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Every morning in the wild, a gazelle awakens. One thing is 
sure for the gazelle that day, as every other… She must run 
faster than the fastest lion. If she cannot, she will be killed 
and eaten. 

Every morning, a lion awakens. For the lion too, one thing is 
certain… This day and every day, he must run faster than 
the slowest gazelle. 

Whether fate names you a gazelle or a lion, is of no 
consequence. It is enough to know that with the rising of the 
sun, you must run, and you must run faster than the day 
before, for the rest of your days, or you will perish. 

 

 

African tale  
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1 Prologue 
 

The initial reason for writing this essay was to provide the background and a derivation of the IR quanto 
adjustment, as a mean of expressing the Hull-White dynamics of foreign currency interest rates under a 
domestic risk-neutral measure. However, one thing led to another, and the essay ended up including 
three different applications of the change of measure (or, Girsanov Theorem); namely, quanto 
adjustment, stock price dynamics under the risk-neutral measure, and pricing IR derivatives under the T-
forward measure. The presented approach is neither meant to be original nor mathematically rigorous: 
it just aims at building an intuition of the employed methodology, hence facilitating a quick 
understanding of change of measure technique and some of its important applications. It is structured 
as a “user manual” and targets an audience with little background on the matter. The essay is organized 
in three main parts, as follows: 

In the first part we provide an overview of the basic notions and notations used across the essay. We 
introduce a few elementary concepts of measure theory and emphasize that a probability function is a 
particular instance of a measure. Random variables and stochastic processes are added to the picture, 
and along with them we introduce the fundamental notion of filtration as an information carrier and 
main driver of conditional probabilities and conditional process expectations. Perhaps the single most 
important concept of this chapter is that of martingale; that is, a stochastic process expressing the 
dynamics of a fair game.  Brownian motions (BM) are built next, from scratch: starting with a sequence 
of coin tosses, turned into a random walk, which is then scaled to a discrete approximation of a standard 
BM, and finally, culminating with a geometric BM. Some important properties of BM, such as Gaussian, 
martingale and fractal properties, are highlighted. 

Two important results are closing this introductory chapter: Itô’s Lemma – the building brick of 
stochastic calculus, and Doléans-Dade exponential – the solution of one of the most elementary 
stochastic differential equations (SDE). Perhaps more important than the formulae themselves, are the 
notions of quadratic variation and covariation, used all across the essay. They reflect the fundamental 
difference between deterministic and stochastic functions. 

The second part of the essay lays the foundation of the change of measure technique, as given by 
Girsanov Theorem. We do not present the theorem in its most general form, rather just enough details 
needed for the applications that follow. The theorem is presented in two flavors: for random variables, 
and for stochastic processes. The presentation is informal, emphasizing the intuition at the expense of 
rigorousness. A few examples are provided, to allow the reader build some mental images around this 
technique. The simulation example in particular, provides a concrete instance of Girsanov Theorem in 
action. This section culminates with a first application of the change of measure technique in the 
derivation of so-called quanto adjustment for foreign interest rates. 

Perhaps the most important application of change of measure in practice is the formulation of derivative 
pricing models. The third part of this essay introduces three probability measures: physical (real-world), 
risk-neutral, and T-forward measures, and uses these measures in pricing of a few simple derivatives.  
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2 Part A: Developing a Toolbox 
 

“The beginning of wisdom is to call things by their right names.” 
Confucius, 551 – 479 BC 

 

2.1.1 Probability Spaces 
 

A sample space Ω  is a set of possible outcomes of a stochastic experiment. We call the elements of Ω  

simply “outcomes”. By 2Ω  we denote the set of all subsets of Ω . Any element of 2Ω  is an event, that is, 

a collection of possible outcomes of the experiment. We say that the event 2A Ω∈   has been realized 
during an experiment if the outcome of the experiment belongs to A . We sometime say that the event 
A  has occurred during the experiment. 

A σ -algebra   is a subset of 2Ω , that satisfies the following conditions: 

1. (non-emptiness)    is non-empty. 
2. (complement closure)  if A∈  then \ AΩ ∈ . 
3. (closure over countable unions)  if 1 2, ,..., ,...nA A A ∈  then 1 2 ... ...nA A A∪ ∪ ∪ ∪ ∈ . 

Notes: 

• ,Ω ∅∈ : if A∈  then \ AΩ ∈ , ( )= A \ AΩ ∪ Ω ∈ , and \∅ =Ω Ω∈ . 

• The smallest/coarsest σ -algebra on Ω  is { }0 ,= ∅ Ω , and the largest/finest is 2Ω
∞ = . 

A sub-σ -algebra of   is any σ -algebra   included in  : ⊆  ,   is a σ -algebra over Ω . 

A measurable space is the ordered pair ( ),Ω  . A measurable set is any set A∈ , and A  is often 

called an  -measurable set. If   is a sub-σ -algebra of  , any  -measurable set is an  -
measurable set, but not necessarily vice versa. 

A measure on ( ),Ω  is any function :m →  that satisfies the following properties: 

1. (positive)  ( ) 0,m A A≥ ∀ ∈  

2. (null empty set)  ( ) 0m ∅ =  

3. (countable additive) if { }i i I
A

∈
is a countable collection of disjoints sets in  , then 

( ) i i
i Ii I

m A m A
∈∈

 
= 

 
∑

. 

 Electronic copy available at: https://ssrn.com/abstract=3377470 



Part A: Developing a Toolbox  

6 
Copyright © 2018 Nicolae Santean 

A measure space is an ordered tuple ( ), , mΩ   with m  being a well-defined measure on ( ),Ω   

(note the terminology: measure space vs. measurable space). 

A probability measure is any measure [ ]: 0,1P → , that satisfies ( ) 1P Ω = . 

A probability space is an order tuple ( ), , PΩ  , with P  being a well-defined probability measure. It is a 

measure space where the measure is a probability measure. Any element ω∈Ω  is an outcome of a 
given stochastic experiment, and any set of outcomes A ⊆ Ω  is an event that, if it belongs to  , is 

assigned a chance of occurrence (that is, a probability): ( )P A . 

Let ( ), , PΩ   be a probability space and ( ),Γ   be a measurable space. A random variable is any 

function :X Ω→Γ  that satisfies ( )1E f E−∈ ⇒ ∈  . In other words, the pre-image of any 

measurable set in Γ is a measurable set in Ω  (with respect to their σ -algebras, respectively). 

A metric space is a pair ( ),d  where  is a non-empty set and :d × →   (the distance on 

 ) is a function that satisfies the following conditions, for any , ,x y z∈ : 

1. (positivity)   ( ), 0d x y ≥  

2. (identity of indiscernibles) ( ), 0d x y x y= ⇔ =  

3. (symmetry)   ( ) ( ), ,d x y d y x=  

4. (triangle inequality)  ( ) ( ) ( ), , ,d x z d x y d y z≤ +  

An open set in   is any set U ⊆ that satisfies 

  ,  x U ε +∀ ∈ ∃ ∈ such that y∀ ∈with ( ),   d x y y Uε< ⇒ ∈ , 

that is, once an element x  belongs to U , an entire “disk” centered in x is included in U . 

A closed set is the complement of some open set. 

A Borel σ -algebra is the smallest σ -algebra containing all closed sets of  . 

Notable example. The Borel σ -algebra on the real numbers ( =  ) is generated by the collection of 

closed sets ( ]{ } ,    r r−∞ ∈ . By “generated”, we mean performing a σ -closure on a collection of 

sets: adding all combinations of countable unions, complements, and the empty set, to the collection. It 
is the smallest σ -algebra containing the initial collection. 

Let ( ), , PΩ   be a probability space and ( ), d be the Borelσ -algebra on the real numbers with the 

usual distance given by the interval length ( ( ),d a b b a= − ). A real-valued random variable is any 
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function :X Ω→  that satisfies ( ){ }:     r X rω ω∀ ∈ ≤ ∈  . Consequently, the pre-image of 

any Borel set (that is, Borel-measurable set) is an  -measurable set (that is, a measurable set in Ω  
with respect to  ). Formally, we write ( ){ }1  is a Borel setX B B−⊇ . Terminology-wise, we 

sometimes say that X is an  -measurable random variable. Note carefully that the definition doesn’t 

make use of probability, hence we could very well start with “Let ( ),Ω   be a measurable space 

and…”. However, the term “random” in “random variable” reminds us that the definition becomes more 
meaningful in the context of a probability space indeed. Note also that the collection of pre-images of all 

Borel sets ( ){ }1  is a Borel setX B B−  is itself a σ -algebra, more precisely, a sub-σ -algebra of  . 

We call it the σ -algebra induced by the random variable X .  

The following figure puts together the notions defined so far (note that   need not be a partition, and 
is not so indeed – we depicted it this way only for aesthetical reasons): 

 

In the following, we assume the fundamental notion of Lebesgue integral known. Let ( ), , PΩ  be a 

probability space and X  be a real-valued random variable, :X Ω→ . The cumulative distribution 

function (CDF) of X  is the function [ ]: 0,1P
XF →  given by the expression ( ) ( )P

XF r P X r= ≤ . This 

function is well-defined indeed: 

( ) ( ]( ) ( ){ }1 ,    event X r X r X rω ω−≤ = −∞ = ∈Ω ≤ ∈ . 

The probability density function (PDF) of X  is the function :P
Xf →  given by ( ) ( )P

XP
X

dF x
f x

dx
= ; 

thus, P
Xf is the instantaneous rate of change of P

XF . In other words, ( )P
Xf x  quantifies the likelihood 

that X  will materialize in the neighborhood of x , that is, in ( ,  )x dx x dx− + . Note that unlike P
XF ,  
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P
Xf  does not denote a probability (can be greater than 1): is rather a concentration of probability. It is 

sometimes called the distribution of X . This is a sketch for the construction of P
XF  : 

 

The (unconditional) expectation of X  under probability P  is given by [ ] ( ) ( )PE X X dPω ω
Ω

= ∫ . This 

is, intuitively, the probability-weighted average of X over Ω  (since ( ) 1P Ω = ). For some set A⊂ Ω , 

denote by 1A  the identity over A  and null everywhere else. The (conditional) expectation of X  over 

A  is [ ] [ ] ( ) ( )| 1P P
A A

E X A E X X dPω ω ω∈ = = ∫ , which can intuitively be viewed as a weighted 

sum of the values of X  over A , sum weighted by the probability weights ( )dP ω . It gives the expected 

value of X  given (conditioned by) the realization of the event A . Note carefully that here (and almost 
everywhere, for that matter) we use Lebesgue integrals, to allow integration over peculiar domains. 

Under the above context, let ⊂  be a sub-sigma algebra of  . The conditional expectation 
PE X     (that is, expectation conditional on a filter  ) is a  -measurable random variable which 

satisfies ( ) ( ) ( ) ( )P

A A
E X dP X dPω ω ω ω  = ∫ ∫  for all A∈ ⊆  . Informally, PE X    has 

the same expectations as X over all events in  . Note carefully that the first Lebesgue integral is over 
 -measurable sets and the second one is over  -measurable sets. Note also that, if X happens to be 

 -measurable as well, then PE X X  =  . 

A stochastic process is a time-indexed set of real-valued random variables { }t t T
X

∈
 (note that we usually 

consider an index taking values from a countable set; yet here, the index is from a most-likely 
uncountable, yet ordered, subset of  : some period of time). Considering a process as the stochastic 
evolution of some system in time, the random variable tX  represents the state of the system as 

observed at time t , and is more accurately written as ( )tX ω , to reflect the dependence on an 

outcome in Ω . We may imagine every time instance being associated a random variable (hence a 
stochastic experiment) that materializes (and takes a random value) at the given time. Here ω∈Ω  can 
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be viewed as a sequence of random elementary outcomes 1 2... ...to o oω = ,  with io  occurring at time it  

( io  is the realization of iX , at time it ). Note carefully the difference between the elementary outcomes 

io  occurring at an instant time it  (and governing the random variables iX ) and the outcomes ω∈Ω , 

representing a random evolution of the system (ω  is a sequences of random experiments which 
produce a time-indexed sequence of random variable values). The difference will become apparent  
shortly. Usually, the random variables are iid (independent and identically distributed), as they all are  
reflections of some idiosyncratic properties of a same system. 

 

2.1.2 Filtrations 
 

“I don’t know why we are here, but I’m pretty sure that it is not in order to enjoy ourselves.” 
Ludwig Wittgenstein, 1889 – 1951 

Yet again, let Ω  be a set of outcomes. Consider Γ  an ordered collection of time-points 0 1 20, , ,...t t t=  

(note that, despite the generic notation, Γmay not be countable, yet must necessarily be an ordered 

set), and consider a collection of σ -algebras { }t t∈Γ
  over Ω  that satisfies: { }0 ,= ∅ Ω , and for any 

i jt t<  , 
i jt t⊂  . Denote by ∞  the σ -closure of the union of all these σ -algebras (since one is 

included into the other, one can potentially write ( )lim tt∞ →∞
=  ).  That is, ∞  is the smallest σ -

algebra that contains all 't s . Further, equip ∞ with a probability measure P  so that ( ), , P∞Ω   is 

structured as a probability space. The collection { }t t∈Γ
  is called a filtration on ( ), , P∞Ω  . Note that 

( ), , /t tPΩ    is a probability subspace of ( ), , P∞Ω  , where by / tP   we understand the restriction 

of P  to the domain t . In the following, we will use the term “filtration” to refer to either { }t t T∈
  or 

any individual t , or ∞ ,  without creating confusion. Sometimes we refer to a particular σ –algebra of 

a filtration as a “filter”. To summarize, is useful to view ( ), , /t tPΩ    as a probability space induced by 

the filtration t . We have just constructed a time-indexed collection of probability spaces 

( ){ }, , /t t t
P

∈Γ
Ω   . Finally, ∞ is sometimes simply denoted by  , by dropping the subscript. Here 

we introduced a “global” probability measure, which can be restricted to any filtration t ; yet, in a 

more general sense, each ( ), tΩ  measurable space can have its own associated probability tP  - we 

just simplify the framework, for a better intuition. 
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Example of filtration. Consider a process governed/generated by a coin toss: a toss at time it  is 

represented by the random variable iX . More precisely, we toss a coin at successive points in time, 

denoted by it , and each outcome io  will evolve the system from a previous state into a new state, with 

the transition governed by some pre-defined rules. Here the coin represents a stochastic 
factor/perturbation/entropy that governs the transition of the system from one state to the other. The 
actual random outcomes, from the system evolution point of view, are described as 1 2... ...to o oω = , 

consisting of a successive sequence of coin toss outcomes: Ω  consists of these possible evolutions ω . 
The entire evolution of this process/system can be described by a binary tree (a discrete case), with each 
node representing a possible state of the system at a given time ( H  and T  represent heads and tails, 
respectively). The infinite branches spanning from the root of the tree represent the outcomes in Ω , 
that is, an evolution of the system in cause. Here’s a depiction: 

 

We aim at conferring a probability structure to this binary tree, hence we start by defining some tree 
terminology. The notions of root, node, edge and path are considered understood. In order to label 

paths, consider the binary alphabet { },H TΣ =  , and a word *w∈Σ  (here, by “word” we understand a 

sequence of symbols/letters, empty, finite or infinite, and *Σ  denotes the collection of all such words). 
We can use these “words” to denote paths (partial or infinite) in the tree, which start from origin. 
Indeed, say, the word w HTH= will label the path starting from origin, visiting the node H , then the 
node T , and arriving at another node H . From now on, we will make no distinction between a path 

and the word that labels it. For convenience, when w  is finite, we denote by w  the terminal node. If λ  

denotes the “empty word” (a word with no symbols), λ will denote the tree’s root. In our example, 
HTH denotes the node marked in red in the above figure, reached from the root and following the 

path w HTH= . This notation doesn’t apply to infinite words/paths, for obvious reasons. 
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Of our main interest are infinite paths and sets/collections of such paths. Notation wise, by wπ  we 

denote the set of all infinite paths that start from the root, and their labels start with w . For illustration, 

if w HTH= , then HTHπ  represents the set of all paths that start from the root, traverse the nodes H , 

HT  and  HTH , and then continue traversing other nodes, infinitely. In language notation, one can 
view w wπ = ∗ , that is, the set of all infinite words/paths that have w  as a prefix. Visually: 

 

Note carefully that u uvπ π⊃ , for any labels u  and v . Indeed, if one finite path u  is the prefix of 

another finite path uv , any infinite path in uvπ (that is, which starts with uv ) must necessarily be in uπ , 

as it obviously starts with u as well. 

Define λπΩ =  , that is, Ω  is the set of all possible infinite paths starting from the root. By the above 

observation, wπ ⊂ Ω , for any w , as the empty word is the trivial prefix of any word.  

Back to our process, the set of possible outcomes of one coin toss is { },H T : with the already-

introduced elementary outcome notation, { },io H T∈  is a coin toss outcome at time it , and one can 

see Ω  as the set of all possible evolution paths 1 2... ...to o oω =  of the system in time. In this analogy, 

the infinite path/word ω  is an evolution of the process. Note carefully the difference between the coin 
toss elementary outcomes, and the process’ evolution. In this terminology, the set wπ (with w  finite 

path) represents the set of all process evolution paths that all start the same: they start by traversing w . 
In probability terms, wπ is a process event (a collection of process evolutions). 

Now, let’s define filtrations. At time 0t , we have the filter { }0 ,= ∅ Ω . It is a filter that contains only 

two events: the impossible and the assured event. Information-wise, this is equivalent to a state of total 
ignorance, meaning that we have no information about the process’ evolution (present or future). This 

filter consists of two trivial events: the null event ∅ , with associated probability ( ) 0P ∅ = , and the 
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universal event Ω , with associated probability ( ) 1P Ω = . This conveys the idea that the system “will 

certainly evolve in time”, i.e. ( ) 0P ∅ = , and “anything is possible”, i.e. ( ) 1P Ω = . 

At time 1t  we have 1  obtained from 0  by considering the coin toss outcomes 1
1o H= and 2

1o T= , 

which lead to the possible system states at time 1t : 1
1w H=  and 2

1w T= , which further lead to all 

possible events anticipated at time 1t : Hπ  and Tπ . Here, Hπ  is the set of all possible evolutions of the 

system, given that it has started with H , and Tπ  is defined similarly. But since 1  must be a σ -

algebra, it should also include all possible combinations (countable unions and complements) of these 

events, as well as the events in 0  (in order to have 0 1⊂  ). Thus, { }1 , , ,H Tπ π= ∅ Ω , since

H Tπ π∪ = Ω  (any path in Ω  must start with either H , the case in which it is in Hπ , or with T , the 

case in which it is in Tπ ), then \H T Hπ π π=  (as the events are independent), and H Tπ π=  (we already 

stated that H Tπ π∪ = Ω ), etc. . Here we used the notation A  to denote the complement of A   (

\A A= Ω ). 

The probabilities associated with the new events in 1  are obviously ( ) ( ) 0.5H TP Pπ π= =  (if we use 

a fair coin) and we have already defined the probabilities of the previous events in 0 . This fully defines 

( )1 1, , /PΩ    . 

At time 2t we follow the same steps. We obtain 2  by first adding to 1  new events: HHπ , HTπ , THπ , 

and TTπ , and then performing a σ -closure of what we have so far, that is, we add all possible 

combinations of these events and the events in 1 . Thus, 

{ }2 , , , , , , , ,..., , ,..., ,...H T HH HT TH TT HH HT HH THπ π π π π π π π π π= ∅ Ω ∪  

The probabilities of events in 2  which are also in 1  have been defined already. For the new events, 

we use the probability rules: ( ) 0.5 0.5 0.25HTP π = × = , ( ) 0.5 0.5 0.5 0.5 0.5HH THP π π∪ = × + × = , 

etcetera. Eventually, ( )2 2, , /PΩ    is fully specified. 

And this process of building our filtration gradually goes on. At each step we construct a σ -algebra 
more refined (larger, inclusion-wise) than the previous ones, and we “reveal” probabilities associated to 
the freshly-added events. 

Before continuing (that is, defining time-dependent random variables { }t t T
X

∈
, hence defining the 

actual process), we make a digression for understanding filtrations in more general terms. 
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Filtrations as information carriers 

We start with an analogy. Suppose Ω  (the set of some experiment outcomes) is laid down as a 
(geographic) map, and x  (an event) is a point on this map, of location unknown to us. Let’s imagine that 
a filter t  can tell us in which of its sets tU ∈  resides x . Then  t  conveys some information about 

the location of x , although it does not pinpoint x  with accuracy.  One can visualize t , e.g., as a grid 

on the map, which tells you which patch of the grid contains x , without actually showing x . Then is 
clear that another filter T , with T t⊃  , will provide more information/knowledge on the 

whereabouts of x : it reveals smaller sets TV ∈  for which x V∈  . In our analogy, the grid on the map 

is more dense (refined). 

In this analogy, the filter 2Ω  (of all subsets of Ω ) represents a state of total omniscience (we know 

precisely where x  is located), and the filter { },∅ Ω  represents a state of total ignorance: doesn’t really 

tell anything about x ’s whereabouts (except that x is on the map somewhere). 

 

Another Analogy: Dyadic Partitions of the Unit Interval 

Let [ )0,1I =  be the unit interval, and Iα ∈ . Then α  has an unique binary expansion as 

0 10. ... ...ka a aα =  , with 
0 2

i
i

i

aα
∞

=

=∑  (representation of α  in base 2), and ia binary digits. Consider the 

following sequence of dyadic partitions: 

{ }0 I℘ =   

1
1 10, , ,1
2 2

    ℘ =        
 

2
1 1 2 2 3 30, , , , , , ,1
4 4 4 4 4 4

        ℘ =                
 

3
1 1 2 2 3 3 4 4 5 5 6 6 7 70, , , , , , , , , , , , , , ,1
8 8 8 8 8 8 8 8 8 8 8 8 8 8

                ℘ =                                
 

 . . . . .  

and suppose α  is unknown. Then one can say that 

         [ knowledge of the digits 1 2 3, , ,..., na a a a  ] ⇔  [ knowledge of which element of n℘  contains α  ] 

 Electronic copy available at: https://ssrn.com/abstract=3377470 



Part A: Developing a Toolbox  

14 
Copyright © 2018 Nicolae Santean 

This is an illustration: 

 

In other words, n℘  contains the information about the first n  binary digits of α . Note that 

0 1 ... ...n℘ ℘ ℘     , in that, every element of i℘  is included in some element of 1i−℘ : a finer 

partition contains more information. 

______________ 

Now, back to stochastic processes. Using a tree structure, so far we have defined: (1) the probability 
space Ω , of all infinite paths in the tree; (2) a filtration: a collection of time-indexedσ -algebras 

{ }t t T∈
 (sometimes called filters), and (3) the probability measure P  (defined/revealed gradually, on 

each filter t). The byproducts of this construction are: the “universal filter” ∞(viewed at the 

smallest σ -algebra containing all t’s), and a time-indexed set of probability subspaces 

( ){ }, , /t t t
P

∈Γ
Ω   . We are now prepared to describe the actual process, defined as a time-indexed set 

of random variables. 

 Let { }t t
X X

∈Γ
=  be a generic stochastic process, in the probability space ( ), , P∞Ω  . The process X  

is said to be adapted to the filtration { }t t T∈
  if tX  is a well-defined random variable in the probability 

space ( ), , /t tPΩ   , for all t∈Γ (i.e., tX  is t-measurable). We sometimes call X an ∞ -adapted 

process, if the connection between ∞  and { }t t T∈
 is clearly understood. 

Continuing with our example (the binary tree evolution of a system), let’s define an adapted stochastic 
process on the tree: 

At time 0 0t = , the system is in an initial/deterministic state 0
0x . This corresponds to the random 

variable 0X  taking the constant value across Ω : 0 :X Ω→ , ( )0 0X xω = for all ω∈Ω  is a well-

defined random variable since for I ⊆  , ( )1
0X I− = Ω  if 0

0x I∈  , and ( )1
0X I− = ∅  if 0

0x I∉ . 
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Anticipating a possible martingale property of the process (introduced later), 0
0x  can be viewed as the 

expected (probability-weighted average) payoff of the process across all of its possible evolutions. 

At time 1t , the system can be in one of two possible states, one reached if the first outcome is 1
1w H=  

and the other if it is 2
1w T= . These states describe two 1-measurable sets: 1

1w
π (or, Hπ ), and 2

1w
π (or, 

Tπ ). Further, 1
1w

π represents the set of all evolutions of the process that start with 1
1w  (it filters out all 

evolutions that start with 2
1w ). This justifies the terminology “filter” (or, “filtration”). 

We still have to define the random variable 1X  :  the process’ payoff at time 1t = . Note that we cannot 

define 1X  directly (as its domain is infinite). Yet, we make the assumption of knowing the average 

payoff of the process if it lands in either node, 1
1w  or 2

1w  (a pedantic notation for H  and T ). Assume 

these values are 1
1x  and 2

1x .  This translates into the following averaging expressions: 

( ) ( ) ( )1
1

1 1
1 1 1 11

1

1 average on :  X x X w dP w
P π

π
π

= ∫ , and 

( ) ( ) ( )2
1

2 2
1 1 1 12

1

1 average on :  X x X w dP w
P π

π
π

= ∫  . 

Note that we do not define the function 1X  directly: we rather define it’s average on 1-measurable 

sets. Obviously, if 1 2
1 1x x≠ , we have ( )1 1 1

1 1 1 1X x π− = ∈, and ( )1 2 2
1 1 1 1X x π− = ∈, and the pre-image 

of any Borel set is either ∅ , or 1
1π , or 2

1π , or 1 1
1 2π π∪ = Ω . More precisely, 

 ( )

1 1 2
1 1 1
2 1 2
1 1 11

1 1 2
1 1
1 2
1 1

        , if        and    

        , if        and  

         , if        and  

         , if        and  

x I x I
x I x I

X I
x I x I
x I x I

π

π−

 ∈ ∉


∉ ∈= 
Ω ∈ ∈
∅ ∉ ∉

 

All these pre-images are 1-measurable (which is a pedantic way of saying that they are elements of 

1).  Note further that 

     
[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1

1 1 2 2
1 0 1 1 1 1 1 1 1|PE X P x P x X w dP w X w dP w X w dP w

π π
π π

Ω
= ⋅ + ⋅ = + =∫ ∫ ∫

which is in line with the general definition of an expectation conditioned by a filter. Not that, in general, 

[ ] [ ]0|P PE X E X= , as it gives the average of X  over Ω . 

The main purpose of this illustration is to point out that the random variable tX  is defined indirectly, 

through its average over a measurable set. This is visualized, generically, in the following figure: 
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Note that the values at the tree’s nodes, which in practice stand for some payoffs implied by the 
process, can be viewed as both the payoff of the process if it reaches a certain node, and as a 
probability-weighted average, over the infinite set of all possible evolution payoffs of the process that 
involve that node (evolutions which all start at time 0 0t = ). This is true in general only if the process is a 

martingale (notion which will be defined later). Incidentally, this also explains why we are given only two 
values for the random variable 1X , rather than all the values of 1X in all the points in Ω . We never 

define the random variables tX completely, in the common sense, but rather only their averages across 

some measurable sets in t - and this is all that we usually need for all practical purposes. Finally, note 

that two distinct time-indexed random variables of the process are usually defined over different, yet 
“prefix-related”, sets. For example, if tX  and 1tX +  denote consecutive random variables of our process, 

then we define tX  as an average over every w tπ ∈ , with w t=  (by ⋅  we understand the word 

length), and for each such wπ , we define 1tX +  over wHπ and over wTπ , etc. . 

Finally, if the process is a martingale (or, driftless - see definition below), one can view any tX  as a time-

t -approximation (or, expectation) of a “global” random variable X  over the probability space 

( ), , P∞Ω   : tX  provides the average of X  on the measurable sets in t. By definition of conditional 

expectation, we have ( ) ( ) ( ) ( )P
t tA A

E X dP X dPω ω ω ω  = ∫ ∫ , for all tA∈. In this peculiar 

view, one can very well assume there is only one random variable, X , as under these terms, tX X=  

essentially (or, tX  is a representation of X at time t ). In other words, ( ) ( ) ( ) ( )1
t A

X A X dP
P A

ω ω= ∫  

for all tA∈ . We stress that this view is valid only if the process verifies the following property: 
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If X is an ∞ -adapted process, then X is a martingale if  

1. P
tE X  < ∞   for all t∈Γ , and 

2. [ ]|P
t s sE X X= , for all ,t s∈Γ with s t< . 

In particular, [ ]0 0|P
tE X X= , for all t∈Γ , which hints at the fact that a martingale is a driftless 

process: the expectation at initial time 0 0t =  of the values of the process at any further time t  is never 

changing (is not drifting), being equal to the initial value 0X  . 

Note carefully that [ ]|P
t sE X   is a random variable in ( ), , /s sPΩ   , which agrees with tX , in 

average, on the s -measurable sets. Indeed, consider all states of the process X at time s : sX takes 

the values 1 2, ,..., k
s s sx x x , which are averages of sX over the s -measurable sets 

1
,...,

ku uπ π , 

corresponding to the nodes in the process’ tree at depth s . Furthermore, denote  by 

( ) ( ) ( )1 21 2, ,...,
ku u k up P p P p Pπ π π= = =  the probabilities of reaching these nodes, (obviously, 

1
1

k

i
i

p
=

=∑ , as 
1 i

k

u
i
π

=
= Ω ). Then the random variable [ ]|P

t sE X   will take the value 

1 1|P
s t s sx E X X x = =   with probability 1p , then the value 2 2|P

s t s sx E X X x = =   with probability 

2p  , and so on, and the value |k P k
s t s sx E X X x = =   

with probability kp . Moreover,

[ ]|P
t t tE X X= , taking the trivial values |i P i

t t t tx E X X x = =   with associated probabilities. 

Further, by the martingale property/definition, one can see that 

[ ] [ ]0 0 0
1 1

| | | |
k k

P P P P i i
t s s i t s s i s

i i
E E X E X X p E X X x p x

= =

   = = = ⋅ = = ⋅   ∑ ∑   . 

The driftless property of a martingale proves to be very useful in pricing models: if we can describe the 
evolution of a price (in units of numéraire) of a derivative instrument by a martingale, and if we know all 
possible terminal payoff values at instrument’s maturity, we can compute, working our way backwards, 
all expectations at each of tree’s nodes, reaching the root; that is, we find today’s price of the 
instrument. Prices don’t evolve as martingales in the real world; hence most pricing models aim at 
constructing an equivalent martingale process, based on which they compute today’s price values given 
the payoff at maturity. Basically, one starts with a real-world probability measure, and invoking the 
fundamental theorem of asset pricing (indirectly enforcing an arbitrage-free environment), it finds an 
equivalent “risk-neutral” probability under which the price of the asset, in units of numéraire, behaves 
as a martingale. Once everything is written under the risk-neutral probability measure, the process of 
backward-evaluating expectations kicks in, allowing to say that the discounted payoff expectation at 
maturity is the expectation of today’s price. This is one important application of change of measure, 
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from a real-world (risky) probability measure to a risk-neutral probability measure. The relationship 
between the real-world measure and risk-neutral measure is given by the Fundamental Theorem of 
Asset Pricing, and is subject of a later discussion (Section 4.1). 

As epilogue to this section we illustrate how one can view a process in continuous time and “space” as 
an extension of the discrete process that we have described by a binary tree. Consider the following 
intuitive figure: 

 

We start with a tree-evolution of a process, already described before. Here 0 0t =  is the initial time, t  is 

some specific time in the evolution of the process, tX  is the random variable describing the process 

state-payoff at time t , w  is the history of the process on a particular evolution up to time t , and wπ  is 

the collection of all infinite paths that start with w , that is, a measurable set in t . Saying that 

( )t w tX xπ =  is like saying that the payoff of the process at the end of the path w  is tx , and this is 

given by ( ) ( ) ( ) ( )1
w

t w t
w

X X dP
P π

π ω ω
π

= ∫  (in discrete form is simply a weighted average). 

Now, if tX takes values in continuous space (as opposed to discrete), that is, in  , we can view the tree 

up to level t  as a “solid cone” (considering continuous time as well), and we have to replace the 

probability ( )wP π with the pdf (probability density function) f  of tX . If we imagine the vertical line at 

time t  to be the real axis ( ) and the point where w  “touches” the real line as being denoted by tx , 

the probability ( )wP π of tX  taking the value tx  is replaced by ( )tf x , representing informally the 

likelihood that the payoff at time t  will be in the neighborhood of tx . Then, integrating (“summing up”) 

all ( )t tx f x⋅  will give us the mean of tX : ( )t t tx f x dx∫


.  Indeed, intuitively, ( )t tx f x  can be viewed 
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as ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )1
w w

t t t

t

t t w t t t
w

dF x f x dx
x

X dP X dP P x f x dx
Pπ π

ω ω ω ω π
π

=

 
= ⋅ →  
 

∫ ∫




, and integrating these 

quantities across all paths of length w , would give us ( ) ( ) ( )t t t tX dP x f x dxω ω
Ω

=∫ ∫
  

- which is the 

known formula for the first moment (expectation) of tX . This is an intuitive rather than a formal 

derivation. 

 

2.1.3 Brownian Motion 
 

“If numbers aren’t beautiful, I don’t know what is.” 
Paul Erdös, 1913 – 1996 

We start with some notation and basic definitions. A coin flip is a discrete random variable c  taking 

values in { }1, 1− + , with ( )0,1c∈  (- discrete distribution); that is, is uniformly distributed with mean 

[ ] 0E c = and variance 2 1.E c  =   A random walk corresponding to N independent coin flips { } 1

N
i i

c
=  is 

the random variable 
1

N

N i
i

S c
=

=∑ , with N  being a fixed positive integer. Then, NS  has mean [ ] 0NE S =

and variance 2
NE S N  =  , and approaches a normal distribution when N  is getting large. 

This is a direct consequence of the Central Limit Theorem: 

If { } 1

N
i i

c
=

 is a sequence of independent and identically distributed random variables, with 

[ ]iE c µ=  and [ ] 2
iVar c σ= , then as N  approaches ∞ , the random variable 

1

1 N

i
i

N c
N

µ
=

 − 
 
∑ converges in distribution to ( )20,σ . Consequently, the distribution of 

the sample mean 1

N

i
i

c

N
=
∑

 is approximated by 
2

,
N
σµ

 
 
 

  when N  is becoming large. 

If we replace the sample mean with the random walk NS  already defined, we obtain that  NS
N

converges in distribution to ( )0,1  when N →∞ . We write ( )  0,1dN
N

S
N →∞→  . Of our main 
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interest is the limit process lim N

N

S
N→∞

, as we’ll see that NS
N

is the discrete equivalent of a standard 

Brownian motion. 

We now make a transition from discrete time steps to continuum. Let [0, ]T  be a time interval and 

0 1: 0 ... Nt t t T∆ = < < < = be an equally spaced division, with 1 =i i
Tt t t
N+∆ = − . When needed, we 

will perform the following conversions: 

from continuum to discrete: t
Nt i t
T

 → =   
, and from discrete to continuum: i

Ti t i
N

→ = . 

Now denote t Nt
T

Tx S
N  

  

= ⋅ , where  =
tiNt

T

S S 
  

is a random walk of ti steps. The process tx  is the 

discrete version of a standard Brownian motion. We immediately have that [ ] 0
tt iE x E S = =  . 

Moreover, 

 ( ) ( ), or 0,1 0,t

t

Nt
iT d

t N i Nt
T t

S
ST T Nx S t t t t

N N T iNt
T

 
  

→∞ →∞ 
  

 = ⋅ = ⋅ ⋅ = ⋅ → ⋅ =   
  

   , 

in other words, as N  approaches ∞ , tx  is normally distributed with mean 0 and variance t  (that is, 

[ ] 0tE x = , 2
tE x t  =  ). A standard Brownian motion is the limit process tx , when N →∞  . 

Since the random walk 
ti

S  is a Markov process (memory-less), it follows that tx  is a Markov process as 

well: { } ,t s s t
x x− are mutually independent and have the same distribution. Then, t sx x− has the same 

distribution as t sx − , meaning that ( )0,t t t tx x x t+∆ − = ∆ ∈ ∆ :  tx   has a Gaussian step too. 

More formally, and defined by properties rather than construction, a standard Brownian motion 

(standard BM for short) is a continuous-time stochastic process { }t t
x

∈
with the following properties: 

1. 0 0x =  

2. the mapping tt x→ is almost surely (with probability 1) continuous:  

( )0
0

2

0lim  0,  for all tt tt t
E x x

→

 − = ∈Γ  
  (Γ is the usual time-index set) 

3. { }t t
x

∈Γ
 has stationary, independent increments: 

(a) s t sx x+ − has the same distribution as 0t tx x x= −  
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(b) { }i jt tx x− are jointly independent 

4. x s t sx+ − is in ( )0, t : the process exhibits a Gaussian step 

We have created a standard BM in the limit,{ }t t
x

∈Γ
, from a coin flip and a random walk, with 

( )0,tx t∈  and ( )0,tx t∆ ∈ ∆  . In other words, ( )0,1tx t∈  ,  ( )0,1tx t∆ ∈ ∆  , allowing 

us to simulate a standard BM by drawing a value from a standard normal distribution, ( )0,1tφ ∈  and 

setting t tx tφ= , or t tx tφ∆ = ∆ , whichever is required. 

Note. A standard Brownian motion is a 

 Gaussian process, 

 diffusion process, 

 Markov process, 

 martingale, 

 fractal (statistically self-similar). 

Intuitively, a statistical self-similar (fractal) process is invariant in distribution under a suitable scaling of 

time and space. More rigorously: a stochastic process { }t t
x

∈Γ
 is self-similar if for any 0a >  there exists 

0b >  such that atx and tbx are equal in distribution. It can be shown that when this happens, there 

exists an unique 0H ≥  such that Hb a=  ( H  is called the Hurst exponent). 

A  standard BM is indeed self-similar: it can be seen that { }t at t
y x

∈
=


is also a standard BM with mean 

zero. Moreover, 
1

2   tVar a y t
− 

= 
 

, hence setting 1
2

H −
=  , the process { }H

t t t
z a x

∈
=


 has the same 

distribution as ty . 

To convey more intuition, consider 1
3

a = , and that the time universe (where t  resides) along which x  

evolves is compressed into another universe (represented by 1
3

t t′ =  ) so that whatever x  

“accomplishes” in a certain length of time t , y  accomplishes a -times faster: in 1
3

t t′ = . Then, 

compressing the time by a factor 1
3

 results in expanding the “space” by a factor of 1
3

: 
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3
1/ 3

t
t t

xz x= = . By abuse of notation, the processes  1
3

t
x  and 3 tx  have the same distribution, 

meaning that they are statistically equivalent. 

 

The standard BM { }t t
x has a zero drift (rate of change in expectation) and diffusion 1 (square root of 

rate of change in variance): [ ]( ) ( )E = 0 =0t tt
x ′ ′  and ( ) ( )2E 1t tt

x t′ ′  = =   (here the derivatives  

are obviously taken with respect to time). 

To make the model more realistic, we want to consider a process with an arbitrary drift µ  and an 

arbitrary diffusion 2σ : define the process { }t t
X by the equation t tX t xµ σ= + , or equivalently, 

t tdX dt dxµ σ= + . We have: [ ]tE X tµ=  and [ ] 2
tVar X tσ= , hence ( )2,tX t tµ σ∈ . { }t t

X is 

called a generalized Brownian motion, or simply Brownian motion (BM for short) with drift µ and 

diffusion σ . The mean and variance of this process increase linearly in time. This is a simulation of such 
process: 

 

 

The Brownian motion is suitable for modeling stochastic behavior of equity prices, however, in terms of 
returns and not of prices themselves. We therefore use it to simulate a stock’s instantaneous rate of 

return, as follows. If tP  is the price of a stock at time t , then t

t

dP
P

 is stock’s instantaneous rate of return, 

given by the Brownian motion t
t

t

dP dt dx
P

µ σ= + , that is, we simulate returns rather than prices as a 

BM, where tx  is a standard BM. Rewriting, t t t tdP Pdt Pdxµ σ= + . We will show later (as application of 

Itô’s Lemma) that the solution to this PDE is 

2

2
0

tt x

tP P e
σµ σ

 
− +  

 = , with 0P  being the initial price; in other 
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words, the stock price is a random variable distributed lognormally: ( ) ( )
2

0ln ln
2t tP P t xσµ σ

 
= + − + 

 
  

with ( )ln tP  normally distributed. 

A process that follows the stochastic differential equation (SDE for short) t t t tdP Pdt Pdxµ σ= + , with tx  
a BM, is called a Geometric Brownian Motion, GBM for short. A GBM is a combination of noise and 
shock: 

 

We close this discussion, illustrating the processes that we went through: from tossing a coin, to 
simulating a random walk, then standard Brownian motion, a generalized Brownian motion, and finally a 
geometric Brownian motion: 

 

Standard BM is also known as a Wiener process, and the GBM as exponential Brownian motion (see the 
legend above). Note that only one source of randomness (a coin toss) was used to produce all the above 
plots: except for the coin toss (plotted in small grey dots), all the others have been derived 
deterministically, one from the previous one, in the order given by the legend. Note that the GBM starts 
looking like a stock price chart, and indeed looks very much like one when the time division approaches 
zero. 
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We end this section with a note on filtrations induced by Brownian motions (or any other stochastic 

process, for that matter). Let { } 0t t
X

≥
 be a Brownian motion process defined on some probability space 

( ), , PΩ  . For any given t , tX  is a “standalone” random variable, :tX Ω→ , and recall (Section 

2.1.1) that the collection of pre-images of all Borel sets ( ){ }1  is a Borel settX B B−  is a sub-σ -algebra 

of  : we call it the σ -algebra induced by tX . Consider now the following σ -closure: 

( ){ }1

0

 is a Borel sett s
s t

X B Bσ −

≤ ≤

 
=  

 


 , for all 0t ≥ . Is easy to see that { }t t
  is a legitimate 

filtration over Ω . { }t t
  is said to be induced by the process { }t t

X . Obviously, { }t t
X is adapted to the 

filtration { }t t
 , as clearly tX  is  t -measurable for all 0t ≥ . 

 

Biased Random Walks 

This section is particularly important as it connects with the derivation of the Fokker-Planck equation, as 
laid out shortly after. In the following, we will use a superscript, such as in #kS , to distinguish among 
different processes that will be discuss. The superscripts will reflect the order in which the processes are 
introduced to the reader. 

 Previously, we constructed Brownian motions, in the limit, from a discrete random walk governed by an 
unbiased coin toss (with an equal probability of occurrence of heads and tails). Let’s recall the 
construction of a discrete Brownian motion. We have started with an equally spaced division 

0 1: 0 ... Nt t t T∆ = < < < = , of a time interval [ ]0,T , and an unbiased coin. Denote Tt
N

∆ = , and set 

the initial state of a process { } { }
#1

0,...,i i N
S

∈
 as #1

0 0S =  (the point of origin for our random walk).  At each 

time step it i t= ∆ , we toss the unbiased coin and advance the state of the process to either 
#1 #1

1 1i iS S+ = +  or #1 #1
1 1i iS S+ = − , depending on the outcome of the toss - heads or tails, respectively (the 

outcome of the thi  toss is denoted by ic ):  
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Note that, more rigorously, in the above figure (left side), we rather depict the payoff of the coin toss, 

that is, a random variable. Obviously, #1

1

i

i iS c=∑ , with mean zero and variance i . When N approaches 

infinity, the time step approaches zero, the random variable 
#1
NS
N

 approaches in distribution , 

and the standard Brownian motion  is approximated by 
#1
i

i
St

i
, distributed as . Here, the 

connection between times and steps is i
Tt i t i
N

= ∆ = . Note the scaling that we applied to #1
NS : the 

division by , or  respectively, in order to enforce the unit variance. We can remove this scaling 
by changing the magnitude of the random walk step as follows: 

 

In the figure to the left, the newly transformed process #2
iS  is given by the expression 

 ( )
#1 #1 0

#2

1
0,

i

i t
i i

i i i t i
S SS t c i t t W t

i i

∆ →

= ∆ = ⋅∆ = → ∈∑  . 

And we can do even better: we can induce an arbitrary diffusion , as in the figure to the right. Indeed, 

in the right picture, we have x tσ∆ = ∆  and ( )
0

#3 2

1
0,

i

i t

i i t iS t c W tσ σ
∆ →

= ∆ → ∈∑  , where  is a 

Brownian motion standing for . Note that there is an intimate relationship between the step length 

and the step duration: ( )2x∆  is of the same order as t∆  : 
( )2

2x
t

σ
∆

=
∆

 , that is, a constant. This 

property will become more apparent in Section 2.2. 

So far we have learned how to tweak the random walk step in order to change the diffusion of the 
limiting process. How about the drift? Adding some drift to our new random walk is even a simpler 
matter: 

( )0,1

it
W ( )0, it

N i

σ

it
W

it
Wσ
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Indeed, the above process  can be written as: 

( ) ( )#4 1

1

i

ii

i j

c
S t c x i t i t

i
µ µ σ= ∆ + ∆ = ∆ + ∆

∑
∑ , 

hence in the limit, #4
iS converges to , where ( )0, iW t∈  is a standard 

Brownian motion. Thus, the process #4S  belongs (in the limit) to ( )2,i it tµ σ . 

So far, all discussed random walks have been unbiased, that is, governed by an unbiased coin. Our aim is 
to construct a biased random walk that exhibits the same distribution (in particular, same first two 
moments) as #4S , with symmetric payoff, and which converges in the limit to X . We claim that the 
following random walk does the trick: 

 

The processes #4S  and #5S  are equivalent (for our purpose), in that they both approximate in the limit 

the process ( ) ( )i i iX t t W tµ σ= + , where W  is a standard Brownian motion. The discrete process #5S   

will be used later to “represent” the continuous process given by the SDE t tdX dt dWµ σ= +  and 

0 0X = . Let’s now justify these claims. 

From now on, let’s agree to drop the superscript in #5S , and the apostrophe in c′  (while remembering 
that the coin is biased this time, governed by probabilities p and q ).  First, as any random walk, we 

( ) ( )i i iX t t W tµ σ= +
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know that S must exhibit a normal distribution of some sort, in the limit, due to the Central Limit 

Theorem (see Section 2.1.3). We also know that 
1

i

i j
j

S c
=

=∑ , and that [ ]
1

1 i

j
j

i c E c
i =

 
− 

 
∑  converges in 

distribution to [ ]( )0,Var c . Here we denoted by c  the payoff of one generic coin (they are all iid).   

The two moments of c  are given by  

[ ]
2

2

xE c p x q x tµ µ
σ
∆

= ∆ − ∆ = = ∆  , and 

 [ ] [ ] ( )2 22 2Var c E c E c x tµ = − = ∆ − ∆   . 

By Central Limit Theorem, we have that 
1

i

i j
j

S c
=

=∑  converges in distribution to [ ] [ ]( ),iE c iVar c . 

Now, [ ] iiE c i t tµ µ= ∆ =  and [ ] ( ) ( )22 2 2 2 2 2
it i t

i iiVar c i x i t i t i t t t tµ σ µ σ µ
= ∆

= ∆ − ∆ = ∆ − ∆ = − ∆ . Then, 

observe that 2 0it tµ∆ →  when 0t∆ → . Thus  iS  converges in distribution to ( )2,i it tµ σ .  

For a better understanding of this process, let’s provide an alternative derivation of the first two 
moments of iS . This will rather be a combinatorial derivation:  we will not use Central Limit Theorem. 

Let’s concentrate our attention on this last process alone: 

 

First, let’s consider a simpler random walk iS , where the advancement in either direction is one unit of 

length (rather than x∆ ), and ask what is the probability of reaching a certain distance x  from the origin 
(zero), after i  steps: 
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Obviously, the farthest reachable points are i+  and i− , anything farther is unreachable (thus reached 
with probability zero). Also, not all closer points can be reached; for example,  1i −  cannot be reached. 
Yet, 2i − can be reached, say, by stepping forward 1i −  times and step backwards once. In general, a 

point x  can be reached only if 2  i x−  (i.e., i x−  is an even number); in other words, 2i x k− =  for 

some integer k : the walk consists of x k+  steps in the direction of x  and k  steps in the opposite 

direction (as shown in the above figure). This means that ( )Prob 0iS x= >  only for 

( ) ( ){ }, 2 ,..., 2 ,x i i i i∈ − − − − . For these points, ( )Prob iS x=  is the probability of i  Bernoulli trials 

resulting in exactly x k i k+ = −  successes, given by ( )Prob i k i k k
i iS x C p q− −= = . For brevity, we 

denote this probability as ,x iv  and we express it in terms of i  and x : 

( ) ( ) ( )1 1 1
2 2 2

,

i x i x i x

x i iv C p q
+ + −

= ⋅  , 

which is essentially a binomial distribution with the first moments given by 

 ( ) ( ) ( ), 2 ,
0 0

2 2
i i i

k k i k
i x i k i i i

x i k k
E S x v k i v k i C p q i p q

+
−

−
=− = =

  = ⋅ = − = − ⋅ = −  ∑ ∑ ∑   , 

 ( ) ( )2 2
2 ,

0 0
2 2 4

i i
k k i k

i k i i i
k k

Var S k i v k i C p q ipq−
−

= =

  = − = − =  ∑ ∑  . 

To reconstruct iS  from iS  we change back the step: from unit step to a fractional step x∆ , which has 

the effect of scaling the expectation by x∆  and variance by 2x∆ ( since i iS xS= ∆ ), and we replace 

iti
t

=
∆

  and 
( )2

2x
t

σ
∆

=
∆

 , thus obtaining the moments of our original random walk iS  : 

[ ] ( ) ( )
2 22

2
2

p q x
x t

i i
i i

t tE S p q x x t
t t

µ
σσ µ µ

σ

− = ∆
∆ = ∆

= − ∆ = ⋅ ⋅ ∆ =
∆ ∆

 , and 
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[ ] ( )
( )2 2

2

2 2 2 0
2 2

2

0
2

14 4
2 2

x
tt

i i i i

t

x
Var S pqt t x t

t

σ

µ

µ σ σ
σ

∆
=

∆ →∆

∆
= →

 
 

∆     = = − ∆ →    ∆     
 
 



 , 

as expected. Then, when 0t∆ →  (or equivalently, N →∞ ), the binomial distribution approaches the 

normal distribution with expected value itµ  and variance 2
itσ . Translating the notation

( ), Probx i iv S x= =  into iS -terms: 




( ), Prob Prob
j

t j

y j j t t
z

v S y x S z∆

 
=  = ∆  = =

 
 

, we then  have 

( )
( )2

22
, 2

1,
2

j

j

z t
N t

y j j

j

v f z t e
t

µ

σ

πσ

−
−→∞

→ =  . 

Note that the values ( ), ,y j f y x j tν = ∆ ∆  cover more and more points in the plane as x∆  and t∆  

approach zero. In the limit, the density function f  is fully defined. 

Fokker-Plank Equation 

Let’s consider the class of processes which rely on a standard Brownian motion ( tW ) as a source of 

randomness (entropy), namely, on processes described by the SDE t tdX dt dWµ σ= +  , with 0 0X = ; 

or equivalently, t tX t Wµ σ= + . The drift of tX  is µ  (i.e., [ ]tE X tµ= ) and the diffusion is σ  (i.e., 

[ ] 2
tVar X tσ=  ). We have already made the case that tX  is the limit of the discrete process iS , 

previously constructed. Using iS  as a proxy for tX , here we answer the following question: how does 

the density function of such process change in time? 

Let’s refresh the anatomy of iS  : 
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We have a time horizon T , an equally spaced division 0 1: 0 ... Nt t t T∆ = < < < =  of the time interval 

[ ]0,T , and define 
Tt
N

∆ = , it i t= ∆ . The process iS  advances one step at a time, by tossing a biased 

coin (governed by probabilities p  and q ) and changing its state by x±∆  based on the toss outcome: 

biased heads or biased tails. The initial state of the process  { } { }0,...,i i N
S

∈
 is 0 0S = . When 0t∆ →  (or 

equivalently, N →∞ ), the binomial distribution approaches the normal distribution with expected 

value itµ  and variance 2
itσ : 

( )
( )2

20
2

, 2

1,
2

i

i

x t
t

t
x i i

i

v f x t e
t

µ

σ

πσ

−
−∆ →

→ =  . 

where we reused the notation ( ), Probx t iS xν = = . We seek to derive a PDE that describes f . We start 

with the discrete case and observe that we can reach the state 1iS x+ =  from the state iS x x= −∆  with 

probability p , and from the state iS x x= + ∆  with probability q , which leads to the difference 

equation: 

  , 1 , ,x i x x i x x iv pv qv+ −∆ +∆= +  . 

In the continuous case, this translates into   

( ) ( ) ( ), , ,f x t t p f x x t q f x x t+ ∆ = −∆ + + ∆  . 

Expressing each term as a Taylor expansion around the point ( ),x t t+ ∆ , and considering that ( )3x∆ , 

t x∆ ∆ ,… approach zero faster than t∆ , and keeping only the t∆  and 2x∆  terms, we obtain: 

( ) ( ) ( ), , , ...ff x t t f x t t x t
t

∂
+ ∆ = + ∆ +

∂
  

  ( ) ( ) ( ) ( ) ( )
2 2

2, , , , ...
2
xf ff x x t f x t x x t x t

x x
∆∂ ∂

+ ∆ = + ∆ + +
∂ ∂

 

 ( ) ( ) ( ) ( ) ( )
2 2

2, , , , ...
2
xf ff x x t f x t x x t x t

x x
∆∂ ∂

−∆ = −∆ + +
∂ ∂

 

and substituting in the initial expression for f , we obtain 

 ( ) ( ) ( ) ( ) ( )
2 2

2, , ,
2
xf f ft x t q p x x t x t

t x x
∆∂ ∂ ∂

∆ = − ∆ +
∂ ∂ ∂

 , and observing that 2q p xµ
σ

− = − ∆ , 

further dividing by t∆  and making the necessary substitutions, we obtain: 
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( ) ( ) ( )
2 2

2, , ,
2

f f fx t x t x t
t x x

σµ∂ ∂ ∂
= − ⋅ + ⋅

∂ ∂ ∂
 

which is the Fokker-Planck equation describing the evolution of the probability density function for tX . 

Let’s check that indeed, the equation is correct (is verified by the normal distribution): 

normal distribution: ( )
( )2

22
2

1,
2

x t
tf x t e

t

µ
σ

πσ

−
−

=  

( )
( ) ( ) ( ) ( )

( )

2 2

2 2

22 2
2 2

22 3 2 2

2 2 21 1 1,
2 2 2 2

x t x t
t t

x t t x tf x t e e
t t t t

µ µ
σ σ

µ µ σ µ σ

πσ πσ σ

− −
− − − ⋅ + − ⋅∂

= − ⋅ + ⋅
∂

 

( )
( )

( )
( ) ( )

2 2

2 22 2
2 22 2

1 2 1,
22 2

x t x t
t t

x tf x t e x t e
x t tt t

µ µ
σ σ

µ
µ

σ σπσ πσ

− −
− − − −∂ −

= ⋅ − = ⋅
∂

 

( )
( ) ( ) ( )2 2

2 2

22
2 2

2 2 22

1 1,
2

x t x t
t t

x tf x t e e
x t tt

µ µ
σ σ

µ
σ σπσ

− −
− − − − ∂ − = ⋅ + ⋅ ∂    

 

Denoting 
( )2

22
2

1
2

x t
te

t

µ
σα

πσ

−
−

=  , we obtain: 

 ( ) ( ) ( )2 2

2 2

2
,

2
LHS

t x t x t tf x t
t t

µ µ µ σ
α

σ
− + − −∂

=
∂


  

 

( ) ( ) ( ) ( )

( ) ( )

22 2 2 2

2 2 2 2

2

2 2 2

1, ,
2 2 2

1                                             
2 2

RHS

x t x tf fx t x t
x x t t t

x t x t
LHS

t t t

µ µ µσ σ σµ α
σ σ σ

µ µ µ
α

σ σ

 − − − ∂ ∂ − − ⋅ + ⋅ = + ⋅ + ⋅ =  ∂ ∂   

 − −
= + − = 

 
 



  □ 

The following figure shows a transition density governed by the Fokker-Planck equation just derived. 
The density evolves in time, from a Dirac delta function, by shifting its mean linearly and decaying its 
convexity quadratically: 
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2.2 Itô’s Formula 
 

“Il ne suffit pas de connaître la vérité, il faut encore la proclamer.” 
Louis Pasteur, 1822 – 1895 

Given two processes X and Y , we denote by 
T

X  the quadratic variation of X in the interval [ ]0,T , 

and by ,
T

X Y  the covariation of X and Y  in the same interval (not to be confused with covariance, 

although the connection between these notions will become apparent shortly). More precisely, if 

{ }0 10 , ,..., nt t t T∆ = = =  is an equally spaced division of the time interval [ ]0,T , with norm ∆  , then 

 ( )( )1 10
, lim

i i i it t t tT
X Y E X X Y Y

+ +∆ →
∆

 = − − ∑  ,  ( )1

2

0
, lim

i it tT T
X X X E X X

+∆ →
∆

 = = −  ∑   

As a note, it is intuitively clear that 2 | TT
d X E d X =    and [ ], | TT

d X Y E dX dY=  . To see 

why, note that 
T

X∆ is a difference of two sums ... ...
∆ ∆

−∑ ∑ , that is, 
T T t T

d X X X
+∆

− , 

and only the “last term” of one sum, of the form  ( )1

2

i it tX X
+
− , survives. That term can be viewed as 

2 X∆  , and at the limit, we get the sought equality. 

These concepts apply to deterministic functions of time as well. If x  is a well-behaved deterministic 
function of time, its quadratic variation is zero. Indeed, consider the above-defined division ∆  of the 

time interval [ ]0,T  (any time-interval [ ],a b  would work), and denote 1i it t t+∆ = − . Then we can write 

 ( ) ( )( ) ( )( ) ( ) ( )2 2 2 20
1 or, 0

1 1 1
    0 0

n n nMVT tt
i i i i nT

i i i
x x t x t x t t x t x t dtξ ξ ∆ →

+ →∞
= = =

′ ′ ′= − = ∆ =∆ ∆ → ⋅ =∑ ∑ ∑ ∫ , 

where we have applied the Mean Value Theorem (MVT) in the intervals [ ]1,i it t + : [ ]1,i i it tξ +∃ ∈  such 

that ( ) ( ) ( )( )1 1i i i i ix t x t x t tξ+ +′− = − . From here, we further assess that 

( ) ( )( )22 2
10 0 0

1
 0     ,    since  1 1  0

n nT T T n
i i

i
d x d x dx dx x t x t

→∞
→∞

+
=

= = ← ⋅ − →∑∫ ∫ ∫ . 

The same can be said for the covariation of two deterministic functions: , 0
T

x y = , and
0

 0
T

dxdy =∫ . 

However, if we replace these deterministic functions with stochastic processes – in particular with 
Wiener processes (standard Brownian motions), these results don’t necessarily hold. Let X  be a Wiener 

process under some probability P : ( )0,tX t∈ , with [ ] 0tE X = , 2
tE X t  =  , [ ] 0tE X∆ = , and
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2
tE X t ∆ = ∆   (or, equivalently, ( )0,tX t∆ ∈ ∆  ). Unlike the deterministic case, the quadratic 

variation of X  is not zero anymore: 

( ) ( )( )22 2
10

1 1 1
=  = 0

n n nT n
i i

i i i
d X E X t X t E X t T T→∞

+
= = =

   ← − ∆ ∆ = − =  ∑ ∑ ∑∫  

Furthermore,  

2 2

0 0
    

T T
d X T dt d X dt= = ⇒ =∫ ∫ . This distorts the derivative chain rule. 

Recall Taylor’s formula for a function f , of a deterministic argument x  (more precisely, of argument

( )x t  , or tx  for short): 

[ ] ( ) ( ) ( ) ( ) 21 ,  s.a.   
2x xxx x x f x x f x f x x f xξ ξ′ ′′∃ ∈ + ∆ + ∆ = + ∆ + ∆ ,  (notation: ( ) ( )

2

2xx
d ff
dx

ξ ξ′′ = ) 

from where we infer that ( ) ( )
21  

2x xx
f x xf x f
t t t

ξ∆ ∆ ∆′ ′′= +
∆ ∆ ∆

. Now note that 
2x xx
t t

∆ ∆
= ∆ ⋅

∆ ∆
, and in the 

limits, 0x∆ →  and x x
t

∆ ′→
∆

 (a finite value), hence 
2 2

0x d x
t dt

∆
→ =

∆
. Moreover, xξ →  and 

( ) ( )xx xxf f xξ′′ ′′→ . Is now apparent that, in the limits, the second term of the Taylor expansion 

vanishes, which leads us to the well-known deterministic chain rule ( )x
df dxf x
dt dt

′= . 

In the stochastic case, f  is a function of a stochastic argument tX  , and Taylor formula looks similarly: 

( ) ( )
21  

2x xx
f X Xf X f
t t t

ξ∆ ∆ ∆′ ′′= +
∆ ∆ ∆

. However, in the limits, 
2 2

1X d X dt
t dt dt

∆
→ = =

∆
, which leads to 

the stochastic chain rule: 

( ) ( )1+   
2x xx

df dXf X f X
dt dt

′ ′′= , 

which is in fact  Itô Formula:   ( ) ( )1+
2x xxdf f X dX f X dt′ ′′=

   
, or in integral form, 

( )( ) ( )( ) ( ) ( )1
2

b b

x xxa a
f X b f X a f X dX f X dt′ ′′− = +∫ ∫ . 
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Compare these two derived formulas with the deterministic formulas: ( )xdf f x dx′= , or in integral 

form,  ( )( ) ( )( ) ( )
b

xa
f x b f x a f x dx′− = ∫  - that is, the fundamental theorem of (deterministic) 

calculus. 

Note. Itô’s formula is sometimes found in the following form: ( ) ( )1+
2x xx t

df f X dX f X d X′ ′′= , 

where we replaced dt  by 
t

d X : 2 | tt
d X E d X dt = =  . 

 

As an application, let’s verify that the solution of the SDE t t t tdP Pdt Pdxµ σ= +  (stock price dynamics – 

introduced later) is given by 

2

2
0

tt x

tP P e
σµ σ

 
− +  

 = . Denoting ( ) ( )lnt tf P P= , we have: 

( )( ) ( ) ( ) ( ) ( )
2

2 2 2

|
2 2

only 0

1 1ln
2 2

tt

t

d P E d P

t t t t t P

Itô

dx
d P f P dP f P d P f P dP f P P dt

σ
σ

 =  

≠
′ ′′ ′ ′′= + = + =



  

( )

( )
2

1

2 21 1 1
2 2

t
t

f P
P

t t t t
t

Pdt Pdx dt dt dx
P

µ σ σ µ σ σ
′′ =−

 = + − = − + 
 

 . 

Then, integrating both sides, we obtain ( ) ( ) 2
0

1ln ln
2t tP P t xµ σ σ − = − + 

 
, which is equivalent to

2

2
0

tt x

tP P e
σµ σ

 
− +  

 = . This solution will be used in the subsequent sections. 
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2.3 Doléans-Dade Exponential 
 

"Research is what I'm doing when I don't know what I'm doing." 
Wernher Von Braun, 1912 – 1977 

Before diving into details, recall that the quadratic variation of a Brownian motion, as well as covariation 
of two Brownian motions are not necessarily zero. Here we consider Brownian motions with some 

arbitrary diffusion. If X and Y are Brownian motions, ( )20,t XX tσ∈ , and ( )20,t YY tσ∈ , with 

[ ] 0tE X =  , 2 2
t XE X tσ  =  ,   [ ] 0tE Y =  , 2 2

t YE Y tσ  =   

[ ] 0tE X∆ =  and 2 2
t XE X tσ ∆ = ∆    [ ] 0tE Y∆ =  and 2 2

t YE Y tσ ∆ = ∆   

and, in addition, 

[ ]t t XY X YE X Y tρ σ σ=     [ ]t t XY X YE X Y tρ σ σ∆ ∆ = ∆ , 

then in a time-interval [ ]0,T  we have: 

( )1

2 2 2 2

0 0 0
lim lim lim

i it t t X XT
X E X X E X t Tσ σ

+∆ → ∆ → ∆ →
∆ ∆ ∆

   = − = ∆ = ∆ =   ∑ ∑ ∑  

( )( ) [ ]
1 10 0 0

, lim lim lim
i i i it t t t t t XY X Y XY X YT

X Y E X X Y Y E X Y t Tρ σ σ ρ σ σ
+ +∆ → ∆ → ∆ →

∆ ∆ ∆

 = − − = ∆ ∆ = ⋅ ∆ = ∑ ∑ ∑
 and finally, 

2 2| t Xt
d X E d X dtσ = =  , and [ ], | t XY X Yt

d X Y E dXdY dtρ σ σ= = . 

Consider P
tM  a standard Brownian motion under a probability measure P , ( )0,P

t PM t∈ , and the 

stochastic differential equation P
t t tdZ Z dM= , with initial condition 0 1Z = . To solve this SDE, we apply 

Itô’s Lemma to the function ( ) ( )lnt tf Z Z= : 

( ) ( ) ( ) 2 2

Itô 1 1 1 1
2 2 2

Pt t
t t t t tt t

t t t

d ZdZdf Z f Z dZ f Z d Z d Z dM
Z Z Z

 
′ ′′= + = + − = − ⋅ = 

 
 

2 2 2

2 2

| |1 1 1
2 2 2

P
t t t

PdZ Z dM
t t t tP P P P

t t t t
t t

E d Z Z E d M
dM dM dM d M

Z Z

=      = − ⋅ = − ⋅ = − ⋅
 

 .
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Integrating and removing ( ) ( )lnt tf Z Z=  by exponentiation, we obtain 
1
2

P P
t tM M

tZ e
− ⋅

= (recall that 

0 1Z = ). This expression is called Doléans-Dade exponential, sometimes denoted by 

( ) 1exp
2

P P P
t t

M M Mε  = −         
, 

and is the solution of the SDE P
t t tdZ Z dM= , with tM standard BM and initial condition 0 1Z = . This 

solution can be extended to more general underlying processes tM . In particular, if tM  is a martingale 

with initial value 0M , the solution obviously becomes  ( ) 0
1exp
2

P P P P
t t

M M M Mε  = − −  
 . 

Later in this essay we will require the solution of a similar process tY  whose dynamics is given by 
P

t t Y tdY Y dMσ= , with P
tM  standard Brownian motion and initial value 0Y . Note the addition of the 

volatility term Yσ  - for the sake of practice, let’s derive the solution of this SDE as well. We apply again 

Itô’s Lemma to ( )ln tY : 

( )
2

2 2 2

Itô |1 1 1 1ln
2 2 2

tP Pt t
t Z t Z tt

t t t t

E d Yd YdYd Y d Y dM dM
Z Y Y Y

σ σ
    = + − = − ⋅ = − ⋅ = 

 


  

2 2 2
2

2

|1 1
2 2

P
t Y t t

PdY Y dM
Y t tP P P

Y t Y t Y t
t

Y E d M
dM dM d M

Y

σ σ
σ σ σ

=   = − ⋅ = − ⋅


 

Integrating, we obtain ( ) ( ) 2
0

1ln ln
2

P P
t Y t Y tY Y M Mσ σ− = − ⋅ , and by exponentiation, we reach the 

solution 

2

2
0

P Y
Y tM t

tY Y e
σσ −

=   ,  

where we used that P
tM t= . The importance of this process is due to the fact that it occurs 

frequently as a consequence of the martingale representation theorem. This solution will be used 
explicitly in Section 4.4, when dealing with the convexity adjustment for LIBOR in arrears.  
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3 Part B: Girsanov Theorem 
 

“Few people have the imagination for reality.” 
Wolfgang von Goethe, 1749 – 1832 

 

3.1 Part I : Girsanov Theorem for Random Variables 
 

Let ( ), , PΩ   be a probability space, and Z  be a non-negative random variable satisfying [ ] 1PE Z = . 

Then the function [ ]: 0,1Q → , given by 

( ) ( ) ( )
A

Q A Z dPω ω= ∫  (Lebesgue integral) 

is a probability measure under which any random variable X on ( ), , PΩ   satisfies 

[ ] [ ]Q PE X E XZ= . 

Note that ( )Q A  is a conditional expectation under probability P : ( ) PQ A E X A=    . The condition 

[ ] 1PE Z =  ensures that Q  is indeed a probability measure: 

( ) ( ) ( ) [ ] 1PQ Z dP E Zω ω
Ω

Ω = = =∫ . 

The random variable Z is called the Radon-Nikodym derivative of Q  with respect to P  and is formally 

denoted by dQZ
dP

= . If ( )0 1P Z > = , then P and Q  agree on the null set (they are equivalent). 

Conversely, if P  and Q  agree on the null set, the Radon-Nikodym derivative exists and is unique. 

 

Radon-Nikodym derivative as a Probability Weight Function 

Let ( ), , PΩ   be a probability space. We want to define a mechanism that “tweaks” P , that is, assigns 

more chance to some events, and less to some others. In other words, we want to define a simple 
probability transformation, based on some “weights” that can be applied to P , to “tweak” the chance 
of events occurring in  . That transformation will have the effect of changing the expectation of 
random variables, to our liking. 
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We seek a probability weight function on ( ), , PΩ  , as some function :Z Ω→  that can be 

“applied” to P . This weight function cannot be directly applied to ( )P ω , for some/any outcome 

ω∈Ω  , since ( ) 0P ω =  most of the time (e.g., in the continuum case). It must be applied to the 

events in  . One way to define such weight function is to first define it on infinitesimal events in   

(we will define ( )P dω  ).  

In the figure below, we depict: (1) the probability space ( ), , PΩ  , (2) the real line equipped with its 

corresponding Borel σ -algebra, (3) the sought-after probability weight function Z , and (4) the 
hypothetical probability Q  obtained from P  by applying the weights given by Z . In this picture, we 

denote by ω  any outcome in Ω  and by ω∆  an infinitesimal event in   that contains ω , that is, an 
infinitesimal neighborhood of ω . 

 

The chance of a “small” event ω∆ ∈  occurring is given by ( )P ω∆ . The weight that we seek to apply 

to ( )P ω∆  is ( )Z ω , that is, the new probability of ω∆  occurring should become 

( ) ( ) ( )Q Z Pω ω ω∆ = ⋅ ∆ , or better put, ( ) ( )
( )

Q
Z

P
ω

ω
ω

∆
=

∆
. Yet, this happens at infinitesimal level. Note 

that, having both P  and Q   measures - that is, satisfying the additive property - we have 

( ) ( )Q Qω ω∆ = ∆ and ( ) ( )P Pω ω∆ = ∆ . Indeed, the following figure shows that a measure P

satisfies ( ) ( )P Pω ω∆ = ∆ , due to its additive property: 
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Here, ω∆  is an infinitesimal neighborhood of ω . Then, in differential form, ( ) ( )
( )

dQ
Z

dP
ω

ω
ω

= . At this 

moment it has become intuitively apparent the integral form of this expression: for any A∈ , 

( ) ( ) ( )
A

Q A Z dPω ω= ∫  - a sum of weighted probabilities across the event A . The weighting 

represents a transformation ( ) ( ) ( )Q d Z P dω ω ω= ⋅ , and viewing the event A  as a partition A℘   

into infinitesimal events dω : 
Ad

A d
ω

ω
∈℘

=


 , we can write in very informal terms that: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
A A AA

A
d d dd

Q A Q d Q d Z P d Z dP Z dP
ω ω ωω

ω ω ω ω ω ω ω ω
∈℘ ∈℘ ∈℘∈℘

 
= = = = =  

 
∑ ∑ ∑ ∫

  . 

It makes sense to demand Z be compatible with the σ -algebra structures in Ω  and   (that is,   
and the Borel σ -algebra in  , respectively). In other words, Z must be  -measurable, i.e., a random 
variable! 

We have built a framework around this probability transformation, however we haven’t fully defined it 
yet. One question left unanswered is how can we ensure that Q  is indeed a probability measure, in 

particular, that  ( ) 1Q Ω = . This happens only if ( ) ( ) [ ] 1PZ dP E Zω ω
Ω

= =∫  - hence the condition in 

Girsanov Theorem. To resume our findings: 

Definition. A probability weight function on ( ), , PΩ  , is a random variable :Z Ω→ , that satisfies 

[ ] 1PE Z = . It represents the probability transformation ( ) ( ) ( ) ( )
weighting

AZ transformation
P A Q A Z dPω ω

−
→ = ∫ , 

which has the effect of changing expectations according to [ ] [ ]Q PE X E XZ= , for all random variables

X . Our probability weight function Z  is exactly the Radon-Nikodym derivative.  
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This first part of Girsanov Theorem simply gives the mechanism of weighting a probability measure into 
a new probability measure, and provides the translation between expectations under these two 

probabilities: [ ] [ ]Q PE X E XZ= , for any random variable X . Indeed, 

      
[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]Q PE X X dQ X Z dP X Z dP E XZω ω ω ω ω ω ω ω

Ω Ω Ω
= = = =      ∫ ∫ ∫ . 

This result is often used in practice, e.g., for the purpose of turning non-martingale processes into 
martingales (by eliminating drift, that is, reducing expectation to zero). The method follows a reverse 
direction: we usually start with a process X •  which is not a martingale (has drift) under a certain 

working probability measure P  and we want to perform a change of measure ( P changed into Q ), so 

that, under the new measure, the process becomes a martingale. We proceed by guessing a process Z•  

for which [ ] 0PE X Z• • =  (zero drift). If we are lucky and we find such process, verifying the additional 

condition [ ] 1PE Z• = , the process X •  under the probability measure Q  defined in Girsanov Theorem 

will be a martingale: [ ] [ ] 0Q PE X E X Z• • •= = . 

Note. The above description is stated in very general terms, hence the ambiguous notation " "X •  for a 

process. In the next section (Part II Girsanov Theorem for Processes) we state more rigorously how the 
change of probability measure is actually applied to processes. Here we have just given the “algorithm” 
that is followed for eliminating a process’ drift, in generic terms. 

In the following, we abuse terminology, and say that a random variable has “drift” if its expectation is 
not zero. 

Example 1 - a discrete case (coin toss) 

Consider the experiment of tossing a coin with sides given by T (tails) and H (heads), and assume an 

unbiased coin: the probabilities of tails and heads are equal. The probability space ( ), ,F PΩ is given by 

the table to the left, below:   

Ω P X 
 

Z Q 
H 0.5 3 

 
0.5 0.25 

T 0.5 5 
 

1.5 0.75 
 

This is a game of coin tossing with payoff represented by X . Ω , P and X are given, with 

[ ] 0.5 3 0.5 5 4PE X = × + × =  hence the random variable X , viewed as the payoff of a game of 

chance, has a drift: the game is unfair. In the table to the right, the random variable Z is chosen such 

that [ ] 0.5 0.5 0.5 1.5 1PE Z = × + × = . The Lebesgue integral simplifies for this discrete case into 

( ) ( ) ( ) 25.05.05.0 =×=×= HPHZHQ , and ( ) ( ) ( ) 75.05.05.1 =×=×= TPTZTQ . 
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The coin under Q   (essentially, we have two coins: a P -coin and a Q -coin) exhibits a bias towards T 

(tails): T is 3 times more probable than H under Q . 

We have [ ] [ ] ( ) ( )0.5 3 0.5 0.5 5 1.5 0.75 3.75 4.5Q PE X E XZ= = × ⋅ + × ⋅ = + = . Note that we can 

compute [ ]QE X  directly as [ ] 0.25 3 0.75 5 4.5.QE X = × + × =  Here, we note that the new coin ( Q -

coin) provides a new probability Q , under which, the random variable has a different drift (larger 

actually!). More importantly, note that the random variable X does no change – only the probability 
changes. The Q –coin is obtain from the P –coin (which has no bias: H and T have equal probabilities) 

by, say, adjusting the weights of the two sides, H and T, so that T becomes more probable. This 
weighting is provided by Z  : we tripled the chance of T occurring. The same random variable X  
(payoff) will now have a different expectation – the game is even more unfair now. 

 

Example 2 - another discrete case (coin toss) : – eliminating “drift” (finding Z such that [ ] 0QE X = ) 

We now show how we can turn an unfair game of chance into a fair one. Consider now the P -coin and 
random variable  X  as in the table to the left: 

Ω P X  Z Q 
H 0.5 -1  a a/2 
T 0.5 2  b b/2 

 

We have [ ] ( )0.5 1 0.5 2 0.5PE X = × − + × = : the game drifts the “profit” towards the tails (T ). We 

seek another probability Q , hence a weighting function Z  that transforms P  into Q  (with the 

weights ( )Z H a= , and ( )Z T b= ), under which [ ] [ ] 0P QE XZ E X= = . Z must satisfy [ ] 1PE Z = , 

therefore, right away, we have to enforce the condition 15.05.0 =×+× ba . By definition,

( ) ( ) ( )
A

Q A Z w dP w= ∫ , (the continuous case form), hence ( ) aHQ ×= 5.0  and ( ) bTQ ×= 5.0 , and 

since we want [ ] [ ] 0Q PE X E XZ= = , we must have ( ) ( )0.5 1 0.5 2 0a b× × − + × × = . Since a  and b  

are probability weights, they must be positive; and since Q  is a probability ( ( ) [ ]0,1Q H ∈  and 

( ) [ ]0,1Q T ∈ ), we infer that [ ]0,2a∈  and [ ]0,2b∈ . We can assemble all these conditions into a 

system: 

( )
[ ] [ ]








∈∈
=××+×−×

=×+×

2,0,2,0
025.015.0

15.05.0

ba
ba

ba
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which leads to 
3
4

=a , 
3
2

=b , ( )
3
2

=HQ , ( )
3
1

=TQ . Under probability measure Q , [ ] 0QE X = , as 

Q  assigns a greater probability to H, thus shifting the mean towards 0. Indeed, the weight function Z  

assigns a chance for H occurring greater than for T occurring: a b> . Using the original payoff random 
variable X   and the new Q -coin, one can finally play a fair game. The main idea in this exercise is that 

we have transformed an unfair game into a fair one by only “tweaking” probabilities  (the payoff given 
by random variable X  has not been changed).  
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3.2 Part II : Girsanov Theorem for Processes 
 

“The essence of mathematics lies in its freedom.” 
Georg Cantor, 1845 – 1918 

 

Of our interest here are processes Y that are defined based on some given standard Brownian motions, 

such as P
t tY dt dWµ σ= + , with PW standard Brownian motion under some measure P , hence 

( )2,t PY t tµ σ∈ . The technique of expressing the dynamics of the process Y (as opposed to a 

random variable) under a different measure Q , is yet again called a change of measure, and is subject to 

the second part of Girsanov Theorem. Since under measure Q , PW will most likely cease to be a 

martingale, the change of measure method will essentially replace PW with another process QW , 

which is a standard Brownian motion under Q , and we seek to further express Y in terms of QW . 

Let P and Q  be probability measures on the measurable space ( ), ∞Ω  , PW be a standard Brownian 

motion under measure P adapted to the filtration { }t t T∈
 , and assume that Radon-Nikodym 

derivative 
dQ
dP

 exists and is represented by the process ( ) ( )|P
t t

dQZ t E M
dP

ε = =  
 , that is, by a 

Doléans-Dade exponential , with tM  being a martingale adapted to the filtration { }t t T∈
 . Then the 

process QW  defined as 

,Q P P
t t t

W W W M= −  

is a standard Brownian motion under Q  (hence a martingale). This is, essentially, Girsanov Theorem for 

stochastic processes. Note that tY  can readily be expressed as ( ),Q P
t t t

Y dt W W Mµ σ= + + , which 

represents the process’ dynamics under measure Q . 

Notation wise, observe carefully that the derivative 
dQ
dP

 in itself is “timeless” – it connects the 

probability spaces  and ( ), ,Q∞Ω  ; yet, in order to perform a process transformation, we 

need to operate at filtration level: we need a representation of the derivative in t, which is expressed 

naturally by a conditional expectation. If we “freeze” the processes at time t , we can see the processes 

as plain random variables in the corresponding probability spaces ( ), , /t tPΩ    and ( ), , /t tQΩ    

respectively. Everything must happen in t , which becomes the σ -algebra that defines measurable 

( ), , P∞Ω 
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sets in Ω . In the terminology of Girsanov Theorem Part I, 
dQZ
dP

=  is a random variable (probability 

weight function) in the probability space ( ), , P∞Ω  , and ( ) |P
t

dQZ t E
dP

 =   
provides average 

weights over the measurable sets in t : we need only the average (in Lebesgue sense) values of Z  on 

those sets. In this new world, ( )Z t  is a Radon-Nikodym process. 

Girsanov Theorem, as stated above, provides the means of rewriting an SDE of a process in a given 
measure P into an SDE in the equivalent measure Q  , by a change of Brownian motion: simply take the 

SDE written in measure P  and replace P
tW  with ,Q P

t t
W W M+ : the new SDE will have its dynamics 

under Q : ( ),Q P
t t t

Y dt W W Mµ σ= + +  , as already stated. 

Change of Expectation 

Equally useful is to be able to convert conditional expectations from a probability space into the other. 
For a given “plain” random variable X , we already know this conversion from Part I of Girsanov 

Theorem: [ ] [ ]Q PE X E XZ= , where 
dQZ
dP

=  is the Radon-Nikodym derivative. In what follows, we 

will adapt this formula to processes. 

Consider again a process tY  that is based on some Brownian motion P
tW in ( ), , PΩ   , and let { }t t T∈

  

be the filtration induced by P
tW  (see Section 2.1.3 for the definition of process-induced filtration). Let 

dQZ
dP

=  be the Radon-Nikodym derivative connecting the equivalent probability measures P  and Q . 

Denote the following Radon-Nikodym process: ( ) P
t

dQZ t E
dP

 =   
 (sometime called the Radon-

Nikodym density process). Here we use a legitimate conditional expectation indeed, and we seek to find 

the connection between Z  and ( )Z t  (or tZ , for short). To start with, tZ  is a martingale under P  : 

[ ] [ ]
    tower property

| |P P P P
t s t s s sE Z E E Z E Z Z = =   =      , and [ ]0 1PZ E Z= =  . 

We know already from “Part I: Girsanov Theorem” that, since tY  is an t-measurable random variable, 

we must have Q P
t t t t tE Y E Y Z  =       (note that everything happens in the measurable space 

( ), tΩ  ). Now, let s t≤  be two time points, which implies that s t⊆ . For any event sA∈, let’s 

track the following derivation: 
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[ ] [ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ]

1 1 1

11 1

1 11  1

                     1 1 1

Q Q PA A A sA

QP Q AA t A A

E dQ E E Z
P Q P P P

t t s A t t s A t t sA
s s

E dQE Z Etower
P P P Q

A t t s A t t A t tAproperty

E Y Z dQ E E Y Z E E Y Z
Z Z

E E Y Z E Z Y E Y Y dQ

• = • • = •

• = •• = •

∫  
   = ⋅   = ⋅   =       

 
∫

 =  ⋅  = = =  

∫   

 ∫

  

Since this derivation works for all sA∈, this simply shows (using the definition of conditional 

expectation in Section 2.1.2) that Q
t sE Y   is precisely 

1 P
t t s

s

E Y Z
Z

  . More conveniently, we 

write 

Q P t
t s t s

s

ZE Y E Y
Z

  
  =    

  
     . 

This relation, that translates the conditional expectation from one measure to the other, will be used in 
Section 4.3. Compare the two versions of the theorem: 

random variable X , 
dQZ
dP

=  stochastic process { }t t
Y  , |P

t t
dQZ E
dP

 =   
 

[ ] [ ]Q PE X E XZ=  Q P t
t s t s

s

ZE Y E Y
Z

 
  =   

 
  

 

Finally, we stress again that [ ]0 0| 1P P PdQ dQZ E E E Z
dP dP

   = = = =      
 , by the property (or, 

requirement) of Z  (Section 3.1). 

Before diving into examples, is worth emphasizing the two available techniques, derived from Girsanov 
Theorem and Radon-Nikodym derivative: 

• When we want to express an SDE of a process into a different new measure, we can perform an 
equivalent change of Brownian motion (a formal substitution, essentially). 
 

• When we have two numéraires available, we can express conditional expectations from a 
measure to the other using the Radon-Nikodym process. This will be shown in Section 4.3.  
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This is a summary of the constructs that we have presented so far: 

Radon-Nikodym construct what is used for 
dQZ
dP

=  
the actual R-N derivative: a random variable that gives the weighting 
transformation function between the measures P  and Q  

( ) P
t

dQZ t E
dP

 =   
 

the R-N density process: a process that is used to transform a 
Brownian motion from a measure to the other, therefore to rewrite an 
SDE from one measure to the other 

( )
( )

Z t
Z s

 
the change of expectation factor: a process that is used to transform 
conditional expectations from a measure to the other – will be used 
heavily in Section 4.3 and onward 

 

We sometimes denote ( )/ t
dQ Z t
dP

= , for brevity. (note the different notations : “ / ” vs. “ | ”) 

 

Example – change of measure for eliminating drift 

Let’s start with a standard Brownian motion ( )0,P
t PW t∈  under a probability measure P , and 

adapted to a filtration { }t t
  (one can very well consider the natural filtration induced by the given 

Brownian motion) . These are 30 simulated evolution paths of PW , showing no drift, as expected: 

 

For exemplification, let us now construct a drifty process ( )2,P
t t PY t W t tµ σ µ σ= + ∈  , that is, with 

drift µ  and diffusion σ ; in other words, [ ]P
tE Y tµ=  and [ ] [ ]22 2P P P

t t tVar Y E Y E Y tσ = − =  . 

Incidentally, note the terminology: the drift is not an expectation, but rather the rate of change in 
expectation, and the diffusion is not a standard deviation, but rather the square root of the rate of 
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change in variance. These are 30 simulated paths for the evolution of tY  , for 0.8µ =  and 1.25σ =  

(the drift is visually apparent): 

 

We aim at applying a change of measure from P  into a new probability Q  , such that tY  becomes 

driftless (a martingale) under Q  : [ ] 0Q
tE Y = , yet with the same diffusion as under P : 

[ ] 2Q
t

Var Y tσ= . 

Denote by tU the process 
1 ,t t PU Y t tµ
σ σ

 = ∈  
 

 . In what follows, we will remove the drift of tU , 

then reconstruct tY . For that, we follow Girsanov’s statement backwards: we aim at expressing tU  as a 

standard Brownian motion under a probability Q , that is, by Girsanov’s formula, we want to express tU  

in the following form: 

 ,P P P
t t t tU W W M= −    - and now, we solve this equation for P

tM . 

We ask the question: what process P
tM satisfies ,

t

P P P P
t t t t

U

t W W W Mµ
σ

+ = −


? One can easily see that 

the process P P
t tM Wµ

σ
= −  verifies the expression , ,P P P P P

t t t t tW M W W W tµ µ µ
σ σ σ

= − = − = − , 

hence ,P P P
t t t tU W W M= − . Therefore P P

t tM Wµ
σ

= −
 
is our solution. We use P

tM  to define the 

change of measure: ( ) ( )tZ t Mε= . 

 Electronic copy available at: https://ssrn.com/abstract=3377470 



Part B: Girsanov Theorem  

49 
Copyright © 2018 Nicolae Santean 

Let tZ   be a process adapted to filtration { }t t
  and solution to the SDE P

t t tdZ Z dM= , with 0 1Z = . 

Then tZ  is given by the following Doléans-Dade exponential: 

( )
2

0
1 1exp exp
2 2

P P P P P P
t t tt t

Z M M M M W Wµ µε
σ σ

    = = − − = − − ⋅ − =        
 

2

2exp
2

P
tW tµ µ

σ σ
 

= − − ⋅ 
   

. 

Then, Girsanov Theorem (part II) says that, under the probability measure Q , with   

( )/ P
t t

dQ M Z
dP

ε= = , the process ,P P
t t

W W M−  is a martingale. And that process 

,P P
t t

W W M−
 
is precisely tU ; in other words, ( )0,t QU t∈ , and further, t tY Uσ=  is a martingale 

with diffusion σ  . 

Let’s test this finding. The first part of Girsanov Theorem says that [ ] [ ]Q P
t t tE Y E Y Z= , and we expect 

that, simulating t tY Z  under P , its terminal expected value must be zero.  These are the first 30 paths in 

the simulation of  under P , or equivalently, of tY  under Q  : 

 

 

The expectation of  over 1000 paths should be (and indeed is) close to zero, at each simulated time 

t  (guaranteed by Girsanov Theorem). The standard deviation of tY  under Q   is given by 

[ ] [ ] [ ]2 22 2 2Q Q Q P P
t t t t t t tVar Y E Y E Y E Y Z E Y Z   = − = −    , and should be precisely [ ] 2P

tVar Y tσ= , 

t tY Z

t tY Z
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as the change of measure doesn’t change variance. These facts are reflected in the following graph, 

where [ ] [ ]Q P
t t tE Y E Y Z=  is plotted in BLUE,  [ ]P

tVar Y  is plotted in GREEN, and [ ]Q
tVar Y  is plotted 

in RED: 

 

Finally, as stated in the first part of Girsanov Theorem , the expectation of tZ  under probability 

measure P  should be 1, for all t . The following path plots [ ]P
tE Z  in GREEN, one path for tY  

simulated under P  in BLUE, and the corresponding path for tZ  in RED: 

 

Indeed, [ ]P
tE Z  is 1 across the timeline. One can also note that tZ  provides more weight to negative 

values of tY  and less weight for positive values. This is meant to drag the expectation  [ ]P
tE Y tµ=  

down to zero. 
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Let’s verify that indeed [ ] 1,P
tE Z t= ∀ . In general, to compute the moments of a random variable  

tX
tZ e= , with tX  Gaussian, we use the moment-generating function for Gaussian random variables: 

( ) [ ] [ ] 21
2t t

t

t

uE X Var X uuX
XM u E e e

+ ⋅
 = =   (note the notation: ( )

tXM u  has no connection with the process 
P
tM  previously discussed). For 1u =  and ,  this gives us the two moments: 

[ ] [ ] [ ]1
2t tE X Var X

tE Z e
+

=  
 

[ ] [ ] [ ] [ ] [ ]( )22 222 1t t tt t E X Var X Var XX X
t t tVar Z E Z E Z E e E e e e+    = − = − = ⋅ −      . 

Substituting 
2

22
P

t tX W tµ µ
σ σ

= − − ⋅ , we obtain 

[ ]
22 2

0
2 2

1exp exp 1
2 2 2

P P P
t tE Z E W t t t eµ µ µ µ

σ σ σ σ
     = − − ⋅ = − ⋅ + ⋅ − = =            

   ,  

as observed in our experiment. Note incidentally that [ ]
2

2 1
t

tVar Z e
µ
σ= −  . 

Let’s recapitulate the journey so far. The following are the processes that we constructed, in their order 
of appearance: 

process distribution descripiton 
P

tW
 
 ( )0,P t  standard BM under P   

P
t tY t Wµ σ= +  ( )2,P t tµ σ  process with drift under P  and driftless under 

Q  : ( )20,t QY tσ∈    

1 P
t t tU Y t Wµ

σ σ
= = +  ,P t tµ

σ
 
 
 

  
auxiliary process  that becomes a standard BM 
under Q  :  ( )0,t QU t∈   

P P
t tM Wµ

σ
= −

 

2

20,P tµ
σ

 
 
 

  
solution  to the equation 

,P P P
t t t tU W W M= −  

2

2exp
2

P
t tZ W tµ µ

σ σ
 

= − − ⋅ 
   

2

21, 1
t

P e
µ
σ

 
 −
 
 

  
solution to P

t t tdZ Z dM=  with 0 1Z =  

( / t
dQ
dP

  : Radon-Nikodym derivative) 

 

We proved that indeed, [ ] [ ] 0Q P
t t tE Y E Y Z= =  and [ ] [ ] 2Q P

t tVar Y Var Y tσ= = . Yet, note that we 

have only checked experimentally the two moments under probability P (by analyzing the process t tY Z

under probability P ), as we haven’t created yet a framework for simulating tY  under probability Q  . 

Therefore, a natural question arises, that is, how does the dynamic of tY  looks like under Q ? Or, 

equivalently, how can we simulate tY  itself under Q ? This will be the subject of the next section. 

tX
tZ e=
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3.3 From Change of Measure to Change of Random Variable 
 

“Since we cannot change reality, let us change the eyes which see reality.” 
Nikos Kazantzakis, 1883 – 1957, in Report to Greco 

 

This section can be viewed as a prelude to Section 4.2, for the technique used here will be revisited 
later, in the context of the C-M-G1 Theorem. We aim at showing how we can implement a change of 
measure in a concrete simulation. Although the presentation involves plain random variables, it can be 
easily rewritten in terms of processes by adding a time dimension to it. After all, to generate a standard 
Brownian motion in practice, we essentially draw random numbers from a standard normal distribution, 

and apply a time scale: ( )W t t φ= ⋅  , or ( )dW t dt φ= ⋅ , where φ  is a random draw from ( )0,1 . 

The title of this section may seem to contradict an observation we made repeatedly in the previous two 
sections, that a change of measure is not a change of random variable. In Section 3.1 we already noted 
that when performing a change of measure, we only apply weights to probabilities (thus, probabilities 
change), and all the other structures, including random variables, remain the same. This observation still 
holds strong; yet, in practice, the probability measure is hidden somewhere in the internals of random 
number generators (RNG), and we simply cannot tinker with it. Therefore, in practice, we do not 
perform changes of measure per se, but rather emulate changes of measure by variable substitutions 
(known as a change of variable). The take-home idea is that we merely mimic the effects of probability 
measure change by artificially changing random variables - a proxy for what we plan to achieve. 

Before diving into the matter, we digress briefly for a refresher on computer number representation, 
and RNGs. We will use the discretized representation of real numbers to achieve some intuition on the 
connection between random number generators and our established framework. Let’s start with the 
fact that a computer is a finite state system which cannot represent the mathematical continuum. For 
example, let’s write down a computer view of the well-known constant π : 

 3.14159265358979323846computerπ =  . 

Obviously, π  has an infinite decimal expansion. Then, what does the above representation stand for, 
really? We may very well think of computerπ  that represents one of the following: 

 [ )3.1415926535897932384 ,3.1415926535897936 23847  - a right-interval 

 ( ]3.1415926535897932384 ,3.1415926535897935 23846  - a left-interval 

 [ )3.1415926535897932384 ,3.14159265358979355 238465  - a centered interval, etc. 

                                                           
1 Cameron-Martin-Girsanov 

 Electronic copy available at: https://ssrn.com/abstract=3377470 



Part B: Girsanov Theorem  

53 
Copyright © 2018 Nicolae Santean 

The key point here is to, sometimes, imagine a computer-represented number as an infinitesimal real-
number interval. In other words, a computer-represented number x  will sometimes be viewed as dx . 

We are now ready to gain some intuition on what a RNG means in our theoretical framework. Consider 
the following familiar figure: 

 

Here, we can readily identify the probability space ( ), , PΩ   and the real random variable :X Ω→ . 

For an infinitesimal open interval dx ⊆   (by a stretch of imagination, we view dx  as a Borel set), we 

know by definition that ( )1d X dxω −= ∈ , hence we can reason about ( )P dω : we can very well 

say that the probability that X will fall within dx  is ( )P dω . Note the probability density function P
Xf  

as well: ( )P
Xf x  can be understood as the likelihood that X will fall in dx  (or, in the immediate 

neighborhood of x ) too – is an instantaneous probability concentration. Please keep in mind that a 
computer does not distinguish between x  and dx . 

In this framework, how do we interpret a function call to a RNG from a computer simulator? First, 
regardless of the RNG implementation we must specify the distribution from which we are drawing 
random numbers. In this brief discussion, let’s assume we have a RNG that returns random draws in 

( )0,1 , that is, standard normally distributed numbers. The only parameter we provide to a RNG call 

is the distribution function and we seek to fit this idea in our framework. Let’s imagine that when the 
RNG is called, it taps into some source of entropy and randomly materializes an event dω  with 

probability ( )P dω . Note that we have just assumed that the probability P  is intimately linked to the 

RNG that we use! Then, the RNG will return a value x  representing ( )X dω : recall that we don’t 

distinguish between dx  and x , in that, somewhere along the line, the event dω∈  has been 
represented by a particular outcome dω ω∈ , for computer discretization’s sake. In other words, the 

RNG will return the value ( )x X ω= . It is the responsibility of the RNG to make sure that the 

probability P will provide X with a standard normal distribution, in ( )0,1 . 
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This gedanken-experiment gave us an important insight: we cannot really tell the RNG what probability 
to use in the number generation process, and not even how to change its built-in probability (or, source 
of entropy): the probability P  is hidden in the RNG and is inaccessible. Then, how can we perform a 
change of probability measure when we cannot access P ? 

It turns out that there is a way: by emulating the outcome of the measure change by a random variable 
change – described in the following. Assume that indeed the probability P behind the RNG confers a 

standard normal distribution to X :  ( )0,1PX ∈  - the subscript indicates under which probability the 

distribution is taken from. Then, we know that the density function of X  is 

( )
2

21
2

x
P

Xf x e
π

−
=  - note the zero mean, and unit variance.  

Say we want to transform probability P into another probability Q , where the transformation is 

governed by the following simple Radom-Nikodym derivative (or weight function, in light of Section 3.1): 

( ) ( ) ( ) 21
2

XdQZ e
dP

γ ω γ
ω ω

− −
= =  , for some given drift γ  . 

Indeed, this is a legitimate Radom-Nikodym derivative : 

[ ]
( ) ( )2 2 2 21 1 1 1 1

2 2 2 2 2 1
E X Var X

PE Z e e
γ ω γ γ ω γ γ γ

   − − + − − − +      = = =  . 

To roundup the circumstances of our problem: 

We have available a RNG for a random variable X , that provides random draws from a standard 

normal distribution P
Xf ,  under the probability measure P . We cannot change the RNG (or P , 

for that matter). Yet, we want to perform simulations under the new probability Q ; and we are 

given the theoretical transformation from P into Q . We know the Radon-Nikodym derivative 

dQ
dP

; in other words, we are given a weight function that allows us to obtain probabilities in Q  

from probabilities in P , by multiplying the probabilities in P  by some weights. 

Let’s rewrite the pdf of X  as follows: 

( ) ( )

( )

2
2 21 1

2 2 21 1
2 2

Q
X

x x xP
X

f x

f x e e e
γ γ γ

π π

− − + +
= = ⋅



 . 

Note that the first factor (above) looks like a normal distribution itself. We claim that indeed, the density 

function (denoted by Q
Xf  above) is precisely the pdf  for X under probability Q ! To  see this, write 
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( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( )

Q Q Qx X
X X X
P P P

dx X dX X X

Q d F dx dF x f xdQZ
dP P d F dx dF x f x

ω

ω

ω
ω ω

ω

=

=

= = = =≈  , 

where F denotes the CDF function, and 

( )
( )

( )
2 2 2 2

2 21 1
2 2 2 2 2 21 1/

2 2

Q x x xx x xX
P

X

f x
e e e e

f x

γγ γ γ γ

π π
− + − − − − + − −  

= = =       
 , which confirms Z . 

In other words, we have found that the random variable X  has the density ( ) ( )21
21

2
xQ

Xf x e
γ

π
− +

=  

under probability measure Q  : ( ),1QX γ∈ − . This still doesn’t help much, as we don’t have a RNG 

available that is driven by Q . We must rewrite everything that happens under Q  in terms of P . For 

that, define a new variable 

Y X γ= +  . 

What do we know about Y ? For sure, ( ),1PY γ∈ , since it is obtained from the P - standard normally 

distributed X , by adding the constant, γ . What is the pdf of Y under Q ? Since X Y γ= − , we have 

that 

( ) ( ) ( )

2

2

1
21

2
x

y

Q Q
Y Xf y f y e γγ

π
+

−

= − =


 ,  

showing that ( )0,1QY ∈  - that is, Y  is standard normally distributed under Q  . This is remarkable, 

as it allows us to transform any simulation under P  into a simulation under Q  by merely replacing X  

by Y γ− , and using our RNG for drawing standard normally distributed numbers for the random 

variable Y . The RNG has become just an instrument to draw standard normal values, which we now 
associate to Y  instead of X ; and wherever  we used X  in the P - probability space, we now use 
Y γ− . After this substitution, and by all practical purposes, we can assume we are in the Q - probability 

space. X  in P  has been metamorphosed into Y γ−  in Q  This is a tabulation of our findings: 

 P  Q  

X  ( )0,1P  ( )
2

21
2

x
P

Xf x e
π

−
=  ( ),1Q γ−  ( )

( )2

21
2

x
Q

Xf x e
γ

π

+
−

=  

Y  ( ),1P γ  ( )
( )2

21
2

y
P

Yf y e
γ

π

−
−

=  ( )0,1Q  ( )
2

21
2

y
Q

Yf y e
π

−
=  

What we couldn’t achieve by a proper change of measure, we achieved by a change of random variable. 
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Example – change of measure for eliminating drift revisited (see end of Section 3.2) 

Let’s understand better what this section has provided us with. It gave us a method to change some 
probability measure P  into a probability measure Q , transition governed by the Radon-Nikodym 

derivative ( ) ( ) ( ) 21
2

XdQZ e
dP

γ ω γ
ω ω

− −
= = , so that any process depending on the given random variable 

( )0,1PX ∈  as source of randomness, would evolved as if under the probability measure Q  once we 

perform the substitution Y X γ= + . Let’s rename the processes PX φ=  and Q PY φ φ γ= = + , to 

avoid collusion with the notations in Section 3.2. 

Recall the exercise at the end of the previous section, where we started with a drifty process under 

probability P , ( )2,P
t t PY t W t tµ σ µ σ= + ∈ , with P

tW standard BM, and found the Radon-Nikodym 

derivative for transition to a probability Q , under which tY  becomes driftless. We checked empirically 

that [ ] 0Q
tE Y = , by checking that [ ] 0P

t tE Y Z = , and that [ ] 2Q
tE Y tσ=  by checking that 

[ ]22 2 2P P
t t t tE Y Z E Y Z tσ  − =  . However, we stopped short of simulating tY  under Q  , for lack of 

means to tweak the random number generator to generate events under Q . This section has provided 

the framework for simulating tY  under Q , as follows. 

Let’s bring back the attention to P
t tY t Wµ σ= + . First, we iterate the observation that P

tW can be 

written as P P
t tW t φ= ⋅ , with ( )0,1P

t Pφ ∈ ; hence P
t tY t tµ σ φ= + ⋅ . To simulate P

tW amounts to 

drawing samples P
tφ  from ( )0,1  and scaling these samples by t . Recall the transformation in 

Section 3.2 governed by the Radon-Nikodym derivative 
2

2exp
2

P
t tZ W tµ µ

σ σ
 

= − − ⋅ 
 

, which under the 

notations in this section translates to ( ) ( ) ( ) 21
2

PdQZ e
dP

γ φ ω γ
ω ω

− ⋅ −
= = : this equates to t tµγ

σ
= .  We 

know that  ( )0,1P
t Pφ ∈ , and that P

tφ  behaves under probability measure P  like  Q P
t tφ φ γ= +  under 

probability Q . Then the dynamic of tY  under Q  must follow the equation 

( )Q Q Q
t t t t tY t t t t t tµµ σ φ γ µ σ φ σ φ

σ
 = + ⋅ − = + ⋅ − = ⋅ 
 

. This confirms what we expected: 

under Q  , tY  becomes driftless and furthermore [ ] 2
tVar Y tσ=  . 

Now, this doesn’t seem remarkable per se, as it only confirms what we have already expecting (it 
eliminates the drift and leaves the variance unchanged). The remarkable aspect is that we can change all 
processes in the P -space, applying the substitution P Q

t tφ φ γ= − , so that we move the entire 

framework in the Q -space. The change of measure was accomplished essentially by performing a 
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change of Brownian motion: P Q
t tW W tµ

σ
= − . To simulate tY  under the Q -measure we just sample 

from the standard normal distribution ( )0,1Q
t Qφ ∈ , and set Q

t tY tσ φ= ⋅ . All processes depending 

on P
tφ  under the probability P  will have to replace the draws ( )0,1P

t Pφ ∈  by Q P
t t tµφ φ

σ
= + , in 

order to evolve under Q  . Note that the random number generator used in simulations is impartial to 
the probability space: it only knows how to sample from the generic standard normal distribution 

( )0,1 . It is to our latitude to keep track on the change of random variable and modify all processes 

accordingly. 

 

Example – change of measure in equity simulation 

This matter will be dealt with in more detail in Section 4.2; here we just see how that theory fits into the 
change of random variable technique. But before, let’s recapitulate what we found so far. 

We have a transformation from probability P  to probability Q , governed by the Radom-Nikodym 

derivative ( ) ( ) ( ) 21
2

PdQZ e
dP

γ φ ω γ
ω ω

− ⋅ −
= = . In order to change the dynamics of a process P

tX  evolving 

under P  based on a standard Brownian motion P P
tW tφ=  (with ( )0,1P

Pφ ∈  ), we simply have to 

replace P Qφ φ γ= −  , with ( )0,1Q
Qφ ∈ . This is equivalent to saying that we replace P

tW  by the Q  

Brownian motion ( )Q Q P P
t tW t t W tφ φ γ γ= = + = + . Note that differentiating, we also have 

Q P
t t dtdW dW dtγ= + . Here we emphasized that γ  corresponds to a dt increment (or scaling) : dtγ  . 

We start now with the evolution of some equity price governed by the SDE P P P P
t t t tdX X dt X dWµ σ= + . 

In Section 4.2 we perform a transformation from P  (the “physical world” probability measure) to Q  

(the “risk neutral” probability measure) governed by the Radom-Nikodym derivative 
21

2
P

tW

tZ e
γ γ− −

=  , 

where t
r tµγ

σ
−

=  (the time scale is outside of γ  in the notations of Section 4.2), with the 

interpretation that γ  is “the market price of risk”. According to the above, the SDE for P
tX  changes in 

the Q-measure into 

( )Q Q Q Q Q Q Q Q Q Q Q
t t t t dt t t t t t t t

rdX X dt X dW dt X dt X dW X dt rX dt X dWµµ σ γ µ σ σ σ
σ
−

= + − = + − = +  

where we note that the drift vanishes, being replaced by the risk free rate r . The appeal of this 
transformation is that a derivative price expressed in units of numéraire is a martingale under Q .  
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3.4 Use Case: Quanto Adjustment for Foreign Interest Rates 
 

"Few things are harder to put up with than a good example." 
Mark Twain, 1835 – 1910 

Consider the following SDE describing the evolution of FX sport rates as a geometric Brownian motion 
under a foreign risk-neutral probability measure fQ : 

( ) ( ) ( ) ( ) ( )
2

2
0 , with solution   

Q fX
X X X

f
t W

Q
X X XdX t X t dt X t dW t X t X e

σµ σ

µ σ
 

− +  
 = ⋅ ⋅ + ⋅ ⋅ = ⋅  , 

(assuming ( ) 00X X= ) and with the following interpretation: at time t , one unit in domestic currency 

is worth ( )X t  units in foreign currency (DOM/FOR exchange rate). The standard Brownian motion used 

to evolve X  is considered under the foreign money market measure, and is denoted by fQ
XW . 

Note. The concept of risk-neutral measure, or money-market measure, will be introduced formally, and 
analyzed, in Section 4. In this section we only need to know, and use, the martingale property of an asset 
price expressed in units of numéraire – which will be stated shortly. We assume this property know for 
the time being, to provide a first simple example of change of measure that doesn’t use the more subtle 
notion of risk neutrality. 

From now on, we sometimes use the index notation for time-dependence, e.g., ( ):tX X t= , etc..  As 

well, assume for the time being that the domestic and foreign short rates are constant, dr  and fr   - this 

is merely a notation convenience, as the time-dependence of short rates plays no significant role in the 
derivations that immediately follow. 

We first derive the drift Xµ  of the FX spot rate tX . Let f
tB  be a numéraire representing the foreign 

risk-free money market account (MMA). It evolves according to 
f

t
ff

t

dB r dt
B

= ⋅  (the drift of its return is 

the short rate, and 0 1fB = ), hence we have that  fr tf
tB e ⋅= . Similarly, we have dr td

tB e ⋅=  in the 

domestic space. The foreign MMA expressed in units of domestic numéraire is a martingale under the 

domestic risk-neutral measure (by the fundamental theorem of asset pricing) and is given by 
/f

t t
d
t

B X
B

. 

This means that the process ( ) ( )
2

21 1
0

Q fX
f d X X X

f d
r r t W

r r t
te X X e

σµ σ
 

− − − −  − − −  = ⋅ must be driftless; which only 

happens if X f dr rµ = − , and the above SDE for tX  under the foreign risk-neutral measure becomes 
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2

2
0 

Q fX
f d X Xr r t W

tX X e
σ σ

 
− − +  

 = ⋅ . 

Let tV  be any tradable asset denominated in the foreign currency. By the fundamental theorem of asset 

pricing, we have that, under the foreign risk-neutral measure fQ , t
f

t

V
B

 is a fQ -martingale. Similarly, 

under the domestic risk-neutral measure dQ , /t t
d
t

V X
B  

is a dQ -martingale: the foreign asset value 

converted to domestic currency and divided by the domestic numéraire is a martingale under the 
domestic risk-neutral probability measure. By martingale property we then have: 

0
0 0

0

0 0
0

0

| :            (eq.I)

/ /                            (eq.II)

f f

d

Q Qt t
f f f

t t

Q t t
d d

t

V V VE E
B B B

V X V XE
B B

    
= =    

   


   =    



 . 

Using these two equations, we can write the following derivations: 

(eq.I)
0 0

0 0
0 0 0 0

0 0
(eq.II) 0 0 00 0

0 0
0 0 0 0

1
/

// /1
/ /

f f

f d

d d

f f
Q Qt t

f f f f
t t Q Qt t t

f df f
t tQ Qt t t t

d d
t t

V B V BE E
B V B V V B V X BE E

B V B V XV X B V X BE E
B V X B V X

    
= ⋅ = ⋅    

        ⇒ ⋅ = ⋅    
        = ⋅ = ⋅       

 

Is time to invoke the Girsanov Theorem: for any random variable Y  , the equation 

[ ] fd

d
QQ

f

dQE Y E Y
dQ

 
= ⋅ 

 
  holds , where 

d

f

dQ
dQ

is the Radon-Nikodym derivative of dQ with respect to 

fQ . We already have the equation 

0 0
0 0

0 0 0

/
/

f d
f f

Q Qt t t
f d

t t

V B V X BE E
B V B V X
   

⋅ = ⋅   
   

, 

in which we must identify 
d

f

dQ
dQ

. Applying Girsanov Theorem for 0

0 0

/
/

f
t t

t d
t

V X BY
B V X

= ⋅ , we must have  

0 0

0 0 0

/ /
/

f f d
t t t

tf d f
t t

V B V X B dQ
B V B V X dQ

 
⋅ = ⋅ ⋅ 
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which, solving for /
d

tf

dQ
dQ

 , leads to the expression 0

0 0

/
f dd

t t
tf f d

t

B B XdQ
dQ B B X

⋅
= ⋅

⋅
 , that can further be 

simplified as ( )
0

0
0 0

/
f d

d f

f d

r r td
r r tt t

t r t rf

X XdQ e e e
dQ e X Xe

⋅ ⋅
−

⋅ ⋅= ⋅ ⋅ = ⋅ . To summarize, the Radon-Nikodym derivative 

is finally given by 

( )

0

/ d f
d

r r tt
tf

XdQ e
dQ X

−= ⋅  . 

Let’s now take a closer look at the SDE for the FX spot rate:

2

2
0 

Q fX
f d X Xr r t W

tX X e
σ σ

 
− − +  

 = ⋅ , and 

rearranging, 
( ) 21

2

0

 Q f
X X Xd f

t Wr r ttX e e
X

σ σ− +−⋅ = . In other words,  

21
2/

Q f
X XX

d W t

tf

dQ e
dQ

σ σ−
=  

 

One should carefully note that although we reached an expression for the Radon-Nikodym derivative by 

starting with a process X  with dynamics in the foreign risk-neutral measure fQ , /
d

tf

dQ
dQ

  is 

independent of X  : is a change of measure rather than a change of random variable, and will apply to 
any random variable, for that matter. Furthermore, our initial assumption that the short rates are 
constant doesn’t impact the expression for Radon-Nikodym derivative (the rate terms vanished). 

Even more interestingly, observe that the Radon-Nikodym derivative is a Doléans-Dade exponential:   

( )
1
2/ t t

d M M

t tf

dQ M e
dQ

ε
−

= = , with fQ
t X XM Wσ= . Therefore, the second part of Girsanov Theorem 

tells us that, starting with any standard Brownian motion under fQ , 
fQ

tW  , the process 

: ,
d

f fQ QQ
t t t

W W W M= −  is a standard Brownian motion under dQ . This process is given by 

,: ,
d

f f f fQ Q Q QQ
t t X X t f X Xt

W W W W W tσ ρ σ= − = −
 

Let’s apply these findings to the dynamics of short rates. Consider now that the short rates do evolve in 
time, based on the following SDEs, in the two currencies under consideration (domestic and foreign), 
based on Hull-White dynamics:
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( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

d

d

f

f

Q
d d d d d r

Q
f f f f f r

dr t t r t dt dW t

dr t t r t dt dW t

κ ϑ σ

κ ϑ σ

 = ⋅ − ⋅ + ⋅


  = ⋅ − ⋅ + ⋅  

 

where we express dr  under the domestic money market measure, and fr  under the foreign money 

market measure. In the above, dκ  is the rate’s mean-reversion speed and dϑ  is its mean-reversion 

level. As usual, by dQ  and fQ  we have denoted the domestic and foreign risk-neutral probability 

measures. Finally, we highlight the correlation between the standard Brownian motions involved, fQ
XW  

and f

f

Q
rW  , under the foreign risk-neutral probability measure: 

 ,,f f

f

Q Q
X r f Xd W W dtρ=   

where we applied the formula [ ], | t XY X Yt
d X Y E dXdY dtρ σ σ= = , with 1X Yσ σ= = , for the 

covariation of two Brownian motions, presented previously in Section 2.3. 

We aim at changing the evolution of the foreign short rate into an evolution under the domestic risk-
neutral measure. The SDE in foreign risk-neutral measure is 

 ( ) ( ) ( ) ( )f

f

Q
f f f f f rdr t t r t dt dW tκ ϑ σ = ⋅ − ⋅ + ⋅      . 

Here, we have described the short rate based on a standard Brownian motion f

f

Q
rW  under fQ . To 

express the SDE in the domestic risk-free rate dQ , we use the previous findings, and derive the 

transformation 

 ,

d
fQQ

t t f X XW W tρ σ= − , 

which leads to the dynamics of the short rate under the domestic measure dQ , given by 

( ) ( ) ( ) ,
fQ

f f f f f t f X Xdr t t r t dt d W tκ ϑ σ ρ σ  = ⋅ − ⋅ + ⋅ − =     

 ( ) ( ) ,
dQ

f f f f X X f f tt r t dt dWκ ϑ ρ σ σ σ = ⋅ − − ⋅ + ⋅     .  

The story would not be complete if we left the exchange rate dynamics in terms of tX  , that is, 

DOM/FOR rate, and described under the foreign risk-neutral measure. The last step in our endeavor is to 

(1) express tX under the domestic measure, and (2) replace it with the FOR/DOM rate, 1
tX −  (the 

notation reflects that this is the “inverse” exchange rate).  
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First, let us perform a change of measure for tX . Recall that the SDE that we started with:  

( ) ( ) ( ) ( ) ( ) ( )
( )

2

2
0 ,     

Q fX
f d X X

f
r r t W t

Q
f d X XdX t r r X t dt X t dW t X t X e

σ σ

σ
 

− − +  
 = − ⋅ ⋅ + ⋅ ⋅ = ⋅  

where, yet again for convenience, we drop the time-dependence of short rates, and fQ
XW is a Brownian 

motion under the foreign measure fQ  . We aim at rewriting this SDE under the domestic measure, dQ . 

Let us apply Girsanov Theorem for the Brownian motion fQ
XW : the following process is a Brownian 

motion under dQ : 

 ( ) ( ): ,f fd Q QQ
X X X t

W t W t W M= −
 
, 

where fQ
t X XM Wσ=  has been found before. Therefore, ,f fQ Q

X X X Xt t
W M W tσ σ= = , and we 

rewrite the SDE under the domestic measure as 

( )
( ) ( )

2 2

2 2
0 0

Q QX Xd d
f d X X f d XX Xr r t W t t r r t W t

X t X e X e
σ σσ σ σ

    − − + + − + +          = ⋅ = ⋅ . 

Having this done, we now apply the second transformation: replace the DOM/FOR rate tX  with the 

FOR/DOM rate, 1
tX − . We make the following observations: 

1. As the notation suggests, 1 1
t

t

X
X

− = , and is inferred from the definition of FX rates. 

2. Intuitively clear, the diffusion of tX  and 1
tX −  are equal: 1X X

σ σ −= . 

3. Recalling that ,f Xρ  is the correlation between tX  and the foreign short rate, we infer a 

correlation of opposite sign for 1
dQ

X
W −  and d

f

Q
rW :  1 ,,d d

f

Q Q
r f XX

d W W dtρ− = − . For this to happen, 

we must have 1
d dQ Q

XX
W W− = − . 

Note that the last two observations can be directly inferred from the first one. Indeed, from  

( )
( )

2

2
0

QX d
f d X Xr r t W t

X t X e
σ σ

 
− + +  

 = ⋅  

we derive ( )
( ) ( )

2
2 1

1 1 1221 1 1
0 0

QX dQX d
f d X X XX X

t W tr r t W t

X t X e X e

σ
σ µ σσ

−
− − −

 
   + +− − + −    − − −   = ⋅ = ⋅

 , and comparing the  

stochastic terms of the two expressions, we directly infer that 1X X
σ σ −=  and 1

d dQ Q
XX

W W− = − .  
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Using the above three observations, we can write the following derivation: 

( ) ( )
( )

( ) ( )
( )

2 2

12 21 1 1 1 0 0
QQdX X d

f d X d f XX X
r r t W t r r t W t

X t X e X t X e
σ σσ σ −

   
− − + − − − +      − − − −   = ⋅ ⇒ =  

or equivalently, 

( ) ( ) ( ) ( ) ( )1
1 1 1 dQ

d f X X
dX t r r X t dt X t dW tσ −

− − −= − ⋅ ⋅ + ⋅ ⋅ . 

Wrapping up, we ended up with the following system of SDEs that describes the dynamics of domestic 
and foreign short rates (under Hull-White dynamics), as well as exchange rate (FOR/DOM this time), all 

under the domestic risk-neutral measure dQ : 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( ) ( )

,

d

d

d

Q
d d d d d d

Q
f f f f f X f X f f

Q
d f X X

dr t t r t dt dW t

dr t t r t dt dW t

dX t
r t r t dt dW t

X t

κ ϑ σ

κ ϑ ρ σ σ σ

σ

 = ⋅ − ⋅ + ⋅




 = ⋅ − − ⋅ ⋅ ⋅ + ⋅  


 = − ⋅ + ⋅

    

Here, we replaced the notation 1X −  with X for brevity, keeping in mind that X is now the FOR/DOM 
FX rate. The term ,f X f X dtρ σ σ⋅ ⋅ ⋅ is called the quanto adjustment for the foreign short rate dynamics. 

The system above is well-suited for Monte-Carlo simulations.  
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4 Part C: Applications  
“Everything you can imagine is real.” 

Pablo Picasso, 1881 – 1973 

 

4.1 Introduction: Arrow-Debrew Securities and Risk-Neutral Probability 
 

In this section we provide an economic interpretation of so-called risk-neutral probabilities. We assume 
that the market is complete, in that every tradable asset (security) can be replicated by a portfolio of 

some elementary securities. A possible analogy is a vector space, say, n
 , with a basis of unit vectors, 

( ) ( ) ( ){ }1,0...0 , 0,1...0 ,..., 0,0...1B = , so that every vector in n
  can be written as a linear 

combination of vectors in B . In this analogy, the vector space is our market place, the basis is our 

collection of elementary securities, and any vector in n
 is a tradable security in the market. To say that 

the market is complete is similar to saying that the B  is a basis in  n
 . To express a vector as a linear 

combination of vectors in the basis is similar to saying that a tradable asset is replicated by a portfolio of 
elementary securities. Finally, a security that does not belong to the basis is called a redundant security, 
as it can be represented by a collection of elementary securities. 

Let’s construct the set of elementary securities. We start with a market, which can be found in one of n  
possible states. Assume that it currently is in state # i  and can advance tomorrow in any of the states 
#1 , #2  ,…, #n  . To start with, we assume that in our market there is no time value of money (zero risk-
free interest rate). We define an Arrow(-Debrew) security jA  as a security that tomorrow will pay $1 if 

the market advances to some state # j  and will pay $0  in any other market states (note the analogy of 

the basis vectors in n
 ). We therefore have n  types of Arrow securities. If today we hold a portfolio 

consisting of one Arrow security of each type, the value of the portfolio (MTM) tomorrow will be 

precisely $1: if the market will advance to a state #k , the Arrow security kA  will be worth its payoff of  

$1 and all the others will be worthless, netting to $1. Since there is no time-value for the money ( $1 
tomorrow is worth $1 today), we infer that this portfolio is worth $1 today, as well.  Note that we 
don’t know the price of each individual Arrow security; yet we know that the total value of all n  Arrow 
securities is precisely $1 . 

Any redundant security X , with arbitrary payoffs jx  in market state # j , can be replicated by a 

portfolio of Arrow securities. Indeed, consider the following illustration: 
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A portfolio ∏  which consists of 1x  quantity of 1A , 2x  quantity of 2A , …, nx  quantity of nA  - or, 

notation-wise, { }1 1,..., n nx A x A∏ = , has the same payoff (tomorrow) as X . For example, if the market 

will advance to state # j  , all securities in ∏  will be worthless, except for jA , hence ∏  will be worth 

$1 jx⋅ , precisely as the payoff of security X . 

What is the value of ∏  today? To assess this, we need to consider the price of all arrow securities jA : 

let’s denote by ja  the price of jA . Then obviously, the price of ∏  is 
1

n

j ja x∑ , and since ∏  replicates 

X , the price of X  today must also be 
1

n

j ja x∑ . And we already know that 
1

1
n

ja =∑  (the price of a 

portfolio consisting of precisely on 1A  , one 2A  , …, and one nA  , is $1). 

Note that we don’t know the probabilities 1p ,…, np  of the market advancing in the states #1 ,…, #n , 

respectively. However, since 
1

1
n

ja =∑ , and since the price of ∏  today is 
1

n

j ja x∑ , we can 

hypothetically imagine a world in which security X  will pay 1x  with probability 1a , 2x  with probability 

2a , …, and nx  with probability na  . If this was the case, then in this imaginary world, today’s expected 

payoff of ∏  would be precisely 
1

n

j ja x∑ , which is in fact the true value of X  in the real-world today. 

So, for pricing purpose alone, we may very well replace the real probabilities 1p ,…, np  with the 

quantities 1a ,…, na , and proceed with computing the expected payoff of X  under these fictitious new 

probabilities: we’ll obtain an accurate price of X today, in the real-world.  

We have defined two important notions: (1) the real-world (or, physical world) in which the market 

evolved based on some unknown real probabilities 1p ,…, np ; and (2) an imaginary-world, in which the 
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market evolves based on some fictitious (yet, mathematically sound) probabilities 1a ,…, na ; and we 

discovered that the price in real-world, today, of a real-world security, can be viewed as the expected 
value, today, of the security in the imaginary-world. We also defined the probabilities in the imaginary-
world to be the unit price of Arrow securities. Nomenclature-wise, we call the imaginary-world the “risk-
neutral world” and the fictitious probabilities the “risk-neutral probabilities” (that is, Arrow prices). 

We have just defined risk-neutral probabilities as being the market unit price of Arrow securities. 
However, what is the nature of these quantities? We know that they are determined by the supply and 
demand in the market, driven by economic factors, such as: 

• [hedging arguments] The preferences of the market participants with respect to holding 
money tomorrow in one market state versus another. 
 

• [time value of money] The preference with respected to holding money today versus 
tomorrow. 
 

• [real-world risk] The estimated probabilities that the market will actually evolve in a specific 

state (real-world probabilities 1p ,…, np ). 

The last factor deserves special attention. It says that the real-world risk is embedded in the unit price of 
Arrow securities, which are nothing but our risk-neutral probabilities – this explains the terminology: for 
pricing a security in the risk-neutral world, we simply perform an expectation under the risk-neutral 
probabilities, and do not account for any risk inherent to the actual security under consideration (that 
risk is already accounted for, indirectly, by the risk-neutral probabilities themselves). 

If we take into consideration the time value of money, we require a small tweak to the Arrow security 
prices, in order to still use them as (risk-neutral) probabilities. 

Consider now that, in this market, the risk-free borrowing or lending money can be done at a risk-free 
rate r . Let’s rebuild the previous framework under these circumstances. We have the same set of 

Arrow securities, and the same redundant security X  that will pay 1x , …, nx , based on the market 

state attained tomorrow. 

The portfolio { }1,..., nA A  of just Arrow securities is still worth $1 tomorrow, but only 
1

1 r+
 today, due 

to discounting at risk-free rate. . The market pays today ja  for Arrow security jA , therefore, we have 

that 
1

1
1

n

ja
r

=
+∑ . This shows that we cannot use { }j j

a as the set of risk-neutral probabilities 

anymore, as they don’t add up to 1 – we have to tweak them. Indeed, let’s define the following 

quantities: ( ){ }1j j j
q a r= ⋅ +  - a scaling of { }j j

a .  We now have 
1

1
n

jq =∑ , and we seek to use { }j j
q  

as risk-neutral probabilities. 
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The portfolio  { }1 1,..., n nx A x A∏ =  of fractional Arrow securities still replicates X , for, regardless of the 

risk-free rate, the payoff of ∏  tomorrow is identical to that of X . Today, the portfolio costs 
1

n

j ja x∑  

to buy. The expected value under { }j j
q of portfolio tomorrow is 

1

n

j jq x∑  (we assume that X will take 

each value jx  with probability jq ). Then, this value discounted to today is  
1

1
1

n

j jq x
r+ ∑ , and if { }j j

q

are indeed risk-neutral probabilities, it must match the cost of the portfolio today: 

   
??

1 1

1
1

n n

j j j ja x q x
r

=
+∑ ∑  ,  

and this is obviously true, since ( )1j jq a r= ⋅ +  for all { }1,.., nj∈ . We have found that under 

probabilities given by { }j j
q (measure Q , notation-wise), the value of security X  is the discounted 

payoff expectation of X . In this framework, the risk neutral probabilities are the compounded Arrow 
security prices. 

In practice, we do not know either the real-world probabilities, nor the risk-neutral world probabilities. 
Yet, we know that, for a given market, the risk-neutral probabilities are unique (Fundamental Theorem 
of Asset Pricing), and we know that under risk-neutral probabilities, today’s price of a security must be 
equal to its discounted expected payoff. The last statement is equivalent to saying that the price of a 
security in units of numéraire is a martingale under risk-neutral probability measure. 

These facts help us perform a change of measure and express a process evolving under the real-world 
probability P  as a process evolving under the risk-neutral probability Q  (without knowing the actual 

measures P  and Q ), and compute the present price of the security modeled by this process as a 
discounted expectation. The following section describes such a measure change. Note carefully that, 
since Arrow securities are abstract constructs representing a given market, the risk-neutral probabilities 
are independent of any particular security, and therefore, they allow the pricing of any redundant 
security as a discounting expectation under the risk-neutral measure.  
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4.2 Change of Measure using Cameron-Martin-Girsanov Theorem 
 

 “The only way to achieve the impossible is to believe it is possible.” 
Alice Kingsleigh in Alice Through the Looking Glass, Lewis Carroll, 1832 – 1898 

Here we provide a simplistic view of Cameron-Martin-Girsanov Theorem, as a tool for changing the 
measure from a real-world probability measure to a risk-neutral probability measure. Under such 
change, we expect that a standard Brownian motion (BM), which is obviously driftless, would change 
into a BM with drift under the new measure. Our first concern is to assess this new drift. 

We start with a standard BM P
tW  under a given probability P , that is, with ( )0,P

t PW t∈ . In the 

context of Girsanov Theorem, we want to study a particular change of measure, from P  to some 
measure Q , given by the Radon-Nikodym derivative 

( )
1
2/ t tM M

t t
dQ M e
dP

ε
−

= = , with P
t tM Wγ= −   ,  ( or, 

21
2/

P
tW t

t
dQ e
dP

γ γ− −
=  ) 

that is, given by a very simple Doléans-Dade exponential, with a parameter γ . Let’s first check whether 

( ) 1P tE Mε =   , using the moment-generating function: 

( )
2 2 2 21 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1
P P P P

t t t tt tE M M Var M M E W t Var W t t tP
tE M e e e

γ γ γ γ γ γ
ε

       − + − − − + − − − +              = = = =    . 

P
tW  remains Gaussian under Q  (i.e., a normally distributed random variable), with a drift that is yet to 

be found. We now express the moment-generating function for   under Q , that is, 

( ) P
t

P
t

uWQ Q
W

M u E e =   , by invoking Girsanov Theorem applied to the random variable 
P

tu We ⋅ : 

( )2 21 1
2 2/

P P
P P P t t

t t t
W t u W tu W u W u WQ P P P

t
dQE e E e E e e E e
dP

γ γ γ γ− − − −⋅ ⋅ ⋅      = ⋅ = ⋅ = =           
   

( )22 21 1 1
2 2 2

t u t u t u t
e e

γ γ γ− + − − ⋅ ⋅ +
= =  , which must equal ( )

21
2

Q P P
t t

P
t

uE W u Var WQ
W

M u e
   + ⋅   = . 

Since this is the moment-generating function for P
tW , we conclude that P

tW has the expectation tγ−  

(equivalently, drift γ− ) under Q  : 
Q P

tE W tγ  = −  . On the other hand, Girsanov Theorem says that the 

process ,Q P P P
t t tt

W W W M W tγ= − = + , is a standard BM under Q . In summary, 

P
tW
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( )
( )
( )
( )

0,

,

,

0,

P
t P

P
t Q

Q
t P

Q
t Q

W t

W t t

W t t

W t

γ

γ

 ∈


∈ −


∈
 ∈









 , 

which gives a complete picture of the nature of the two Brownian motions under each probability 
measure. This is a simplistic view of Cameron-Martin-Girsanov (C-M-G) Theorem. 

We now use these findings and express the dynamics of a stock price under the risk-neutral probability 
measure. Under the real-world probability measure P , the stock prices evolve according to the 
following SDE: 

 
P

Pt
tP

t

dX dt dW
X

µ σ= +  ,      with 0 0
PX x=  , 

where P
tW is a standard BM under P , 

P
t
P
t

dX
X

 can be viewed as an instantaneous rate of stock’s returns, 

and µ , σ  are return’s drift and diffusion, respectively. Applying Itô’s Lemma, the solution of this SDE is 

given by  

 

2

2
0

P
tt W

P
tX x e

σµ σ
 

− +  
 =  . 

We know that there exists a unique probability measure Q  (the risk-neutral measure) under which the 
stock price expressed in numéraire units is a martingale (Fundamental Theorem of Asset Pricing - FTAP, 

under the arbitrage-free assumption). More precisely, let’s consider a numéraire (bank account) tB  

which evolves according to t

t

dB rdt
B

=  and 0 1B = , that is, it accumulates interest at the risk-free rate, 

with solution rt
tB e= . The random variable 

P
t

t

X
B

 is a martingale under the risk-neutral measure Q , 

therefore we have  0 0 0| |
Q

Q Q rt Qt
t

t

XE E e X x
B

− 
 = =   

 
  , where by Q

tX  we denoted the process 

tX  evolving under Q  this time (and 0x  is just a notation). 

Therefore, we now must express tX under the risk-neutral measure Q , and for doing so, we use the 

findings in the first part of this section: the relationship between Q  and P  is reflected in the following 

Radon-Nikodym derivative, and standard BM under Q : 
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21
2/

P
tW t

t
dQ e
dP

γ γ− −
= , Q P

t tW W tγ= +   ,         for some parameter γ  yet to be found. 

Note. The reason why we try to apply the C-M-G transformation to our particular stock is that we are 
guaranteed the uniqueness of Q , therefore Q  must be the measure described in the C-M-G Theorem.  

This means that the  random variable tX  has the following form under Q : 

2

2
0

Q
tt W

Q
tX x e

σµ σγ σ
 

− − +  
 = , 

and expressed in numéraire units, is a martingale under Q : 0 0|Q rt Q
tE e X x−  =  . This translates into: 

( )

2 2 2
21

2 2 2 2
0 0 0 0 0

Q Q
t tr t W r t W r t t

r tQ Qx E x e x E e x e x e
σ σ σµ σγ σ µ σγ σ µ σγ σ

µ σγ

     
− + − − + − + − − + − + − − +           − + −     

   
   = = = =
   
   

 

This can happen only if 0r µ σγ− + − =  , giving the expression for parameter γ  :   
rµγ

σ
−

=     . We can 

now summarize our findings: 

• The stock price under real-world measure is given by 

2

2
0

P
tt W

P
tX x e

σµ σ
 

− +  
 = . 

 

• The stock price under risk-neutral measure is given by 

2

2
0

Q
tr t W

Q
tX x e

σ σ
 
− +  

 = , or in differential 

form, 
Q

Qt
tQ

t

dX r dt dW
X

σ= ⋅ + . Note that under probability measure Q  , stock’s rate of growth 

drifts according to the risk-free rate (or, money market rate). 
  

• The transformation (change of measure) is given by Radon-Nikodym derivative 
21

2/
P

t
r rW t

t
dQ e
dP

µ µ
σ σ
− − − −  

 = . 

 
• Finally, the relationship between Brownian motions under these two measures is given by 

Q P
t t

rW W tµ
σ
−

= + . Here, 
rµ

σ
−

can be viewed as the market price of risk (Sharpe ratio: the 

asset return premium per unit of risk), and is intuitively included in the Brownian motion under 
the risk-neutral probability - similar to saying that is captured by the risk-neutral probability 
itself. 
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We close this discussion with an observation about the existence and uniqueness of the risk-neutral 
probability measure. In the above derivation, for a given security X , we notice that the transformation 

from P  into Q  is parameterized, with parameter Xγ , found to depend on the drift of stock’s returns, 

Xµ  : X
X

X

rµγ
σ
−

=   (here, the index X  reflects the dependence on stock X ).  However, we know 

from the Fundamental Theorem of Asset Pricing that Q  is unique, hence the transformation from P  

into Q  must be unique, and consequently Xγ should not depend on X . This implies that the ratio  

X

X

rµ
σ
− has a generic value, regardless of the choice of X . And this resonates with the Capital Asset 

Pricing Model (CAPM): “the reward to risk ratio for any individual security in the market is equal to the 

market reward-to-risk ratio”. Here we imagine a “market portfolio” M , with its own  Mµ  and Mσ , and 

for any security X , we must have X X M

X M

r rµ µ
σ σ
− −

= , hence M

M

rµγ
σ
−

=  (reason for which γ  is called 

the market price of risk), and the measure change as well as Q  itself are unique indeed, and 

independent of any particular asset X . Under measure Q , any asset price, expressed in units of 
numéraire, is a martingale, and any asset’s returns will evolve with a drift given by the risk-free rate r . 
 
Furthermore, any redundant security can be priced as a discounted expectation: a replicating portfolio 
of martingales is a martingale itself, under the unique risk-neutral measure. Indeed, consider a 

redundant security X , replicated by a portfolio ∏  (for all t , ( ) ( )X t t= ∏ ) consisting of n  assets: 

( ) ( ) ( )
1

n

i it t S tλ∏ =∑  , where ( ){ }i i
tλ  are adapted/predictable stochastic processes governing the 

allocation of assets at time t . We further require that the portfolio is self-financing; that is, the change 

in value of ∏  is due only to the change in value of its constituent assets: ( ) ( ) ( )
1

n

i id t t dS tλ∏ =∑  , or 

in integral form, ( ) ( ) ( ) ( )
1

n T

i it
T t u dS uλ∏ −∏ =∑∫ . If iS  (expressed in units of numéraire) are 

martingales under the risk-neutral measure, the integrals on the right side are Itô integrals, which are 
martingales as well, hence ∏  is a sum of martingales, therefore a martingale itself. 
 
Notes. 

1. In Monte Carlo simulations, sometimes we simulate stock/asset prices under the risk-neutral 
measure, and some other times we simulate them under the real/physical measure. Risk-
neutral measure is suitable, and mainly used, for pricing purposes; whereas for other reasons, 
such as back-testing, testing investment strategies, portfolio optimizations, etc., one uses the 
real measure. For the latter, one must find ways to estimate the drift µ  and diffusion σ  of the 

simulated asset, e.g., using historical observations. 
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2. The main purpose of this change of measure is to price a derivative as a discounted 

expectation. Let’s see how this works in a Monte Carlo simulation framework. If ( )( )V S t  is 

the price of a derivative, with asset S  as underlying, and with maturity T , and if we simulate 

S  under the risk-neutral measure Q , and simply average the terminal values ( )( )V S T and 

discount them to the present, we obtain today’s value of the derivative: 
 

( ) ( )( )0 0
1 |QV E V S T

B T
 =   . 

If we perform the simple arithmetic average of all the realized payoff values at time T , across 
all simulated paths, is as if we summed-up realized values multiplied by their frequencies of 
occurrence; that is, the discrete way of averaging values weighted by their probabilities. Thus, 

we agree that this sum is an expectation. Now, recalling that { }0 ,= ∅ Ω , is clear that the 

expectation is conditioned by filter 0 . The take-home idea here is that the arithmetic average 

of all simulation paths in a Monte Carlo simulation is more properly described as a discrete 
integration over the entire domain   (or equivalently, expectation across entire Ω ).  
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4.3 Change of Numéraire – a Working Formula 
 

“Simplicity is the ultimate sophistication.” 
Leonardo da Vinci, 1452 – 1519 

Is no secret that, for the sake of tractability, we prefer to deal with martingales rather than arbitrary 

drifty processes, wherever possible. For example, we have already made the case that the payoff ( )V t  

of some financial instrument expressed in units of numéraire is a martingale under the risk-neutral 

probability measure. Therefore we often prefer to work with the quantity 
( )
( )

V t
B t

, with ( )B t  money 

market account (MMA, or MM account, or bank account) numéraire, rather than ( )V t  alone. The 

reason is that, under the risk-neutral measure BQ , and for two time points s t≤ , we have 

( )
( )

( )
( )

|BQ
s

V s V t
E

B s B t
 

=  
 

 , which gives us more leverage in deriving the pricing analytics. We will see in 

the next Section 4.4 that there are different choices of numéraire: say, a bank account or a bond, as 
convenience dictates. So far we dealt only with a measure change from the physical measure P  to the 
risk-neutral measure BQ  associated to the MMA numéraire. Here we aim at finding a simple formula 

that translates between expectations under two probability measures BQ  and NQ , associated to two 

different numéraires, ( )B t  and ( )N t . 

The stage consists of a measurable space ( ), ∞Ω  , a filtration { }t t
 , and two probability measures BQ  

and NQ , under which t

t

V
B

, and t

t

V
N

 are martingales, respectively. Therefore, for two time points s t≤ , 

we already know by definition that |BQs t
s

s t

V VE
B B

 
=  

 
  and that |NQs t

s
s t

V VE
N N

 
=  

 
 . This means that 

| |NB QQ t t
s s s s s

t t

V VV B E N E
B N
   

= =   
   

  . Denoting t
t

t

VY
B

=  the martingale process under BQ , we 

have: 

 [ ] /| | | |
/

N N NB Q Q QQ s t s t t t t
t s s s t s

s t s t s s

N V N Y B B NE Y E E E Y
B N B N B N

     
= = =     

     
    . 

Now is time to recall the Radon-Nikodym (density) process NQ B
t t

N

dQZ E
dQ
 

=  
 

, with 0 1Z = , defined 

in Section 3.2 and connecting the expectations under BQ  and NQ : NB QQ t
t s t s

s

ZE Y E Y
Z

 
  =   

 
 . 
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Comparing the two expectation formulas above, we are guessing that 
/
/

t t t

s s s

Z B N
Z B N

= , and by variable 

separation and from condition 0 1Z = , this only can happen if 0

0

/
/

t
t

t

B BZ
N N

= . 

In summary, and generalizing, in order to convert the conditional expectation of some process tY  from 

NQ  to BQ  we only have to know that 

/
/

NB QQ t t
t s t s

s s

B NE Y E Y
B N

 
  =   

 
   

where tB  and tN  are the corresponding numéraires. We will use this relation in the next section. 

Moreover, the Radon-Nikodym process for the change of measure from NQ  to BQ  is fully determined 

by the underlying numéraires N and B , and is given by 

. 

 

   

0

0

/
/

t
t

t

B BZ
N N

=
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4.4 T-Forward Measure 
 

“In mundo pressuram habetis; sed confidite, Ego vici mundum.” 
John, 16:33 

Motivation 

Let’s recall the dynamics of a money market account, ( ) ( ) ( )d B t B t r t
dt

= , with ( )0 1B = , expressing 

that the account grows at rate ( )r t , known as short (or instantaneous) rate. We have already 

established that the price of a security V  expressed in units of B -numéraire is a martingale under the 

risk-neutral probability BQ . In other words,  

 

( )
( )

( )
( )

|BQ
t

V t V T
E

B t B T
 

=  
 

 , or,  ( ) ( )
( ) ( ) |BQ

t

B t
V t E V T

B T
 

= ⋅ 
 

  . 

 
In the following table we refresh a few formulae, assumed known to the reader. Note the peculiar form 
of the MM account value for the case of a stochastic short rate: it does not require an expectation 

conditioned to the filter t , as it depends only on the history up to time t T<  (or, we sometimes  say, 

( )B t  is observable at time t ). 

 

short rate        ( )r t  : stochastic deterministic (assumed known) constant 

MM account  ( )B t  : ( )
0

t
r u du

e∫  
( )

0

t
r u du

e∫  
 

rte  

ZC bond     ( ),P t T  : 
( ) ( ),

|
T T

t tB
r u du f t u duQ

tE e e
− − ∫ ∫= 

 
  

( ) ( ) ( )
( )

,
T T

t t
r u du f t u du B t

e e
B T

− −∫ ∫= =   
 
( )r T te− −  

instantaneous 
forward rate  ( ),f t T  : ( )ln ,P t T

T
δ
δ

−  ( )r T  
 

r  

forward rate 

( ), ,f t T S : 
( ) ( ) ( )ln , ln , 1 ,

T

S

P t T P t S
f t u du

S T S T
−

= =
− − ∫  

 

Note carefully that the zero coupon bond yields the risk-free rate under the risk-neutral probability BQ , 

similar to a stock under the risk-neutral measure, whose returns grow at the risk-free rate. 
 

Note also that, one may wish to think of the instantaneous forward rate ( ),f t T  as being an 

expectation, ( ) |Q
tE r T−−    , that is, the rate paid on an instant deposit at time T , as viewed at an 

earlier time t . However this is not the case under the risk-neutral measure (!); yet, we will show that this 
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holds under the T-forward measure,  defined in the following. These matters will become apparent by the 
end of this section. 
 

Finally, note that the zero coupon bond expressed in units of B -numéraire, is a martingale under BQ : 

  

 
( )
( )

( )

( )
( )
( )

0
, ,1| | |

T

B B B
r u duQ Q Q

t t t

P t T P T T
E e E E

B t B T B T
−     ∫= = =    

     
   . 

 
The price V  of an interest rate (IR) derivative (that is, which has an IR instrument as underlying) 
depends, directly or otherwise, on the short rate dynamics; hence can be generically expressed under 

the risk neutral measure as a martingale 
( )( )

( )
( )( )

( )
, , , ,

|BQ
t

V t T r t V T T r T
E

B t B T
 

=  
  

 , or equivalently, 

( )( ) ( ) ( )( ), , , , |
T

tB
r u duQ

tV t T r t E e V T T r T
− ∫= ⋅ 

 
   , 

with ( )r t  being considered stochastic, in order to capture more accurately the nature of the 

underlying. This expectation cannot be evaluated readily, as it has two stochastic factors. The T-forward 
measure facilitates this evaluation. 
 
Change of Numéraire: from MM Accont to ZC Bond 
 
In the following we will perform a change of measure, as a consequence of a numéraire change: 

replacing ( )B t  with ( ),P t T . That is, the MM account numéraire will be replaced with the zero-coupon 

bond (ZCB). The new measure TQ  will be called the T-forward measure; under which, the price of 

security V expressed in ZCB numéraire units becomes a martingale. In other words, we seek to enforce 
 

( )( )
( )

( )( )
( ) ( )( ), , , ,

| , , |
, ,

T TQ Q
t t

V t T r t V T T r T
E E V T T r T

P t T P T T
 

 = =   
  

    , 

where we used that ( ), 1P T T = . Recall that ( ) ( )
, |

T

tB
r u duQ

tP t T E e
− ∫=  

 
 , giving the following 

expression for security V  : 
 

( )( ) ( )

( )

( )( )
,

, , | , , |
T

tB T
r u duQ Q

t t

P t T

V t T r t E e E V T T r T
− ∫  = ⋅    



   , 
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expression which is easier to evaluate, because of the break-down into two separate expectations. It 

remains to find the probability measure TQ , or equivalently, the Radon-Nikodym derivative /T
t

B

dQ
dQ


 

that changes measure from BQ  to TQ . 

 

In the following we emphasize only the first argument of ( ), _, _V t  , for brevity. Since most derivations 

involve conditional expectations, probably more important than finding the random variable T

B

dQZ
dQ

=  

is finding the Radon-Nikodym density process ( ) |BQ T
t

B

dQZ t E
dQ
 

=  
 

  , and even more importantly, 

( )
( )

Z T
Z t

: the expectation conversion factor. This process has already been expressed in Section 4.3: for 

these particular numéraires, we have 
 

( ) ( ) ( )
( ) ( )

, / 0,
/ 0

P t T P T
Z t

B t B
=  and 

( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ), 1, / 1  
, / , ,

T

t

P T T r u duZ T P T T B T B t
e

Z t P t T B t B T P t T P t T

= −∫= = =  . 

This will allow us to write, e.g., ( ) ( ) ( )
( )1

,

T

tT B
r u duQ Q

t tE V T E V T e
P t T

− ∫  =   
 

 , if ever needed. 

We record the following formula, for the expectation conversion factor: 
 

( )
( ) ( )

( )1
,

T

t
r u duZ T

e
Z t P t T

−∫=  

 
In the above, we readily used the change of numéraire formula developed in Section 4.3. Yet, for 
pedagogical purpose, is worth going through the derivation once again, under the present 
circumstances. We start by noting that the price of V , computed under either BQ  or TQ , must be the 

same:  
 

( ) ( ) ( )
( ) ( ) ( )

in in 

| , |
B T

B T
Q Q

Q Q
t t

V T
V t B t E P t T E V T

B T
 

= ⋅ = ⋅     
 

   

leading to the equality 
( )
( ) ( ) ( ) ( )| , |B TQ Q

t t

B t
E V T E P t T V T

B T
 

⋅ = ⋅    
 

   . On the other hand, we 
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have shown in Section 3.2 that, for any process X , ( ) ( ) ( )
( )

T BQ Q
t t

Z T
E X T E X T

Z t
 

  =   
 

 . 

Choosing ( ) ( ) ( ),X T P t T V T= ⋅ , we obtain ( ) ( ) ( ) ( )
( ) ( )

, /
| |

, /
T BQ Q

t t

P T T B T
E X T E X T

P t T B t
 

=    
 

  .  

Considering that necessarily ( )0 1Z = , after a variable separation and a suitable scaling, we obtain 

( ) ( ) ( )
( ) ( )

, / 0,
/ 0

P T
t

B

P t T P TdQZ t E
dQ B t B
 

= = 
 

 , and 
( )
( )

( )
( ) ( ) ( )

( )1
, ,

T

t
r u duZ T B t

e
Z t B T P t T P t T

−∫= = . We have 

just reconstructed the same Radom-Nikodym formula. 
 
To recap, the Radon-Nikodym derivative, just found, defines a measure change from the risk-neutral 
measure BQ  to a so-called T-forward measure TQ , under which, the price of an IR derivative V  

expressed in units of ZCB numéraire is a martingale. Furthermore, we can evaluate V  as 
 

( ) ( ) ( ), |TQ
tV t P t T E V T= ⋅   

  

. 

Note carefully, that the ZCB numéraire ( ),P t T  is chosen to have its maturity coincide with the maturity 

of the derivative V (which recall that is denoted fully as ( )( ), ,V t T r t  ). In some sense, the maturity T
is a constant parameter – reason for which the measure is called T-forward: for every T  there is an 
unique corresponding measure TQ . More informally, we say that the T-forward measure is defined on 

the time horizon [ ]0,T . 

 
A by-Product Martingale under the T-Forward Measure: the Instantaneous Forward Rate 
 
Recall the expression that connects the instantaneous forward rate with the zero coupon bond:  
 

( ) ( ), ln ,f t T P t T
T
δ
δ

= −   , 

and we also know the expression for a ZC bond price,  ( ) ( )
, |

T

tB
r u duQ

tP t T E e
− ∫=  

 
  - they have been 

mentioned in the table at the beginning of this section. Differentiating, we obtain: 
 

( ) ( ) ( )
( )

( )
( ) ( )1 1, ln , | |

, ,

T T

t tB B
r u du r u duQ Q

t tf t T P t T E e E e r T
T P t T T P t T
δ δ
δ δ

− −   ∫ ∫= − = − ⋅ = ⋅ ⋅   
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Using the inverse Radon-Nikodym conversion factor 
( )
( )

1
Z T
Z t

−
 
 
 

, we convert the above expectation into 

an expectation in T-forward measure and  further obtain 

( ) ( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )
( )

( )

1, |
,

,1           | |
,

           , |

T

tT

T

tT T
T

t

T

r u duQ
t

r u duQ Q
t t

r u du

Q
t

Z t
f t T E e r T

P t T Z T

P t T
E e r T E r T

P t T e
E f T T

−

−

−

 ∫= ⋅ ⋅ ⋅ = 
 
 ∫ = ⋅ ⋅ = =   ∫ 

=   



 



 

  
which shows that the forward rate f  behaves as a martingale under TQ , in its first argument. This 

resonates well with intuition: the instantaneous forward rate ( ),f t T  can very well be written as 

( ), ,f t T T dt+  - i.e., the interest rate observed at time t  on an instant deposit at time T - and is what 

we expect at t  to be the short rate at T . 
 
An Example: Vasicek short rate under the T-Forward measure 
 
The Vasicek short rate model expresses the short-rate dynamics under the risk-neutral measure BQ  by 

the following SDE:  
 

( ) ( )( ) ( )BQdr t a b r t dt dW tσ= − +  , 

with the solution given by 
 

( ) ( ) ( ) ( )( ) ( ) ( )1 B
ta t s a t s a t u Q

s
r t e r s b e e dW uσ− − − − − −= + − + ∫ , 

showing that, when t  approaches infinity, ( )
2

,
2BQr t b

a
σ 

∈  
 

  . We aim at rewriting these dynamics 

under the T-forward measure, for some given time horizon T . Here, a  and b  are the speed and level 
of the rate’s mean-reversion, respectively. 

This time, we will not seek a Doléans-Dade exponential form for the Radon-Nikodym derivative, but 

rather use the martingale property of the process 
( )
( ),
B t

d
P t T

 
  
 

 under TQ  (as 
( )
( ),
B t

P t T
 is a legitimate 

martingale under TQ ) to directly derive the expression for TQW  (the Brownian motion under TQ ). 
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Consider now that the ZC bond price maturing at T  evolves according to the following SDE in BQ  : 

 

( ) ( ) ( ) ( ) ( ) ( ), , , BQdP t T r t P t T dt t P t T dW tσ= +   , with bond instantaneous volatility denoted by σ . 

 
 

We digress briefly to justify that a ZCB price under the risk-neutral measure follows the above 

dynamics. We know that the ZCB price expressed in units of numéraire, ( ) ( )
( )
,

,B

P t T
P t T

B t
= , is a 

martingale under BQ . By the martingale representation theorem, we can write 

( )  ( ) ( ), BQ
BdP t T t dW tσ=  , 

for some, possibly stochastic, function  ( )tσ . The differential is taken over the first argument. 

Now define ( )  ( ) ( )/ ,Bt t P t Tσ σ= , which leads to a new SDE for the ZCB price:  

( ) ( )  ( ) ( ), , BQ
B BdP t T P t T t dW tσ=  . 

Knowing that ( ) ( ) ( )dB t r t B t dt= , and the above, we now perform the following derivation: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , , ,B B BdP t T d P t T B T P t T dB T dP t T B T= = + =  

( )
( ) ( ) ( ) ( ) ( )

( )
 ( ) ( ), ,

BQP t T P t T
r t B t dt B t t dW t

B t B t
σ

 
= +   

 
  , 

leading to the sought formula: 
 

( ) ( ) ( ) ( ) ( ) ( ), , , BQdP t T r t P t T dt t P t T dW tσ= +   . 

 

Now, let’s expand the expression for 
( )
( ),
B t

d
P t T

 
  
 

, which is a martingale under TQ , as 
( )
( ),
B t

d
P t T

 
=  

 
 

( ) ( ) ( ) ( )1 1
, ,

B t d dB t
P t T P t T

= +
 
. Denoting ( ) ( )

1
,

X t
P t T

=  , and invoking Itô’s Lemma, we have: 

( ) ( )
( ) ( ) ( )

( )
( )

2
2

2
1, ,

, 2 ,
dX t d X t

dX t dP t T dP t T
dP t T dP t T

= ⋅ + ⋅ =  

( )
( )

( )
( ) ( ) ( )( )

( )2

22 2
2 3

,

1 1 2, ,
2, ,

BQ

dP t T

dP t T t P t T dW t
P t T P t T

σ
 
 −

= − ⋅ + − ⋅ = 
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( )
( ) ( ) ( ) ( ) ( )( ) ( )

( )

2

2
1 , ,

,,
BQ t

r t P t T dt t P t T dW t dt
P t TP t T
σ

σ= − ⋅ + + =




( ) ( )
( )

( )
( ) ( )

2

, ,
BQt r t t

dt dW t
P t T P t T

σ σ−
= − ⋅
 

 

and substituting back into 
( )
( ) ( ) ( ) ( ) ( )1 1

, , ,
B t

d B t d dB t
P t T P t T P t T

 
= +  

 
, and using that 

( ) ( ) ( )dB t B t r t dt= ,  we obtain 

( )
( ) ( ) ( ) ( )

( )
( )
( ) ( ) ( ) ( )

( )

2

, , , ,
BQB t t r t t r t B t

d B t dt dW t dt
P t T P t T P t T P t T

σ σ   −
= − ⋅ + =        

 

 

   
( ) ( )
( )

( ) ( )
( ) ( )

2

drift under Q

, ,
B

B

Q

diffusion

t B t t B t
dt dW t

P t T P t T
σ σ

= − ⋅
 

 

  . 

Now recall that 
( )
( ),
B t

d
P t T

 
  
   

is a martingale under TQ , hence under this measure (after a suitable 

change of measure from BQ ), this dynamics has no drift; therefore must be given by  

( )
( )

( ) ( )
( ) ( )

, ,
TQB t t B t

d dW t
P t T P t T

σ 
= − ⋅  

 



 , 

thus, 
( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
2

, , ,
B TQ Qt B t t B t t B t

dt dW t dW t
P t T P t T P t T

σ σ σ
− ⋅ = − ⋅

  

,  leading to 

 

( ) ( ) ( )T BQ QdW t dW t t dtσ= −      . 

 
Note that, remarkably, we have re-discovered the Sharpe Ration given by C-M-G Theorem: 
 

( ) ( )
( )
( ) ( )
( )

( )

2

0
,

,

B TQ Q

t B t
P t T

t
t B t

P t T

σ
µ µ σ

σσ

−
−

= = −
−







   , 
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where we used the already found 
( ) ( )
( )

2

,
BQ t B t

P t T
σ

µ =


,   0TQµ = , and 
( )
( ),

t
P t T
σ

σ = −


. In other words, 

the market price of risk is ( )tσ−  , where σ  is the instantaneous volatility of the ZC bond price ( ),P t T . 

It can be shown that, in our Vasicek model, this volatility is given by ( ) ( ),t H t Tσ σ= − , with σ  being 

the volatility of the short rate, and ( )
( )1,

a T teH t T
a

− −−
= . Finally, we now can write the dynamics of the 

short rate under the T-forward measure TQ  as follows: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )2

,

        ,

B T

T

Q Q

Q

dr t a b r t dt dW t a b r t dt dW t H t T

a b r t H t T dt dW t

σ σ σ

σ σ

= − + = − + − =

= − − +
  

 
Note. Hypothetically, one can simulate (e.g., based on Euler’ scheme) the dynamics of short rate, based 
on the above formula - that is, under the T-forward measure - and average (Monte Carlo) the outcomes 

at time T  to compute ( ) ( ), |TQ
tf t T E r T=    . This would work; however, for every sought time T , 

one has to re-run the entire simulation, which is intimately related to TQ  (and T , implicitly, via the 

term ( ),H t T ). It resonates with the fact that we have one T-forward measure for every T ; therefore 

we need a full simulation in each T-forward probability measure. This makes HJM or other methods 

more suitable for evolving the entire curve ( ),f t T  indeed. 

 
 

I. A Use-Case for T-Forward Measure: Cashflows 
 
Suppose we have a simulator that produces future paths of some index short rate, and for each path, we 
have analytical means to compute the corresponding zero coupon bond prices. We want to evaluate a 
future cashflow (say, belonging to a swap) by Monte-Carlo. We set the stage by a timeline, as follows: 
 

 
Today’s time is 0 0t = ; ft  is the time of fixing the accrual rate; the accrual period is ,f mt t   ; the 

cashflow payment occurs at pt , and the swap maturity is at T . For each simulated path, we seek to 

evaluate the cashflow payment, given known discount bond prices ( )0,dP t  (extracted, say from an 

initial yield curve, and used for discounting the cashflows to the present) and given index bond prices  
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( )1 2,iP t t  (bond prices computed analytically on the path and corresponding to the simulated index 

short rate). Essentially, we have two rate dynamics, one for discounting (the funding rate) and the other 

for fixing (the index rate). Denote by ( )0V  the present value of the cashflow occurring at time pt . 

Under the T-forward measure, we can write the following derivation, which starts in a familiar way: 
 

( ) ( ) [ ]
[ ] [ ]

( )
( ) [ ]

( )

( ) ( )
( )

( ) ( )
( )

, 1

0 0
 |

,

0 0

0 0,  |   0,  | |
,

,
   0,  |  0,  |

, ,

d
T T T

pQT
t p

p i f m
T T

P T T
Q Q Q

d d t
E V T V T d

V t P t tmartingale p i f mQ Q
d dproperty

d p d p

V T
V P T E V T P T E E

P T T

V t P t t
P T E P T E

P t T P t T

=

 =  

 = 

  
 = = =   

   
     = =   
      


  

 

  
 

Once we simulate/compute 
( )
( )

,

,
i f m

d p

P t t

P t T
, we can perform an average of these ratios across all the paths 

(in the Monte Carlo spirit) and discount the obtained average to the present using the discount bond  

( )0,dP T . The result will be ( )0V  : today’s value of the future cashflow.  

 
 

II. Another Use-Case for T-Forward Measure: Swaplet 
 
To exemplify the use of T -forward measure in derivative pricing in a simplest way, let’s price a swaplet. 

Consider today’s time 0 0t = , the LIBOR rate L , and a payer swaplet that: (1) pays a chashflow at time 

S  in the future, based on a forward interest rate ( ), ,L T T S  fixed at time T , against a notional N ; 

and  (2) receives a cashflow given by a fixed rate K , for the same period [ ],ST  , and against the same 

notional. We denote by τ the year fraction for period [ ],ST , and by ( )V t  the value of the contract at 

time t . Since the cashflow occurs at S  (maturity), we will work under the S -forward measure. 
 
It is clear that at the fixing date T , the value of the cashflow exchanged at time S  is already known, 
equal to: 

( ) ( )( ), ,V S N K L T T Sτ= ⋅ ⋅ − . 

 
We have already established how to evaluate this quantity today, under the S -forward measure: 
 

( ) ( ) ( ) 00 0, |SQV P S E V S= ⋅     
 , 
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where ( )0,P S is the price of the zero coupon bond paying LIBOR rate and maturing at S , and the 

expectation is taken under the S -forward measure. Here, we use rate L  as both discount and index 

rate. Substituting ( )V S  in the above we obtain: 

 

 
( ) ( ) ( )( )

( ) ( )( )( )
0

0

0 0, , , |

       0, , , |

S

S

Q

Q

V P S E N K L T T S

P S N K E L T T S

τ

τ

 = ⋅ ⋅ ⋅ − = 

 = ⋅ ⋅ ⋅ −  




   . 

 

( )_, ,L T S is a martingale under the S -forward measure, in that ( )( ) ( )0, , | 0, ,SQE L T T S L T S  =   

which leads to the swaplet price today: 
 

( ) ( ) ( )( )0 0, 0, ,V P S N K L T Sτ= ⋅ ⋅ ⋅ −  . 

If we assume a simply compounded rate L , we have that  ( ) ( )
( )
0,10, , 1
0,

P T
L T S

P Sτ
 

= −  
 

, where 

( )0, _P  is a zero coupon bond that pays L , and which can be implied from the market. This can be 

justified by the following strategy – as in the figure below, we plan to: 
 

1. Sell a  ZC bond maturing at S , for the price of ( )0,P S , and cash in the proceedings. 

2. Buy units of ZC bond maturing at T : we can buy exactly  
( )
( )
0,
0,

P S
P T

 units. 

3. We let time pass, and at time T , we get back 
( )
( )
0,
0,

P S
P T

 in cash, from the bond maturing at T . 

4. We deposit 
( )
( )
0,
0,

P S
P T

 cash for the period [ ],T S at LIBOR rate prevailing at time T : ( ), ,L T T S . 

5. At time S  we cash in the deposit with interest: 
( )
( ) ( )( )0,

1 , ,
0,

P S
L T T S

P T
τ+ ⋅ . 

6. The proceedings should precisely cover the payment of $1, due to the ZC bond bought at step 1. 
 

Equating 
( )
( ) ( )( )0,

1 1 , ,
0,

P S
L T T S

P T
τ= + ⋅ , then taking the expectation on both sides, and solving for L , 

leads to the expression ( ) ( )
( )
0,10, , 1
0,

P T
L T S

P Sτ
 

= −  
 

. The following is a schematics of the planned 

strategy: 
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Concluding, the swaplet price today is given by 
 

( ) ( ) ( )
( )
0,

0 0, 1
0,

P T
V P S N K

P S
τ
 

= ⋅ ⋅ − +  
 

 . 

 
We end this example with a note, for completeness. At a certain point in our presentation we stated 

that  is a martingale under the S -forward measure, without justification. This is 

straightforward to observe. First note that there is nothing special about the initial time 0 0t = . Indeed, 

the strategy that we used previously (with an implicit nonarbitrage argument) works for any time t T< . 

Therefore, we can generically state that ( ) ( )
( )

,1, , 1
,

P t T
L t T S

P t Sτ
 

= −  
 

 for any t T< . Now, this is 

obvious a martingale under the S -forward measure, as 
( )
( )

( )
( )

, ,
|

, ,
SQ

s

P t T P s T
E

P t S P s S
 

= 
 

  for any s t< , 

since ( )_,P T  is a tradeable asset expressed in units of bond numéraire. This shows that 

( ) ( ), , | , ,SQ
sE L t T S L s T S=   , that is, ( ), ,L t T S  is a martingale under the S -forward measure. 

 
 

III. Another Use-Case for T-Forward Measure: Vanilla FRA 
 
Another prototypical example is the pricing of a FRA, due to its peculiar payment convention. Consider 
the following timeline of a payer vanilla FRA, that pays the LIBOR index rate L  for the accrual period 

( )_, ,L T S
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[ ],T S in the future, and receives a fixed reference rate K  for the same period. The standard 

convention is to have the payment at the fixing time T , and this brings the necessity of discounting the 

payment amount for the year fraction ( ) / days_in_yearT Sτ = − , at the same index rate. 

 
For simplicity, we consider the FRA notional to be 1. Both the accrual and discounting assume a simply 
compounding index rate. Since the payment is done at time T , we start the valuation under the T -
forward measure: 
 

( ) ( ) ( ) ( ) ( )( )
( )0 0

, ,
0 0, | 0, |

1 , ,
T TQ Q L T T S K

V P T E V T P T E
L T T S

τ
τ

 ⋅ −
= =     +  

    

 

Here, ( )0,LP T  is the discount bond maturing at T , and ( ), ,L T T S  is the LIBOR rate observed at fixing 

time T . Further, ( )( ), ,L T T S Kτ ⋅ −  is the accrual amount and ( )( ) 1
1 , ,L T T Sτ

−
+  is the discounting. 

 
Obviously, the expectation is taken under the wrong forward measure. To fix this, we have to perform a 
change of measure and continue the derivation under the S -forward measure. More precisely, we seek 
a change of numéraire introduced in the previous section. 

Denoting ( ) |TQ S
t

T

dQZ t E
dQ
 

=  
 

 , we have 
( )
( )

( ) ( )
( ) ( )

, / ,
0 0, / 0,

Z t P t T P t S
Z P T P S

= . Now recall the formula for the 

simply compounded LIBOR: ( ) ( )
( )

,1, , 1
,

P t T
L t T S

P t Sτ
 

= −  
 

, and further, 
( )
( ) ( ),

1 , ,
,

P t T
L t T S

P t S
τ= + . This 

gives us the change of numéraire factor 
 

( )
( )

( )
( )

1 , ,
0 1 0, ,

Z t L t T S
Z L T S

τ
τ
+

=
+

. 

 
Back to our FRA pricing formula, we are now ready to perform the change of numéraire/measure from 
the T -forward measure to the S -forward measure: 
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( ) ( ) ( )( )
( )

( ) ( )( )
( )

( )
( )

( ) ( )( )
( )

( )
( )

( )

change of numeraire

0

0

0

, ,
0 0, |   

1 , ,

, ,
       0, |

1 , , 0

, , 1 , ,
       0, |

1 , , 1 0, ,

, ,
       0,

T

S

S

S

Q

Q

Q

Q

L T T S K
V P T E

L T T S

L T T S K Z T
P T E

L T T S Z

L T T S K L T T S
P T E

L T T S L T S

L T T
P T E

τ
τ

τ
τ

τ τ
τ τ

τ

 ⋅ −
= = 

+  
 ⋅ −

= ⋅ = 
+  

 ⋅ − +
= ⋅ = 

+ +  

⋅
=







( )( )
( )

( ) ( )( )
( )

( )
( ) ( )

( ) ( )( )

 is martingale under 

0

0,
1 0, ,

0,

|   
1 0, ,

0, ,
       0,   0, 0, ,

1 0, ,

SL Q

P T
L T S

P S

S K
L T S

L T S K
P T P S L T S K

L T S

τ

τ

τ
τ

τ

= +

 −
= 

+  

⋅ −
= = ⋅ ⋅ −

+



 

 
which is the FRA price today, on a one-unit notional. For an arbitrary notional N , the price of this FRA 
becomes 
 

( ) ( ) ( )( )0 0, 0, ,V P S N L T S Kτ= ⋅ ⋅ ⋅ −   . 

 
 

IV. Another Use-Case for Change of Numéraire: Convexity Adjustment for Libor in Arrears 
 

We conclude this section with an application, that brings together the forward measures, the change of 
numéraire and  Doléans-Dade exponential. Consider, yet again, a future cashflow payment as follows: 

 

It resembles the cashflow of the floating leg of an FRA with the exception that the accrued amount is not 
discounted: is a LIBOR in arrears payment. The present value of this cashflow is given by  

( ) ( ) ( ) ( ) ( )0 00 0, | 0, , , |T TQ QV P T E V T P T E L T T S= =         
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Here ( )0,P T  is the discount bond. Yet again, the expectation is taken under the wrong forward 

measure, reason for which we perform a change of numéraire, to express the expectation under the S -
forward measure:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )0 0

, / , , ,
0 0, , , | 0, |

0, / 0, ,
S SQ QP T T P T S L T T S

V P T E L T T S P S E
P T P S P T S

   
= =   

   
   . 

Denoting ( ) ( )
( )0

0,
,

0,
P S

P T S
P T

=  the current value of the forward discount factor, and equating the two 

expressions for ( )0V  we obtain: 

( ) ( )
( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

( )

0
0 0 0

0
0 0

,

0, , , ,
, , | | , , |

0, , ,

,
                                , , | , , 1 |

,

               

S ST

S S

Q QQ

Q Q

T S

P S L T T S P T S
E L T T S E E L T T S

P T P T S P T S

P T S
E L T T S E L T T S

P T S
∆

   
= = =      

   
  

= + − =          


  

 

( )
( ) ( )

_, ,  is martingale under Q

      0, , ,
SL T S

L T S T S= + ∆

   

The term denoted by ( ),T S∆  is called the convexity adjustment. 

Note. The nomenclature “convexity adjustment” is inspired from Jensen’s inequality, which in simple 

terms says that, for a convex functio f , we have [ ]( ) ( )| |f E X E f X≤      , and ∆  

measures this deviation: ( ) [ ]( ) ,| | X fE f X f E X= + ∆    .The relationship is intuitively 

depicted below. 
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Let’s evaluate the convexity adjustment ( ),T S∆ , using the relation ( ) ( )
( )

,1, , 1
,

P t T
L t T S

P t Sτ
 

= −  
 

:

 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

0

0
0

1,
1 , ,

01,
1 0, ,

2
0

0

,
, , , | 0, ,

,

1 , ,
   , , | 0, ,

1 0, ,

1           , , , , | 0, ,
1 0, ,

, , |
           

S

S

S

S

Q

P T S
L T T S

Q

P T S
L T S

Q

Q

P T S
T S E L T T S L T S

P T S

L T T S
E L T T S L T S

L T S

E L T T S L T T S L T S
L T S

E L T T S

τ

τ

τ
τ

τ
τ

=
+

=
+

 
∆ = − = 

 

 +
= − = + 

 = + − = +

=









( )
( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )( )
( )

2
0

2 ia martingale under 
0

2 2
0

, , |
0, ,

1 0, , 1 0, ,

, , |0, ,
 0, ,

1 0, , 1 0, ,

, , | 0, ,
           

1 0, ,

S

S
S

S

Q

QL Q

Q

E L T T S
L T S

L T S L T S

E L T T SL T S
L T S

L T S L T S

E L T T S L T S

L T S

τ
τ τ

τ
τ τ

τ

τ

   + − =
+ +

  = + − =
+ +

  − =
+







 

Under the S -forward measure SQ , ( ), ,L t T S  ( tL for brevity) is a martingale in its first argument, and 

under the assumption of a lognormal distribution, it accepts a martingale representation as 

t L t tdL L dWσ= , with tW  standard Brownian motion, and initial value 0L . We have already derived the 

solution of this SDE as a Doléans-Dade exponential: 
2

2
0

L
L tW t

tL L e
σσ −

= . It remains to evaluate 
2

0|SQ
TE L    : 

2 2 2 2
2 20

1 12 2 422 2 2 2 22 2
0 0 0 0 0 0| | L T L L T L L L

S S L T L L
E W T Var W T TQ Q W T T

TE L E L e L e L e L e
σ σ σ σ σ σσ σ σ

   − + − − + ⋅   −   = = ⋅ = ⋅ = ⋅      

Finally, plugging in this expectation in the expression of ( ),T S∆ , we obtain 

( )
( ) ( )( )

( )
( )
( ) ( )( )

2

2

2 20, , 0, , 0, ,
, 0, , 1

1 0, , 1 0, ,

L

L

T

T
L T S e L T S L T S

T S L T S e
L T S L T S

σ

σ
τ τ

τ τ

−
∆ = = −

+ +
 . 

Expanding the exponential to the first order, we can approximate the convexity adjustment by 

( ) ( )
( ) ( ) 20, ,

, 0, ,
1 0, , L

L T S
T S L T S T

L T S
τ

σ
τ

∆ ≅
+

    . 

 Electronic copy available at: https://ssrn.com/abstract=3377470 



Epilogue  

90 
Copyright © 2018 Nicolae Santean 

5 Epilogue 

In this essay we shed light upon a fundamental technique in quantitative finance: change of measure. 

The main purpose was to build a clear intuition around the matter, with the drawback of missing the 

usual rigorousness and structure of a classical mathematical paper. Yet, we hope that the understanding 

and thoughts gained throughout this reading will allow practitioners to be more rigorous and insightful 

in their own writings. The following non-exhaustive list gives the main take-home ideas: 

 Basic notions of Probability and Measure Theory are the building blocks for this technique. 

We have introduced the notions of sigma-algebras, probability spaces, random variables, 

and stochastic processes. Most importantly, filtrations and martingales are central concepts 

used across the entire essay. 

 Brownian motions are “atomic” stochastic processes that fuel the dynamics of other 

processes that model market factors. A recurring subliminal message of this essay is that, 

most often, a change of measure can be viewed as a “change of Brownian motions.” We 

don’t have the means for controlling probabilities or probability spaces (in simulations); yet 

we can transform Brownian motions, and this is how we can change the measure. 

 Girsanov Theorem, in its pure form, is a fairly abstract result; yet, with a few examples and 

discussions we hope to have built some intuition and provided an accessible meaning to this 

probability transformation. In particular, we found it useful to introduce so-called weight 

functions (Radon-Nikodym derivatives in disguise) as a tool for changing a probability 

measure to our liking: “tweaking” probabilities by adding more chance to some event 

occurring, and less to others, effectively allowed us to control the drift of a process. For 

example, we were able to turn a game of chance from an unfair setting to a fair game, 

without changing the payoff of the game itself. 
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 A simple example of change of measure is arguably the change of numéraire from a foreign 

currency to a domestic one – often used in pricing quanto instruments. We introduced this 

example before the formal definition of the risk-neutral measure (although this measure is 

mentioned in the example) because this application doesn’t require a deep understanding 

of the more subtle notion of risk-neutrality. 

 Finally, we introduced three most important probability measures: real, risk-neutral, and T-

forward, and showed how one can change measure from real to risk-neutral, and from risk-

neutral to T-forward. A main difference between these measures is that the real and risk-

neutral mesures are universal (are defined on a given market) whereas the T-forward 

measure depends on a given instrument’s time horizon: we have as many T-forward 

measures as times T’s. We also reasoned about Monte Carlo simulations versus analytical 

derivations: the real and risk-neutral measures are used extensively in simulations, whereas 

the T-forward measure is more often used as a technique for simplifying analytical 

derivations in derivative pricing models. 

We conclude with a justification for the title of this essay. In academic settings, instructors often make 

the curious analogy between change of measure and space travel: from Earth (our physical/real world) 

to some other planet, where habitants are insensitive to market risk. They even draw pictures of 

cosmonauts floating in the interstellar space between these worlds. And this is the only explanation that 

they give to the notion of risk-neutrality. In our opinion, there cannot be an analogy more absurd and 

wrong, and this analogy can only lead to a greater confusion and frustration for the student. The title of 

this essay, inspired by a most famous book of humor, is meant to ridicule and discourage such practice.  
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