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I. Introduction

The premise of the consumption-based asset pricing models is that markets are fully inte-

grated and that the price of risk is rationally determined and fluctuates countercyclically.1

The market integration assumption is also fundamental in Merton’s (1974) structural model

of credit risk. In this model, variations in stock prices and credit spreads must relate pre-

cisely to prevent arbitrage. Yet, an active and persistent trading theme in the markets

exploits the pricing discrepancies between firms’ equity and credit markets. However, the

presence of these active arbitrageurs, combined with the market integration hypothesis,

should, in theory, ensure that the movements between firms’ equity and debt markets are

closely related. Failure to find these close links has substantial implications for asset pricing

theory and poses practical challenges for risk management.

An important innovation in everyday trading activities is the advent of algorithmic high-

frequency trading (HFT). The main advantage of these machine learning (ML) trading

methods is that they create high liquidity and mitigate market fragmentation effects. They

also assure against human bias, and because they are based on high volumes, they con-

tribute to the price discovery and price formation processes. While the stock market’s

liquidity is commonly understood, a recent phenomenon in the market for credit risk is

a significant increase in “naked trading.”2 This trading allows investors unaffected by

the short-selling constraints to express their views on firms’ future credit soundness. This

practice has enabled a significant increase in trading activity and created a wealth of data.3

Therefore, this context provides a beneficial setting to pursue two main inquiry lines

not previously studied in the literature. First, can the availability of extensive data and

machine learning techniques afford robust predictions of future changes in credit risk pre-

miums? Second, has the advent of automated ML trading and the active capital structure

arbitrage eased the market fragmentation? The first question has significant practical risk-

management consequences and contributes to our understanding of credit behavior, while

1Campbell and Cochrane (1999) present a habit formation process of time-varying risk aversion, while Chen,
Collin-Dufresne and Goldstein (2008) discuss how habit formation can explain the low level of defaults if defaults are
countercyclical. Bansal and Yaron (2004) look at time-varying consumption volatility, and Barro (2006) and Gabaix
(2012) study the time-varying consumption disaster risk.

2The naked trading of credit default swap (CDS) consists of speculators buying protection against a default of
the firm without owning the underlying credit or bond. These types of positions, who are unlimited, are also known
as synthetic.

3On February the 4th, 2016– which coincides with the end date of this sample– Financial Times reported
that “a record $15.7 bn in gross notional outstanding positions of single name CDS was cleared by investors
during Janurary according to the Intercontinental Exchange, the largest credit derivative clearing house”. See
https://www.ft.com/content/c47dce8e-ca9f-11e5-be0b-b7ece4e953a0.
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the second question bears implications for capital theory and policymaking.

Traditional credit risk literature proposes structural models that price corporate secu-

rities as claims on a firm’s assets.4 Such models’ success is measured by their ability to

produce credit spreads that closely mimic the market-observed ones.5 Recently, Du, Elka-

mhi and Ericsson (2019), via simulations, have made significant progress in explaining the

levels and the changes in the credit spreads.6 However, such studies cannot offer insights

into predictability or provide accurate estimates of the underlying asset value dynamics,

crucial for credit risk management and asset pricing, which is the focus of this article.

The importance of modeling the dynamics of credit risk factors is crucial for risk manage-

ment. For example, in hedging portfolio credit derivatives, the risk is characterized in terms

of sensitivities to shifts in risk factors. Typical hedging practices based on such measures

of sensitivity have been to ”delta-hedge” the changes due to spread fluctuations. However,

the lack of well-defined dynamics for risk factors in such static models has proven inefficient

for credit risk management during the recent financial crisis.7 Besides, traditional hedg-

ing strategies of credit risk ignore jump risks in the spreads, critical for risk management

during the distressed credit market in 2008.

The pricing dynamics of spreads are also important for asset pricing. Models for pricing

credit derivatives have traditionally used log-normal approaches to describe changes in

credit spreads. Such models’ implicit assumption is that changes in spreads are proportional

to spreads and that relative spread changes are normally distributed. The presence of

(extreme) price movements in the risk premium dynamics reported in this study evinces

these models’ limitations. Time-varying realized volatility risk is a state variable that

drives risk premium dynamics and predicts much of the credit spread changes in out-of-

sample. The jump risk measures’ contribution further enhances the model’s performance

in capturing the spreads’ pricing dynamics.

The dependence of the asset growth process on state dependencies introduces stochastic

volatility in the credit spreads. Empirically, to capture the pricing dynamics of credit

4See Collin-Dufresne, Goldstein and Martin (2001), Acharya and Carpenter (2002) for early studies and others
thereafter.

5See Cremers, Driessen and Maenhout (2008), Huang and Huang (2012), among others.
6Christoffersen, Du and Elkamhi (2017) and McQuade (2018) have recently studied structural models with

stochastic volatility and jumps and Ait-Sahalia and Kimmel (2007) use polynomial expansions. In contrast, earlier
studies looked at option-implied jumps (Cremers, Driessen and Maenhout 2008), equity market implied jumps (Zhang,
Zhou and Zhu 2009), and jumps in the US Treasury market (Tauchen and Zhou 2011). None of these studies focuses
on the firm-level market for credit risk or relies on this market’s high-frequency data to imply the risk parameters,
allowing for another innovation of this article to add to this body of work.

7In fact, delta-hedging of spread risk is not basd on theory of derivative replication.
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spreads, the literature has traditionally used square root factors that impose parametric

restrictions (admissibility conditions) to obtain positive conditional variance over a range of

state-vectors. However, this method affects the correlations among the factors and worsens

the cross-sectional fit of the model. In contrast, constant-volatility Gaussian models with

no square root factors do not restrict the signs and magnitude of the conditional and

unconditional correlations among the factors. Still, neither do they accommodate the

pronounced and persistent volatility fluctuations observed in credit spreads.

This study contributes to the literature by proposing a statistical analysis based on

nonparametric estimates of volatility and jumps-risk measures in the asset growth process

implied from the credit market information. These risk factors are then used to predict

future changes in firms’ credit and equity risk premia. A similar approach is used to

recover the stock risk measures of the same firm. While this article focuses on predicting

future credit risk variations, it also seeks to understand the proposed risk factors’ economic

importance. Traditional testing of the contribution of risk factors in explaining the asset

prices is straightforward. Once the estimated loadings of the stochastic discount factors

(SDF) on the risk factors and a set of control variables are evaluated, a test of whether

the loadings of risk factors are different from zero reveals their significance for the asset

prices. However, given the plethora of factors proposed in the literature due to the curse of

dimensionality, evaluating the proposed risk measures’ contribution via standard statistical

methods is infeasible and results in unreliable estimates and invalid inference.

This article uses the least absolute shrinkage and selection operator (LASSO) to predict

credit spread changes. Under certain conditions, this approach allows for selecting correct

variables and helps reduce the dimensionality problem. Although this method determines

the factors that most contribute to out-of-sample predictability, relying merely on LASSO

for model selection, as pointed by Chernozhukov, Hansen and Spindler (2015), produces a

poor approximation of estimators’ finite-sample distributions and often results in omitted

variable bias. Belloni, Chernozhukov and Hansen (2014b) proposed the double-selection

LASSO to overcome this issue and obtain robust inference. Therefore, this study blends

the ability of ML techniques to get the best out-of-sample predictions in the first instance.

In the second step, the double ML includes a battery of theoretically important control

variables presented in the credit literature to assess the statistical significance of the pro-

posed risk measures. Finally, the economic importance of the risk factors is assessed in
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portfolio sorts.

This econometric approach is congruent with this paper’s framework. The advent of

automated ML trading has allowed for the emergence of a wealth of data. The expected

effects of this abundance of high-frequency data are two-fold. On the one hand, they allow

for more reliable estimates of volatility and jump risk factors and thus identify the market

state variables useful in forecasting;8 on the other hand, they should lessen the market

fragmentation effects. Finally, ML approaches for prediction and inference are robust to

nonlinearities and ensure that the results reported in this article are entirely data-driven.

The remainder of this article is organized as follows: Section II summarizes the data

set. Section III describes the empirical methodology. Empirical results are presented in

Section IV. Finally, Section V concludes. The theoretical motivation of the empirical

analysis is reported in the Internet Appendix to save space. This appendix also provides

the technical implementation details of the risk factors’ estimation method and other results

and robustness checks.

II. Data Set

The credit default swap (CDS) data are from ICE Credit Market Analysis Ltd (CMA)

DataVision via the Bloomberg data service. The data set consists of five-minute intraday

CDS prices for the five-year CDX NA IG index constituents. This CMA database is the

most widely used database among financial market participants and the principal data

source for Bloomberg-disseminated CDS prices; thus, arguably, these data contain fewer

errors.9 Mayordomo, Peña and Schwartz (2014) note that CMA collects its data from

around 40 institutions that are active participants in the CDS market. These participants

receive tens of thousands of Bloomberg-formatted pricing messages that are included in

the CMA database. Consequently, these prices are very likely to be tradeable. They also

find that these prices lead the price discovery process. The time period spans July 9, 2012,

to July 9, 2016.

Since the accuracy of the risk estimates is paramount for the empirical investigation, the

following steps help mitigate the market microstructure noise (e.g., concerns such as stale

prices, discreteness of prices, and bid-ask spreads). Consistent with the literature first, only

8See Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2001).
9CMA quotes provided by Bloomberg have been extensively used in the literature (e.g., Das, Hanouna and Sarin

(2009); Saretto and Tookes (2013); Das, Kalimipalli and Nayak (2014); Boehmer, Chava and Tookes (2015)).
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the CMA data, which are aggregated across individual dealers, is used, thereby averaging

out some of the noise. Second, sampling at the five-minute frequency helps to manage

the effect of microstructure noise on volatility estimates (Hansen and Lunde 2006). Bandi

and Russell (2006) calculate optimal sampling intervals in the presence of microstructure

noise and find that “since many optimal sampling intervals are near 5 min, the loss is not

substantial when a 5-min interval is used.” Similarly, Ait-Sahalia and Mykland (2005) show

that more data do not necessarily lead to better estimates of the realized volatility, exactly

because of the presence of market microstructure noise. Third, the bipower measures

proposed in Huang and Tauchen (2005) ensure against the presence of autocorrelation in

adjacent returns, a problem triggered by market microstructure noise. Finally, trading days

with fewer than 40 observations of five-minute returns are removed. Repeated observations

and obviously misreported prices are also deleted.

The empirical analysis controls whether the proposed credit risk factors help to predict

future variations in the firms credit (equity) risk premia above and beyond the plethora of

the factors presented in the credit risk literature. In response, the analysis includes a wide

range of covariates. The data are divided into the following nine main categories, each

containing several control factors.10

Credit and equity risk factors (RVC, RJV, (+/-)RJV ) These are the main vari-

ables of interest. The firm-level realized volatility and realized jump risks based on credit

and equity market information are estimated from the high-frequency data. We want to

know whether these new risk factors can predict firms’ future changes of credit spread and

equity risk premium above and beyond other factors presented in the credit literature. The

intraday data come from Bloomberg.

Illiquidity risk (λ) This risk factor includes the firm-specific and market-wide illiq-

uidity shocks based on credit and equity market information. Therefore, this measure

includes firm-level credit and stock bid-ask spreads, Barclay’s liquidity cost scores, CDX

index bid-ask spreads, Roll (1984) measures, and their expected shocks. The estimation

procedure for the illiquidity risk is discussed in the internet appendix. Intraday and daily

data come from Bloomberg.

Historical risk factors (ι) Traditionally the credit risk literature has inferred the

10The sampled entities, the data source, and definitions are discussed in the Internet Appendix B. Table IB.1
reports the firms’ names and provides their summary statistics. Table IB.2 discusses the economic intuition on the
relation between the covariates employed in this article, and the credit spreads and equity.
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firm-level volatility and jump risks from daily non-overlapping standard deviation, skew-

ness, and kurtosis (-V OLAt, -KURTt, -SKEWt) of credit (equity) returns. The credit

risk measures have a C- prefix, and the equity counterparts have an E- prefix. The daily

data come from Bloomberg.

Options market (π) These include two control measures namely, the deep-out-of-the-

money (DOTM) Put options of the underlying stock and the VIX index. While VIX, the

fear index, captures markets’ downside risk expectations and has been widely used in the

credit literature, put options due to their similar contingent-claim payoffs as the CDS are

studied in Cao, Yu and Zhong (2010). The daily data come from Bloomberg.

Firm-characteristics (φ) The firm-level characteristics control variables containing

the firm leverage ratio (LEVERAGE ) estimated as the sum of current- and long-term debt

divided by the sum of total equity and current- and long-term debt, and the firm’s size,

proxied as the log of market capitalization (SIZE), which controls for firm-size effects. In

the structural models for credit risk, the default occurs when the leverage ratio nears unity

while the size is commonly assumed as an inverse proxy for the expected cost of bankruptcy

(Rajan and Zingales 1995). To capture the firm’s value process, for robustness, regressions

also control for individual firm’s EQUITY RETURN. The daily and quarterly data come

from Bloomberg.

Asset risk factors (α) Asset risk factors include the asset volatility (σASSET ) esti-

mated as in Kelly, Manzo and Palhares (2017) and the asset beta (βASSET ), estimated

similar to Schwert and Strebulaev (2014). These risk factors capture assets total and sys-

tematic risk. Within the structural framework, changes in the firm’s asset value process

affect its credit and equity pricing dynamics. Inferential tests account for this interaction.

The daily and quarterly data come from Bloomberg.

Business risk factors (B) These include, TOBIN’S Q, TANGIBILITY, calculated as

a ratio of tangible equity over tangible assets, and, PROFITABILITY estimated as a ratio

of net income over net revenue. Monthly data come from Bloomberg.

Common risk factors (κ) They include Fama-French three-factors MKT, SMB and

HML; the excess return on the market portfolio and the return on two long/short portfolios

that capture the size and book-to-market effects, respectively. Further controls include

the default risk premia in the credit market, DEF (The difference between the 10-year

Bloomberg Barclays US BBB Corporate Bond Index and the 10-year US Treasury rate),
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and the TERM (the difference between the returns on 10-year- and 3-month Treasury

securities). The daily and monthly data come from Bloomberg and the Federal Reserve

Economic database (FRED).

Macroeconomic factors (µ) Monthly S&P 500 returns, a proxy for the economy’s

overall state and captures the business climate changes. LEVEL is the 10-year Benchmark

Treasury yields. The term structure’s squared and cube level (LEV EL2, LEV EL3, respec-

tively) accounts for potential nonlinear effects due to convexity. SLOPE is the difference

between the 10-year and 2-year Treasury yields. The term structure of the interest rates is

affected by the term structure’s level and its slope. Since the interest rates affect the firm

value, an increase in the Treasury curve slope increases the expected future short rates;

therefore, it affects the spreads. The final macroeconomic variable is the SWAP rate, the

difference between the 10-year US dollar swap rates and the 10-year US Treasury rate.

This proxy for changes in the overall risk in the economy.

Table 1, Panel A, reports summary statistics for the monthly CDS spreads, volatility,

jump and illiquidity risk measures implied from credit and equity markets, and the respec-

tive first-order autocorrelations divided into four rating groups, as well as for the whole

sample. Risk measures based on the credit market information have the prefix C-, and

those from the equity market have the prefix E-. Volatility series exhibit pronounced serial

dependencies. In untabulated results, the first 10 autocorrelations of realized volatility

are all highly significant with the gradual but very slow decay suggestive of long-memory

features. This feature is also evident from the time series plots of the realized volatil-

ity series reported in Panel (A) on the left-hand side of Figure 1. The average monthly

spread realized volatilities are 3.59%, 3.66%, and 3.68% for the investment-grade entities

and peak at 4.75% for the noninvestment-grade entities. The right side of Panel (A) in

Figure 1 reports the corresponding realized volatility measures of the same entities implied

from the equity market. The average realized jump volatility, on the other hand, is more

homogenous across the rating groups and drops to less than 1%.

An interesting result from Table 1 is that, while the credit implied volatility measures

are lower than their equity counterparts, the credit market-based jump risk measures are

higher than their corresponding equity market-based jump risk measures. This difference is

also evinced by Figure 1, Panle (B) which plots a horse race comparison of the time series of

realized jump volatility estimates implied from credit returns (left side) and equity returns
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(right side). This result provides initial insight into the different pricing patterns between

the credit and equity market-based risk measures and warrants further investigation.

III. Empirical Method

The theoretical links between the asset value process and the credit and equity price

processes and their variations are discussed in the Internet Appendix A. This discussion

points to an essential aspect of a close relation between firms’ assets volatility and the

credit spread and stock pricing behavior.

A. Credit Spread Return

In a simple form, a corporate bond can be viewed as a combination of a risk-free bond and

a risky asset that pays out an annual coupon and demands payment (net of recovery) if a

credit event occurs. This risky asset accurately reflects the CDS contract; its payoff can be

synthesized by going long on a corporate bond and shorting the riskless bond. Consider an

investor who sells protection using a CDS contract j at time i -1, where i is the ith intraday

observation within trading day t at a CDS spread of CDSj,t,(i−1), paid quarterly. At time

i within trading day t, the investor buys an offsetting contract at a spread CDSj,t,i. The

net cash flow generated prior to maturity or default is therefore (CDSj,t,i − CDSj,t,(i−1)).

Since, as from the discussion in the previous section, spreads follow relative rather than

absolute changes, the ith within-day excess returns of contract j are modeled as

Rj,t,i =
CDSj,t,i

250
−DCDSj,t,i(CDSj,t,i − CDSj,t,(i−1)), (1)

where DCDSj,t,i is the risky duration. These are returns to a CDS seller, and represent

insurance sellers’ accrued risk premia.11 These returns are then combined with the risk-

free and equity returns to estimate firm’s daily asset returns. The assets monthly riskiness

measures are used in the empirical analysis.12

11These returns are similar to Kelly, Manzo and Palhares (2017). When returns are estimated as absolute change
in spreads as in Bongaerts, De Jong and Driessen (2011), results remain generally consistent.

12Asset returns are estimated as in Kelly, Manzo and Palhares (2017). The daily standard deviations of asset
returns are aggregated into monthly frequency.
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B. Realized Volatility and Jumps

The importance of extreme price movements and their source (diffusion- or jump-induced)

for asset pricing has long been recognized (Merton 1976), though their estimation is not

trivial when low-frequency data are employed.13 Filtering out the jumps from volatility

based on low-frequency discrete returns remains empirically challenging, rendering jump

diffusion models less attractive in practical risk management. An important issue for

hedging in practice is understanding the dynamics of credit spreads under the real-world

measure. In hedging strategies based on pricing models, for example, it is not clear how

well those models can capture the pricing dynamics of spreads under this measure.

Realized volatility estimations and the increase in HF trading in the market for credit risk

afford a more precise estimation of volatility and jump risks. Bipower variation measures

allow to separate realized volatility into continuous (RVC) and jump (RJV) components.14

Barndorff-Nielsen and Shephard (2004) propose two general measures of the quadratic

variation process: realized variance, RVt, and realized bipower variation, BVt. Both RVt

and BVt converge uniformly, as the intraday sampling frequency, ∆, ∆→ 0 or m = 1/∆→

∞, to different components of the underlying jump diffusion process

RVj,t,i ≡
m∑
i=1

(R2
j,t,i)→

∫ t

t−1
σ2
sds+

m∑
i=1

(Jsj,t,i)
2, (2)

where the right side is the quadratic variation of the price over the time interval [t, t− 1].

The term R2
j,t,i is the squared spread (equity) returns estimated in Equation (1). For

increasingly fine-sampled increments (m = 1/∆ → ∞), realized volatility consistently

estimates the total ex post variation of the price process. By decomposing the summation

of the squared increments (of the quadratic variation) into separate summations of small

and large price changes, it is possible to estimate the variation in the continuous sample

price path

BVj,t,i ≡
π

2

m∑
i=2

|Rj,t,i| · |Rj,t,i−1| →
∫ t

t−1
σ2
sds. (3)

The difference between the realized variance and the bipower variation is zero when there

13See Andersen, Benzoni and Lund (2002) and Ait-Sahalia (2004), among others.
14See Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), Barndorff-Nielsen (2006) and Andersen,

Bollerslev and Diebold (2007). RVC or volatility and RJV or jump risks are used interchangeably throughout the
paper to denote the short-run firm-specific volatility and jump risks.
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is no jump and is strictly positive with a jump. The realized jump measure RJt is then

RJj,t,i ≡
RVj,t,i −BVj,t,i

RVj,t,i
. (4)

To identify the jumps, this study uses Tauchen and Zhou (2011) extension of the “sig-

nificant jump” approach of Andersen, Bollerslev and Diebold (2007), based on the signed

square root of the significant jump:

Jsj,t,i = sign(Rsj,t,i)×
√
RVj,t,i −BVj,t,i × I(z > Φ−1

α ), (5)

where Φ is the cumulative standard normal distribution function, α is the significance level

of 0.99 of the z -test, and I(z > Φ−1
α ) is the indicator function pertaining to whether there

is a jump during day t.15 The approach proposed herein relies on the economic intuition

that jumps in financial markets, and particularly in the credit market, are rare and large.

This method, therefore, allows for credit market-based sentiment measure to be based on

“observed” realized jumps without any assumptions on the jump distribution.

Once the realized jump volatilities have been estimated, based on the assumption that

rare jumps have a dominant effect on returns on the day they occur, the direction of the

jump, up or down ((+)RJV ) or (−)RJV , respectively) is assigned based on the return

direction of that day. Formally,

(+)RJV = I{rt ≥ 0}RJV

(−)RJV = I{rt < 0}RJV. (6)

C. Empirical Analysis

Credit risk literature has proposed numerous factors, discussed in the data section, with

varying theoretical justification to explain the credit spreads. Empirical works usually

select ad hoc a handful of control factors to assess the contribution of the proposed factor.

15Internet Appendix B reports the implementation details. An alternative strategy to the “significant jumps”
approach is the method proposed by Lee and Mykland (2008). Their model allows filtering out multiple jumps and
has the desirable property to distinguish two jumps a day, with low and high variance. This approach is readily
adaptable in the context of the equity market. However, the credit risk market’s structural and technical factors,
the asymmetric and intermittent nature of credit that display large peaks and lows, higher volatility, and illiquidity,
make the one significant jump a day approach more suitable and provides for a reasonable comparison between the
two markets. Also, recently popularized Hawkes self-excited processes are challenging to fit data.
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The implicit assumption of such approaches is that the chosen model is the true data

generating process (DGP) and that the model is robust to misspecification. Besides the

doubtfulness of these assumptions, recently, credit risk literature employs highly-stylized

models that explain the spreads’ levels and variations via simulations. This literature is

mostly silent regarding these models’ ability to predict the changes of spreads, especially

in out-of-sample. Besides the difficulty in predict changes in spreads as opposed to levels,

the credit literature emphasizes the importance of changes in spreads since they represent

the market’s altered assessment of the credit risk.

LASSO proposed by Tibshirani (1996) is commonly used for prediction. This method

minimizes the prediction error by including a penalty function in the least-squares opti-

mization. This penalty increases as a function of the model’s increased complexity, thereby

imposing a sparsity condition and omitting variables. The least-square minimization is ob-

tained by including a penalty value on the parameter estimates and choosing one of these

solutions as the best solution based on entirely different criteria, that of the out-of-sample

estimate error.16 Due to regularization issues, Belloni et al. (2012) and Belloni and Cher-

nozhukov (2013) propose a post-LASSO estimation, which runs LASSO for model selection

and then refits the least-squares by including only the non-zero coefficients from the first

step. The penalty function is based (“tuned”) on the cross-validation (CV) method that

minimizes estimates of the out-of-sample prediction error.17

In response, predictive regressions include all proposed factors in the literature. The

aim is to use machine learning to evaluate whether the proposed risk factors based on

credit market information alone matter for out-of-sample predictions above and beyond

16Formally, the optimization problem solved by linear lasso of point estimates β̂ is: β̂ =

arg minβ

{
1

2n

∑n
i=1 (yi − xiβ

′)2 + λ
∑p
j=1 ωj |βj |

}
. Here, y is the outcome variable, β is the vector of coefficients

of x, λ is the penalty parameter, ωj are the penalty loadings, βj is the j -th element of β, and n is the sample size.
The first term is the least-squares and the last term is the penalty term. λ and ωj are the “tuning” parameters that
specify the weights applied to the penalty parameter. With λ = 0 LASSO reduces to OLS. As λ decreases from
λmax (for which all estimated coefficients are zero) the number of non-zero coefficients increases. Lasso excludes the
covariates with zero coefficients.

17CV splits the sample into ten random K folds for a given penalty function. Once a fold is chosen a linear
regression fits the other K-1 folds using the variables in the model for that penalty function. The prediction is then
computed using these new estimates for the data of the chosen fold K. This process is repeated for the other K -1
folds. Finally, the average mean squared errors of the prediction across the folds are computed. For robustness, we
also use the adaptive LASSO method. Adaptive LASSO runs multiple LASSOs. The first LASSO’s chosen penalty
parameter is used to construct the penalty weights from these coefficient estimates, which are then later used in the
second LASSO where another penalty function is selected. The sample is split 50% training and 50% validation.
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the plethora of factors already presented in the literature. The full prediction model is,

δyt,j = c+ β1δRV C
′
t,j + β2δRJV

′
t,j + β3δλ

′
+ β4δι

′
t,j + β5δπt,j

+ β6δφ
′
t,j + β7δα

′
t,j + β8δB

′
t,j + β9δκ

′
t + β10µ

′
t

+ FirmFE +MonthFE +RatingsFE + Sector FE + εt,j . (7)

The dependent variable yt,j is the changes in credit or equity risk premia. The variables

of interest, the volatility and jump measures from high-frequency CDSs and equity prices,

are estimated as detailed in Section III.B and internet appendix. They also include the

up-and-down jumps estimated in Equation (6). Other covariates, also discussed in data

section II, include the firm-level illiquidity risk factor (λ
′
), historical volatility and jump

risk factors (ι
′
), the equity deep-out-of-the-money put option (π), firm characteristics (φ

′
),

firm asset risk factors (α
′
), business risk factors (B), common risk factors (κ

′
), and finally

macroeconomic factors (µ
′
). All regressions include firm (Firm), time (Month), credit

rating (Rating), and industry (Sector) fixed effects. δ denotes the changes in the variables.

However, ML techniques are designed for prediction, and as discussed in Feng, Giglio

and Xiu (2020), LASSO can omit critical economic factors when recovering the SDF.

Furthermore, LASSO does not provide standard errors to assess the proposed risk factors’

statistical validity. In response, this work uses the cross-fit partialing-out, also known as

double machine learning method proposed by Chernozhukov et al. (2018). This method

splits the sample into roughly two equal sizes; coefficients obtained from one sample are

used in another, and therefore, is robust to model selection mistakes that LASSO makes.

The inferential analysis thus uses the cross-fit partialing-out of the same specification,

Equation (7).

By including a large set of covariates, this article also addresses the omitted factor

critique. The double-ML approach adopted here also benefits from reporting estimates of

values from the true model that generated the data. Empirical results in all tables report

the out-of-sample R2 of post-LASSO prediction regressions, and coefficients note the robust

standard errors of the double-ML that account for within-cluster correlations that are not

captured by the fixed effects.
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IV. Empirical Results

In traditional empirical contingent claim analysis, most of the explanatory variables are

jointly determined with credit spreads. Consequently, initial investigation focuses on the

role of credit volatility and jump risk measures to predict future credit spread levels in

pooled OLS regressions. The preliminary results are reported in the Internet Appendix

Table AI. 1. Regressions use only lagged explanatory variables to account for the high per-

sistence of credit spreads and avoid simultaneity problems that would artificially increase

predictive power. Results evince the utility of the volatility and jump risk measures based

on the credit market information for predicting future spread levels.

A. Comparing the Models: CDS and Equity Implied Volatility and Jump Risks

While the advantage of the proposed volatility and jump risk for predicting future spread

levels is well founded in structural models theory (see discussions in Internet Appendix),

three considerations can be made. First, while the credit literature recognizes the im-

portance of predicting credit spreads, it also emphasizes the much more difficult task of

forecasting changes in spreads. Changes in spreads are essential because they represent

returns that investors earn from holding a position on a particular portfolio of spreads.

Hence, they capture changes in the market’s assessment of the credit risk of the underlying

entity. Second, the proposed risk measures’ successful predictive ability does not neces-

sarily imply that they would perform equally well out of the sample. The highly stylized

models commonly employed in credit literature, or the recent simulation approach, suf-

fer from overfitting problems, which is especially critical in a nonlinear world of abrupt

changes in spreads.18 Third, relying on structural models, the literature so far has implied

volatility and jump risks from equity returns or equity options; in contrast, the innovation

of this work is to propose risk measures based on the emergence of HF credit market infor-

mation alone. Thus, the credit market risk-based measures are theoretically well-founded.

However, investors need to compare the performance of proposed credit risk measures with

the traditional ones, including the HF stock and option-implied risk measures.19 The

18Recent studies reported in Du, Elkamhi and Ericsson (2019) rely on simulations and invoke strong assumptions
on the data generating process. Culp, Nozawa and Veronesi (2018) show via the use of the “pseudo bonds” (the
difference between Treasury bonds and put options on firm assets) that the excessive tails risk and firm-specific asset
risks are critical factors of corporate spreads. These works, however, do not focus on predictability.

19Cao, Yu and Zhong (2010) and Cremers, Driessen and Maenhout (2008) study the usefulness of stock options
for credit spreads. Equity market-implied jumps are studied in Zhang, Zhou and Zhu (2009).
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ability to predict future changes in credit spreads is undoubtedly essential for practical

risk-management and investment purposes. On the other hand, the advent of high-volume

high-frequency machine trading allows for this work’s additional contribution: to shed

new light on the market integration hypothesis postulated in asset pricing and the struc-

tural models, essential for the asset pricing models and with policy-making implications as

second line of inquiry.

Preliminary analysis show that RVC, as implied from credit and equity returns, has a

positive but weak correlation of 0.14. RJV, on the other hand, has a negative correlation

of -0.24. It, therefore, appears that these two markets entail differing movements. A horse

race exercise can compare the empirical performance of the two models.

The first line of inquiry of this work is to systematically study if the proposed risk

measures outperform the risk measures proposed in the literature in forecasting future

changes in credit risk premia. Asset pricing models with Epstein-Zin preferences predict

that, if risk factors are market state variables, then they should be valuable in predicting

future (returns) changes in spreads. Furthermore, due to the high-dimensional setting

adopted in this study, traditional statistical methods used in asset pricing are ineffective

and provide poor estimation and, moreover they cannot highlight the potential factors’

marginal contribution. In response, this study uses the LASSO machine learning methods

for prediction and inference.

Table 2 reports the results of the LASSO predictive regressions defined as in Equation

(7). Models (1) and (2) use risk measures based only on equity market information. In

contrast, Models (3) and (4) report results with risk measures implied from the credit

market. Finally, Model (5) combines both equity and credit market-based risk measures.

Since the leaps’ direction is crucial for risk management, to better understand the direction

of the realized jump volatility, the jump risk measure is divided into up (or positive) and

down (or negative) jumps based on the sign of the return on the day of the jump (Equation

6). Furthermore, due to the assumed jump size distribution, the correlations of the up

jumps with conditional volatility are more robust than the correlation of the down jumps.

Consequently, the analysis accounts for the up and down jumps.

Results reported in Table 2 show that credit-market-based risk measures predict a sig-

nificant portion of future changes in credit spreads. These measures report a striking

out-of-sample R2 of 47% (Model 4). In contrast, parallel estimates based on equity market
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information in Model (2) predict only 11% of changes in credit spreads in out-of-sample.

Results show that puts alone are the main drivers of this predictability. In combining

information from both markets, Model (5) reports, in fact, a slightly smaller R2 of 46%,

indicative of the curse of dimensionality.

LASSO predictive regressions suggest that only few factors matter for predicting future

changes in spreads. Figure 2 provides a visual representation of the out-of-sample R2 of

the univariate regressions for the LASSO selected variables. Results suggest that equity-

realized jumps bear greater empirical relevance in forecasting changes in spreads than the

equity-realized volatility measure. On the other hand, put options have superior predictive

power compared to E-RVC and E-RJV. Given the similar payoff structure of put options

and the credit default swaps, this result supports models relying on the contingent-claim

options market’s information content to predict changes in spreads. More to the point,

the proposed risk measures based on the credit market information alone in this study are

the driving force in predicting the significant portion changes in spreads. C-RVC forecasts

substantial changes in spreads, 42%, while C-RJV predicts 14%, only a percentage point

more than puts. It is interesting to note that E-RJV, puts, C-RJV, and C-RVC risk

measures, in addition to their theoretical importance, are also consistently selected by all

LASSO models (1 to 5). These results, in addition to providing empirical support to Culp,

Nozawa and Veronesi (2018) that tail risk is the critical driver of firm spreads, they also

further our understanding of firms’ spread behavior by identifying the key risk factors that

generate the data process in firms’ credit spreads, and thus drive the predictability.

Next, in the structural model’s framework, asset value drives firms’ stock and credit pric-

ing dynamics. Therefore, it is crucial to see whether the credit- and equity- market-based

risk factors also bear empirical relevance for predicting the equity risk premium changes.

Table 3 reports similar results to those reported in Table 2 with yt,j replaced by the equity

risk premium. Interestingly, there is some evidence of out-of-sample predictability of credit

market risk factors (16%) for future changes in the equity risk premia. This predictability is

substantially higher than what risk factors based on stock market information can forecast

changes in credit spreads: 1.4%. Models (1) and (2) report that equity market risk factors

predict 17% in future changes in equity risk premia. However, untabulated univariate re-

gressions show that it is the put options that drive entirely this predictability, 17%. Puts

empirical relevance remains robust even when all variables are pooled together (Model (5)).
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This result reinforces the notion of tail risk measures’ importance for predicting credit and

equity risk premiums changes. Puts are in many aspects similar to CDS. They both have

similar contingent-claim payoffs and offer protection against downside risk. Thus, finding

that these factors can predict risk premiums in both markets affords a better understanding

of the importance of assets’ with a contingent-claim payoff to predict the risk premiums’

pricing dynamics. However, while credit market-based risk measure alone predicts a similar

portion of future changes in equity risk premia as put options (16% and 17%, repsecitvely),

puts predict significantly less of future changes in credit premia, 9%, than the credit risk

factors, 47%. These results highlight the importance of the credit-market information in

predicting firms risk premia.

The first part of the analysis uses ML to predict changes in credit and equity risk premia.

However, predictive LASSO regressions do not allow for robust inferential analysis. There-

fore, the statistical significance of the risk measures is obtained via the double-machine

learning LASSO proposed by Chernozhukov et al. (2018). Regression specifications are

like (7), with HF credit and equity risk factors being the variables of interest. Results in

Tables 2 and 3 report robust standard errors of these cross-fit partialing-out inferences.

The double-machine learning approach is also important in that it recovers the true data-

generating process.20 Regressions use a battery of control variables to assess the statistical

significance of the risk factors. These controls are used in two distinctive ways. Models (1)

and (3) report results from a sparse model specification that uses the variables of interest,

i.e., credit and equity volatility and jump risk measures (-RVC and -RJV, up/down RJV,

respectively), illiquidity (λ), and firm characteristics (φ), and controls only for fixed effects.

Models (2) and (4) include the variables of interest and control for all covariates derived

from their respective equity and credit markets. Model (5) includes the full model as in

Equation (7). Since in structural models, the asset value process drives firms’ stock and

credit pricing dynamics, Models (2), (4) and (5) also include interaction terms of asset risk

factors (α), the asset volatility and asset beta, with the equity and credit volatility risk

factors.21 Including a large number of control variables and the interaction terms affords a

two-fold contribution. First, this approach allows for a comprehensive investigation on the

marginal importance of the proposed HF credit market-based risk measures concerning a

20See Belloni, Chernozhukov and Hansen (2014) for using LASSO for inference and making causal interpretations.
21This specification results in 166 controls, of which cross-fit partialing-out selects 60.
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complete list of covariates presented in the credit literature. Furthermore, it highlights the

limitations of the traditional statistical measures used in asset pricing literature favoring

the machine-learning approach.

Results reported in Table 2 show that, when all control variables are included in Model

(5), E-RJV is the only equity risk factor that is statistically significant. The credit market-

based risk factors proposed in this article are consistently statistically highly significant

across all model specifications. They are consumed by neither the other risk factors pre-

sented in the literature nor by including their interactions with assets total and systematic

risks. Likewise, the credit illiquidity risk measure (λC) and the put options are also con-

sistently statistically highly significant in all model specifications. These factors also result

important in all predictive LASSO model selections discussed before.

Regarding the equity risk premium, results reported in Table 3 show that only the

DOTM puts are statistically highly significant across three out of four models. Credit risk

measures, although they predict an equal portion of future changes in equity risk premia

as puts (16% vs. 17%), they are not statistically significant and appear to be subsumed

by puts in the kitchen sink regressions in Model (5).

Next, firms’ leverage and size both result highly significant across all models reported in

Table 2. In the structural framework, leverage represents the moneyness of the implicit put

option on firms’ debt. Because in this model, defaults occur when leverage nears unity, the

leverage should interact with risk measures. To see the importance of the HF credit and

equity risk measures for predicting credit and equity risk premia changes across different

moneyness levels, Tables 4 and 5 sort firms into four equally-weighted portfolios based on

the firm’s leverage. Results are mostly consistent with those reported in Tables 2 and 3, and

indicative of the notion that the credit risk factors are a persistent data feature. Another

implication of studying predictability by leverage groups is to demonstrate the robustness

of the results across different samples. Moreover, this strategy enables to relate the impact

of asset pricing models (risk factors and return predictability) with the structural models

(the importance of leverage). Furthermore, since the risk factors are implied at the firm

level result reported here also addresses Lucas’ critique.

These results imply potentially unspanned volatility and jump risks in equity markets,

which are idiosyncratic to the credit market. Credit markets differ from other asset classes

by the magnitude and clarity with which these factors are revealed. Assets’ risk-neutral
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distribution implied from credit market information provides insights into the tail risk

regions, which are not revealed by the equity, and to a large extent the options market, or

macro-financial factors. These results are important for risk management, but they also

point to market fragmentation, which is addressed in the following section.

B. Market Integration

The previous section showed how carefully-estimated risk parameters based on credit

market information and machine-learning prediction techniques significantly outperform

the equity risk counterparts in forecasting credit and equity risk premia. However, results

also indicate a divergent movement in these markets, contrary to the asset pricing and

structural models’ predictions, warranting further investigation.

Consequently, the second line of inquiry of this article explores the market integration

premise. The advent of automated machine learning trading and the active arbitrageurs

have created an abundance of data. Accordingly, the expectations are that an econome-

trician should see only marginal pricing discrepancies between these markets, as predicted

by asset pricing and structural models and the slow-moving capital theory’s premise.

This article adopts the test of Kapadia and Pu (2012) for market integration for two

reasons. First, by moving this analysis as close to theirs, we can see whether and how

results change. Although the differences between these two studies are expected, they can

still provide useful information. While their research relies on daily data spanning 2001 to

2009, thereby including the start, and thus nonconsolidated credit markets, their sample

also includes the major shock in this market, the 2008 credit crunch. Pricing divergences

in their results are, therefore, to be expected. Yet, finding pricing discrepancies in this

work, and moreover, of a similar magnitude as in their sample, can shed light on the

effects of the innovative algorithmic HF trading for the market integration and efficiency

and afford for new and robust testing of asset pricing and structural model predictions.

Second, Kapadia and Pu (2012) test is based on the structural models’ forecast of a close

relationship between the firm’s bond and stock prices. The test recognizes these two

closely related assets’ pricing discrepancy by implying a concordance level between these

two assets’ price changes. The concordance measure is directly linked to pricing discrepancy

and thus has a straightforward interpretation.22

22The test is defined over k=1,..,M nonoverlapping intervals of observations where the changes (first differences
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Results collated by credit rating and for the entire sample are reported in Table 6.

Results suggest that the pricing discrepancy is a persistent feature in the data when the

analysis is performed daily (Panel A) or monthly (Panel B) frequency. For the whole

sample, equity and credit spread co-move only in 48% and 49% of the time, for daily and

monthly data. This persistent occurrence of pricing divergences challenges the slow-moving

capital theory’s premise. This theory predicts that by the time that the arbitrage capital

is deployed, the pricing discrepancy will diminish. Thus, results reported here show that

even with HF trading, the pricing divergence is still persistent. Results also show that for

about 3% of the time, there is a pricing anomaly where there are no changes in equity and

credit spreads.

At the credit-rating levels, there are some important cross-sectional differences. The

pricing divergences between credit and equity markets, at daily and monthly frequency,

are remarkably more pronounced for the AA-rated (49.5% and 37.5% for daily and monthly

data, respectively) entities than for the speculative-grade ones, about 48% at both daily

and monthly frequency.

There are several interesting points to note concerning the results reported here and those

in Kapadia and Pu. While in both studies, the pricing divergence is more pronounced for

the investment-grade entities than the high-yield ones, the monthly co-movements in the

correct direction (∆CDS/∆P/P < 0) between the markets have decreased from about 63%

in their study to 49% reported here. Furthermore, to the extent that daily anomalies (the

zero price changes) represent higher trading costs, the advent of high-frequency trading

seems to have increased these costs from 1.9% to 3.8% and 2.8% for daily and monthly

data reported here.

These results pose a challenge to traditional credit risk models, with 48% of daily co-

movements representing arbitrage opportunities. They are also informative for policymak-

ing. The reported increased costs are likely an epitome of the “latency arbitrage” effects.23

Furthermore, result reported in Tables 2 and 4 show that the illiquidity risk is statistically

significant, indicative of the “ghost liquidity” notion.24 While results reported in Kapa-

∆) of CDS and equity prices represent arbitrage if ∆CDS/∆P/P > 0 and the market integration test is based on

the frequency of occurrence of such arbitrages κ̂i =
∑M−1
τ=1

∑M−τ
k=1 1[

∆CDSt
i,k

∆P t
ik
>0

]. Markets are more integrated

if κ̂i < κ̂j .
23Latency arbitrage occurs when front runners hike the price. On the other hand, underpriced latency is a symptom

of the limitations of HFT in where analysts’ skills and availability of capital are crucial for a profitable trade, hence
increasing costs.

24A significant criticism of the HFT disputes their claim as liquidity providers since the assets are held only for a
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dia and Pu (2012) spans period with young credit markets and include the 2008 financial

shock; therefore, pricing discrepancies reported in their work is largely not surprising;

the pricing inconsistencies reported here are implied by HFT and a mature credit mar-

ket. Consequently, they are puzzling and symptomatic of the notion of latency arbitrage

exacerbating the market fragmentation effects.

Next, for the investors and analysts, it is important to recognize the lead-lag relationship

between the volatility time series in these two markets and how the trading patterns emerge.

In response, this study conducts a wavelet coherence analysis between the credit and equity

markets. Wavelet coherence allows for analysis of the coherence (correlation) and the phase

lag between time series as a function of both frequency and time.25 Results are reported

in Figure 3. Panel (A) reports the monthly wavelet correlations results and shows initially

a lead of the credit market. On the other hand, panel (B) reports results of the daily

wavelet cross-correlation sequence (a scale-localized version of the usual cross-correlation)

of the daily realized volatility. Results suggest that after the initial negative correlation

with credit-realized volatility leading the equity, the correlation turns positive by the end

of the week.

These results suggest that in addition to the market segmentation and frictions, missing

state variables also can cause price discrepancy between the two markets. Tail risk measures

based on credit market data bear more meaningful information for predicting risk premiums

in both credit and equity markets. This appears a robust feature of the data, not explained

by firm heterogeneity or subsumed by other factors presented in the literature. However,

if these risk factors are market state variables, then they should also command a market

premium, as examined in the following section.

C. Volatility and Risk Premia

Asset pricing models with Epstein-Zin preferences suggest that SDF’s are dependent not

only on current consumption growth but also on the news about future volatility. These

models predict that investors are willing to pay a premium to hedge the volatility risk.

Consequently, if these risk factors are market state variables valuable for predicting future

returns, they should also be market priced sources of risk and, therefore, correlate with

short time (seconds). Therefore, the liquidity is not real.
25Wavelet allows to derive from parameter p its characteristic frequency f(p) and characteristic time t(p) and,

therefore, informs about the temporal extent of the signal as well as the frequency spectrum signal.
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the market risk premia. Furthermore, in Merton (1974) model, the leverage is the default

boundary for firms and represents the implicit put option’s moneyness in a firm’s debt.

This put option gives a mechanical loading on shocks to asset volatility and earns a variance

risk premium.

Delta-hedged equally-weighted quartile portfolios sorted on firms’ leverage levels reveal

the spreads’ exposure that stems from bearing variance risk. The hedge ratio is estimated

from a full sample regression of CDS returns for portfolio p onto the underlying equity

return. Formally,

RHp,t = RCDSp,t −∆p,t ×REQUITYp,t . (8)

However, in the event of a large negative jump in firm value, the appropriate hedging tool

for corporate debt may not be the firm’s equity; rather the DOTM puts on the firm’s equity.

Therefore, results depicted in Figure 4 also report DOTM put delta-hedged portfolios.26

Results show that Sharp ratios move with moneyness and decline with an increase in

leverage; as the spreads move “at-the-money.” Results suggest that the variance risk

premium is an important factor in the market for credit risk.

V. Conclusions

The first line of inquiry of this study showed how volatility and jump risk factors implied

from high-frequency credit spreads combined with machine learning predictive methods

forecast a substantial part of future changes in firms’ credit premiums in out-of-sample.

Strikingly, this predictive ability also extends for the equity risk premiums, albeit their

statistical significance is not confirmed. Results indicate that tail risk measures based on

credit market data alone contain valuable information for predicting firms’ risk premia in

both the credit and equity market, while parallel estimates based on a firm’s high-frequency

stock data do not. This result is reinforced by deep-out-of-the-money put options’ ability

to predict credit and equity risk premia in out-of-sample. Put options’ contingent-claim

payoff is similar to credit spreads and provide cheap and convenient tail risk protection.

However, puts predictive power is significantly lower for credit risk premia than the credit

risk measures. Credit market-based risk factors represent the most significant determinant

26To address potential concerns about the statistical significance of the reported Sharpe ratios, Figure 4 also report
bars of the 95% confidence intervals of 10,000 studentized bootstrap repetitions. The confidence intervals do not
include zero suggesting that the Sharpe ratios are significantly different from zero. Put delta-hedged Sharpe ratios
are plotted with dotted lines while the stock delta-hedged Sharpe ratios are reported with the continuous line. The
same figure also reports the unhedged Sharpe ratios depicted with a dashed line.
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of credit spread changes across all firms and leverage groups, indicating that credit spread

volatility is a state variable that drives the risk premium pricing dynamics. This appears

a robust feature of the data, not explained by firm heterogeneity or subsumed by other

factors presented in the literature. Results suggest that, even with stochastic volatility

and jumps taken into account, the credit market information still bears greater empirical

relevance for firm risk premiums.

The second line of inquiry showed how the emergence of the HFT in the credit market

and the presence of active arbitrageurs have not lessened the market fragmentation effects,

contrary to the expectations posed in asset pricing and structural models and slow-moving-

capital theory’s premise.

The credit and equity market’s divergent movements suggest that, initially, credit mar-

kets lead the equity, providing some intuition on how the trading patterns arise and sup-

porting the findings of the credit risk factors’ superior predictive ability. This fact, coupled

with the increased market fragmentation and trading costs, is an epitome of latent arbitrage

in the market for credit risk. Results suggest that, while the front runner has become more

sophisticated, their intentions remain predictable and with uncertain welfare implications,

as evidenced by higher trading costs and increased market fragmentation.

These results are of interest to investors, academicians, and policymakers alike. The

volatility and jump risk measures proposed in this paper are based on model-free uncon-

ditional variance estimates extracted from diverse firms’ price data. These measures can

provide analysts with an easy-to-compute method of the credit market-based risk measures

on any day and a useful instrument for their risk management decisions. In their efforts

to gauge the credit market’s dynamics and soundness, regulators can also find these new

easily quantifiable risk measures informative in their policy decisions.
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VI. Tables and Figures

Table 1—Summary Statistics

This table reports the monthly summary statistics of the risk factors by the rating groups. Panel A
reports the average monthly credit spreads, the firm-level continuous realized volatility of CDS and equity
returns (C-RVC and E-RVC, respectively), their corresponding jump risk measures (C-RJV and E-RJV),
and their respective autocorrelation functions. Volatility risk measures are reported in percentage points
and annualized. λ denotes the illiquidity risk measure implied from both the credit (λC) and equity (λE)
markets. Risk measures based on the credit market information have the prefix C- and those from the
equity market have the prefix E-. N reports the number of firms for each S&P (Moody’s) last-quarter
available S&P (Moody’s) credit ratings. Panel B reports the number of firms for each of the nine industry
sectors.

Panel A: Risk Factors divided on S&P (Moody’s) Credit Rating

AA A BBB BB-B All

Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

CDS 90.79 110.96 82.26 90.90 81.66 85.58 90.20 115.20 83.11 91.86

C-RVC 3.59 1.25 3.66 1.88 3.68 1.17 4.75 1.99 3.79 1.47

AR(1) 0.26 0.21 0.20 0.29 0.28

C-RJV 1.67 1.25 1.69 1.10 1.68 1.07 1.66 1.14 1.68 1.48

AR(1) 0.02 0.10 0.02 0.18 0.11

λC 0.23 0.18 0.24 0.17 0.23 0.16 0.23 0.14 0.23 0.16

AR(1) 0.15 0.12 0.30 0.15 0.18

E-RVC 14.60 4.68 15.12 1.71 15.18 1.40 14.00 2.26 15.01 9.38

AR(1) 0.12 0.13 0.17 0.20 0.17

E-RJV 1.48 1.45 1.58 1.10 1.57 1.11 1.59 1.18 1.57 1.88

AR(1) 0.05 0.10 0.10 0.06 0.13

λE 0.35 0.18 0.34 0.27 0.34 0.18 0.33 0.18 0.34 0.21

AR(1) 0.11 0.10 0.25 0.21 0.16

N 3 25 50 10 88

Leverage 0.53 0.50 0.48 0.50 0.50

Panel B: Industry Sector

Cons. Non-cyclical — Cons. Cyclical — Industrial — Financial — Basic Materials — Utilities — Technology — Communications — Energy — All

N 17 19 15 15 5 2 4 7 4 88

Leverage 0.48 0.49 0.50 0.51 0.51 0.47 0.51 0.48 0.51 0.50
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Table 2—Forecasting changes in monthly Credit Risk Premia

This table reports results of LASSO inferential analysis with LASSO-selected coefficients derived from
cross-fit partialing-out regressions (double-machine learning) of Chernozhukov et al. (2018). Models (1)
and (3) take the form

δyt,j = c+ β1δRV C
′
t,j + β2δRJV

′
t,j + β3δλ

′
+ β4δι

′
t,j + β5δπt,j

+ β6δφ
′
t,j + (FirmFE +MonthFE +RatingsFE + Sector FE) + εt,j .

Model (3) considers only credit market information i.e., excludes λE , equity returns, and puts. Models (2)
and (4) take the form:

δyt,j = c+ β1δRV C
′
t,j + β2δRJV

′
t,j + β3δλ

′
+ β4δι

′
t,j + β5δπt,j

+ β6δφ
′
t,j + (β7δα

′
t,j + β8δB

′
t,j + β9δκ

′
t + β10µ

′
t

+ FirmFE +MonthFE +RatingsFE + Sector FE) + εt,j ,

where asset risk factors α interact with the credit and equity RVC, RJV and up/down Jumps. Model (5)
contains all controls. The variables inside parenthesis denote the control variables. The table reports the
out-of-sample R2 of the predictive LASSO regressions of the same model specifications. The dependent
variable yt,j is the frim’s changes in credit spreads. δ denotes the first differences in the variables. The
sample period spans July 2012 to July 2016. The superscripts ∗∗∗, ∗∗, and ∗ indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)

E-RVC 3.719 3.774* 1.321
(2.291) (2.253) (1.781)

E-RJV 131.404** 127.303** 102.935***
(55.845) (56.130) (38.298)

E-(-)RJV 5.904 -3.512 67.275**
(50.860) (50.793) (33.609)

E-(+)RJV -45.373 -46.528 -52.095
(48.712) (49.157) (37.137)

C-RVC 6.585*** 6.009*** 6.359***
(0.301) (0.268) (0.275)

C-RJV 3.369*** 3.666*** 3.879***
(0.754) (0.722) (0.745)

C-(+)RJV 5.319*** 5.399*** 5.838***
(1.815) (1.690) (1.735)

C-(-)RJV -8.102*** -7.828*** -8.295***
(1.815) (1.743) (1.806)

λE 1.490** 1.391** -0.810
(0.624) (0.628) (0.824)

λC 45.852*** 30.819*** 29.874***
(7.583) (6.627) (6.847)

EQUITY RETURN 7.272 2.692 -13.158 -5.107
(30.544) (30.554) (23.907) (24.630)

Eh-VOLATILITY 2.440 1.816 4.459**
(2.299) (2.282) (1.984)

Eh-SKEWNESS -0.001 -0.002 -0.004
(0.006) (0.006) (0.004)

Eh-KURTOSIS 0.001 0.001 -0.000
(0.001) (0.001) (0.000)

Ch-VOLATILITY -0.163 -0.104 -0.127
(0.105) (0.103) (0.110)

Ch-SKEWNESS 3.544*** 2.749** 2.319*
(1.184) (1.160) (1.199)

Ch-KURTOSIS 0.178 0.151 0.092
(0.128) (0.127) (0.135)

DOTM Put 3.354*** 3.199*** 1.342*** 1.965***
(0.294) (0.299) (0.144) (0.188)

LEVERAGE 25.583*** 24.686*** 13.626** 16.584*** 16.716***
(7.460) (7.450) (5.302) (5.134) (5.349)

SIZE -8.533*** -9.171*** -3.841*** -5.886*** -5.846***
(1.389) (1.473) (1.088) (1.076) (1.223)

σASSET 1.818 2.257 1.898** 2.571** 2.346
(1.186) (1.385) (0.955) (1.004) (1.563)

βASSET 0.274 0.058 2.606*** 0.582 1.438*
(1.355) (1.421) (0.542) (1.173) (0.837)

Out-of-Sample R2 0.10 0.11 0.44 0.47 0.46
N 3602 3602 3965 3965 3587
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Table 3—Forecasting changes in monthly Equity Risk Premia

This table reports results of LASSO inferential analysis with LASSO-selected coefficients derived from cross-
fit partialing-out regressions (double-machine learning) of Chernozhukov et al. (2018). Regressions are same
as in Table 2 with the dependent variable yt,j replaced with changes in equity risk premia. δ denotes the
first differences in the variables. The sample period spans July 2012 to July 2016. The superscripts ∗ ∗ ∗,
∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)

E-RVC 0.080 0.076 0.118
(0.701) (0.699) (0.701)

E-RJV 8.359 9.539 8.174
(11.991) (11.969) (12.030)

E-(-)RJV 6.393 6.222 8.026
(9.501) (9.503) (9.611)

E-(+)RJV 3.539 3.589 1.724
(11.193) (11.189) (11.163)

C-RVC 0.000 0.000 0.000
(0.001) (0.001) (0.001)

C-RJV -0.001 -0.001 -0.002
(0.002) (0.002) (0.002)

C-(+)RJV -0.001 -0.001 -0.001
(0.005) (0.005) (0.005)

C-(-)RJV -0.005 -0.005 -0.006
(0.004) (0.004) (0.005)

λE 0.253 0.243 0.183
(0.318) (0.315) (0.327)

λC 0.016 0.017 0.018
(0.027) (0.027) (0.029)

Eh-VOLATILITY 1.715 1.664 1.751
(1.108) (1.108) (1.121)

Eh-SKEWNESS 0.000 0.000 0.000
(0.002) (0.002) (0.002)

Eh-KURTOSIS -0.000 -0.000 -0.000
(0.000) (0.000) (0.000)

Ch-VOLATILITY 0.000 0.000 -0.000
(0.000) (0.000) (0.000)

Ch-SKEWNESS 0.004 0.004 0.001
(0.005) (0.005) (0.005)

Ch-KURTOSIS 0.001* 0.001* 0.001
(0.001) (0.001) (0.001)

DOTM Put -0.001*** -0.001*** -0.000 -0.001***
(0.000) (0.000) (0.000) (0.000)

LEVERAGE 0.024 0.025 0.010 0.010 0.025
(0.021) (0.021) (0.020) (0.020) (0.021)

SIZE -0.000 -0.001 -0.002 -0.002 -0.001
(0.004) (0.004) (0.004) (0.004) (0.004)

σASSET 0.001 0.001 0.001 0.001 0.002
(0.002) (0.002) (0.001) (0.001) (0.002)

βASSET 0.003 0.003 0.004 0.004 0.003
(0.006) (0.006) (0.005) (0.006) (0.006)

Out-of-Sample R2 0.17 0.17 0.16 0.16 0.17
N 3602 3602 3965 3965 3587
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Table 4—Forecasting changes in monthly Credit Risk Premia by Quartile Portfolios

This table reports results of LASSO inferential analysis on credit returns by equally-weighted leverage
quartiles. Firms with the lowest average level are in quartile < 25%, and 25%-50% is the quartile of firms
with the second lowest average level. The second highest quartile are 50%-75%, and finally, > 75% is the
fourth quartile of firms with the highest average level of leverage. Models (1) and (2) are similar to Models
(1) and (3) in Table 2. The sample period spans July 2012 to July 2016. The superscripts ∗ ∗ ∗, ∗∗, and ∗
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Leverage Groups
<25% 25-50%

(1) (2) (3) (1) (2) (3)
E-RVC 4.023 5.556* 1.827 -3.254

(4.471) (3.312) (5.626) (4.018)
E-RJV 214.863** 208.435*** 257.292** 272.498***

(107.281) (78.629) (107.688) (78.361)
E-(-)RJV 158.834 115.213** -40.884 26.286

(100.784) (57.834) (110.065) (70.024)
E-(+)RJV -8.977 -2.759 14.640 -6.403

(89.163) (65.228) (85.426) (72.874)
C-RVC 6.408*** 6.372*** 6.085*** 6.300***

(0.632) (0.548) (0.593) (0.577)
C-RJV 2.492 3.618** 4.245*** 3.519**

(1.681) (1.493) (1.558) (1.508)
C-(+)RJV 2.256 3.220 0.822 1.991

(2.731) (2.736) (3.328) (3.128)
C-(-)RJV -2.454 -3.919* -4.725 -4.461

(2.271) (2.260) (4.207) (4.180)
λE 1.030 0.083 -0.746 -8.381**

(0.869) (0.484) (5.417) (3.841)
λC 45.826*** 32.366** 39.749** 40.451**

(16.342) (13.481) (18.032) (16.776)
EQUITY RETURN -52.333 -58.171* 103.014 17.177

(42.723) (34.310) (63.564) (43.906)
DOTM Put 3.259*** 1.682*** 3.396*** 2.061***

(0.513) (0.314) (0.616) (0.392)
LEVERAGE 19.478 3.532 9.770 42.415** 21.223* 28.490**

(20.117) (14.377) (14.762) (18.828) (12.847) (13.672)
SIZE -4.543 -5.444*** -7.363*** -11.180*** -4.414* -6.812***

(2.923) (1.877) (2.261) (2.903) (2.476) (2.642)
σASSET 12.234* 0.503

(6.664) (3.484)
βASSET -9.195* 1.966***

(5.274) (0.744)
Out-of-Sample R2 0.12 0.45 0.48 0.13 0.44 0.49
N 922 1022 907 912 1013 899

50-75% >75%
E-RVC 2.150 1.930 1.263 2.288

(5.034) (3.193) (4.273) (3.265)
E-RJV 43.298 29.672 64.683 49.211

(123.783) (67.434) (100.047) (78.714)
E-(-)RJV 95.062 106.889 -53.010 21.957

(105.175) (70.844) (89.501) (69.453)
E-(+)RJV -103.536 -90.288 -115.943 -91.915

(84.829) (62.698) (114.459) (88.255)
C-RVC 6.399*** 6.006*** 7.304*** 6.856***

(0.523) (0.461) (0.580) (0.568)
C-RJV 5.208*** 6.853*** 1.349 2.712**

(1.498) (1.555) (1.221) (1.259)
C-(+)RJV 5.286 7.327** 14.709*** 14.730***

(3.504) (3.352) (4.858) (5.170)
C-(-)RJV -9.764*** -12.077*** -19.748*** -20.270***

(2.496) (2.666) (5.725) (7.087)
λE 2.808 -10.895*** 2.329*** -0.636

(5.079) (3.440) (0.786) (0.933)
λC 49.357*** 36.007*** 49.936*** 38.848***

(14.729) (12.751) (11.643) (11.677)
EQUITY RETURN 43.402 25.086 -53.762 -16.910

(63.627) (59.336) (75.338) (53.514)
DOTM Put 3.131*** 2.004*** 3.830*** 2.315***

(0.663) (0.412) (0.562) (0.364)
LEVERAGE -5.698 17.302 7.352 -7.682 -16.487 -18.773

(17.021) (12.287) (12.668) (20.076) (13.850) (14.795)
SIZE -5.699** -1.555 -6.230** -8.925*** -3.401* -4.763*

(2.736) (2.287) (2.592) (2.623) (1.976) (2.503)
σASSET 0.906 -0.049

(1.033) (1.457)
βASSET -28.731*** -33.059***

(6.856) (7.863)
Out-of-Sample R2 0.12 0.44 0.48 0.13 0.45 0.47
N 912 1013 891 909 1017 890
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Table 5—Forecasting changes in monthly Equity Risk Premia by Quartile Portfolios

This table reports results of LASSO inferential analysis on changes in equity risk premium by equally-
weighted leverage quartiles. Quartile portfolios and regression models are similar to Table 4. The sample
period spans July 2012 to July 2016. The superscripts ∗ ∗ ∗, ∗∗, and ∗ indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Leverage Groups
<25% 25-50%

(1) (2) (3) (1) (2) (3)
E-RVC 0.057 0.073 -1.624 -2.019

(1.708) (1.738) (1.905) (1.904)
E-RJV 6.671 9.019 18.334 4.055

(21.992) (21.782) (22.910) (23.528)
E-(-)RJV 46.580* 48.504* 4.731 8.318

(26.078) (25.854) (17.182) (17.885)
E-(+)RJV -12.652 -2.347 2.332 -2.014

(26.485) (27.391) (19.087) (18.778)
C-RVC -0.000 0.000 0.001 0.002

(0.001) (0.001) (0.001) (0.001)
C-RJV 0.006* 0.003 -0.005 -0.005

(0.003) (0.003) (0.003) (0.003)
C-(+)RJV 0.001 -0.002 -0.007 -0.010

(0.006) (0.006) (0.008) (0.007)
C-(-)RJV -0.007 -0.005 -0.009 -0.004

(0.007) (0.007) (0.010) (0.009)
λE 0.853*** 0.817*** -1.188 -1.571

(0.193) (0.178) (1.407) (1.434)
λC 0.034 0.008 0.015 0.055

(0.062) (0.066) (0.055) (0.050)
DOTM Put -0.001 -0.001* -0.002* -0.001

(0.001) (0.001) (0.001) (0.001)
LEVERAGE 0.114** 0.109* 0.123** 0.113* 0.079 0.101

(0.054) (0.056) (0.054) (0.060) (0.058) (0.062)
SIZE 0.004 -0.001 0.006 -0.007 0.001 -0.002

(0.007) (0.007) (0.008) (0.009) (0.009) (0.010)
σASSET 0.012 -0.014

(0.010) (0.015)
βASSET 0.025 -0.006

(0.021) (0.004)
Out-of-Sample R2 0.17 0.18 0.17 0.18 0.18 0.18
N 922 1022 907 912 1013 899

50-75% >75%
E-RVC -0.599 -0.065 0.782 1.184

(1.496) (1.145) (1.390) (1.379)
E-RVJ 4.767 1.897 -1.843 17.477

(23.651) (24.765) (27.727) (29.742)
E-(-)RVJ -1.821 -18.755 -19.248 -7.541

(21.464) (21.541) (21.095) (19.997)
E-(+)RVJ -27.373 -1.926 3.778 7.157

(26.673) (19.759) (27.068) (29.342)
C-RVC -0.001 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001)
C-RJV 0.005 0.003 -0.007** -0.006*

(0.003) (0.003) (0.003) (0.004)
C-(+)RJV 0.001 -0.000 0.022 0.029

(0.011) (0.011) (0.019) (0.023)
C-(-)RJV -0.012 -0.011 0.019 0.016

(0.007) (0.008) (0.014) (0.012)
λE 1.216 1.150 -0.341 -0.354

(1.287) (1.382) (0.271) (0.237)
λC 0.012 0.027 0.021 -0.008

(0.053) (0.057) (0.064) (0.072)
DOTM Put -0.001 -0.002* -0.000 -0.000

(0.001) (0.001) (0.001) (0.001)
LEVERAGE -0.014 -0.028 -0.018 0.126 0.128* 0.064

(0.060) (0.056) (0.061) (0.077) (0.073) (0.078)
SIZE 0.003 -0.006 -0.000 -0.013 -0.006 -0.011

(0.009) (0.008) (0.009) (0.009) (0.009) (0.009)
σASSET 0.001 0.008

(0.001) (0.010)
βASSET 0.004 -0.048

(0.003) (0.039)
Out-of-Sample R2 0.19 0.19 0.19 0.20 0.19 0.20
N 912 1013 891 909 1017 890
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Table 6—Market Integration

This table reports the results of the market integration test of Kapadia and Pu (2012). The credit and
equity markets’ co-movements represent the pricing discrepancies within the Merton (1974) model, i.e.,
∆CDS∆P/P > 0. ∆CDS∆P/P < 0, and ∆CDS∆P/P = 0 are registered as a share of total observations
measured over non-overlapping daily (Panel A) and monthly (Panel B) time intervals. The |∆CDS| ex-
pressed in bps denotes the mean of absolute spread changes. |∆P/P | represents the average absolute stock
returns. The sample period spans July 2012 to July 2016.

AA A BBB BB-B ALL

Panel A: Daily

∆CDS∆P/P < 0
Fraction 0.487 0.483 0.452 0.485 0.479

|∆CDS| 0.985 8.539 10.640 10.849 9.857

|∆P/P | 6.023 8.419 4.486 6.484 6.772

∆CDS∆P/P > 0
Fraction 0.495 0.478 0.453 0.495 0.483

|∆CDS| 0.985 8.539 10.640 10.849 9.857

|∆P/P | 6.023 8.419 4.486 6.484 6.772

∆CDS∆P/P = 0
Fraction 0.018 0.039 0.095 0.020 0.038

Panel B: Monthly

∆CDS∆P/P < 0
Fraction 0.604 0.499 0.518 0.475 0.492

|∆CDS| 2.131 7.674 5.419 6.413 5.302

|∆P/P | 0.403 3.522 1.209 2.704 2.488

∆CDS∆P/P > 0
Fraction 0.375 0.484 0.467 0.486 0.480

|∆CDS| 2.131 3.723 5.419 6.413 5.302

|∆P/P | 0.403 2.994 1.209 2.704 2.488

∆CDS∆P/P = 0
Fraction 0.021 0.018 0.015 0.039 0.028
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Figure 1. Realized Volatility and Jumps in Credit and Equity Markets
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(a) Credit and Equity Implied Realized Volatility
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(b) Credit and Equity Implied Realized Jump Volatility

Panel (a) of this figure plots the horse-race comparison of continuous realized volatility estimates implied from
credit and equity returns. The left-hand side panels plot by rating group the monthly credit spread implied realized
volatility of 88 entities. The right-hand side panels plot the monthly equity implied realized volatility for the same
matching entities. Panel (b) plots the corresponding realized jump volatility estimates. Section III and the internet
appendix illustrate the method used to estimate realized (jump) volatility. The sample period spans July 2012 to
July 2016.
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Figure 2. Out-of-sample R2 of univariate LASSO predictive regressions
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This figure plots the out of sample R2 of univariate LASSO predictive regressions. RVC and RJV report realized
volatility and jump risk measures, DOTMPut is the deep out of the money put options of firms stocks. Equity-
market-based risk measures have an E- prefix, and the credit market risk measures are reported with the C- prefix.
The sample period spans July 2012 to July 2016.
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Figure 3. Wavelet Coherence and Cross-Correlation of Credit and Equity Realized Volatilities
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(a) Monthly Wavelet Coherence of Credit and Equity Realized Volatility
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(b) Daily Wavelet Cross-Correlation Sequence of Credit and Equity Realized
Volatility

This figure in panel (a) plots the monthly wavelet coherence of credit and equity realized volatility. Panel (b) plans
the daily wavelet cross-correlation order of credit and equity realized volatility. The sample period spans July 2012
to July 2016.
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Figure 4. Sharpe Ratios of Delta-Hedged Portfolios
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Equally-weighted Quartile Leverage Portfolios
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This figure plots the annualized Sharpe ratios from monthly delta-hedged CDS returns of equally-weighted leverage
quartile portfolios. Firms with the lowest average level are in quartile < 25%, and 25%-50% is the quartile of
firms with the second lowest average level. The second highest quartile are 50%-75%, and finally, > 75% is the
fourth quartile of firms with the highest average level of leverage. The dotted line plots the deep out of the money
(DOTM) put delta-hedged Sharpe ratios. The continuous line plots the equity return delta-hedged Sharpe ratios
and the dashed line plots the unhedged Sharpe ratios. The bands indicate the 95% confidence intervals of the 10,000
studentized bootstrapped repetitions. The sample period spans July 2012 to July 2016.


