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Abstract

The standard heterogeneous autoregressive (HAR) model is perhaps the most popular bench-
mark model for forecasting return volatility. It is often estimated using raw realized variance
(RV) and ordinary least squares (OLS). However, given the stylized facts of RV and well-
known properties of OLS, this combination should be far from ideal. One goal of this paper
is to investigate how the predictive accuracy of the HAR model depends on the choice of esti-
mator, transformation, and forecasting scheme made by the market practitioner. Another goal
is to examine the effect of replacing its high-frequency data based volatility proxy (RV) with
a proxy based on free and publicly available low-frequency data (logarithmic range). In an
out-of-sample study, covering three major stock market indices over 16 years, it is found that
simple remedies systematically outperform not only standard HAR but also state of the art
HARQ forecasts, and that HAR models using logarithmic range can often produce forecasts
of similar quality to those based on RV.
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1 Introduction

Forecasting the volatility of financial asset returns is an important issue in the context of risk
management, portfolio construction, and derivative pricing. As such, a great deal of research ef-
fort has focused on developing and evaluating volatility forecasting models. With the widespread
availability of high-frequency financial data, the recent literature has focused on employing real-
ized volatility (RV) to build forecasting models. The heterogeneous autoregressive (HAR) model
of Corsi (2009) was designed to parsimoniously capture the strong persistence typically observed
in RV and has become the workhorse of this literature due to its consistently good forecasting
performance, and that standard linear regression techniques can be used for its estimation. The
influence of this model is reflected in the fact that as of February 2019, Corsi (2009) has attracted
more than 1300 citations according to Google Scholar. The original HAR model is often esti-
mated using RV and the method of ordinary least squares (OLS). However, given stylized facts
of raw RV (such as spikes/outliers, conditional heteroskedasticity, non-Gaussianity) and well-
known properties of OLS (highly sensitive to outliers, suboptimal in the presence of conditional
heteroskedasticity or non-Gaussianity), this combination should be far from ideal, leaving op-
portunity for straightforward improvements. Here it is proposed to use the method of weighted
least squares (WLS), or least absolute deviations (LAD), for estimating the HAR model. It is
also proposed to replace RV with logarithmic range (LR), a simpler low-frequency data based
volatility proxy, when using the HAR in instances where RV is not readily available. The impact
of the choice of estimator (OLS, WLS or LAD), volatility proxy (RV or LR), proxy transforma-
tion (logarithmic or quartic root), and forecasting scheme (rolling or recursive) is investigated in
an out-of-sample study with the HAR model estimated by OLS used as benchmark. For a more
complete picture, the recent HARQ model is also used as a benchmark model as it has been docu-
mented to outperform not only the original HAR model but also some of its numerous extensions
in terms of forecasting. HARQ models represent the state of the art in volatility forecasting mod-
els (Bollerslev, Patton, and Quaedvlieg, 2016, 2018). It should be emphasized that, in contrast to
Buccheri and Corsi (2017) and Cipollini, Gallo, and Otranto (2017), the goal here is not to extend
the original HAR model but instead to investigate how to get the most out of it. For instance, by
carefully selecting its estimator.

The first issue considered is how the predictive accuracy of the HAR model depends on
the choice of estimator. The idea of investigating whether the choice of estimator matters for
forecasting is not new and has, for instance, been considered by Westerlund and Narayan (2012)
in the context of stock return predictability. However, to the best of our knowledge, this is the
first attempt to explore this idea in detail in the context of return volatility predictability, using the
HAR model. By simply considering the WLS estimator as an alternative to OLS, the empirical
results reveal that a WLS-HAR scheme (weights based on RV) achieves up to a 24% reduction in
QLIKE loss compared to the OLS-HAR, and up to a 21% reduction compared to the OLS-HARQ.
In fact, using the MCS of Hansen, Lunde, and Nason (2011), significant improvements in QLIKE
are observed for all forecast horizons, forecasting schemes, and markets considered. Evidence in

2

 Electronic copy available at: https://ssrn.com/abstract=3369484 



favour of the LAD-HAR scheme is also found. The benefits of replacing OLS with WLS or LAD
are particularly clear for longer forecast horizons.

Next, how the predictive accuracy of the HAR model depends on the choice of transformation
of RV is considered. The idea of using transformed, rather than raw, RV for forecasting is not new
and has been considered by Corsi (2009) and Taylor (2017) among others. Little evidence in favour
of non-linear HAR models, such as the log-HAR, over the linear WLS-HAR approaches considered
is found in the empirical study. In fact, linear WLS-HARs often do better than non-linear HARs
estimated by OLS in terms of QLIKE.

Finally, the effect of replacing high-frequency data based RV with low-frequency data based
LR as proxy for latent volatility in the HAR model is considered. It is found that quick-and-dirty
HAR models based on costless LR perform surprisingly well out-of-sample when coupled with a
simple transformation, or WLS, compared to benchmark models using RV. Indicating that HAR
models operating on LR are able to generate highly competitive forecasts in cases where RV is
not publicly available.

The remainder of this paper is organized as follows. Section 2 describes its methodology,
Section 3 reports the results of its empirical study, and Section 4 concludes. Additional results to
complement the main paper are collected in a Supplementary Appendix.

2 Methodology

This section describes the measures and models used to construct volatility forecasts, the esti-
mators and transformations employed, how forecasts are computed, and how their accuracy is
assessed.

2.1 The volatility proxies

2.1.1 Realized variance

We consider a single asset for which the log-price process P within the active part of a trading
day evolves in continuous time as

dPt = µtdt + stdWt, (1)

where µ and s are the instantaneous drift and volatility processes, respectively, and W is a stan-
dard Brownian motion (Wiener process). The ith D-period return within day t is defined as

rt,i = Pt�1+iD � Pt�1+(i�1)D, i = 1, 2, . . . , M,

where M = 1/D is the sampling frequency. Hence, the daily logarithmic return for the active
part of trading day t is rt = ÂM

i=1 rt,i.
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In the simplest case, we wish to forecast the latent one-day integrated variance defined by

IVt =
Z t

t�1
s2

s ds. (2)

Although (2) is unobservable it can be consistently estimated by the one-day realized variance
(RV)

RVt =
M

Â
i=1

r2
t,i,

as M ! • (Andersen and Bollerslev, 1998). Hence, the RV measure is defined as the sum of the
squared returns within day t. Given restrictions on the sampling frequency M, Barndorff-Nielsen
and Shephard (2002) show that the estimation error in RV can be characterized by

RVt = IVt + ht, MN(0, 2DIQt),

where MN denotes a mixed normal distribution and IQt =
R t

t�1 s4
s ds is the integrated quarticity

(IQ) which can be consistently estimated by the realized quarticity (RQ)

RQt =
M
3

M

Â
i=1

r4
t,i. (3)

2.1.2 Logarithmic range

Range-based volatility estimators are an important class of estimators that require less data than
the RV. Such estimators were developed by Parkinson (1980) and later extended in various ways,
such as the method of Garman and Klass (1980) which combines the range with opening and clos-
ing prices. Range-based volatility estimators have been used by Alizadeh, Brandt, and Diebold
(2002) for the purpose of estimating stochastic volatility models, and have also been extended to
the high-frequency data setting by Christensen and Podolskij (2007).

The range-based estimator used here is the simple log-range estimator,

LRt =
1

4 log 2
(Ht � Lt)

2, (4)

where log denotes the natural logarithm and Ht and Lt are the daily intraday high and low
log-prices of an asset, respectively.

2.2 The HAR & HARQ models

2.2.1 HAR

With the widespread availability of high-frequency intraday data, the recent literature has focused
on employing RV to build forecasting models for time-varying return volatility. Among these
forecasting models, the HAR model proposed by Corsi (2009) has gained popularity due to its
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simplicity and consistent forecasting performance in applications. The formulation of the HAR
model is based on a straightforward extension of the so-called heterogeneous ARCH, or HARCH,
class of models analyzed by Muller, Dacorogna, Dave, Olsen, Pictet, and Weizsacker (1997). Under
this approach, the conditional variance of the discretely sampled returns is parameterized as a
linear function of lagged squared returns over the same horizon together with the squared returns
over longer and/or shorter horizons.

The original HAR model specifies RV as a linear function of daily, weekly and monthly real-
ized variance components, and can be expressed as

RVt = b0 + b1RVd
t�1 + b2RVw

t�1 + b3RVm
t�1 + ut, (5)

where the b j (j = 0, 1, 2, 3) are unknown parameters that need to be estimated, RVt is the real-
ized variance of day t, and RVd

t�1 = RVt�1, RVw
t�1 = 1

5 Â5
i=1 RVt�i, RVm

t�1 = 1
22 Â22

i=1 RVt�i denote
the daily, weekly and monthly lagged realized variance, respectively. This specification of RV
parsimoniously captures the high persistence observed in most realized variance series.

2.2.2 HARQ

Bollerslev et al. (2016) recently proposed an easily implemented, and by OLS estimated, extension
of the HAR model dubbed the HARQ model, which accounts for the error with which RV is
estimated by using RQ. The full HARQ (HARQ-F) model can be written as

RVt = b0 + (b1 + b1Q

q
RQd

t�1)RVd
t�1 + (b2 + b2Q

q
RQw

t�1)RVw
t�1 + (b3 + b3Q

q
RQm

t�1)RVm
t�1 + ut,

where (similar to the original HAR model) RQw
t�1, RQw

t�1 and RQm
t�1 denote the daily, weekly,

and monthly lagged realized quarticity, respectively. Bollerslev et al. (2016) find that, at least for
short-term forecasting, a simplified version

RVt = b0 + (b1 + b1Q

q
RQd

t�1)RVd
t�1 + b2RVw

t�1 + b3RVm
t�1 + ut, (6)

is useful as most of the attenuation bias in the forecasts (due to RV being less persistent than
unobserved IV) is due to the estimation error in RVd

t�1. Overall, this framework allows for less
weight to be placed on historical observations of RV when the measurement error captured by
RQ is higher.

The subsequent study considers the forecasting performance of the original HAR model,
when its parameters are estimated using alternative methods to OLS, and when it is fitted to
transformed rather than raw RV. The standard HAR model (5) and its (state of the art) HARQ
extension (6), both estimated using OLS, are then used as benchmarks models.
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2.3 The estimators

The HAR model in (5) is often estimated using RV and the method of OLS. However, given styl-
ized facts of RV (such as spikes/outliers, conditional heteroskedasticity, and non-Gaussianity)
and well-known properties of OLS, this combination should be far from ideal. Instead alterna-
tive methods like least absolute deviations (LAD) and weighted least squares (WLS) seem more
appropriate. Next we briefly review the above methods, and the associated estimation schemes
used in our out-of-sample forecasting study.

2.3.1 OLS

For the HAR model, the OLS estimator of b = (b0, b1, b2, b3) given the observations RV1, . . . , RVn

is the solution to the minimization problem

min
b0,b1,b2,b3

n

Â
t=23

(RVt � b0 � b1RVd
t�1 � b2RVw

t�1 � b3RVm
t�1)

2.

It is well-known that if the errors ut in autoregressions such as (5) are independent, normally
(Gaussian) distributed, and homoskedastic the optimal (in a asymptotic efficiency sense) estima-
tor of b is the OLS estimator.

2.3.2 LAD

Although optimal under ideal conditions, the OLS estimator is also well-known to be highly
sensitive to outliers (unusual observations) in the data. For this reason more robust estimators,
such as the commonly used LAD estimator, have been proposed as alternatives. For the HAR
model, the LAD estimator of b is the solution to the minimization problem

min
b0,b1,b2,b3

n

Â
t=23

|RVt � b0 � b1RVd
t�1 � b2RVw

t�1 � b3RVm
t�1|.

For this method the sum of absolute instead of squared deviations is minimized. Hence, by
comparison, OLS gives more weight to large deviations (outliers) than LAD.

2.3.3 WLS

Weighted least squares attempts to provide a more efficient alternative to OLS. Instead of the sum
of squared deviations, their weighted sum is minimized. For the HAR model, the WLS estimator
of b is the solution to the minimization problem

min
b0,b1,b2,b3

n

Â
t=23

wt(RVt � b0 � b1RVd
t�1 � b2RVw

t�1 � b3RVm
t�1)

2,
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where wt > 0 is the weight of the tth observation. If each weight wt is inversely proportional to
the conditional variance of the corresponding error ut, the WLS estimator is more efficient than
the OLS estimator. In this way, less weight is given to errors which are likely to be large.1 Four
different weighting schemes, further described below, are considered in Section 3.

Corsi, Mittnik, Pigorsch, and Pigorsch (2008) analyse the residuals of HAR models estimated
by OLS and find evidence of conditional heteroskedasticity, which motivates the authors to con-
sider HAR-GARCH specifications. Influenced by their findings a three-step estimation approach
for the HAR model is considered: The first step is to estimate its parameters using OLS and com-
pute residuals. The second step is to estimate a GARCH(1,1) on the OLS residuals. The third step
is to use these estimates to fit the HAR model by WLS with weights wt = 1/ĥt, where ĥt is the
fitted value of the conditional variance of the GARCH(1,1). The final step is partially motivated
by Romano and Wolf (2017) who find that WLS can be superior to OLS even when the model used
to estimate the heteroskedastic function is misspecified. The weighting scheme outlined above
is denoted WLSG-HAR. The second scheme, denoted WLScRV-HAR, uses weights determined by
1/ cRVt, where cRVt is the fitted value from the standard HAR model in (5) estimated using OLS.
Given the positive relationship between volatility and RQ, this scheme places less weight during
estimation on periods where volatility is less precisely estimated without requiring RQ directly.
This approach has previously been argued for by Patton and Sheppard (2015). The third scheme,
denoted WLSRQ-HAR, uses RQ to determine the weights, with wt = 1/

p
RQt. From a practical

viewpoint, this will have a similar effect to HARQ in downweighting times when estimation error
is higher. As IQ is notoriously difficult to estimate in finite samples, and since

p
RQ appears to

be strongly positively correlated with RV, we also consider RV based weights wt = 1/RVt. This
fourth approach is denoted WLSRV-HAR.

We thus consider one parametric approach, WLSG-HAR, one partially parametric approach,
WLScRV-HAR, and two nonparametric approaches, WLSRQ-HAR and WLSRV-HAR, for determin-
ing the weights in WLS.

2.4 The transformations

An alternative to employing estimation methods other than OLS is to use transformations. The
logarithmic transformation, for example, is known to be appropriate for series whose standard
deviation increases linearly with the mean (Brockwell and Davis, 1991). Numerous alternative
transformations have been proposed. The best known perhaps being the Box-Cox transformations
(Box and Cox, 1964), which is a family of variance-stabilizing transformations. Transformations
belonging to this family are often used in practice to obtain a model with a simple structure, and
(close to) normally distributed errors with constant variance. The Box-Cox transformation of a

1Motivated by the strong out-of-sample performance of the HAR model estimated by WLS in our empirical study,
we also tried the self-weighted least absolute deviations schemes considered by Ling (2005) and Zhu and Ling (2012),
but were not able to improve upon our results reported for LAD.
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time series variable yt is

yt(l) =

(
yl

t �1
l , l 6= 0,

log yt, l = 0,

where l is the power parameter. In the context of modeling and forecasting RV, important special
cases include the logarithmic transformation (l = 0) and the quartic root transformation (l =

1/4). See Corsi (2009), Taylor (2017), and the references therein.
To highlight the impact of such transformations, Figure 1 shows the distribution of raw RV

for the S&P 500 series used in Bollerslev et al. (2016), along with the distributions of qr- and
log-transformed RV. Its top panel illustrates well-known features of the RV, which is nonnegative
with a distribution exhibiting substantial skewness and excess kurtosis. It is clear from its lower
panel that both transformations result in more symmetric, approximately Gaussian, distributions.
The sample skewness of raw RV exceeds 10, while the skewness of the qr-transformed RV is 1.5
and 0.5 for the log-transformed data. In sum, both transformations appear useful for reducing
skewness, and hence the possible effect of outliers and potential heteroskedasticity in the RV
series.

2.5 Comparing forecast accuracy

Following the literature on volatility forecast comparison (Patton, 2011, Patton and Sheppard,
2009), the empirical quasi-likelihood (QLIKE) will be used to assess out-of-sample forecast accu-
racy. For daily RV, it is defined as

QLIKE =
1
T

T

Â
t=1

✓
RVt

Ft
� log

RVt

Ft
� 1

◆
, (7)

where T is the number of forecasts and Ft denotes a forecast of RVt (which proxies for IVt) from
the different models or approaches.2 Equation (7) is easily modified for weekly, or longer horizon,
volatility forecasts.

2.6 Forecasting

The optimal (in the MSE sense) forecast of RVt for the HAR model given the information set at
time t � 1 can be expressed as

Ft = b0 + b1RVt�1 +
b2

5

5

Â
i=1

RVt�i +
b3

22

22

Â
i=1

RVt�i.

2Using the commonly employed empirical mean squared error (MSE) is also a possibility, however, simulation
based evidence by Patton and Sheppard (2009) suggests the use of QLIKE rather than MSE due to the formers higher
power in Diebold and Mariano (1995) and West (1996) type tests for equal predictive accuracy (EPA).
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Figure 1: Top panel: Kernel density estimate of the S&P 500 RV observations used in Section 3.
Bottom panel: Kernel density estimates of the log-RV observations (solid), and qr-RV observations
(dashed).
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Similarly, for the HARQ model

Ft = b0 + (b1 + b1Q

q
RQd

t�1)RVt�1 +
b2

5

5

Â
i=1

RVt�i +
b3

22

22

Â
i=1

RVt�i.

Following Bollerslev et al. (2016), weekly or monthly (direct projection) forecasts are obtained by
replacing the daily RVs on the left-hand-sides of (5) and (6) with the weekly or monthly RVs.

2.6.1 Box-Cox transformed RV

By Table 1 in Proietti and Lütkepohl (2013), a forecast of RVt for the HAR model applied to
logarithmic (instead of raw) daily RV is

Ft = exp

(
b0 + b1 log RVt�1 +

b2

5

5

Â
i=1

log RVt�i +
b3

22

22

Â
i=1

log RVt�i +
s2

u
2

)
, (8)

where su is the conditional standard deviation of the errors ut. Moreover, a forecast of RVt for the
same model applied to quartic root daily RV is

Ft = Nt

✓
1 +

3
8

s2
up
Nt

+
3

256
s4

u
Nt

◆
, (9)

where Nt denotes the naı̈ve forecast,

Nt =

(
1 +

b0

4
+ b1

h
(RVt�1)

1/4 � 1
i
+

b2

5

5

Â
i=1

h
(RVt�i)

1/4 � 1
i
+

b3

22

22

Â
i=1

h
(RVt�i)

1/4 � 1
i)4

.

The forecasts in (8) and (9) are optimal if the transformed series is normally distributed.

2.7 The model confidence set

Statistically significant differences in forecast performance will be assessed using the model confi-
dence set (MCS) introduced by Hansen et al. (2011). The MCS procedure avoids the specification
of a benchmark model, and starts with a collection of competing models (or approaches), M0,
indexed by i = 1, . . . , m0. QLIKE based loss differentials dij,t between models i and j are com-
puted, and H0 : E(dij,t) = 0 for all i, j (the null hypothesis of EPA) is tested. If the null hypothesis
is rejected at the significance level a, the worst performing model is eliminated and the process
is repeated until non-rejection occurs with the set of surviving models being the MCS, cM⇤

1�a. By
using the same significance level for all tests, cM⇤

1�a contains the best model(s) from M0 with a
limiting (1 � a) level of confidence.3 Here the tests for EPA employ the range statistic described
in Hansen, Lunde, and Nason (2003).

3In this sense, the MCS at level a is similar to a (1 � a)% confidence interval for an unknown parameter.
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3 Empirical results

3.1 Data

The empirical study here is based on three major stock market indices: The Standard & Poor’s
500 (SPX), the Dow Jones Industrial Average (DJI), and the Deutscher Aktienindex (DAX). For the
S&P 500, the same series of RV and RQ used in Bollerslev et al. (2016) are employed.4 This dataset
spans 21 April 1997 to 30 August 2013 representing 4096 daily observations and was chosen as
the HARQ model is one of the benchmarks considered here, and as it was central to the original
work of Bollerslev et al. (2016).

Estimates of RVt and RQt for both the DJI and DAX indices are based on 5 minute intraday
returns obtained from Thomson Reuters Tick History. The sample periods for each index are:
DJI, 1 March 2000 to 30 November 2016 (4149 daily observations) and DAX, 1 March 2000 to
30 November 2016 (4221 observations). As the out-of-sample results are consistent across the
three indices, tabulated results only for the SPX are reported in sections 3.2.1–3.2.3 below. The
corresponding results for the DJI and DAX indices are available in the Supplementary Appendix.

3.2 Out-of-sample results

The impact of the choice of forecasting (updating) scheme is also examined. Results reported
here in the main paper are based on a rolling forecasting scheme with a 1000 day rolling window
as in Bollerslev et al. (2016), and Taylor (2017). Results for SPX based on a recursive (increasing
window) forecasting scheme are consistent with those reported here and are available in the
Supplementary Appendix. Following Bollerslev et al. (2016), a simple “insanity filter” is applied
to all forecasts, see Swanson and White (1995). Since the model confidence set should be used
with caution when forecasts are based on estimated parameters and models are nested (Hansen
et al., 2011), p-values accompanying a 90% MCS (constructed using QLIKE) are complemented
with QLIKE ratios of the standard HAR to alternative approaches.

3.2.1 The estimators

The goal of this section is to study the performance of alternative estimators for the HAR model.
More specifically, to investigate how the predictive accuracy of the HAR depends on the choice
of estimator. Table 1 reports out-of-sample QLIKE ratios of the original HAR to alternative ap-
proaches for 1-, 5-, 10- and 22-day forecast horizons. Compared to the HAR and HARQ bench-
mark models (both estimated by OLS) the HAR model estimated by WLS or LAD generally
provide much lower QLIKE for all horizons. Table 1 also reports in parenthesis the p-values
accompanying a 90% MCS. The approaches in cM⇤

90% are indicated by asterisks. Notably, the
WLSRQ-HAR and WLSRV-HAR approaches are always included in the MCS. The benchmark

4The two series were obtained from Andrew Patton’s research page, http://public.econ.duke.edu/~ap172/
research.html.
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models have much lower p-values and are always excluded from the confidence set. Hence also
the MCS results suggest that the choice of the estimation scheme under which the HAR parameter
estimates are obtained is relevant for volatility forecasting. This conception is further supported
by Figure 2 which illustrates that squared (OLS) and absolute (LAD) loss, and suitable reweight-
ing of the observations (WLS), can materially change the locations of the parameter estimates of
interest.

1-day 5-day 10-day 22-day
HAR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.004)
HARQ 0.996 (0.002) 0.955 (0.001) 1.020 (0.011) 1.031 (0.038)
LAD-HAR 0.969 (0.002) 0.877 (0.001) 0.891 (0.011) 0.919 (0.038)
WLSG-HAR 0.888⇤ (1.000) 0.973 (0.000) 0.983 (0.000) 0.961 (0.038)
WLScRV-HAR 0.898⇤ (0.289) 0.826 (0.001) 0.838 (0.011) 0.862 (0.038)
WLSRQ-HAR 0.898⇤ (0.289) 0.809⇤ (0.243) 0.814⇤ (0.327) 0.829⇤ (0.197)
WLSRV-HAR 0.894⇤ (0.297) 0.806⇤ (1.000) 0.811⇤ (1.000) 0.825⇤ (1.000)

Table 1: Relative QLIKEs and MCS p-values for the HAR(Q) based out-of-sample volatility fore-
casts at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and a
rolling window for SPX: QLIKE ratios of the HAR to alternative approaches. Values in parenthe-
sis are p-values of a 90% MCS. Asterisks indicate approaches included in cM⇤

90.

For all indices (SPX, DJI, DAX), forecasting schemes (rolling, recursive), and forecast horizons
(daily, weekly, biweekly, monthly) the following is documented: First, as expected, forecasts from
the HARQ model generally outperform those from the HAR model in terms of QLIKE loss. In
fact, the HARQ achieves up to a 12% reduction in QLIKE compared to the HAR. Second, out of
the four WLS based estimation schemes, WLSG-HAR generally performs well for daily forecasts
but not as well for longer horizons. WLScRV-HAR, WLSRQ-HAR, and WLSRV-HAR forecasts on
the other hand systematically outperform both HAR and HARQ forecasts for all horizons. In
fact, WLSRV-HAR, which overall is the best performing estimation scheme, achieves up to a 24%
reduction in QLIKE compared to the HAR, and up to a 21% reduction compared to the HARQ.
Thirdly, LAD-HAR forecasts overall also perform better than HAR and HARQ ones.

Of the four WLS approaches, the nonparametric approaches WLSRV-HAR and WLSRQ-HAR
are preferred over all horizons. The others that are based on fitted RV (WLScRV-HAR), or fitted
OLS residuals (WLSG-HAR), are inferior in most cases beyond a 1-day horizon. This suggests
that valuable information for weighting is lost with the parametric approaches or smoothing.
Figure 3 highlights the differences between the four weighting schemes. The top two panels
show that the weights based on cRV (fitted RV) are much less variable than those using raw RV. In
contrast, the weights based on RQ (bottom left panel) are broadly similar to those based on raw
RV. The weights based on a GARCH(1,1) fitted to the OLS residuals of the HAR model (bottom
right panel) are similar to those using fitted RV, but scaled differently. These visual comparisons
support the notion that unsmoothed volatility contains valuable information for the weighting
scheme in WLS.
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Figure 2: Sample paths of the OLS (solid), LAD (dashed), and WLSRV (dotted) estimators of
b1–b3 in the HAR volatility model for SPX raw RV, obtained using a 1000 day rolling window.
Top panel: Trajectories of the estimators of b1. Middle panel: Trajectories of the estimators of b2.
Bottom panel: Trajectories of the estimators of b3.

13

 Electronic copy available at: https://ssrn.com/abstract=3369484 



0.
00
00

0.
00
05

0.
00
10

0.
00
15

0.
00
20

RV

0.
00
00

0.
00
05

0.
00
10

0.
00
15

0.
00
20

RV

0.
00
00

0.
00
05

0.
00
10

0.
00
15

0.
00
20

RQ

0
5

10
15

20
25

30

G

Figure 3: WLS weights used for estimating the HAR volatility model for SPX raw RV. Top left
panel: WLScRV-HAR weights, wt = 1/ cRVt. Top right panel: WLSRV-HAR weights, wt = 1/RVt.
Bottom left panel: WLSRQ-HAR weights, wt = 1/

p
RQt. Bottom right panel: WLSG-HAR

weights, wt = 1/ĥt.
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The overall superior performance of WLSRV-HAR shows that the original HAR model esti-
mated by WLS can outperform the state of the art HARQ model in volatility forecasting, without
resorting to using RQ. This observation is useful for the many instances where RV (and possibly
other measures such as implied volatility, e.g. the VIX) is publicly available but RQ is not.

3.2.2 The transformations

The goal of this section is to investigate whether transforming RV leads to an improvement in
predictive accuracy over the benchmark models. In the following log-HAR denotes the standard
HAR model fitted to the natural logarithm of RV, and qr-HAR the same model fitted to the quartic
root transformation of RV. Both of these (non-linear) models for RV are estimated using OLS.

Table 2 reports QLIKE ratios and MCS p-values for the comparison of the two transformation
schemes. It is clear that transformations of RV also can have a significant impact on predictive
accuracy. At all forecast horizons, both the log-HAR and qr-HAR outperform the standard HAR,
and these models are always included in the MCS. The quartic root transformation, argued for by
Taylor (2017), does particularly well. The two benchmark models, however, are always excluded
from the confidence set.

1-day 5-day 10-day 22-day
HAR 1.000 (0.000) 1.000 (0.000) 1.000 (0.001) 1.000 (0.004)
HARQ 0.996 (0.006) 0.955 (0.035) 1.020 (0.035) 1.031 (0.032)
log-HAR 0.896⇤ (1.000) 0.834⇤ (0.660) 0.835⇤ (0.527) 0.840⇤ (0.920)
qr-HAR 0.902⇤ (0.278) 0.830⇤ (1.000) 0.828⇤ (1.000) 0.838⇤ (1.000)

Table 2: Relative QLIKEs and MCS p-values for the HAR(Q) based out-of-sample volatility fore-
casts at 1-, 5-, 10- and 22-day horizons, obtained using alternative transformation schemes and a
rolling window for SPX: QLIKE ratios of the HAR to alternative approaches. Values in parenthesis
are p-values of a 90% MCS. Asterisks indicate approaches included in cM⇤

90.

The above observations made for SPX and the rolling forecasting scheme apply to all three
indices, and to the recursive forecasting scheme (see the Supplementary Appendix). In instances
where RV (but not necessarily RQ) is publicly available, forecasts matching the accuracy of those
from the HARQ model can thus be obtained by fitting the HAR model to simple transformations
of RV.

3.2.3 Estimators or transformations?

Table 3 reports the MCS results for the SPX rolling window comparison of all the estimation
and transformation schemes considered in sections 3.2.1–3.2.2. At all four forecast horizons,
the (superior) approaches captured by the MCS at significance level a = 0.1 include WLSRQ-
HAR and WLSRV-HAR. The HAR models for transformed RV, log-HAR and qr-HAR, are both
excluded from the MCS at the 5-day forecast horizon, but included at the other three horizons.
The benchmark HAR and HARQ models are always excluded from the confidence set.

15

 Electronic copy available at: https://ssrn.com/abstract=3369484 



1-day 5-day 10-day 22-day
MCS p-value MCS p-value MCS p-value MCS p-value

HAR 0.000 0.000 0.000 0.008
HARQ 0.004 0.000 0.027 0.059
LAD-HAR 0.004 0.000 0.027 0.059
WLSG-HAR 1.000 0.000 0.000 0.059
WLScRV-HAR 0.446 0.000 0.027 0.059
WLSRQ-HAR 0.446 0.230 0.661 0.382
WLSRV-HAR 0.553 1.000 1.000 1.000
log-HAR 0.553 0.000 0.661 0.382
qr-HAR 0.373 0.000 0.661 0.382

Table 3: MCS p-values for the HAR(Q) based out-of-sample volatility forecasts at 1-, 5-, 10- and
22-day horizons, obtained using alternative estimation/transformation schemes and a rolling
window for SPX: The p-values of a 90% MCS.

The MCS results for all indices and forecasting schemes considered (reported in the Supple-
mentary Appendix) are broadly similar, with the exception that the LAD-HAR and WLScRV-HAR
approaches sometimes also are included in the 90% MCS. Hence, while neither changes to the
estimation scheme nor transformations to RV appear to dominate, both schemes can generate
superior forecasts relative to the benchmark HAR and HARQ models. Once again the results
indicate that accurate forecasts of volatility can be obtained from a simple linear model estimated
by WLS, WLSRV-HAR, without the need for RQ.

The main message of sections 3.2.1–3.2.3 is thus that parameter estimation schemes, as well
as transformation schemes, can play an important role in the evaluation and comparison of HAR
volatility forecasting models in finite samples.

3.2.4 A simpler volatility proxy

The goal of this section is to examine the effect of replacing the high-frequency data based volatil-
ity proxy that the HAR model operates on (RV) with a proxy based on free and publicly available
low-frequency data (LR). Specifically, the predictive accuracy of HAR models based on costless
LR when coupled with a simple transformation (logarithmic or quartic root) or alternative estima-
tor (WLS or LAD) is investigated. In the following, the two HAR models based on transformed
LR are denoted log-HARLR and qr-HARLR. The three WLS-HAR approaches for LR are denoted
WLSLR-HARLR (using 1/LRt as weights), WLScLR-HARLR (using weights 1/cLRt ) and WLSG-
HARLR (with weights 1/ĥt), respectively. Finally, the LAD-HAR approach for LR is denoted
LAD-HARLR.

Table 4 reports QLIKE ratios and MCS p-values for the DJI, DAX and SPX rolling window
comparison of the above approaches using LR to the (by OLS estimated) HAR and log-HAR
models using RV. The log-HAR was chosen as the second benchmark model here due to its
strong performance in Section 3.2.3 and the fact that it avoids the use of RQ. This model is
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also popular in the related literature. As expected, forecasts from the log-HAR model using RV
generally outperform those from WLS-HAR approaches using LR in terms of QLIKE loss. Hence
it is not surprising that the log-HAR model always is included in the MCS. Nevertheless WLSLR-
HARLR, the overall best performing LR HAR estimation scheme, often also achieves considerable
reductions in QLIKE compared to the RV HAR model. Hence this approach for LR is often also
included in the MCS. The nonlinear qr-HARLR model also does remarkably well. The benchmark
HAR model for RV, on the other hand, is always excluded from the confidence set. Starting with
the 1-day horizon, it is clear that the log-HAR dominates the other approaches. Moving to the
5-, 10- and 22-day horizons, it becomes clear that transforming the low-frequency LR measure, or
relying on different estimation schemes can be beneficial. Here WLScLR-HARLR, WLSLR-HARLR

and qr-HARLR are included in the MCS along with the log-HAR using RV in many instances.
The case for recursive forecasts (reported in the Supplementary Appendix) is even stronger.

Here WLSLR-HARLR, which once again is the overall best performing LR HAR estimation scheme,
achieves up to a 21% reduction in QLIKE compared to the RV HAR. In most cases both qr-HARLR

and WLSLR-HARLR are included in the MCS along with the log-HAR.
The good performance of WLSLR-HARLR shows that the HAR model for LR estimated by

WLS can outperform the original HAR model for RV in volatility forecasting, without resorting
to using high-frequency data based RV. Similarly for qr-HARLR. This indicates that qr-HARLR

and WLSLR-HARLR, both operating on low-frequency data based LR, are able to generate highly
competitive forecasts in cases where RV (and also RQ) is not publicly available.

4 Concluding remarks

This paper explored several, easily implemented, ways to improve the forecasting performance
of the standard HAR model. Its main goal was to identify successful HAR-based predictive
approaches over multiple horizons and markets, and to investigate how the predictive accuracy
of the original HAR model depends on choices of estimation scheme, data transformation, and
volatility proxy. In an out-of-sample study, covering three major stock markets, it was found
that a simple WLS scheme can yield remarkable improvements to the predictive ability of the
HAR model. This simple remedy has the advantage that it can easily be applied directly to the
original, linear, HAR model for raw RV. Thus yielding an uncomplicated forecast expression.
For WLSRV-HAR, the overall best performing estimation scheme, improvements in QLIKE loss
ranged from 3 to 24 percent compared to the original OLS-HAR model, and from 2 to 21 percent
compared to the recently proposed OLS-HARQ model. The results were robust to alternative
forecast horizons, updating schemes, and markets. Moreover, little evidence in favour of HAR
models applied to transformed RV was found. The benefits of replacing OLS with WLS (or
LAD) were particularly clear for longer forecast horizons. Finally, it was also found that HAR
models using low-frequency data based LR are capable of generating highly competitive forecasts
when coupled with a quartic root transformation, or WLS, compared to benchmarks using high-
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frequency data based RV. Specifically at longer horizons.
Some extensions may also be possible. First, a natural question is whether the importance of

the choice of estimator observed here extends from the univariate HAR model to the multivariate
HAR model (Chiriac and Voev, 2011). Second, it would be interesting to see if the observed effect
of replacing RV with costless LR as a proxy for latent volatility extends to the multivariate case.
These extensions will be explored in later studies.
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1-day 5-day 10-day 22-day

DJI
HAR 1.000 (0.002) 1.000 (0.000) 1.000 (0.008) 1.000 (0.057)
LAD-HARLR 1.599 (0.000) 1.157 (0.000) 1.127 (0.001) 1.145 (0.033)
WLSG-HARLR 1.002 (0.002) 1.221 (0.000) 1.172 (0.007) 1.073 (0.057)
WLScLR-HARLR 1.032 (0.002) 0.964⇤ (0.145) 0.940⇤ (0.276) 0.968⇤ (0.321)
WLSLR-HARLR 0.991 (0.002) 0.965⇤ (0.145) 0.957⇤ (0.276) 0.968⇤ (0.321)
log-HARLR 1.054 (0.002) 1.037 (0.000) 1.000 (0.007) 1.003 (0.057)
qr-HARLR 1.047 (0.002) 0.989⇤ (0.145) 0.956⇤ (0.276) 0.969⇤ (0.321)
log-HAR 0.909⇤ (1.000) 0.862⇤ (1.000) 0.855⇤ (1.000) 0.874⇤ (1.000)

DAX
HAR 1.000 (0.004) 1.000 (0.004) 1.000 (0.007) 1.000 (0.024)
LAD-HARLR 1.457 (0.000) 1.043 (0.004) 1.000 (0.022) 0.979 (0.049)
WLSG-HARLR 1.019 (0.003) 1.128 (0.004) 1.080 (0.007) 1.042 (0.024)
WLScLR-HARLR 1.017 (0.002) 0.897⇤ (0.126) 0.892 (0.029) 0.905 (0.034)
WLSLR-HARLR 1.021 (0.000) 0.879⇤ (0.189) 0.861 (0.085) 0.838 (0.049)
log-HARLR 1.064 (0.000) 0.903 (0.049) 0.857 (0.085) 0.816 (0.078)
qr-HARLR 1.027 (0.004) 0.875⇤ (0.189) 0.838 (0.085) 0.810 (0.078)
log-HAR 0.940⇤ (1.000) 0.831⇤ (1.000) 0.792⇤ (1.000) 0.756⇤ (1.000)

SPX
HAR 1.000 (0.000) 1.000 (0.000) 1.000 (0.016) 1.000 (0.001)
LAD-HARLR 1.161 (0.000) 0.946 (0.036) 0.906⇤ (0.530) 0.836⇤ (1.000)
WLSG-HARLR 1.094 (0.000) 1.189 (0.000) 1.087 (0.000) 0.965 (0.001)
WLScLR-HARLR 1.095 (0.000) 1.001 (0.000) 0.967 (0.020) 0.939 (0.001)
WLSLR-HARLR 1.105 (0.000) 0.978 (0.036) 0.928⇤ (0.530) 0.891⇤ (0.840)
log-HARLR 1.048 (0.000) 0.970 (0.020) 0.921⇤ (0.530) 0.882⇤ (0.840)
qr-HARLR 1.078 (0.000) 0.977 (0.020) 0.929⇤ (0.530) 0.891⇤ (0.840)
log-HAR 0.917⇤ (1.000) 0.875⇤ (1.000) 0.870⇤ (1.000) 0.861⇤ (0.840)

Table 4: Relative QLIKEs and MCS p-values for the RV/LR HAR based out-of-sample volatility
forecasts at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and a
rolling window for DJI, DAX and SPX: QLIKE ratios of the RV HAR to alternative approaches.
Values in parenthesis are p-values of a 90% MCS. Asterisks indicate approaches included in cM⇤

90.
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Abstract

This Supplementary Appendix provides additional results to complement the main paper. Sec-

tion A reports all QLIKE ratios, and Section B MCS p-values, of the out-of-sample forecasting

exercise.
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A QLIKE ratios

A.1 Estimators or transformations?

1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 1.004 1.000 1.047 1.000 0.980 1.000 0.970

HARQ 0.996 1.000 0.955 1.000 1.020 1.000 1.031 1.000
WLScRV

-HAR 0.898 0.902 0.826 0.865 0.838 0.821 0.862 0.836

WLSRV-HAR 0.894 0.897 0.806 0.844 0.811 0.795 0.825 0.800

WLSRQ-HAR 0.898 0.902 0.809 0.847 0.814 0.798 0.829 0.804

WLSG-HAR 0.888 0.892 0.973 1.019 0.983 0.963 0.961 0.932

LAD-HAR 0.969 0.973 0.877 0.918 0.891 0.873 0.919 0.892

log-HAR 0.896 0.900 0.834 0.873 0.835 0.818 0.840 0.814

qr-HAR 0.902 0.906 0.830 0.869 0.828 0.812 0.838 0.813

Table 1: SPX Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR(Q) to alternative

approaches.

1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 1.136 1.000 1.136 1.000 1.100 1.000 1.054

HARQ 0.880 1.000 0.881 1.000 0.909 1.000 0.948 1.000
WLScRV

-HAR 0.848 0.964 0.795 0.903 0.815 0.897 0.856 0.902

WLSRV-HAR 0.848 0.964 0.773 0.878 0.785 0.864 0.810 0.854

WLSRQ-HAR 0.855 0.972 0.776 0.881 0.788 0.866 0.813 0.857

WLSG-HAR 0.831 0.944 0.944 1.072 0.976 1.074 0.974 1.027

LAD-HAR 0.893 1.015 0.790 0.898 0.805 0.885 0.828 0.873

log-HAR 0.840 0.954 0.765 0.869 0.768 0.845 0.784 0.826

qr-HAR 0.856 0.973 0.772 0.877 0.771 0.848 0.791 0.834

Table 2: SPX Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR(Q) to alternative

approaches.
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1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 0.993 1.000 1.087 1.000 1.071 1.000 1.054

HARQ 1.007 1.000 0.920 1.000 0.934 1.000 0.949 1.000
WLScRV

-HAR 0.945 0.938 0.889 0.966 0.892 0.955 0.910 0.959

WLSRV-HAR 0.927 0.920 0.858 0.932 0.852 0.912 0.874 0.921

WLSRQ-HAR 0.929 0.923 0.853 0.927 0.846 0.906 0.878 0.926

WLSG-HAR 0.928 0.921 1.063 1.155 1.055 1.129 0.980 1.032

LAD-HAR 1.066 1.058 0.960 1.043 0.957 1.025 0.973 1.026

log-HAR 0.909 0.903 0.862 0.937 0.855 0.916 0.874 0.922

qr-HAR 0.921 0.915 0.860 0.935 0.851 0.911 0.869 0.916

Table 3: DJI Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR(Q) to alternative

approaches.

1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 0.997 1.000 1.083 1.000 1.075 1.000 1.048

HARQ 1.003 1.000 0.924 1.000 0.930 1.000 0.954 1.000
WLScRV

-HAR 0.965 0.962 0.909 0.984 0.910 0.978 0.922 0.967

WLSRV-HAR 0.966 0.963 0.902 0.977 0.900 0.968 0.906 0.950

WLSRQ-HAR 0.972 0.969 0.904 0.979 0.902 0.970 0.911 0.954

WLSG-HAR 0.964 0.961 1.034 1.120 1.032 1.109 0.981 1.028

LAD-HAR 1.044 1.042 0.969 1.049 0.970 1.042 1.001 1.050

log-HAR 0.958 0.955 0.923 0.999 0.927 0.996 0.923 0.968

qr-HAR 0.950 0.948 0.898 0.972 0.898 0.965 0.899 0.943

Table 4: DJI Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR(Q) to alternative

approaches.
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1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 0.888 1.000 1.058 1.000 1.061 1.000 1.028

HARQ 1.126 1.000 0.945 1.000 0.942 1.000 0.973 1.000
WLScRV

-HAR 0.935 0.830 0.844 0.893 0.836 0.887 0.849 0.873

WLSRV-HAR 0.932 0.827 0.826 0.874 0.805 0.854 0.781 0.802

WLSRQ-HAR 0.935 0.830 0.820 0.868 0.799 0.848 0.774 0.795

WLSG-HAR 0.923 0.820 1.017 1.076 1.010 1.072 0.971 0.998

LAD-HAR 1.033 0.918 0.921 0.975 0.912 0.968 0.913 0.939

log-HAR 0.940 0.835 0.831 0.880 0.792 0.841 0.756 0.777

qr-HAR 0.932 0.828 0.823 0.871 0.789 0.837 0.762 0.783

Table 5: DAX Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR(Q) to alternative

approaches.

1-day 5-day 10-day 22-day

HAR HARQ HAR HARQ HAR HARQ HAR HARQ

HAR 1.000 1.023 1.000 1.132 1.000 1.106 1.000 1.073

HARQ 0.978 1.000 0.883 1.000 0.904 1.000 0.932 1.000
WLScRV

-HAR 0.919 0.939 0.814 0.922 0.810 0.896 0.809 0.868

WLSRV-HAR 0.919 0.939 0.800 0.906 0.788 0.871 0.759 0.814

WLSRQ-HAR 0.925 0.946 0.802 0.908 0.791 0.875 0.762 0.818

WLSG-HAR 0.920 0.941 0.950 1.075 0.932 1.031 0.895 0.960

LAD-HAR 0.973 0.995 0.850 0.963 0.842 0.931 0.820 0.880

log-HAR 0.932 0.953 0.814 0.921 0.781 0.864 0.732 0.785

qr-HAR 0.920 0.940 0.801 0.907 0.774 0.856 0.736 0.789

Table 6: DAX Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR(Q) to alternative

approaches.
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A.2 A simpler volatility proxy

1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 1.095 1.001 0.967 0.939

WLSLR-HARLR 1.105 0.978 0.928 0.891

WLSG-HARLR 1.094 1.189 1.087 0.965

LAD-HARLR 1.161 0.946 0.906 0.836

log-HARLR 1.048 0.970 0.921 0.882

qr-HARLR 1.078 0.977 0.929 0.891

log-HAR 0.917 0.875 0.870 0.861

Table 7: SPX Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR to alternative ap-

proaches.

1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 1.066 0.987 0.945 0.907

WLSLR-HARLR 1.105 0.991 0.935 0.866

WLSG-HARLR 1.051 1.115 1.043 0.938

LAD-HARLR 1.033 0.912 0.866 0.804

log-HARLR 1.027 0.953 0.901 0.832

qr-HARLR 1.061 0.961 0.906 0.846

log-HAR 0.898 0.879 0.875 0.833

Table 8: SPX Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR to alternative

approaches.
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1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 1.032 0.964 0.940 0.968

WLSLR-HARLR 0.991 0.965 0.957 0.968

WLSG-HARLR 1.002 1.221 1.172 1.073

LAD-HARLR 1.599 1.157 1.127 1.145

log-HARLR 1.054 1.037 1.000 1.003

qr-HARLR 1.047 0.989 0.956 0.969

log-HAR 0.909 0.862 0.855 0.874

Table 9: DJI Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR to alternative ap-

proaches.

1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 1.014 0.972 0.957 0.943

WLSLR-HARLR 1.004 0.963 0.952 0.936

WLSG-HARLR 1.038 1.191 1.129 1.058

LAD-HARLR 1.458 1.192 1.184 1.224

log-HARLR 1.121 1.103 1.077 1.029

qr-HARLR 1.063 1.014 0.991 0.956

log-HAR 0.958 0.923 0.927 0.923

Table 10: DJI Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR to alternative

approaches.
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1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 1.017 0.897 0.892 0.905

WLSLR-HARLR 1.021 0.879 0.861 0.838

WLSG-HARLR 1.019 1.128 1.080 1.042

LAD-HARLR 1.457 1.043 1.000 0.979

log-HARLR 1.064 0.903 0.857 0.816

qr-HARLR 1.027 0.875 0.838 0.810

log-HAR 0.940 0.831 0.792 0.756

Table 11: DAX Relative QLIKEs - Rolling Window: QLIKE ratios of the HAR to alternative

approaches.

1-day 5-day 10-day 22-day

HAR 1.000 1.000 1.000 1.000
WLScLR

-HARLR 0.974 0.826 0.824 0.822

WLSLR-HARLR 0.982 0.821 0.811 0.782

WLSG-HARLR 0.992 0.975 0.950 0.927

LAD-HARLR 1.379 0.929 0.901 0.892

log-HARLR 1.056 0.859 0.820 0.761

qr-HARLR 0.995 0.812 0.785 0.745

log-HAR 0.932 0.814 0.781 0.732

Table 12: DAX Relative QLIKEs - Increasing Window: QLIKE ratios of the HAR to alternative

approaches.
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B MCS p-values

B.1 Estimators or transformations?

1-day 5-day 10-day 22-day

p-value p-value p-value p-value

HAR 0.000 HAR 0.000 HAR 0.000 HAR 0.008

HARQ 0.004 WLSG-HAR 0.000 WLSG-HAR 0.000 WLSG-HAR 0.059

LAD-HAR 0.004 HARQ 0.000 HARQ 0.027 HARQ 0.059

qr-HAR 0.373 LAD-HAR 0.000 LAD-HAR 0.027 LAD-HAR 0.059

WLSRQ-HAR 0.446 qr-HAR 0.000 WLScRV
-HAR 0.027 WLScRV

-HAR 0.059

WLScRV
-HAR 0.446 log-HAR 0.000 log-HAR 0.661 qr-HAR 0.382

log-HAR 0.553 WLScRV
-HAR 0.000 qr-HAR 0.661 log-HAR 0.382

WLSRV-HAR 0.553 WLSRQ-HAR 0.230 WLSRQ-HAR 0.661 WLSRQ-HAR 0.382

WLSG-HAR 1.000 WLSRV-HAR 1.000 WLSRV-HAR 1.000 WLSRV-HAR 1.000

Table 13: SPX MCS p-values - Rolling Window: The p-values of a 90% MCS.

1-day 5-day 10-day 22-day

p-value p-value p-value p-value

HAR 0.000 HAR 0.000 HAR 0.000 HAR 0.000

HARQ 0.000 WLSG-HAR 0.000 WLSG-HAR 0.000 WLSG-HAR 0.008

LAD-HAR 0.016 HARQ 0.000 HARQ 0.000 HARQ 0.011

qr-HAR 0.026 WLScRV
-HAR 0.000 WLScRV

-HAR 0.000 WLScRV
-HAR 0.011

WLSRQ-HAR 0.026 LAD-HAR 0.723 LAD-HAR 0.671 LAD-HAR 0.598

WLScRV
-HAR 0.115 WLSRQ-HAR 0.723 WLSRQ-HAR 0.671 WLSRQ-HAR 0.598

WLSRV-HAR 0.158 qr-HAR 0.723 WLSRV-HAR 0.671 WLSRV-HAR 0.598

log-HAR 0.289 WLSRV-HAR 0.723 qr-HAR 0.779 qr-HAR 0.612

WLSG-HAR 1.000 log-HAR 1.000 log-HAR 1.000 log-HAR 1.000

Table 14: SPX MCS p-values - Increasing Window: The p-values of a 90% MCS.
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1-day 5-day 10-day 22-day

p-value p-value p-value p-value

HARQ 0.000 HAR 0.000 HAR 0.001 HAR 0.004

LAD-HAR 0.000 WLSG-HAR 0.002 WLSG-HAR 0.056 WLSG-HAR 0.095

HAR 0.007 HARQ 0.002 LAD-HAR 0.056 HARQ 0.095

WLScRV
-HAR 0.011 LAD-HAR 0.032 HARQ 0.056 LAD-HAR 0.095

WLSG-HAR 0.075 WLScRV
-HAR 0.076 WLScRV

-HAR 0.056 WLScRV
-HAR 0.095

WLSRV-HAR 0.075 log-HAR 0.986 log-HAR 0.942 WLSRQ-HAR 0.934

WLSRQ-HAR 0.075 qr-HAR 0.986 WLSRV-HAR 0.942 log-HAR 0.934

qr-HAR 0.075 WLSRV-HAR 0.986 qr-HAR 0.942 WLSRV-HAR 0.934

log-HAR 1.000 WLSRQ-HAR 1.000 WLSRQ-HAR 1.000 qr-HAR 1.000

Table 15: DJI MCS p-values - Rolling Window: The p-values of a 90% MCS.

1-day 5-day 10-day 22-day

p-value p-value p-value p-value

LAD-HAR 0.000 WLSG-HAR 0.000 WLSG-HAR 0.001 WLSG-HAR 0.045

HAR 0.000 HAR 0.000 HAR 0.001 HAR 0.045

HARQ 0.007 LAD-HAR 0.059 LAD-HAR 0.133 LAD-HAR 0.335

WLScRV
-HAR 0.457 HARQ 0.059 HARQ 0.133 HARQ 0.435

WLSRQ-HAR 0.457 log-HAR 0.234 log-HAR 0.133 WLScRV
-HAR 0.435

WLSG-HAR 0.457 WLScRV
-HAR 0.284 WLScRV

-HAR 0.133 log-HAR 0.514

WLSRV-HAR 0.457 WLSRQ-HAR 0.940 WLSRQ-HAR 0.969 WLSRQ-HAR 0.849

log-HAR 0.457 WLSRV-HAR 0.940 WLSRV-HAR 0.969 WLSRV-HAR 0.849

qr-HAR 1.000 qr-HAR 1.000 qr-HAR 1.000 qr-HAR 1.000

Table 16: DJI MCS p-values - Increasing Window: The p-values of a 90% MCS.
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1-day 5-day 10-day 22-day

p-value p-value p-value p-value

LAD-HAR 0.000 HAR 0.000 HAR 0.006 HAR 0.016

HARQ 0.000 WLSG-HAR 0.004 WLSG-HAR 0.011 HARQ 0.025

HAR 0.000 HARQ 0.027 HARQ 0.011 WLSG-HAR 0.025

log-HAR 0.340 LAD-HAR 0.037 LAD-HAR 0.011 WLScRV
-HAR 0.025

WLScRV
-HAR 0.340 WLScRV

-HAR 0.037 WLScRV
-HAR 0.011 LAD-HAR 0.122

WLSRQ-HAR 0.340 log-HAR 0.522 WLSRV-HAR 0.460 WLSRV-HAR 0.551

WLSRV-HAR 0.340 WLSRV-HAR 0.651 WLSRQ-HAR 0.646 WLSRQ-HAR 0.741

qr-HAR 0.468 qr-HAR 0.845 log-HAR 0.701 qr-HAR 0.741

WLSG-HAR 1.000 WLSRQ-HAR 1.000 qr-HAR 1.000 log-HAR 1.000

Table 17: DAX MCS p-values - Rolling Window: The p-values of a 90% MCS.

1-day 5-day 10-day 22-day

p-value p-value p-value p-value

HAR 0.000 HAR 0.000 HAR 0.000 HAR 0.000

HARQ 0.000 WLSG-HAR 0.002 WLSG-HAR 0.000 WLSG-HAR 0.006

LAD-HAR 0.001 HARQ 0.011 HARQ 0.029 HARQ 0.006

log-HAR 0.071 LAD-HAR 0.112 LAD-HAR 0.029 WLScRV
-HAR 0.030

WLSRQ-HAR 0.071 WLScRV
-HAR 0.112 WLScRV

-HAR 0.029 LAD-HAR 0.212

WLSG-HAR 0.975 log-HAR 0.273 WLSRQ-HAR 0.352 WLSRQ-HAR 0.212

qr-HAR 0.988 WLSRQ-HAR 0.831 WLSRV-HAR 0.368 WLSRV-HAR 0.259

WLScRV
-HAR 0.995 qr-HAR 0.946 log-HAR 0.433 qr-HAR 0.760

WLSRV-HAR 1.000 WLSRV-HAR 1.000 qr-HAR 1.000 log-HAR 1.000

Table 18: DAX MCS p-values - Increasing Window: The p-values of a 90% MCS.
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B.2 A simpler volatility proxy

1-day 5-day 10-day 22-day

p-value p-value p-value p-value

DJI
LAD-HARLR 0.000 LAD-HARLR 0.000 LAD-HARLR 0.001 LAD-HARLR 0.033

log-HARLR 0.002 WLSG-HARLR 0.000 WLSG-HARLR 0.007 WLSG-HARLR 0.057

WLScLR
-HARLR 0.002 log-HARLR 0.000 log-HARLR 0.007 log-HARLR 0.057

qr-HARLR 0.002 HAR 0.000 HAR 0.008 HAR 0.057

WLSG-HARLR 0.002 WLSLR-HARLR 0.145 WLSLR-HARLR 0.276 qr-HARLR 0.321

HAR 0.002 qr-HARLR 0.145 qr-HARLR 0.276 WLScLR
-HARLR 0.321

WLSLR-HARLR 0.002 WLScLR
-HARLR 0.145 WLScLR

-HARLR 0.276 WLSLR-HARLR 0.321

log-HAR 1.000 log-HAR 1.000 log-HAR 1.000 log-HAR 1.000

DAX
LAD-HARLR 0.000 LAD-HARLR 0.004 WLSG-HARLR 0.007 WLSG-HARLR 0.024

log-HARLR 0.000 WLSG-HARLR 0.004 HAR 0.007 HAR 0.024

WLSLR-HARLR 0.000 HAR 0.004 LAD-HARLR 0.022 WLScLR
-HARLR 0.034

WLScLR
-HARLR 0.002 log-HARLR 0.049 WLScLR

-HARLR 0.029 LAD-HARLR 0.049

WLSG-HARLR 0.003 WLScLR
-HARLR 0.126 WLSLR-HARLR 0.085 WLSLR-HARLR 0.049

qr-HARLR 0.004 WLSLR-HARLR 0.189 log-HARLR 0.085 log-HARLR 0.078

HAR 0.004 qr-HARLR 0.189 qr-HARLR 0.085 qr-HARLR 0.078

log-HAR 1.000 log-HAR 1.000 log-HAR 1.000 log-HAR 1.000

SPX
LAD-HARLR 0.000 WLSG-HARLR 0.000 WLSG-HARLR 0.000 WLSG-HARLR 0.001

WLScLR
-HARLR 0.000 WLScLR

-HARLR 0.000 HAR 0.016 HAR 0.001

qr-HARLR 0.000 HAR 0.000 WLScLR
-HARLR 0.020 WLScLR

-HARLR 0.001

WLSG-HARLR 0.000 qr-HARLR 0.020 qr-HARLR 0.530 qr-HARLR 0.840

WLSLR-HARLR 0.000 log-HARLR 0.020 WLSLR-HARLR 0.530 WLSLR-HARLR 0.840

log-HARLR 0.000 WLSLR-HARLR 0.036 log-HARLR 0.530 log-HARLR 0.840

HAR 0.000 LAD-HARLR 0.036 LAD-HARLR 0.530 log-HAR 0.840

log-HAR 1.000 log-HAR 1.000 log-HAR 1.000 LAD-HARLR 1.000

Table 19: DJI, DAX and SPX MCS p-values - Rolling Window: The p-values of a 90% MCS.
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1-day 5-day 10-day 22-day

p-value p-value p-value p-value

DJI
LAD-HARLR 0.000 LAD-HARLR 0.004 LAD-HARLR 0.001 LAD-HARLR 0.019

log-HARLR 0.001 WLSG-HARLR 0.004 log-HARLR 0.001 WLSG-HARLR 0.019

WLSG-HARLR 0.001 log-HARLR 0.004 WLSG-HARLR 0.022 log-HARLR 0.019

qr-HARLR 0.01 qr-HARLR 0.163 qr-HARLR 0.221 HAR 0.758

WLScLR
-HARLR 0.017 HAR 0.163 HAR 0.394 qr-HARLR 0.770

HAR 0.059 WLScLR
-HARLR 0.365 WLScLR

-HARLR 0.394 WLScLR
-HARLR 0.770

WLSLR-HARLR 0.067 WLSLR-HARLR 0.365 WLSLR-HARLR 0.541 WLSLR-HARLR 0.770

log-HAR 1.000 log-HAR 1.000 log-HAR 1.000 log-HAR 1.000

DAX
LAD-HARLR 0.000 HAR 0.005 WLSG-HARLR 0.014 HAR 0.010

log-HARLR 0.000 WLSG-HARLR 0.008 HAR 0.014 WLSG-HARLR 0.023

WLSG-HARLR 0.014 LAD-HARLR 0.008 LAD-HARLR 0.056 LAD-HARLR 0.032

HAR 0.023 log-HARLR 0.008 WLScLR
-HARLR 0.056 WLScLR

-HARLR 0.032

qr-HARLR 0.023 WLScLR
-HARLR 0.569 log-HARLR 0.056 WLSLR-HARLR 0.066

WLSLR-HARLR 0.035 WLSLR-HARLR 0.835 WLSLR-HARLR 0.151 log-HARLR 0.399

WLScLR
-HARLR 0.035 log-HAR 0.938 qr-HARLR 0.824 qr-HARLR 0.521

log-HAR 1.000 qr-HARLR 1.000 log-HAR 1.000 log-HAR 1.000

SPX
qr-HARLR 0.000 WLSG-HARLR 0.000 WLSG-HARLR 0.000 WLSG-HARLR 0.004

WLSLR-HARLR 0.000 WLScLR
-HARLR 0.023 HAR 0.041 HAR 0.004

WLScLR
-HARLR 0.000 HAR 0.023 WLScLR

-HARLR 0.094 WLScLR
-HARLR 0.004

WLSG-HARLR 0.000 WLSLR-HARLR 0.035 WLSLR-HARLR 0.215 WLSLR-HARLR 0.449

log-HARLR 0.000 log-HARLR 0.035 log-HARLR 0.595 qr-HARLR 0.618

LAD-HARLR 0.000 qr-HARLR 0.080 qr-HARLR 0.595 log-HAR 0.699

HAR 0.000 LAD-HARLR 0.236 log-HAR 0.757 log-HARLR 0.699

log-HAR 1.000 log-HAR 1.000 LAD-HARLR 1.000 LAD-HARLR 1.000

Table 20: DJI, DAX and SPX MCS p-values - Increasing Window: The p-values of a 90% MCS.
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