for V = VEN. Colour code: Light gray = strong reduction of systemic risk,
dark gray = harmful, white = no difference between compression and no compression in terms
of defaults (reduction of systemic risk). ν ∈ {1, 2, 3} represents three different liquidity buffers
b = A(ν): A(1) = (1, 0, 0, 0, 0)>, A(2) = (0, 0.25, 0.25, 0.5, 0)> , A(3) = (0.25, 0.25, 0.25, 0.25, 0)>.

ν Defaulting financial institutions when the following cycles are removed
none red blue r & b green yellow pink g & y g & p y & p

1

2 1,2,3,4 1, 2, 3 ,4 1, 2, 3 ,4 1 ,4 1, 2 ,3,4 1, 2, 3 ,4 1 ,2, 3 ,4 1, 3 ,4 1 ,4 1, 2 ,4

3 1,2,3,4 1, 2, 3 ,4 1, 2, 3 ,4 1 ,4 1, 2 ,3,4 1, 2, 3 ,4 1 ,2, 3 ,4 1, 3 ,4 1 ,4 1, 2 ,4

Table 2: Results for V = Vzero with k = 0. Colour code as in Table 1.
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on quantities outside the network, e.g. the liquidity buffer. We will highlight the effects of the
different structural conditions identified in the previous section.

We will assume that the liquidity buffer corresponds to the external assets in the compressed
and non-compressed network, i.e., b = bC,µ,γ = A(e) (where γ = 0).

Tables 1 and 2 show which financial institutions default for different liquidity buffers b
(corresponding to the rows in the tables) and different choices of compression network cycles
(corresponding to the different columns in the table). Furthermore, Table 1 reports the results
for the Eisenberg & Noe (2001) contagion mechanism, i.e., V = VEN, whereas Table 2 reports
the results for the Rogers & Veraart (2013) contagion mechanism with α = β = 0, i.e., zero
recovery rate in case of default (V = Vzero with k = 0). Hence, these two tables allow us to
compare the effect of the third structural condition - the role of the recovery rate.

The first two structural conditions are concerned with nodes on the compression cycle. We
include all nodes that are on a compression network cycle and default both with and without
compression in a box, e.g., 1, 2 , 3 indicates that nodes 1 and 2 are on the compression cycle
and default with and without compression. Node 3 is either not on the compression network
cycle or does not default without compression.

All cells in white that correspond to compressed networks indicate that exactly the same
financial institutions default for the compressed network as for the uncompressed network. Cells
in light gray indicate that the corresponding compression mechanism strongly reduces systemic
risk. Cells in dark gray indicate situations under which compression is harmful.

We consider three different vectors of liquidity buffers and assume that the total liquidity

buffer aggregated over all nodes remains the same, i.e.,
∑

i∈N A
(ν)
i = 1 for all ν ∈ {1, 2, 3}.

Only in the first row corresponding to b = A(1) the liquidity buffer is distributed such that
no default occurs (for any choice of compression or no compression). In all other cases node 1
will always default. Since node 5 does not have any liabilities it will never default. For nodes
2, 3, 4 it depends on the distribution of the liquidity buffer, the recovery rates and the choice of
compression whether they default or not. For nodes 1, 2, 3 there exist cycles that can be used
to compress their portfolios whereas for nodes 4, 5 no such cycles exist.

We observe the following consequences of compression in line with our theoretical results:
Reduction of systemic risk for V = Vzero: Table 2 contains the results for zero recovery
rates. In line with Proposition 4.11 we see a reduction in systemic risk throughout and many
examples of a strong reduction in systemic risk indicated by the light gray cells.
Reduction of systemic risk without defaults on compression network cycle in non-
compressed financial system: Consistent with Proposition 4.8, for V = VEN, b = A(3)

compressing the yellow cycle (consisting of nodes 2 and 3 which both do not default) makes no
difference to the set of defaults and hence reduces systemic risk.
Compression can be harmful for nodes outside the compression network cycle: Let
V = VEN and A(e) = A(2). Then, nodes 1, 2, 3 default without compression. When both the red
and the blue cycles are compressed, nodes 1 and 4 default. This observation and the example
is very similar to the example considered in Schuldenzucker et al. (2018).
Compression can be harmful for nodes on the compression network cycle: When
V = VEN, A(e) = A(3) only node 1 defaults without compression but node 3 on the compression
network cycle defaults if the red cycle is compressed and node 4 outside the cycle defaults too.
Different choices of compression network cycles can lead to different outcomes: Let
V = VEN and A(e) = A(2). Then some compression cycles strongly reduce systemic risk (e.g.,
compressing only the blue or only the red cycle) whereas other compression cycles are harmful
(e.g., compressing both the red and the blue cycle or compressing the green cycle) or make no
difference in terms of defaults (e.g., compressing the yellow cycle).
Different distribution of liquidity buffer can lead to different outcomes: Let V = VEN

and consider compressing the red cycle. For some liquidity buffers (e.g. ν = 2) we observe a
strong reduction of systemic risk whereas for others (e.g. ν = 3) this compression is harmful.
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There are other cases (e.g. ν = 1) where compression makes no difference in terms of defaults.
Consequences of compression depends on recovery rates: Let b = A(2). By comparing
Tables 1 and 2 we find that compressing both the blue and the red cycle is harmful under pos-
itive recovery rates, but strongly reduces systemic risk under zero recovery rates. Furthermore
compressing only the red or only the blue cycle strongly reduces systemic risk under positive
recovery rates (where as it makes no difference under zero recovery rates).
Strong reduction of systemic risk: Let V = VEN and b = A(2). Compressing only the red
cycle strongly reduces systemic risk since node 2 no longer defaults.

In the following we illustrate the effects of different valuation functions in more detail.

Example 4.14. We set b = A(2) and compress sequentially first the red cycle referred to as
C(1) and then the blue cycle referred to as C(2). We assume that γ = 0, i.e., compression does
not increase the liquidity buffer. We consider three different valuation functions VEN, VRV and
VInitialMargin.

First, let V = VEN, i.e. we consider the Eisenberg & Noe (2001) model. Table 1 shows

that D(L, b;VEN) = {1, 2, 3}. Compressing the red cycle yields D(LC
(1)
, b;VEN) = {1, 3} hence

a reduction in systemic risk. The repayment proportions for i ∈ Cnodes satisfy

V
(
E∗1 + L̄1

L̄1

)
= 0.5 = V

(
EC

(1)?
1 + L̄C

(1)

1

L̄C
(1)

1

)
,

V
(
E∗2 + L̄2

L̄2

)
= 0.75 < 1 = V

(
EC

(1)?
2 + L̄C

(1)

2

L̄C
(1)

2

)
,

V
(
E∗3 + L̄3

L̄3

)
= 0.75 = V

(
EC

(1)?
3 + L̄C

(1)

3

L̄C
(1)

3

)
.

Hence, from Proposition 4.9 we know that this compression reduces systemic risk and here it
even strongly reduces systemic risk. Even though nodes 1 and 3 default both in the compressed
and the non-compressed network they repay the same relative proportion of their debt in both
situations (0.5 and 0.75 respectively) and that is why compression cannot be harmful. Without

compression node 1 has a shortfall of
(

1− V
(
E∗1+L̄1

L̄1

))
L̄1 = 1.5 and losses of 1.5/3=0.5 hit

the three creditors of node 1 (nodes 2, 3, 4). With compression node 1 has a shortfall of 1 and
losses of 1/2 hit its two creditors (nodes 3 and 4), i.e., even though the repayment proportions
change (see Proposition 4.10), the absolute losses transmitted to nodes 3 and 4 remain the same
in this example.
Suppose that after compressing the red cycle, we compress the blue cycle. Then,
D(LC

(1),C(2)
, b;VEN) = {1, 4}, hence node 4 is a new default which is not on any of the compres-

sion cycles. Furthermore,

V

(
EC

(1)C(2)?
1 + L̄C

(1)C(2)

1

L̄C
(1)C(2)

1

)
= 0 < 0.5 = V

(
EC

(1)?
1 + L̄C

(1)

1

L̄C
(1)

1

)
,

V

(
EC

(1)C(2)?
4 + L̄C

(1)C(2)

4

L̄C
(1)C(2)

4

)
= 0.5 < 1 = V

(
EC

(1)?
4 + L̄C

(1)

4

L̄C
(1)

4

)
.

Hence, node 1 always defaults. It repays a strictly smaller proportion of its debt when C(1) and
C(2) (the red and blue cycle) are compressed than when only C(1) (the red cycle) is compressed.
Since V 6= Vzero all three necessary conditions for compression to be harmful are satisfied. Node
1 pays 0 to node 4 if both the red and the blue cycle are compressed since it has no longer any
income. Node 4 cannot cope with this and defaults. When only the red cycle was compressed
node, 1 was still able to pay 0.5 to node 4 which was just enough for it not to default.
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Second, let V = VRV with β = 0.99 which is the Rogers & Veraart (2013). We find that
D(L, b;VRV) = {1, 2, 3, 4}. Even the small bankruptcy costs modelled by β = 0.99 < 1 cause
the total collapse of the non-compressed financial system. Compressing the red cycle yields
D(LC

(1)
, b;VRV) = {1, 2, 3, 4}, technically a reduction in systemic risk.

If both the blue and the red cycle are compressed, then D(LC
(1),C(2)

, b;VRV) = {1, 4}. Nodes
2 and 3 can no longer default because they do not have any liabilities any more. Hence,
compressing these two cycles strongly reduces systemic risk.

Third, we repeat the analysis with V = VInitialMargin where the parameter for the initial
margins is J = 0.1. We consider β = 1.0 (no bankruptcy costs) and β = 0.99 (small bankruptcy
costs). For both choices of β the default sets coincide. They are given by

D(L, b;VInitialMargin) = {1},

D(LC
(1)
, b;VInitialMargin) = {1, 3},

D(LC
(1),C(2)

, b;VInitialMargin) = {1, 4}.

In line with the ordering results in Veraart (2020), we see that adding initial margins to the
Eisenberg & Noe (2001) and the Rogers & Veraart (2013) models yields a better outcome for
the system. But even when initial margins are available, i.e., J > 0 , we find that compressing
first the red cycle is harmful since node 3 is a new default and then compressing the blue cycle
is also harmful since node 4 is a new default. By increasing J , we could avoid all contagious
defaults, but node 1 remains in default since it is a fundamental default.

Remark 4.15 (An optimisation perspective on the numerical example). The optimal solution
to the conservative compression optimisation problem (Definition 2.3) for the given example
corresponds to the network in which both the red and the blue cycles are removed. There exists
liquidity buffers, e.g., b = A(2) or b = A(3) for which this compression is harmful, since node 4
is a new default under compression in the optimally compressed network.

If we consider the non-conservative compression optimisation in this example, i.e., the op-
timisation problem that has the same objective as the conservative compression optimisation
problem and also constraint (3) but does not have constraint (4), then the optimal solution is a
network that consists of exactly one edge, the edge from node 1 to node 5, with weight 1. Node
1 remains in default (for all choices of b considered in the example), hence it pays less than 1
to node 5. But node 5 cannot default since its payment obligations are zero, so technically this
compression is not harmful. As discussed in D’Errico & Roukny (2019) the non-conservative
compression optimisation problem is solved by a bipartite graph, i.e., the nodes can be split
into two sets where nodes in one set have only outgoing edges and nodes in the other set have
only incoming edges. (It is possible to have nodes that do not have any in- or outgoing edges
in which case they can be assigned to any of the two groups.) This is exactly what we get here.
Hence, losses can spread from node 1 to node 5, but node 5 cannot transmit them further.

5 Conclusion

When does portfolio compression reduce systemic risk? We have identified three structural
conditions that imply a reduction in systemic risk: no defaults on a compression network cycle
in the non-compressed financial system, all nodes on the compression network cycle repay a
larger proportion of their total payment obligations in the compressed system than in the non-
compressed system and zero recovery rates.

Even though there are many situations under which portfolio compression reduces systemic
risk, we have shown that there are circumstances under which compression can be harmful.
Ultimately the danger from portfolio compression comes from firms at risk of default engaging
in portfolio compression. If they then default, losses are spread in a network that now has
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a different structure compared to the original non-compressed network. In particular, since
compression has implicitly changed the seniority structure of the debt, all those debts that were
compressed prior to payment obligations becoming due have effectively been paid in full, which
is obviously not the case for still outstanding debt. For nodes that do not default this change in
seniority structure does not matter, since they continue to be able to satisfy all their payment
obligations. For nodes that do default (and who have not posted sufficient initial margins to
cover the payment shortfall) compression can imply that they spread losses now differently and
some counterparties might be hit by larger losses in the compressed network.

We have shown that portfolio compression cannot cause any fundamental defaults. Portfolio
compression might even potentially avoid some fundamental defaults. For compression to be
harmful we need at least one firm that defaults in the compressed network that would not have
defaulted in the non-compressed network. Hence, such a default would have to be a contagious
default. These findings imply that any mechanisms that reduce the likelihood of contagion in
financial markets also reduce the likelihood of portfolio compression having a negative outcome.
Requiring collateral (initial margins) is an obvious mechanism which reduces the probability of
contagion. Nevertheless, a residual risk remains for all not fully collateralised trades and in such
a situation portfolio compression can change the outcome for the system. Another mechanism
would be to require larger liquidity buffers as they fundamentally determine the likelihood of
contagion, see Glasserman & Young (2015) and Paddrik et al. (2020).

Our analysis shows that classical compression tolerances that are meant to provide a safety
net for compression to not increase risk, cannot fully achieve this as long as they do not account
for network effects. The paths that can transmit losses from a compression network cycle to
other nodes in the system are not directly observable for the participants making it difficult for
them to assess potential risks from portfolio compression themselves and including them in a
meaningful way as part of their compression tolerances.

In general we find that if only firms with low default risk engage in compression activities,
then this does not give cause for concern. Whether one should restrict portfolio compression
services to low-risk firms is a different question. Any restrictions on who can participate would
significantly limit the reduction in gross exposure that can be achieved and the associated
benefits that come with it, such as operational benefits. In practice, portfolio compression is
done for a wide range of reasons, and we have only considered it from a systemic risk point of
view. Even then, we have found situations under which allowing high risk firms to compress
their portfolio can sometimes strongly reduce systemic risk.

Ultimately, one would need to conduct a cost-benefit analysis of portfolio compression to
decide whether one might want to use such a technology on a large scale or not. Using our
analysis within such a cost-benefit analysis would be an interesting avenue for future research.

A Compression and capital requirements

Remark A.1 (Compression and capital requirements). We show that portfolio compression
can be beneficial for complying with the minimum leverage ratio under Basel III8 and this
effect can be captured within or model. Under Basel III the leverage ratio is defined as (tier 1
capital)/(balance sheet and off-balance sheet exposures) and is required to be larger than 3% in
Europe (slightly higher in the US). Since the leverage ratio uses gross exposures, compression
reduces the denominator of the leverage ratio and hence increases it.

We assume for now that L = X and b = A(e). Let (L, b;V) be the corresponding payment
system and let E∗ be the greatest re-evaluated equity that corresponds to using the valuation

8When “regulatory capital charges are aligned with the counterparty exposure risk, the capital charge should
not change. However if cruder approaches are being used that do not accurately capture offsetting risks, such
as the current exposure method (CEM) or leverage ratio approach, compression will tend to reduce the capital
charge”, O’ Kane (2017).
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function V. By using E∗ as approximation of the tier 1 capital and E∗ + L̄ as approximation
of the exposures, and requiring that the corresponding leverage ratio is larger than 3%, we

obtain
E∗i

E∗i +L̄i
≥ 0.03 ⇔ E∗i ≥ 0.03

0.97 L̄i ≈ 0.031L̄i. Any breach of this inequality could cause

default. Within our model, recall that i ∈ D(L, b;V) ⇔ E∗i < kL̄i and therefore we can set
k = 3

97 as threshold in (8) to define such a default event demonstrating the benefit of allowing
for k > 0. Note, that in the compressed network the corresponding default threshold would
satisfy kL̄C,µi ≤ kL̄i for all i ∈ N and would therefore be lower (and hence better) than in the
non-compressed network. Note that in models with k = 0, compression does not affect the
default threshold and one can therefore not capture the advantage of portfolio compression for
capital requirements.

B Proofs

B.1 Additional notation

Let C = (Cnodes, Cedges, µ
max) be a compression network cycle with maximal capacity µmax. We

will use the notation pred(i) for the node in Cnodes that is the predecessor of i on the cycle Cnodes,
i.e., pred(i) is the node that satisfies (pred(i), i) ∈ Cedges. Similarly suc(i) is the successor of i
on the cycle, i.e., it is the node in Cnodes that satisfies (i, suc(i)) ∈ Cedges.

B.2 Proofs of the results in Section 2

The following result formalises the claim made that conservative compression keeps net ex-
posures fixed while reducing gross exposures and is therefore in line with the corresponding
definition in D’Errico & Roukny (2019).

Lemma B.1. Let X be a liabilities matrix for which there exists a conservative compression
network cycle C with maximal capacity µmax > 0. Let 0 < µ ≤ µmax and let LC,µ be the
µ-compressed liabilities matrix using cycle C. Then,

1. XC,µ is a liabilities matrix, i.e., XC,µij ≥ 0 ∀i, j ∈ N and XC,µii = 0 ∀i ∈ N ;

2. XC,µij ≤ Xij for all i, j ∈ N ;

3.

L̄
(X),C,µ
i =

{
L̄

(X)
i , if i /∈ Cnodes,

L̄
(X)
i − µ, if i ∈ Cnodes;

4. the net positions in the compressed network LC,µ coincide with the net positions in the

original network L, i.e., ηC,µi =
∑

j∈N X
C,µ
ji − L̄

(X),C,µ
i =

∑
j∈N Lji − L̄i = ηi ∀i ∈ N ;

5. the gross positions in the compressed network LC,µ are less than or equal to the gross

positions in the original network L, i.e.,
∑

j∈N X
C,µ
ji + L̄

(X),C,µ
i ≤

∑
j∈N Lji + L̄i ∀i ∈ N ;

6. compression strictly reduces gross positions of all i ∈ Cnodes, i.e.,
∑

j∈N X
C,µ
ji + L̄

(X),C,µ
i <∑

j∈N Xji + L̄
(X)
i .

Proof of Lemma B.1. 1. By definition if (i, j) /∈ Cedges then XC,µij = Xij ≥ 0 and if (i, j) ∈
Cedges then XC,µij = Xij − µ ≥ Xij −min(ν,µ)∈Cedges

Xνµ ≥ 0. Since Xii = 0 for all i ∈ N
also XC,µii = 0 for all i ∈ N .

2. This is obvious from the definition of XC,µ.
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3. It follows immediately from the definition that if i /∈ Cnodes then L̄
(X),C,µ
i = L̄

(X)
i . Now let

i ∈ Cnodes. Then,

L̄
(X),C,µ
i =

∑
j∈N

XC,µij = XC,µisuc(i)︸ ︷︷ ︸
=Xi,suc(i)−µ

+
∑

j∈N\{suc(i)}

XC,µij︸ ︷︷ ︸
=Xij

=
∑
j∈N

Xij − µ = L̄
(X)
i − µ.

4. It is obvious that for i /∈ Cnodes that the net position for the non-compressed network and
the compressed network coincides. For i ∈ Cnodes this also holds since

ηC,µi =
∑
j∈N

XC,µji − L̄
(X),C,µ
i = XC,µpred(i)i︸ ︷︷ ︸

Xpred(i)i−µ

+
∑

j∈N\{pred(i)}

XC,µji︸ ︷︷ ︸
=Xji

− L̄(X),C,µ
i︸ ︷︷ ︸
L̄

(X)
i −µ

=
∑
j∈N

Xji − L̄(X)
i = ηi.

5. From part 2. and 3. we immediately get that for all i ∈ N∑
j∈N

XC,µji︸ ︷︷ ︸
≤Xji

+ L̄
(X),C,µ
i︸ ︷︷ ︸
≤L̄(X)

i

≤
∑
j∈N

Xji + L̄
(X)
i .

6. Let i ∈ Cnodes. Since µ > 0 we get∑
j∈N

XC,µji + L̄
(X),C,µ
i︸ ︷︷ ︸

=L̄
(X)
i −µ

= XC,µpred(i)i︸ ︷︷ ︸
=Xpred(i)i−µ

+
∑

j∈N\{pred(i)}

XC,µji︸ ︷︷ ︸
=Xji

+L̄
(X)
i − µ =

∑
j∈N

Xji + L̄
(X)
i − 2µ

<
∑
j∈N

Xji + L̄
(X)
i .

B.3 Proofs of the results in Section 4

The following lemma will be used in several proofs below.

Lemma B.2.
Let X be a liabilities matrix for which there exists a conservative compression network cycle of
X with maximal capacity µmax. Let (L, b;V) be the corresponding payment system, let 0 < µ ≤
µmax and let LC,µ be the µ-compressed liabilities matrix. Set

M = {i ∈ N | L̄i > 0}, MC = {i ∈ N | L̄Ci > 0}.

Let j ∈M \MC. Then the following holds. First, j ∈ Cnodes and L̄j = µV . Second,

Lji =

{
µV, if i = suc(j),
0, otherwise.

Proof of Lemma B.2. First, let j ∈M\MC . Then by definition of the sets L̄j > 0 and L̄C,µj = 0.

Hence L̄j 6= L̄C,µj which implies that j ∈ Cnodes. Since then L̄C,µj = L̄j −µV = 0 we immediately

get that L̄j = µV .
Second, from part 1. of this lemma we know that j ∈ Cnodes and L̄j = µV . For fixed

j ∈M \MC we have by definition

LC,µji =

{
Lji − µV, if i = suc(j),
Lji, if i ∈ N \ {suc(j)}.
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Since LC,µji ≥ 0 for all i ∈ N , in particular, Ljsuc(j) − µV ≥ 0 and hence Ljsuc(j) ≥ µV . Since,

0 = L̄C,µj =
∑
i∈N

Lji − µV = Ljsuc(j)︸ ︷︷ ︸
≥µV

+
∑

i∈N\{suc(j)}

Lji − µV ≥ µV +
∑

i∈N\{suc(j)}

Lji − µV

=
∑

i∈N\{suc(j)}

Lji,

we see that since Lji ≥ 0 for all i ∈ N \ {suc(j)} it holds that Lji = 0 for all i ∈ N \ {suc(j)}.
Furthermore, since L̄j = µV we must have that Ljsuc(j) = µV .

Proof of Proposition 4.2. Recall from the definition of E∗ that

E∗i = Φi(E
∗) = bi +

∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i (29)

for all i ∈ N . We denote by ΦC,µ,γ the function that corresponds to the compressed network,
i.e., EC,µ;γ;∗ is the greatest fixed point of ΦC,µ,γ , i.e.,

EC,µ;γ;∗
i = ΦC,µ,γi (EC,µ;γ;∗) = bC,µ,γi +

∑
j∈MC

LC,µji V

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
− L̄C,µi (30)

for all i ∈ N . In the following we show that E∗i = EC,µ;γ;∗
i for all i ∈ N \ O.

Let i ∈ N \ O. From (29)

E∗i = Φi(E
∗) = bi +

∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i

= bi +
∑

j∈M\O

LjiV

(
E∗j + L̄j

L̄j

)
+

∑
j∈M∩O

LjiV

(
E∗j + L̄j

L̄j

)
︸ ︷︷ ︸

?
=0

−L̄i

= bi +
∑

j∈M\O

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i =: fi(E

∗
M\O),

(31)

where (?) holds because by assumption i ∈ N \ O hence there cannot be a j ∈ M \ O with
Lji > 0 otherwise this would imply that i ∈ O.
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Similarly, from (30)

EC,µ;γ;∗
i = ΦC,µ,γi (EC,µ;γ;∗) = bC,µ,γi +

∑
j∈MC

LC,µji V

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
− L̄C,µi

= bi +
∑
j∈MC

LjiV

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
− L̄i

= bi +
∑

j∈MC\O

LjiV

(
EC,µ;γ;∗
j + L̄j

L̄j

)
+

∑
j∈MC∩O

LjiV

(
EC,µ;γ;∗
j + L̄j

L̄j

)
︸ ︷︷ ︸

?
=0

−L̄i

= bi +
∑

j∈MC\O

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i

(??)
= bi +

∑
j∈M\O

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i = fi(E

C,µ;γ;∗
M\O ),

(32)

where the justification for (?) is as before and the justification for (??) is that Lij = 0 for all
j ∈ (M\MC) \ O since i ∈ N \ O (see Lemma B.2).

Let i ∈ O. From (29) and using ideas from (31)

E∗i = Φi(E
∗) = bi +

∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i

= bi +
∑

j∈M\O

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i︸ ︷︷ ︸

=fi(E∗M\O)

+
∑

j∈M∩O
LjiV

(
E∗j + L̄j

L̄j

)
︸ ︷︷ ︸

=:gi(E∗M∩O)

= fi(E
∗
M\O) + gi(E

∗
M∩O).

Similarly, from (30) and using ideas from (32)

EC,µ;γ;∗
i = ΦC,µ,γi (EC,µ;γ;∗) = bC,µ,γi +

∑
j∈MC

LC,µji V

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
− L̄C,µi

= bi +
∑

j∈MC\O

LjiV

(
EC,µ;γ;∗
j + L̄j

L̄j

)
− L̄i+

+
∑

j∈MC∩O

LC,µji V

(
EC,µ;γ;∗
j + L̄j

L̄j

)
+ µ(γJ + V )I{i∈Cnodes}︸ ︷︷ ︸

=:gCi (EC,µ;γ;∗
MC∩O

)

= bi +
∑

j∈M\O

LjiV

(
EC,µ;γ;∗
j + L̄j

L̄j

)
− L̄i + gCi (EC,µ;γ;∗

MC∩O) = fi(E
C,µ;γ;∗
M\O ) + gCi (EC,µ;γ;∗

MC∩O).

The function fN\O : EN\O → EN\O is non-decreasing and its greatest fixed point exists by

Tarksi’s fixed point theorem. In particular, it coincides with E∗N\O and EC,µ;γ;∗
N\O since we have

seen that the fixed points E∗ and EC,µ;γ;∗ can be decomposed into a component characterised
by f and a component characterised by g or gC with non-overlapping arguments.
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The following lemma is a reformulated version of (Veraart, 2020, Theorem 2.6) for the
situation with compression. We will use the sequences defined in there in several proofs about
the main results (i.e., in the proofs of Propositions 4.8, 4.9, 4.11).

Lemma B.3. Consider the market setting of Assumption 3.9. Define, the initial equity as in
Definition 4.3, i.e., for all i ∈ N

E
(0)
i = bi +

∑
j∈N

Lji − L̄i E
C(0);0
i = bC,µ,0i︸ ︷︷ ︸

=bi

+
∑
j∈N

LC,µji − L̄
C
i , E

C(0);γ
i = bC,µ,γi +

∑
j∈N

LC,µji − L̄
C
i .

We define recursively three (N -dimensional) sequences

E(n) = Φ(E(n−1)), EC(n);0 = ΦC,µ,0(EC(n−1);0), EC(n);γ = ΦC,µ,γ(EC(n−1);γ), (33)

where n ∈ N. The functions Φ and ΦC,µ,γ are defined in (9) and (11) respectively. The function
ΦC,µ,0 is a special case of ΦC,µ,γ obtained by setting γ = 0 in the definition of ΦC,µ,γ. Then,

1. The sequences (E(n)), (EC(n);0) and (EC(n);γ) are non-increasing, i.e., for all i ∈ N and
for all n ∈ N0 it holds that

E
(n)
i ≥ E(n+1)

i , E
C(n);0
i ≥ EC(n+1);0

i , E
C(n);γ
i ≥ EC(n+1);γ

i .

2. The three sequences defined in (33) converge to the corresponding greatest re-evaluated
equities, i.e., for all i ∈ N

lim
n→∞

E
(n)
i = E∗i , lim

n→∞
E
C(n);0
i = EC;0;∗

i , lim
n→∞

E
C(n);γ
i = EC;γ;∗

i .

Proof of Lemma B.3. First note that Φ, ΦC,µ,0 and ΦC,µ,γ are non-decreasing, see (Veraart,
2020, Lemma A.1). The statements follow directly from (Veraart, 2020, Theorem 2.6).

Lemma B.4. Consider the market setting of Assumption 3.9. Let F be the fundamental defaults
in the non-compressed network and let FC be the fundamental defaults in the compressed network
(see Definition 4.4). Then, F ⊆ D(L, b;V) and FC ⊆ D(LC,µ, bC,µ,γ ;V).

Proof of Lemma B.4. Recall, that F = {i ∈ N | E(0)
i < kL̄i} and FC = {i ∈ N | EC(0);γ <

kL̄C,µi }. We consider the sequences (E(n)) and (EC(n);γ) defined in (33). Let i ∈ F . Then, by

Lemma B.3 ∀m ∈ N kL̄i > E
(0)
i ≥ E

(m)
i ≥ limn→∞E

(n)
i = E∗i and hence i ∈ D(L, b;V). Simi-

larly, let i ∈ FC . Then, by Lemma B.3 ∀m ∈ N kL̄C,µi > E
C(0);γ
i ≥ EC(m);γ

i ≥ limn→∞E
C(n);γ
i =

EC,µ;γ;∗
i and hence i ∈ D(LC,µ, bC,µ,γ ;V).

Proof of Lemma 4.5. Recall that bC,µ,0i = bi for all i ∈ N and from the definition of bC,µ,γ it

follows immediately that bC,µ,0i ≤ bC,µ,γi for all i ∈ N and for all γ ∈ [0, 1]. If i /∈ Cnodes, then

one immediately sees that E
(0)
i = E

C(0);0
i ≤ EC(0);γ

i . If i ∈ Cnodes, then

E
C(0);0
i = bC,µ,0i +

∑
j∈N

LC,µji − L̄
C,µ
i = bC,µ,0i +

∑
j∈N

LC,µji − (L̄i − µV )

= bC,µ,0i +
∑

j∈N\{pred(i)}

LC,µji︸︷︷︸
=Lji

+ LC,µpred(i)i︸ ︷︷ ︸
=Lpred(i)i−µV

−L̄i + µV

= bC,µ,0i︸ ︷︷ ︸
=bi

+
∑
j∈N

Lji − L̄i = E
(0)
i .

29

Electronic copy available at: https://ssrn.com/abstract=3688495



Now let γ ∈ [0, 1], then

E
C(0);γ
i = bC,µ,γi +

∑
j∈N

LC,µji − L̄
C,µ
i ≥ bC,µ,0i +

∑
j∈N

LC,µji − L̄
C,µ
i = E

C(0);0
i .

Proof of Proposition 4.6 . To prove the first statement, let i ∈ FC \ Cnodes. Then,

E
C(0);γ
i = bC,µ,γi︸ ︷︷ ︸

=bi

+
∑
j∈N

LC,µji︸︷︷︸
=Lij

− L̄C,µi︸︷︷︸
=L̄i

< k L̄C,µi︸︷︷︸
=L̄i

⇐⇒ E
(0)
i = bi +

∑
j∈N

Lji − L̄i < kL̄i

and hence i ∈ F . Let i ∈ FC ∩ Cnodes. Then,

E
C(0);γ
i = bC,µ,γi︸ ︷︷ ︸

=bi+γµJ

+
∑
j∈N

LC,µji︸ ︷︷ ︸
=
∑
j∈N Lji−µV

− L̄C,µi︸︷︷︸
=L̄i−µV

< k L̄C,µi︸︷︷︸
=L̄i−µV

⇐⇒bi +
∑
j∈N

Lji − L̄i < kL̄i−kµV − γµJ︸ ︷︷ ︸
=−µ(kV+γJ)

⇐⇒bi +
∑
j∈N

Lji − L̄i < kL̄i−µ(kV + γJ)︸ ︷︷ ︸
≤0

≤ kL̄i

and hence i ∈ F .
To prove the second statement, let i ∈ F \ FC . From the arguments used in part 1. it is

clear that i ∈ Cnodes. Furthermore, since i /∈ FC

E
C(0);γ
i = bC,µ,γi︸ ︷︷ ︸

=bi+γµJ

+
∑
j∈N

LC,µji︸ ︷︷ ︸
=
∑
j∈N Lji−µV

− L̄C,µi︸︷︷︸
=L̄i−µV

≥ k L̄C,µi︸︷︷︸
=L̄i−µV

⇐⇒bi +
∑
j∈N

Lji − L̄i ≥ kL̄i−kµV − γµJ︸ ︷︷ ︸
=−µ(kV+γJ)

⇐⇒bi +
∑
j∈N

Lji − L̄i ≥ kL̄i−µ(kV + γJ)︸ ︷︷ ︸
≤0

Since i ∈ F , it holds that E
(0)
i = bi+

∑
j∈N Lji−L̄i < kL̄i. Combining these two inequalities

gives kL̄i > bi+
∑

j∈N Lji−L̄i ≥ kL̄i−µ(kV +γJ). For this to hold we need (kV +γJ) > 0.

Proof of Theorem 4.7. 1. Assume that D(L, b;V)∩ Cnodes = ∅. Then by Proposition 4.8 this
compression reduces systemic risk, which is a contradiction to it being harmful.

2. Suppose compression is harmful. This means that there exists a node ν ∈ N such that
ν ∈ D(LC,µ, bC,µ,γ ;V) and ν ∈ N \ D(L, b;V), i.e., node ν defaults if compression is done
but does not default without compression. This in particular implies that ν ∈MC = {i ∈
N | L̄C,µi > 0} and that EC,µ;γ;∗

ν < kL̄C,µν ≤ kL̄ν ≤ E∗ν . Therefore EC,µ;γ;∗
ν < E∗ν . Then by

Proposition 4.9 part 1. this implies that there exists an i ∈ Cnodes satisfying

V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
< V

(
E∗i + L̄i
L̄i

)
.
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Hence, there exists an i ∈ Cnodes satisfying

V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
< V

(
E∗i + L̄i
L̄i

)
≤ 1

which implies that V
(
EC,µ;γ;∗
i +L̄C,µi

L̄C,µi

)
< 1 which implies that i ∈ D(LC,µ, bC,µ,γ ;V).

3. Assume that V = Vzero. By Proposition 26 we get that this compression reduces systemic
risk which is a contradiction to the assumption that it is harmful.

Proof of Proposition 4.8. The proof of this statement we consider a fixed point iteration as in
Veraart (2020). We consider the three sequences (E(n)), (EC(n);0) and (EC(n);γ) defined in (33).

By Lemma 4.5 we know that E
C(0);γ
i ≥ E

C(0);0
i = E

(0)
i for all i ∈ N and for all γ ∈ [0, 1]. We

will prove by induction that if {i ∈ Cnodes | E∗i < kL̄i} = ∅ then

E
C(n);γ
i ≥ EC(n);0

i = E
(n)
i for all i ∈ N (34)

holds for all n ∈ N0. Once this has been shown it follows that

EC;γ;∗
i = lim

n→∞
E
C(n);γ
i ≥ EC;0;∗

i = lim
n→∞

E
C(n);0
i = lim

n→∞
E

(n)
i = E∗i

for all i ∈ N which is the statement of the theorem.
By Lemma B.3 (E(n)), (EC(n);0) and (EC(n);γ) are non-increasing. This implies that in

particular, E
(n)
i ≥ limm→∞E

(m)
i = E∗i for all i ∈ N and for all n ∈ N0 and hence for all n ∈ N0

it holds that E
(n)
i ≥ E∗i ≥ kL̄i ∀i ∈ Cnodes and hence

{i ∈ Cnodes | E
(n)
i < kL̄i} = ∅. (35)

We now start our proof of (34) by induction. Let n = 0. Since

E
(0)
i = bi +

∑
j∈N

Lji − L̄i, E
C(0);0
i = bC,µ,0i︸ ︷︷ ︸

=bi

+
∑
j∈N

LC,µji − L̄
C
i , E

C(0);γ
i = bC,µ,γi +

∑
j∈N

LC,µji − L̄
C
i ,

we are in exactly the same situation as in Lemma 4.5 in which it was shown that indeed

E
C(0);γ
i ≥ EC(0);0

i = E
(0)
i for all i ∈ N .

Suppose (34) holds for a fixed n ∈ N0. We show that it also holds for n + 1. Then, by the
definition of the sequences

E
(n+1)
i = Φi(E

(n)) = bi +
∑
j∈M

LjiV

(
E

(n)
j + L̄j

L̄j

)
− L̄i,

E
C(n+1);0
i = ΦC;0i (EC(n);0) = bC,µ,0i︸ ︷︷ ︸

=bi

+
∑
j∈MC

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄C,µi ,

E
C(n+1);γ
i = ΦC;γi (EC(n);γ) = bC,µ,γi +

∑
j∈MC

LC,µji V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi .

First note that by the monotonicity of V, the definition of bC,µ,γ , and the induction hypothesis
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that E
C(n);γ
i ≥ EC(n);0

i for all i ∈ N , we immediately see that

E
C(n+1);γ
i = ΦC;γi (EC(n);γ) = bC,µ,γi +

∑
j∈MC

LC,µji V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi

≥ bC,µ,0i +
∑
j∈MC

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄C,µi = ΦC;0i (EC(n);0)

= E
C(n+1);0
i

holds for all i ∈ N . Hence, it remains to show that E
C(n+1);0
i = E

(n+1)
i for all i ∈ N .

Let i ∈ Cnodes. Then,

E
C(n+1);0
i = bC,µ,0i +

∑
j∈MC

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄C,µi︸︷︷︸

=L̄i−µV

= bC,µ,0i +
∑

j∈MC ,(j,i)∈Cedges

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)

+
∑

j∈MC ,(j,i)/∈Cedges

LC,µji︸︷︷︸
=Lji

V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄i + µV.

(36)

Note that there exists at most one j ∈ MC with (j, i) ∈ Cedges. As before we write pred(i)
for the predecessor of i on the cycle Cedges, i.e., pred(i) is the index of the node that satisfies
(pred(i), i) ∈ Cedges.

We distinguish between two cases. First, suppose that pred(i) ∈MC . Then,

∑
j∈MC ,(j,i)∈Cedges

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
= (Lpred(i),i − µV )V

EC(n);0
pred(i) + L̄C,µpred(i)

L̄C,µpred(i)

 .

By the induction hypothesis E
C(n);0
pred(i) = E

(n)
pred(i) and by (35) it holds that E

(n)
pred(i) ≥ kL̄pred(i)

since pred(i) ∈ Cnodes. By the definition of V this implies that

V

EC(n);0
pred(i) + L̄C,µpred(i)

L̄C,µpred(i)

 = 1 = V

E(n)
pred(i) + L̄pred(i)

L̄pred(i)

 .

Hence,

∑
j∈MC ,(j,i)∈Cedges

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
= (Lpred(i)i − µV )

= Lpred(i)iV

EC(n);0
pred(i) + L̄C,µpred(i)

L̄C,µpred(i)

− µV.
(37)

Furthermore, since pred(i) /∈M\MC we obtain by Lemma B.2 part 2. that Lji = 0 for all

32

Electronic copy available at: https://ssrn.com/abstract=3688495



j ∈M \MC and hence

∑
j∈M\MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
= 0. (38)

By plugging (37) into (36) we immediately obtain that

E
C(n+1);0
i = bC,µ,0i +

∑
j∈MC

LjiV

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄i + µV − µV

= bC,µ,0i +
∑
j∈MC

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
− L̄i (by induction hypothesis)

= bC,µ,0i +
∑

j∈MC ,E(n)
j ≥kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=1=V

(
E

(n)
j

+L̄j

L̄j

)
+

∑
j∈MC ,E(n)

j <kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

(?)
=V

(
E

(n)
j

+L̄j

L̄j

)

− L̄i

= bC,µ,0i +
∑
j∈MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
− L̄i

= bC,µ,0i︸ ︷︷ ︸
=bi

+
∑
j∈M

LjiV

(
E

(n)
j + L̄j

L̄j

)
−

∑
j∈M\MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
︸ ︷︷ ︸

=0 by (38)

−L̄i = E
(n+1)
i ,

where (?) holds because if for an j ∈ N it holds that E
(n)
j < kL̄j then j ∈ N \ Cnodes since by

assumption no defaults occur on the compression cycle. Hence, L̄C,µj = L̄j .

Second, suppose that pred(i) ∈M \MC . Then, by Lemma B.2 part 2.

∑
j∈MC ,(j,i)∈Cedges

LC,µji V

(
E

(n)
j + L̄C,µj

L̄C,µj

)
= 0. (39)

Furthermore, again from Lemma B.2 part 2. and using the assumption that no node on the
compression network cycle defaults we get

∑
j∈M\MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
= Lpred(i)iV

E(n)
pred(i) + L̄pred(i)

L̄pred(i)


︸ ︷︷ ︸

=1

= Lpred(i)i = µV,

(40)

where we used the fact that pred(i) ∈M \MC .
By plugging (39) into (36) we obtain

E
C(n+1);0
i = bC,µ,0i︸ ︷︷ ︸

=bi

+
∑

j∈MC ,(j,i)∈Cedges

LC,µji V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=0
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+
∑

j∈MC ,(j,i)/∈Cedges

LjiV

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄i + µV

= bi +
∑
j∈MC

LjiV

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄i + µV (since pred(i) ∈M \MC)

= bi +
∑
j∈MC

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
− L̄i + µV (by induction hypothesis)

= bi +
∑

j∈MC ,E(n)
j ≥kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=1=V

(
E

(n)
j

+L̄j

L̄j

)

+
∑

j∈MC ,E(n)
j <kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=

(?)V

(
E

(n)
j

+L̄j

L̄j

)
−L̄i + µV

= bi +
∑
j∈MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
− L̄i + µV

= bi +
∑
j∈M

LjiV

(
E

(n)
j + L̄j

L̄j

)
−

∑
j∈M\MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
︸ ︷︷ ︸

=µV by (40)

−L̄i + µV

= bi +
∑
j∈M

LjiV

(
E

(n)
j + L̄j

L̄j

)
− L̄i = E

(n+1)
i ,

where the same argument was used in (?) as before, namely that nodes with E
(n)
j < kL̄j cannot

be on the compression network cycle.
Let i /∈ Cnodes. Then, using the induction hypothesis in the second line we get

E
C(n+1);0
i = bC,µ,0i︸ ︷︷ ︸

=bi

+
∑
j∈MC

LC,µji︸︷︷︸
=Lji

V

(
E
C(n);0
j + L̄C,µj

L̄C,µj

)
− L̄C,µi︸︷︷︸

=L̄i

= bi +
∑
j∈MC

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
− L̄i

= bi +
∑

j∈MC ,E(n)
j ≥kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=1=V

(
E

(n)
j

+L̄j

L̄j

)
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+
∑

j∈MC ,E(n)
j <kL̄j

LjiV

(
E

(n)
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=

(?)V

(
E

(n)
j

+L̄j

L̄j

)
−L̄i

= bi +
∑
j∈MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
− L̄i

= bi +
∑
j∈M

LjiV

(
E

(n)
j + L̄j

L̄j

)
−

∑
j∈M\MC

LjiV

(
E

(n)
j + L̄j

L̄j

)
︸ ︷︷ ︸

=0(by Lemma B.2 part 2.)

−L̄i = E
(n+1)
i

using again the fact in (?) that nodes with E
(n)
j < kL̄j cannot be on the compression network

cycle.

Hence, we have shown that indeed for all n ∈ N0 and for all i ∈ N E
C(n+1);γ
i ≥ EC(n+1);0

i =

E
(n+1)
i which completes the induction. Hence, for all i ∈ N

EC;γ;∗
i = lim

n→∞
E
C(n);γ
i ≥ EC;0;∗

i = lim
n→∞

E
C(n);0
i = lim

n→∞
E

(n)
i = E∗i .

From this it follows immediately that D(LC,µ, bC,µ,γ ;V) ⊆ D(LC,µ, bC,µ,0;V) ⊆ D(L, b;V).

Proof of Proposition 4.9. We will prove part 1. first and will show that part 2. and part 3. are
essentially corollaries from part 1.

1. Suppose that condition (24) is satisfied. We will prove now that compression can only
increase the re-evaluated equity. This proof uses similar arguments as in the proof of
Proposition 4.8. Again we consider the sequences (E(n)) and (EC(n);γ) defined in (33).

Using the same argument as in the proof of Proposition 4.8 we know from Lemma B.3 that

limn→∞E
(n)
j = E∗j and limn→∞E

C(n);γ
j = EC,µ;γ;∗

j exist for all j ∈ N . Furthermore, (E(n))

and (EC(n);γ) are decreasing sequences, i.e., they converge to their limits from above. In

particular, E
(n)
j ≥ E∗j and E

C(n);γ
j ≥ EC,µ;γ;∗

j for all j ∈ N and for all n ∈ N0 and since V
is non-decreasing this implies that

V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
≥ V

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
∀j ∈ N .

Combining this with (24) we obtain that for all n ∈ N0

V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
≥ V

(
EC,µ;γ;∗
j + L̄C,µj

L̄C,µj

)
≥ V

(
E∗j + L̄j

L̄j

)
∀j ∈ Cnodes. (41)

We will prove by induction that for all n ∈ N0

E
C(n);γ
i ≥ E∗i ∀i ∈ N . (42)

Once this has been shown it follows that EC,µ;γ;∗
i = limn→∞E

C(n);γ
i ≥ E∗i ∀i ∈ N , which

is the statement of the proposition.
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For the start of the induction we consider n = 0. By Lemma 4.5 we know that E
C(0);γ
i ≥

E
(0)
i for all i ∈ N and for all γ ∈ [0, 1]. Since (E(n)) is converging to E∗ from above this

implies that E
C(0);γ
i ≥ E(0)

i ≥ E∗i for all i ∈ N .

Next assume that the statement (42) holds for an n ∈ N0. We will show that it holds for
n+ 1. We distinguish between two cases: Let i ∈ N \ Cnodes. Then,

E
C(n+1);γ
i = ΦC(EC(n);γ)i = bC,µ,γi︸ ︷︷ ︸

=bi

+
∑
j∈MC

LC,µji︸︷︷︸
=Lji

V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi︸︷︷︸

=L̄i

= bi +
∑

j∈MC∩Cnodes

LjiV

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸
≥V
(
E∗
j

+L̄j

L̄j

)
by (41)

+
∑

j∈MC\Cnodes

LjiV

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=V

(
E
C(n);γ
j

+L̄j

L̄j

)
−L̄i

≥ bi +
∑

j∈MC∩Cnodes

LjiV

(
E∗j + L̄j

L̄j

)
+

∑
j∈MC\Cnodes

Lji V

(
E
C(n);γ
j + L̄j

L̄j

)
︸ ︷︷ ︸

≥V
(
E∗
j

+L̄j

L̄j

)
by ind. hyp. &Vmonotone

−L̄i

≥ bi +
∑
j∈MC

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i

= bi +
∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i︸ ︷︷ ︸

=E∗i

−
∑

j∈M\MC
LjiV

(
E∗j + L̄j

L̄j

)

= E∗i −
∑

j∈M\MC
LjiV

(
E∗j + L̄j

L̄j

)
︸ ︷︷ ︸

=0

= E∗i .

Note that
∑

j∈M\MC LjiV
(
E∗j+L̄j

L̄j

)
= 0 since i ∈ N \ Cnodes and by Lemma B.2 Lji = 0

for all j ∈M \MC .
Let i ∈ Cnodes. Then,

E
C(n+1);γ
i = ΦC(EC(n);γ)i = bC,µ,γi︸ ︷︷ ︸

≥bi

+
∑
j∈MC

LC,µji V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi︸︷︷︸

=L̄i−µV

≥ bi +
∑

j∈MC∩Cnodes

LC,µji V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸
≥V
(
E∗
j

+L̄j

L̄j

)
by (41)

+
∑

j∈MC\Cnodes

LC,µji V

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
︸ ︷︷ ︸

=V

(
E
C(n);γ
j

+L̄j

L̄j

)
since j /∈Cnodes

−L̄i + µV
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≥ bi +
∑

j∈MC∩Cnodes

LC,µji V

(
E∗j + L̄j

L̄j

)

+
∑

j∈MC\Cnodes

LC,µji︸︷︷︸
=Lji

V

(
E
C(n);γ
j + L̄j

L̄j

)
︸ ︷︷ ︸

≥V
(
E∗
j

+L̄j

L̄j

)
by ind. hyp. andV nondecreasing

−L̄i + µV

≥ bi +
∑

j∈MC∩Cnodes\{pred(i)}

LC,µji︸︷︷︸
Lji

V

(
E∗j + L̄j

L̄j

)

+ (Lpred(i)i − µV )V

(
E∗pred(i) + L̄pred(i)

L̄pred(i)

)
I{pred(i)∈MC}

+
∑

j∈MC\Cnodes

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i + µV

=: (??)

Let pred(i) ∈MC . Then,

(??) = bi +
∑
j∈MC

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i + µV

(
1− V

(
E∗pred(i) + L̄pred(i)

L̄pred(i)

))

= bi +
∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i︸ ︷︷ ︸

E∗i

+µV

(
1− V

(
E∗pred(i) + L̄pred(i)

L̄pred(i)

))
︸ ︷︷ ︸

≥0

−
∑

j∈M\MC
LjiV

(
E∗j + L̄j

L̄j

)
︸ ︷︷ ︸

=0 since pred(i)∈MC

≥ E∗i .

Let pred(i) ∈M \MC . Then,

(??) = bi +
∑
j∈MC

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i + µV

= bi +
∑
j∈M

LjiV

(
E∗j + L̄j

L̄j

)
− L̄i︸ ︷︷ ︸

E∗i

−
∑

j∈M\MC
LjiV

(
E∗j + L̄j

L̄j

)
︸ ︷︷ ︸

=µV V
(
E∗

pred(i)
+L̄pred(i)

L̄pred(i)

)
+µV

= E∗i + µV

(
1− V

(
E∗pred(i) + L̄pred(i)

L̄pred(i)

))
︸ ︷︷ ︸

≥0

≥ E∗i .

Hence, this completes the induction and the result follows.
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2. Suppose that (25) holds. Then by the definition of V we immediately get that

1 = V

(
EC,µ;γ;∗
i + L̄C,µi

L̄C,µi

)
≥ V

(
E∗i + L̄i
L̄i

)
∀i ∈ Cnodes.

Hence, the result follows with part 1. of this Proposition.

3. Suppose that (26) holds, then V
(
EC,µ;γ;∗
i +L̄C,µi

L̄C,µi

)
= 1 ∀i ∈ Cnodes and hence the statement

follows directly from part 2. of this Proposition since condition (25) is satisfied.

Proof of Proposition 4.10. Let i ∈ Cnodes. Hence, L̄i > 0 and L̄C,µi = L̄i−µ. Let j = suc(i) ∈ N
and first suppose that L̄C,µi > 0. Then,

ΠC,µij = ΠC,µisuc(i) =
LC,µisuc(i)

L̄C,µi
=

 Lisuc(i) − µ
L̄i − µ

≤
Lisuc(i)

L̄i
= Πisuc(i),

since

 Lisuc(i) − µ
L̄i − µ

≤
Lisuc(i)

L̄i
⇔ Lisuc(i)L̄i − µL̄i ≤ Lisuc(i)L̄i − Lisuc(i)µ⇔ 0 ≤ µ(L̄i − Lisuc(i))

is always satisfied. Second, suppose that L̄C,µi = 0. Then, ΠC,µisuc(i) = 0 ≤ Lisuc(i)

L̄i
= Πisuc(i). Now

let j ∈ N \ {suc(i)}. Then, ΠC,µij =
LC,µij

L̄C,µi
=

Lij
L̄i

= Πij .

Let i ∈ N \ Cnodes and j ∈ N . Then, L̄C,µi = L̄i. If L̄i > 0, then L̄C,µi = L̄i > 0 and

ΠC,µij =
LC,µij

L̄C,µi
=

Lij
L̄i

= Πij ; and if L̄i = 0, then L̄C,µi = L̄i = 0 and ΠC,µij = 0 = Πij .

We will use the following Lemma to prove Theorem 4.11.

Lemma B.5. Let E
C(n);0
i , E

(n)
i , L̄C,µi , L̄i ∈ R, E

C(n);0
i ≥ E(n)

i , L̄C,µi ≤ L̄i and k ≥ 0. Then,

Vzero

(
E
C(n);0
i + L̄C,µi

L̄C,µi

)
= I{EC(n);0

i ≥kL̄C,µi }
≥ I{E(n)

i ≥kL̄i}
= Vzero

(
E

(n)
i + L̄i
L̄i

)
. (43)

Proof of Lemma B.5. Note that kL̄i ≥ kL̄C,µi . Suppose I{EC(n);0
i ≥kL̄C,µi }

= 1. Then, 1 ≥

I{E(n)
i ≥kL̄i}

. Suppose I{EC(n);0
i ≥kL̄C,µi }

= 0. Then, E
(n)
i ≤ E

C(n);0
i < kL̄C,µi ≤ kL̄i and there-

fore I{EC(n);0
i ≥kL̄C,µi }

= 0 = I{E(n)
i ≥kL̄i}

.

Proof of Proposition 4.11. We proceed similarly as in the proof of Proposition 4.8. We consider
two sequences (E(n)) and (EC(n);γ) defined in (33) but now assume that V = Vzero.

We will prove by induction that

E
C(n);γ
i ≥ E(n)

i for all i ∈ N (44)

holds for all n ∈ N0. Once this has been shown it follows that EC,µ;γ;∗
i = limn→∞E

C(n);γ
i ≥

limn→∞E
(n)
i = E∗i for all i ∈ N which is the statement of the theorem.

Let n = 0. Then the result follows directly from Lemma 4.5.
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We now assume that (44) holds true for an n ∈ N. We show that (44) is true for n + 1.
Consider

E
(n+1)
i = Φi(E

(n)) = bi +
∑
j∈M

LjiVzero

(
E

(n)
j + L̄j

L̄j

)
− L̄i,

E
C(n+1);γ
i = ΦC;γi (EC(n);γ) = bC,µ,γi +

∑
j∈MC

LC,µji Vzero

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi .

By the induction hypothesis (44) E
C(n);γ
i ≥ E(n)

i for all i ∈ N and hence

Vzero

(
E
C(n);γ
i + L̄C,µi

L̄C,µi

)
= I{EC(n);γ

i ≥kL̄C,µi }
≥ I{E(n)

i ≥kL̄i}
= Vzero

(
E

(n)
i + L̄i
L̄i

)

by Lemma (B.5). Hence,

E
C(n+1);γ
i = bC,µ,γi +

∑
j∈MC

LC,µji Vzero

(
E
C(n);γ
j + L̄C,µj

L̄C,µj

)
− L̄C,µi

= bC,µ,γi︸ ︷︷ ︸
≥bi

+
∑
j∈N

LC,µji I{EC(n);γ
j ≥kL̄C,µj }

− L̄C,µi

≥ bi +
∑
j∈N

LC,µji I{E(n)
j ≥kL̄j}

− L̄C,µi = (∗),

where we used (43) to derive the inequality. If i /∈ Cnodes, then

(∗) = bi +
∑
j∈N

LjiI{E(n)
j ≥kL̄j}

− L̄i = bi +
∑
j∈M

LjiVzero

(
E

(n)
j + L̄j

L̄j

)
− L̄i = E

(n+1)
i .

If i ∈ Cnodes, then

(∗) = bi +
∑

j∈N\{pred(i)}

LjiI{E(n)
j ≥kL̄j}

+ (Lpred(i)i − µV )I{E(n)
pred(i)

≥kL̄pred(i)}
− (L̄i − µV )

= bi +
∑
j∈N

LjiI{E(n)
j ≥kL̄j}

− L̄i + µV (1− I{E(n)
pred(i)

≥kL̄pred(i)}
)︸ ︷︷ ︸

≥0

≥ bi +
∑
j∈N

LjiI{E(n)
j ≥kL̄j}

− L̄i = bi +
∑
j∈M

LjiVzero

(
E

(n)
j + L̄j

L̄j

)
− L̄i = E

(n+1)
i .

Hence, E
C(n+1)
i ≥ E(n+1)

i for all i ∈ N which completes the induction.
To see that indeed systemic risk is reduced by compression here, we use the results of the

first part, namely EC,µ;γ;∗
i ≥ E∗i for all i ∈ N . Suppose D(LC,µ, bC,µ,γ ;Vzero) 6= ∅ otherwise

there is nothing to show. Let i ∈ D(LC,µ, bC,µ,γ ;Vzero). Then, EC,µ;γ;∗
i < kL̄C,µi and hence

E∗i ≤ E
C,µ;γ;∗
i < kL̄C,µi ≤ kL̄i. This implies that i ∈ D(L, b;Vzero). Hence,

D(LC,µ, bC,µ,γ ;Vzero) = {i ∈ N | EC,µ;γ;∗
i < kL̄C,µi } ⊆ {i ∈ N | E

∗
i < kL̄i} = D(L, b;Vzero).

Proof of Proposition 4.12. Suppose condition 1. i.e., formula (27) is satisfied, i.e., D(L, b;V) ∩
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Call
nodes = ∅. Then, in particular D(L, b;V) ∩ C(1)

nodes = ∅. Then, by Proposition 4.8, com-

pressing C(1) reduces systemic risk. In particular, D(LC
(1)
, bC

(1)
;V) ⊆ D(L, b;V). Combining

this results with (27) implies that D(LC
(1)
, bC

(1)
;V) ∩ C(2)

nodes = ∅. Then, applying Proposition

4.8 to the system D(LC
(1)
, bC

(1)
;V) by compressing cycle C(2) yields D(LC

(1),C(2)
, bC

(1),C(2)
;V) ⊆

D(LC
(1)
, bC

(1)
;V). By repeating these arguments, we obtain that

D(LC
(1),...,C(m)

, bC
(1),...,C(m)

;V) ⊆ D(LC
(1),...,C(m−1)

, bC
(1),...,C(m−1)

;V)

⊆ . . . ⊆ D(LC
(1)
, bC

(1)
;V) ⊆ D(L, b;V)

and hence indeed compressing sequentially C(1), . . . , C(m) reduces systemic risk.
Suppose the second condition, i.e., (28) holds, then Proposition 4.9 yields the statement. If

the third condition, i.e., V = Vzero holds, the statement follows from Proposition 4.11.

Proof of Corollary 4.13. 1. This statement and its proof is given in (D’Errico & Roukny,
2019, Section 12)).

2. This statement follows directly from Proposition 4.12 by using the sequence of cycles to
obtain X̃ that is guaranteed to exist from part 1. of this Corollary.

3. The algorithm developed in (D’Errico & Roukny, 2019, Section 12)) to determine the
sequence of cycles C(1), . . . , C(m) can still be used if a lower bound aij ≥ 0 is introduced.
The results derived in Proposition 4.12 hold for all possible compression volumes and not
just for the original µmax

i , i ∈ {1, . . . ,m}. Hence, in line with Remark 2.2 the results
remain valid for the case of a lower bound that is not necessarily 0.
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