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Abstract

The paper examines the relationships among market assets during stressful times, using two
recently proposed econometric modeling techniques for tail risk measurement: the extreme
downside hedge (EDH) and the extreme downside correlation (EDC). We extend both mea-
sures taking into account the sensitivity of asset’s return to innovations not only from the
overall market index, but also from its components, by means of network modelling. Applying
our proposal to the cryptocurrencies market, we find that crypto-assets can be clustered in
two groups: speculative assets, such as Bitcoin, which are mainly “givers” of tail contagion;
and technical assets, such as Ethereum, which are mainly “receivers” of contagion.
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1. Introduction

Estimating risks is important to achieve the best investment decisions. Typically, indi-
viduals consider a trade-off between expected return and risk in investment decisions (Bera
and Kannan, 1986; Puspitaningtyas, 2018; Scott and O’Brien, 2003). Within the context of
market investments, the risk of a portfolio is usually measured by estimating their return
sensitivity to risk factors, through the market beta coefficient. However, there is a wide con-
sensus that the relationship between asset returns and market risk varies, and depends on
market conditions. For example, a stronger correlation could be exhibited by asset returns
during volatile periods, and especially in the case of extreme market downturns (see Ang and
Chen, 2002; King and Wadhwani, 1990; Longin and Solnik, 2001).

In light of this observation, Kadan et al. (2016) generalized the concept of systematic risk
to a broader class of risk measures. They proposed an equilibrium framework that generalizes
the Capital Asset Pricing Model, and an axiomatic approach which leads to a systematic
risk measure as the unique solution to a risk allocation problem. Both approaches extend
the traditional market beta to capture the multiple dimensions of risk. Systematic market
factors are not the only cause of return volatilities. Especially after the recent financial crisis,
researchers have understood the importance of systemic risk - inherent vulnerability of the
financial system that propagates initial shocks to leading to the failure of many institutions,
whose cascading effects may endanger the whole system (see Acemoglu et al., 2015; Battiston
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et al., 2012; Billio et al., 2012; Diebold and Yilmaz, 2014; Elliott et al., 2014; Héardle et al.,
2016; Ladley, 2013). Systemic risk can be thought of as a widespread failure of financial
institutions or as a freezing up of capital markets, which can substantially reduce the supply
of such critical intermediation. Failures of financial institutions or capital markets can have
an important externality on the rest of the economy, and the recent financial crisis provides
ample evidence of the importance of containing systemic risks.

The available definitions of systemic risk focus on different aspects of the phenomenon,
such as imbalances, collapse of confidence, correlated exposures of financial institutions, neg-
ative impact on the real economy, information asymmetry, asset bubbles, contagion, and neg-
ative externalities. For a comprehensive review, see Ahelegbey (2016); Bisias et al. (2012);
Brunnermeier and Oehmke (2013); De Bandt and Hartmann (2000); Eijffinger (2011); Ooster-
loo and de Haan (2003). From a regulatory viewpoint, widespread financial regulations, such
as Basel I and Basel II, are designed to limit financial risk (market, credit and operational
risk) seen in isolation; they are not sufficiently focused on systemic risk. This even though
the systemic risk is often the rationale provided for such regulation Acharya et al. (2017).
Basel III attempts to include systemic risk, but it does so to a limited extent. This may be
due to a lack of consensus in the systemic risk literature.

The limited consensus on the definition of systemic risk is reflected in a large number of
measurement methods available. Among them are Banking System’s (Portfolio) Multivariate
Density (BSPMD; Segoviano and Goodhart, 2009), conditional value-at-risk (CoVaR; Adrian
and Brunnermeier, 2016), absorption ratio (AR; Kritzman et al., 2011), marginal expected
shortfall (MES; Acharya et al., 2017), distressed insurance premium (DIP; Huang et al., 2012),
dynamic causality index with principal component analysis systemic risk measures (DCI,
PCAS; Billio et al., 2012), network connectedness measures (NCMs; Billio et al., 2012; Diebold
and Yilmaz, 2014). Other recent contributions include Wang et al. (2019), who proposed a
new measure of systemic risk named CSRISK, which identifies a financial institution’s capital
shortfall under the worst scenario, conditional on a substantial market decline; Brunnermeier
and Cheridito (2019) who developed a framework for measuring systemic risk, SystRisk, that
captures the a priori cost to society for providing tail-risk insurance to the financial system:;
Bianchi et al. (2019) who developed a scheme in which latent states are identified based on a
novel weighted eigenvector centrality measure; Brownlees and Engle (2017) who introduced
SRISK, which measures the capital shortfall of a firm, conditional on a severe market decline
and is a function of size, leverage, and risk of the firm itself.

Another cause of return volatilities, additional to systematic and systemic risk, is tail
risk. The importance of tail risk in financial markets has been highlighted because of the
turbulence of financial markets over the last years and, in particular, in crypto-asset markets.
Many studies have documented the considerable impact of this risk on expected returns, see
for instance Barro (2006); Gabaix (2012); Gillman et al. (2015); Rietz (1988); Wachter (2013).
From an econometric viewpoint, Harris et al. (2019) proposed two complementary measures
of systematic tail risk and showed that the first measure, named extreme downside correlation
(EDC), is based on the tendency of asset returns to crash at the same time as the market,
while the second measure, named extreme downside hedge (EDH), measures the sensitivity
of asset returns to market tail risk.

Related to this contribution, several studies have examined the relationship between tail
risk and asset returns. For example, Chabi-Yo et al. (2018) proposed a systematic tail risk
measure, Lower Tail Dependence (LTD), based on the estimated crash sensitivity of an indi-

vidual asset to a market crash; Van Oordt and Zhou (2016) proposed a systematic tail risk
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measure that captures the sensitivity of asset returns to market returns, conditional on mar-
ket tail events and showed that this measure is associated with future asset returns; Almeida
et al. (2017) introduced a tail risk measure that is based on the risk-neutral excess expected
shortfall of a cross-section of asset returns.

In this paper we extend the proposed systematic risk measures, EDH and EDC, taking
into account not only market (systematic) tail risk, as the previous contributions, but also a
systemic tail risk. In this way, we consider as potential explanations of returns volatilities:
systematic risk, systemic risk, and tail risk. We thus contribute to the market risk literature
with a model that combines tail risk not only with systematic risk but also with systemic
risk. To exemplify our proposal, we consider the leading assets from the crypto-asset market,
thereby also extending the recent work of Borri (2019), who used CoVaR to show that crypto
assets are highly exposed to tail risk from their market, but not from traditional assets. Our
work is related to a recent research line that aims to explain bubbles in crypto prices in terms
of interconnectedness between them or between exchange markets: (see for example Agosto
and Cafferata, 2020; Bouri et al., 2019; Corbet et al., 2018; Giudici et al., 2019). Our work
presents a more general methodology aimed at combining systemic interconnectedness with
tail risk (which is indeed related to bubbles).

The paper is organized as follow.: Section 2 presents our proposed methodology. For our
empirical application, we present a description of the data and report the results in Section 3
and a sensitivity analysis in Section 4. Section 5 concludes the paper with a brief discussion
and suggestions for future research.

2. Methodology

In this section, we describe our extension of the extreme downside correlation (EDC)
and of the extreme downside hedge (EDH) measures, aimed at estimating systemic tail risk
dependence among return series of assets. We also present how to summarise systemic tail
dependence by the means of network centrality measures.

2.1. Extreme Downside Correlation (EDC)

The EDC is a correlation-based technique that measures the marginal relationship between
a pair of continuous variables, focusing on the tail of their joint return distributions. It is a
non-parametric measure of tail risk co-movement of financial assets. Let X;; be the returns
of assets i (or X;) at time ¢ and denote with u; the historical mean of asset i. The EDC
measures the tail correlation between assets ¢ and j given by

Sy (X — ), (Xje — 1), ]
{Zthl (Xt — Mz)ﬂ V2 [2?21 (Xt — ,Uj)z

(Xig — i), 1 Xip < Xy = Fx'(7)
0, otherwise

EDC, ;; =

73 (1)
]/

where (X;¢— )y = { , (2)
where X, ; is the left-side 7-quantile of the standardized distribution on X;, 7 € (0,1), and
Fx (1) = Pr(X; < 7) is the cumulative distribution function (cdf) of X;. The value of T
defines the percentage confidence level, 100(1 — 7)%. If j = m is a market index, then
EDC5 i, captures the systematic relationship between asset-i¢ and the market.
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The tail of the return distribution technically corresponds to either extremely low gains
(left tail) or very high returns (right tail). Following standard applications, we set our focus
on the left tail to study the co-movement in returns of assets during stressful times which are
usually characterized by losses. Following standard practice, we use the 7 = 5% quantile level
which corresponds to a 95% confidence level in our empirical application. We also conduct
robustness checks with other 7-quantile levels to validate the sensitivity of the findings.

For multivariate time series observations, the co-movements in the tail distributions of the
joint return series can be operationalized as a network graph where nodes represent the assets
and the edges denote the undirected association between the nodes. We therefore define an
n x n zero diagonal weighted (G¥) and unweighted adjacency matrix (GY) such that the
1j-th element of both matrices are given by

qw _ ) EDCrij, it EDCrij # 0 qu L G #0 )
Crij 0, otherwise ' Cij 0, otherwise

2.2. Extreme Downside Hedge (EDH)

The extreme downside hedge (EDH) measures the sensitivity of returns to innovations in
the tail risk of the market and/or of other counterparties. The variables of interest for the
EDH model are the return series of the assets and a measure of innovation in the tail risk
of the conditioning set of variables. Recent measures for assessing the riskiness of assets is
the expected shortfall (also referred to as conditional value at risk - CoVaR or CVaR) (see
Adrian and Brunnermeier, 2016; Alexander, 2009; Bali et al., 2009).

Let X; = (X14,...,Xn,) be n-variable vector of return observations at time ¢, where X;;
is the time series of asset-i at time ¢. Let X ; denote the left-side 7-quantile of the distribution
on X;, for 7 € (0,1). Following Gaivoronski and Pflug (2005), we compute the CVaR(X;)
as a proxy for the tail risk by

CH(X;) = <71_Fx(7')> E(Xi|X; < X.3) + <1 - in(r)> Xri (5)

where F'x (1) = Pr(X; < X;,;) is the cdf of X;. We denote with CVaR;; - the CVaR (X;)
at time t. We employ ACVaR as a proxy for the innovation in the tail risk.

Following Harris et al. (2019), we start the EDH model with the systematic tail risk of an
asset as the sensitivity of returns of asset-i with respect to ACVaR of the market index as

Xz',t =4 + ,81|m ACV@Rmﬂf -+ €t (6)

where ACVaR,,; = CVaR,,; — CVaRy -1, oy is the intercept, €;; is the error term, and
Bijm 1s the response of the asset returns to changes in market tail risk.

The EDH for systematic risk expresses the “contagion” effect of the market tail risk on
asset returns. It does not, however, capture other channels such as exposure to the tail risk of
other assets. This application extend the EDH to consider a “systemic” version that estimate
the sensitivity of the returns of a single index to the innovation in the CVaR of other indices.



More formally, we can define the single index model of the EDH systemic risk by

n—1
Xit = o; + Z Bi|j ACVaRj’t + €t (7)
i#j—=1

where ACVaR;; = CVaR;; — CVaR;;_1, BZ-U is the response of the stock return of asset-i
to changes in the tail risk of other assets.

A further approximation is a mixed EDH models that combines the right-hand side of (6)
and (7) in the single index model. Thus, the mixed covariates model is given by

n—1
Xig = a; + Z Bijj ACVaRjt + Bijm ACVaRmy + €t (8)

i#j=1

The parameters of the EDH models can be estimated via maximum likelihood. Following
the financial network literature, estimates of 5 = {,Bi‘j} can be used to construct network
adjacency matrices that describe conditional independence relationships. More precisely, we
denote with Gg and GEV the unweighted and weighted adjacency matrices such that the ij-th
element are given by

. . W
N { 0, otherwise ’ i 0, otherwise ®)
2.8. Network Analysis

We now present a brief description of the network metrics applied in our empirical analysis
to summarize the information from the estimated networks. For purposes of interpretable
diagram representation, we condense the information contained in matrices into an n x n zero
diagonal weighted (A") and unweighted adjacency matrix (AY) such that the 4j-th element
of both matrices are given by

t R, — Xj-)Xi ’ v 1, — Xj-)Xi

The unweighted in-degree of node-i, 35], and the unweighted out-degree of node-j, ng,
can be defined by

K

by=yay DY =y Ay (1)

where 3? counts the number of links directed towards node-¢, while ng is the number of

links going out of node-j. The weighted in-degree of node-i, 524/ , and the weighted out-degree

of node-j, }/V, can be defined by
iJ )

DW=y Al DY =3 AW (12)

T
where 5?/ and D", are the row and column sums of AW respectively.
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We can also calculate centrality measures that take into account the importance of neigh-
borhood of a node in a network graph. For example, the hub and authority centrality assign a
score to nodes in the network in a way that is proportional to the importance of its neighbours.
For a given unweighted network graph, this involves solving the following problem

(AU AV hy = \eha,, (AYAY") a, = Nlay, (13)

where h,, and a, are the hub score and authority score eigenvectors, corresponding to A} and
Ay, the largest eigenvalues of A" AV and AV AV respectively. The weighted network graphs,
hub and authority scores involve solving the following

(A" AY) hy = A h, (AY AV ay = Nay, (14)

where h,, and a,, are the hub score and authority score eigenvectors, corresponding to A}’
and A7, the largest eigenvalues of AV AW and AW AW respectively.

3. Empirical Findings

We apply our proposed methodology to the return time series of the first 10 crypto assets,
in terms of market capitalization, over the period September 13, 2017 — October 23, 2019 (771
daily observations). More precisely, we analyze the return series of Bitcoin (BTC), Ethereum
(ETH), Ripple (XRP), Tether (USD), Bitcoin Cash (BCH), Litecoin (LTC), Binance Coin
(BNB), Eos (EOS), Stellar (XLM), Tron (TRX) (in order of market capitalization). For
market index, we consider the CRIX Crypto Index (CRI), (see Hardle and Trimborn, 2018).

To understand the time dynamics, we plot the normalized crypto-asset log price series
in Figure 1. Due to differences in the values, plotting the original log prices would make it
difficult to visualize some of them. To overcome this limitation, we standardize each series
to a zero mean and unit variance and add the absolute minimum value of each series. This
keeps the values positive and standardizes the scale of measurement for the different series.

— BTC—— BCH— XLM
12 —
— ETH LTC — TRX
10 XRP — BNB—— CRI
8 —
6 —
4 —
2 —
0 - e
T T T T T T T T T T T T T T T T T T T T T T T T T T T

Sep 13 2017 Feb 012018 Jun 012018 Oct012018 Feb 012019 Jun012019 Oct01 2019

Figure 1: Normalized crypto asset price series.

Figure 1 confirms well-known features of cryptocurrencies, such as their overall high
volatility, except for the stable coin (USD); and their strong co-movement, as pointed out
by Corbet et al. (2018) and Bouri et al. (2019).
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To better understand the available data, we now calculate summary statistics. We would
like, however, to calculate them on the returns, and on the prices. For this purpose, let P ;
be the daily close price of crypto asset ¢ on trading day ¢t. We compute the daily returns as
the differences between the logarithms of successive daily closing prices, that is:

Xt =100 (log P;; —log P ;1)

Name Code Mean Sdev Min Max Skew. Kurt.
Bitcoin BTC 0.0858 4.3995 -20.7530 22.5119 -0.0693 3.3541
Ethereum ETH -0.0694 5.2720 -25.8859 23.4731 -0.3328 2.8990
Ripple XRP 0.0404 6.6688 -35.3279 60.6885 1.8943 17.0350
Tether USD -0.0000 0.6545 -4.7402 5.7158 0.4571 12.1055
Bitcoin Cash BCH -0.1134 7.5222 -40.9658 43.1582 0.4924 6.4695
Litecoin LTC -0.0283 6.0010 -39.5151 38.9338 0.6604 8.0194
Binance Coin BNB 0.3741 6.8343 -34.2318 48.2413 0.7909 7.7071
Eos EOS 0.1710 7.4623 -30.1615 34.7309 0.6020 3.9429
Stellar XLM 0.1772 7.6414 -32.8337 66.6779 1.4543 11.2702
Tron TRX 0.2564 9.9517 -38.2167 78.6667 2.0892 15.3649
Crypto Index CRI 0.0671 4.4851 -25.3340 19.8541 -0.6589 4.3882

Table 1: Descriptive Statistics for Cryptocurrency returns (September 14, 2017 — October 17, 2019).

Table 1 shows that the average of the daily return series is all close to zero, in line with
the economic theory regarding asset returns. However, the ten crypto assets exhibit different
variability in returns. In particular: USD shows the lowest relative variability; this is in line
with the fact that this a stable coin, and its price should not deviate too much. On the
other hand, TRX shows the highest standard deviation; indeed, this particular crypto asset
witnesses a period of high fluctuations during the considered sample period. The skewness of
the returns varies between -0.33 and - 2.1, with the majority of cryptocurrencies exhibiting
positive skewness. The kurtosis varies between 2.89 to 17, indicating a Leptokurtic behavior
of the daily return series. Most crypto assets exhibit values which reflects the non-Gaussian
and heavy tailed behaviour of their associated distribution. This is particularly true for XLM
and XRP, as already noted by Agosto and Cafferata (2020) .

The above considerations suggest that tail risk is to be taken into account, in the calcula-
tion of both systematic and systemic risk measures for crypto assets, in line with our proposed
methodology, and consistently with what remarked by Bouri et al. (2019) and Agosto and
Cafferata (2020) in the context of price bubble determination. In the next subsection, we
show our main empirical findings.

3.1. EDC for Cryptocurrencies

To compute the 7-quantile of the returns for the EDC analysis, we standardize the return
series to a zero mean and unit variance. We can then calculate the EDH Systemic for the
Crypto assets. Figure 2 shows the result of the extreme downside correlation (EDC) matrix
at 5%-quantile level, with correlations coefficients with lower than the 5% significance level
set to zeros. Figure 3 displays the corresponding graphical representation of the EDC as a
weighted network graph. The sign of the links are depicted with color codes such that green
represents positive associations and negative relationships are colored in red. The size of the
vertices corresponds to the degree of the nodes.
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BTC ETH XRP usD BCH LTC BNB EOS XLM TRX CRI

Figure 2: Extreme downside correlation (EDC) matrix at 5%-quantile level. The light (dark) green color
indicates weak (strong) positive correlations.

EDC Network

Figure 3: Graphical representation of the extreme downside correlation (EDC) matrix at 5%-quantile level.
The size of the vertices corresponds to the node-degrees.

The figures depict positive relationships between crypto-assets which is not surprising
since most people view cryptocurrencies as the same and cannot differentiate between them.
According to Table 2 and from a systematic perspective, we observe that left tail series of
the market index, CRI, is highly and strongly related to LTC and XLM (with correlation
coefficients around 0.9), followed by TRX, XRP, EOS, and BTC. The USD and BTC are the
only assets uncorrelated with the market index.

From the systemic perspective, we observed some form of clusters with centroids ETH
on one hand and BTC on the other. The top correlated assets with ETH are TRX, XRP,
BNB, and XLM, while that of BTC are EOS, LTC and XLM. Thus, of the two clusters,
XLM appears to be the only crypto asset with the strongest and same level of association
with ETH and BTC. Thus, XLM can be viewed as a bridge between the two clusters. The
evidence of two clusters with highly correlated features around ETH and BTC corroborates
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with the results by Bouri et al. (2019) and Agosto and Cafferata (2020). From an economic
viewpoint, this confirms the different nature of the two groups of crypto assets with (ETH,
TRX, XRP) constituting the “professional/technical” assets, while (BTC, EOS, LTC) forms
the “speculative” cryptocurrencies. The result confirms Bouri et al. (2019) emphasizing that
Bitcoin is not so strongly related to Ethereum, in terms of tail behavior. We notice that the
stable coin Tether (USD), as expected, is uncorrelated with the others. Bitcoin Cash (BCH)
is also uncorrelated with the majority of the assets due to its change over time.

To better understand the centrality of the crypto assets, we summarize the EDC network
using standard network measures as shown in Table 2. Since the EDC is an undirected
network, the in-degree and out-degree of nodes are the same for weighted and unweighted
networks. The same is true for hub and authority centrality measures. The table shows
that if centrality is expressed by the number of connected counterparties (degrees), then
apart from the market index (CRI), the most important crypto assets are Bitcoin (BTC),
alongside Litecoin (LTC) and EOS, followed by Ethereum (ETH), Stellar (XLM) and Tron
(TRX). The least connected assets are Tether (USD) and Bitcoin cash (BCH). If centrality,
however, depends on the importance of an individual’s neighbors (eigenvector, i.e, either hub
or authority), then the order of ranking of assets coincides with that of the degrees.

| InDeg.U = OutDeg.U | Hub.U = Auth.U | InDeg.W = OutDeg.W | Hub.W = Auth.W |

BTC 10 0.3345 3.8868 0.2468
ETH 9 0.3117 4.0879 0.2677
XRP 8 0.2925 5.3992 0.3582
USD 6 0.2238 0.8600 0.0559
BCH 5 0.1875 0.8480 0.0483
LTC 10 0.3345 5.8231 0.3667
BNB 8 0.2925 4.8347 0.3269
EOS 10 0.3345 4.5465 0.2715
XLM 9 0.3154 5.9161 0.3771
TRX 9 0.3154 5.7836 0.3732
CRI \ 10 \ 0.3345 \ 5.9389 \ 0.3703 \

Table 2: Centrality Measures for EDC network according to unweighted in-degree (InDeg.U), unweighted out-
degree (OutDeg.U), unweighted hub centrality (Hub.U), unweighted authority centrality (Auth.U), weighted in-
degree (InDeg. W), weighted out-degree (OutDeg. W), weighted hub centrality (Hub.W), and weighted authority
centrality (Auth.W). Boldface values indicate the best choice for each metric.

In terms of measuring centrality via weighted networks, the table shows Stellar (XLM) as
the top-ranked and the most important crypto asset based on weighted degree and eigenvector.
This is not surprising since the position of XLM makes it serve as the borderline between the
two clusters identified in Figure 2. By this line of reasoning, it is safe to conclude that Stellar
plays an important role in the cryptocurrency market as an intermediating asset between the
“professional /technical” group and the “speculative” ones.

3.2. Extreme Downside Hedging for Cryptocurrencies

To compute the 7-quantile of the returns for the EDH analysis, we standardize the return
series to a zero mean and unit variance. We then estimate the EDH measure considering three
different case scenarios. The first case is that of the EDH systematic model with n systems
of equations, where each equation models the return of each asset expressed as a function
of the ACVaR of the market index. The second scenario is the EDH systemic model with
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n systems of equations, where the i-th equation expresses the return of the i-th asset as a
function of the ACVaR of the remaining n — 1 assets. The third case combines the above
two scenarios in a single model: we refer to this case as the EDH Mix model. The results
from the calculation of the EDH systematic are presented in Figures 4 and 5.

Panel A of Figures 4 and 5 shows that the systematic EDH is positive for all cryptocur-
rencies, except for the stable coin USD, which is not affected by CRI. This result is consistent
with the fact that CRI is a weighted average, essentially, of the most capitalized cryptocur-
rencies. On the other hand, Tether is pegged to the dollar and, thus, it is a diversifier for
the other cryptos, exactly as the dollar would be. The results of the systematic EDH and
the EDC reveal a positive and statistically significant relationship between the tail risk of the
crypto assets and market index, which confirms the findings of Harris et al. (2019).

Panel B of Figure 4 shows the result of the systemic extension of the EDH. From the
figure, we quickly notice two blocks of assets based on the color-coding of the cells viewed
by columns. On one block are the red columns of the negative effect of downside risk on
the returns of the majority of assets. This group is centered around BTC, XRP, and BCH.
On the other hand, is the block of green columns which indicate a positive effect of tail risk
on the returns of many crypto assets. This group consists of ETH, LTC, EOS, and XLM.
Although USD and BNB seem to exhibit the characteristics of the former, their effects are
quite weak compared to those identified above. A similar result is observed when we include
the market index as depicted in Panel C of Figure 4. Focusing on BTC and ETH, we see
from their respective rows of Panels B that the returns of BTC is positively sensitive to the
tail risk of ETH, LTC, EOS, and XLM, while that of ETH is only positively exposed to LTC,
EOS, and XLM. Thus, both BTC and ETH are sensitive to the same set of assets except that
ETH affects BTC but not the reverse. The effect of ETH on BTC, however, vanishes when
the model is conditioned on the market index.

To place our findings in existing studies, the evidence of a negative systemic effect of the
tail risk of Bitcoin on other cryptocurrencies confirms the results in Agosto and Cafferata
(2020); Bouri et al. (2019) and Borri (2019), which suggests that Bitcoin acts as a safe haven
for “diversification” purposes in the crypto market. The positive systemic impact of ETH
makes it serve a “complementary” role. Further observations from the results suggest that,
although the tail returns of EOS and LTC appear strongly correlated with BTC as a “specu-
lative” class of assets according to EDC, the EDH reveals them as acting more similar to the
ETH. Thus, the Eos and Litecoin can be classified as “speculative” crypto assets that play a
more “complementary” role. Besides, XRP and TRX - although classified as “professional”
assets due to strong relationship with ETH according to EDC, these two cryptocurrencies
serve more as “diversification” assets. This leads us to classify the assets into four groups
based on the results of the EDC and EDH. The identified groups are: 1) “speculative” and
“diversification”, e.g. Bitcoin; 2) “professional” and “complementary”, e.g. Ethereum; 3)
“speculative” and “complementary”, e.g. Eos and Litecoin; and 4) “professional” and “diver-
sification”, e.g. Ripple and Tron. The “diversification” role of Ripple may be due to the fact
that it is controlled by a large consortium of banks.

To better understand the centrality of the crypto assets, Table 3 contains the calculated
summary measures. The result shows that, differently from what occurs to the EDC, IN and
OUT centrality measures are different. In terms of IN-measures (those who receive shocks)
Ethereum, followed by Bitcoin, are the most central: they can indeed be thought of represen-
tative of the two groups of cryptos: speculative rather than professional. In terms of OUT
measures, instead, Bitcoin Cash and Bitcoin are the most central. The asymmetric nature of

10



CRI- 0.61

BTC ETH XRP usD BCH LTC BNB EOS XLM TRX
(a) Panel A: EDH Systematic Model
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(b) Panel B: EDH Systemic Model
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(c) Panel C: EDH Mix Model

Figure 4: Extreme downside hedging (EDH) estimates for Panel A: Systematic, Panel B: Systemic, and Panel
C: Combined Systematic and Systemic. The light (dark) green color indicates weak (strong) positive effects,
and light (dark) red color indicates weak (strong) negative sensitivity to tail risk. Column labels of Panel B
and C are ACVaR (Explanatory Variables) and row labels are X;; (Dependent Variables).

the centrality measures confirms our economic classification of crypto-asset: speculative ones
on one hand, which mainly distribute contagion; professional ones on the other hand which
mainly receive contagion. Within them, BTC and ETH are their champions. Comparing
the systematic EDC and EDH note also that, when we consider the lower 95 percent of our
observations (EDC), in comparison with the 5 percent above (EDH), the results are different.
All correlations are positive in the former case and negative in the second. It means that, in
normal times, cryptocurrencies have positive correlations with each other, but in crash time
many of them are affected in a negative direction. This is consistent with what found by
Bouri et al. (2019) and Borri (2019).
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Panel A: EDH Systematic Network

Panel B: EDH Systemic Network Panel C: EDH Mix Model Network

Figure 5: Graphical representation of the Extreme downside hedging (EDH) for Panel A: EDH Systematic,
Panel B: EDH Systemic, and Panel C: EDH Mix.

‘ InDeg.U  OutDeg.U Hub.U Auth.U InDeg.W  OutDeg.W  Hub.W Auth.W

BTC 8 8 0.3613 0.3637 -0.1210 -1.5492 0.2573 0.4063
ETH 9 5 0.2461 0.4106 0.1927 1.5037 0.2173 0.3431
XRP 6 7 0.3446 0.2974 0.2467 -2.7971 0.3905 0.2301
USD 4 5 0.2322 0.1827 0.3526 -0.9634 0.1142 0.1483
BCH 6 9 0.4043 0.2752 -0.1419 -2.5791 0.4870 0.2533
LTC 7 7 0.3421 0.3144 0.0891 2.4994 0.3390 0.2212
BNB 7 5 0.2118 0.3399 0.0761 -0.6694 0.0738 0.4707
EOS 8 7 0.3269 0.3567 -0.0415 3.8829 0.5007 0.3532
XLM 5 7 0.3421 0.2110 0.1055 2.3852 0.3094 0.2445
TRX 7 7 0.2950 0.3399 0.2273 -0.7273 0.1308 0.3509

Table 3: Centrality Measures for EDH Systemic according to unweighted in-degree (InDeg.U), unweighted out-
degree (OutDeg.U), unweighted hub centrality (Hub.U), unweighted authority centrality (Auth.U), weighted in-
degree (InDeg. W), weighted out-degree (OutDeg. W), weighted hub centrality (Hub.W), and weighted authority
centrality (Auth.W). Boldface values indicate the best choice for each metric.
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4. Sensitivity Analysis

To validate the sensitivity of our empirical results, and our conclusions, we have conducted
several robustness checks, as described by the following tables. The stability of the obtained
results confirms the validity of our results.

BTC L 001§ 0.20
ETH
XRP
usD
BCH
LTC
BNB|
EOS
XLM
TRX
CRI

BTC ETH XRP usbD BCH LTC BNB EOS XLM TRX CRI

BTC
ETH
XRP
usbD
BCH
LTC
BNB
EOS
XLM
TRX
CRI

BTC ETH XRP . uSsD . BCH LTC BNB EOS XLM TRX CRI
(b) Panel B: EDC (7 = 10%)

Figure 6: Extreme downside correlation (EDC) matrix for Panel A: EDC (7 = 1%) and Panel B: EDC
(r = 10%). The light (dark) green color indicates weak (strong) positive correlations.

5. Conclusions

In the paper, we proposed a methodology to measure systemic tail risk, extending the tail
systematic measures introduced by Harris et al. (2019) into a multivariate network modeling
framework. Doing so we also extend the EDC and EDH to study bubble inter-contentedness
to crypto-asset market, very well known for the presence of extreme risks.

The results of the systematic EDH and the EDC reveal a positive and statistically signif-
icant relationship between the tail risk of the crypto assets and the weighted average market
index. This corroborates the results of a significantly positive tail risk premium by Harris
et al. (2019). The extension of EDC to systemic tail risk analysis reveals two main clusters of
crypto assets. On one hand is the group of assets with “speculative” behavior, like Bitcoin,
EOS and Litecoin, and one the other hand is the group with “professional” outlook, like
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Figure 7: Sensitivity (t = 1%) EDH estimates for Panel A: Systematic, Panel B: Systemic, and Panel C:
Combined Systematic and Systemic. The light (dark) green color indicates weak (strong) positive effects, and
light (dark) red color indicates weak (strong) negative sensitivity to tail risk. Column labels of Panel B and C
are ACVaR (Explanatory Variables) and row labels are X;; (Dependent Variables).

Ethereum, Tron, and Ripple. We find evidence of Stellar acting as a bridge between the two
clusters. Within these two groups, Bitcoin and Ethereum can be thought of as the “cham-
pions”. Stable coins, as expected, are a world on its own. The results of the EDH, however,
shows that the two group cluster of the EDC can be decomposed further into four, consisting
of 1) “speculative” and “ diversification”, e.g. Bitcoin; 2) “professional” and “complemen-
tary”, e.g. Ethereum; 3) “speculative” and “complementary”, e.g. Eos and Litecoin; and 4)
“professional” and “ diversification”, e.g. Ripple and Tron. The centrality of the EDC and
EDH networks shows the asymmetric nature of the two groups: while Bitcoin and Bitcoin
cash are mainly agents of tail contagion, Ethereum and Ripple are the most vulnerable.
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Figure 8: Sensitivity (7 = 10%) EDH estimates for Panel A: Systematic, Panel B: Systemic, and Panel C:
Combined Systematic and Systemic. The light (dark) green color indicates weak (strong) positive effects, and
light (dark) red color indicates weak (strong) negative sensitivity to tail risk. Column labels of Panel B and C
are ACVaR (Explanatory Variables) and row labels are X;+ (Dependent Variables).

A possible limitation of the study may stem from the fact that although estimating the
EDH model with maximum likelihood may seem convenient, the downside to its implementa-
tion for the network construction is the inability to quantify the uncertainty that characterizes
network link prediction. This may be propagated through multiple testing, thereby affecting
the estimated network and its implication. Further study to authenticate the findings will be
to adopt a Bayesian approach, which handles the link uncertainty problem by incorporating
prior information where necessary and applying model averaging (see Ahelegbey et al., 2016).

Future research may consider the application of the methodology to other financial markets
and, possibly, the study of its implications for portfolio allocation models.
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