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Predicting Chinese Stock Market Crashes

Abstract

Predicting stock market crashes has been a focus of interest for both researchers and

practitioners. Over the years, several prediction models have been developed, mostly for

use on mature financial markets. In this paper, we investigate whether traditional crash

predictors, the price-to-earnings ratio and the Bond-Stock Earnings Yield Differential model,

work for the Shanghai Stock Exchange Composite Index.

Keywords: stock market crashes, Shanghai Stock Exchange, Bond-Stock Earnings Yield Dif-

ferential (BSEYD), price-earnings-ratio, Cyclically-Adjusted Price Earnings ratio (CAPE).

JEL classification: C12, C13, C15, G14, G15.
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Through the summer of 2015, the gyrations of the Shanghai stock exchange captured the

headlines of the financial press. In fact, what has been labeled the “2015 Chinese stock mar-

ket crash” is just the latest in a series of eighteen major downturns in the twenty-five years of

the Chinese stock market history. Headlines aside, the Chinese stock market is certainly one

of the most interesting equity markets in the world by its size, scope, structure and recency.

These features have a deep influence on the behavior and returns of the Chinese stock market.

First, we discuss four key stylized facts on the return distribution of the Shanghai Stock

Exchange Composite Index (SHCOMP). Then, we explain how equity downturn and crash

prediction models work, and how to test their accuracy. The construction process for the

signal and hit sequence is crucial to ensure that the crash prediction models produce out of

sample predictions free from look-ahead bias. It also eliminates data snooping by setting the

parameters ex ante, with no possibilities of changing them during the analysis. More impor-

tantly, the construction process removes the effect of autocorrelation, making it possible to

test the accuracy of the measures using standard statistical techniques. We also conduct a

Monte Carlo study to address small sample bias.

In this paper, we test whether the price-to-earnings ratio (P/E) based on current earnings,

the Bond-Stocks Earnings Yield Differential model (BSEYD) and the Cyclically Adjusted

Price-to-Earnings ratio (CAPE), accurately predicts the downturns of the SHCOMP. We

find that the logarithm of the P/E has successfully predicted crashes over the entire length

of the study (1990-2015). On a shorter 9-year period (2006-2015), we find mixed evidence

of the predictive ability of the BSEYD models and CAPE. Overall, this study provides sup-

porting evidence for the application of crash prediction models to the Chinese market.
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I. A Brief Overview of the Chinese Stock Market

Mainland China has two stock exchanges, the Shanghai Stock Exchange (SSE, 上海证

券交易所) and the Shenzhen Stock Exchange (深圳证券交易所). The Shanghai Stock

Exchange is the larger of the two. It is also the fifth largest stock market in the world by

market capitalization. The modern Shanghai Stock Exchange officially came into being on

November 26, 1990 and started trading on December 19, 1990. The Shenzhen Stock Ex-

change was formally founded on December 1, 1990, and it started trading on July 3, 1991.

While the largest and most established companies usually trade on the Shanghai Stock Ex-

change, the Shenzhen Stock Exchange is home to smaller and privately-owned companies.

Taken together, the Shanghai and Shenzhen Stock Exchanges represent the second largest

stock market in the world after the New York Stock Exchange.

On November 17, 2014, the Chinese government launched the Shanghai-Hong Kong Stock

Connect (沪港通) to enable investors in either market to trade shares on the other market.

This initiative heralds closer integration between securities markets in China.

Chinese companies may list their shares under various schemes, either domestically or

abroad. Domestically, companies may issue:

• A-shares: common stocks denominated in Chinese Reminbi and listed on the Shanghai

or Shenzhen stock exchanges.

• B-shares: special purpose shares denominated in foreign currencies but listed on the

domestic stock exchange. Until 2001, only foreign investors had access to B-shares.

In addition to B-shares, foreign investors interested in the Chinese equity market may

also buy:
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• H-shares: shares denominated in Hong Kong Dollars and traded on the Hong Kong

Stock Exchange.

• L-chips, N-chips and S-chips: shares of companies with significant operations in China,

but incorporated respectively in London, New York and Singapore.

• American Depository Receipts (ADRs): an ADR is a negotiable certificate issued by

a U.S. bank representing a specified number of shares in a foreign stock traded on an

American exchange. As of October 2015, there were around 110 Chinese ADRs listed

on American exchanges and another 200 Chinese ADRs on American over-the-counter

markets.

The diversity of investment schemes available shows that the Shanghai and Shenzhen

Stock Exchange are a large, crucial part of the Chinese equity market, but do not represent

the whole market. For example, there are also red chips (shares of companies incorporated

outside mainland China but owned or substantially controlled by Chinese state-owned com-

panies) and P-chips (shares of companies owned by private individuals and traded outside

mainland China, for example on the Hong Kong stock exchange). Our study focuses on

equity market downturns on the Shanghai Stock Exchange.

II. Four Key Stylized Facts

The Shanghai Stock Exchange Composite Index (上 海 证 券 交 易 所 综 合 股 价 指), or

SHCOMP (上证综指), is the main Chinese stock index. In October 2015, the SHCOMP

consisted of the shares of 1,070 Chinese companies.

We observe and discuss four key stylized facts on the historical distribution of daily log

returns on the SHCOMP. Undoubtedly, various aspects of the index are also interesting and
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warrant a thorough analysis similar to Cont’s analysis of the S&P500 (Cont, 2001), but this

is beyond the scope of this paper.

A. Stylized Fact 1: The Return distribution is highly volatile,

right skewed and has very fat tails

Figure 1 displays the evolution of the SHCOMP since its launch on December 19, 1990,

as well as the distribution of daily log returns on the index.

Table 1 shows that over the entire period, the daily log return on the SSE averaged

0.06%, with a median return of 0.07%. The lowest and highest daily returns were respec-

tively -17.91% and +71.92%. The exhibit also gives the corresponding statistics at a weekly

and monthly frequency.

The returns are highly volatile: the standard deviation of daily returns is 2.40%, equiva-

lent to around 40 times the mean daily return. The distribution of daily returns is positively

skewed (skewness = 5.26) with very fat tails (kurtosis = 149). As a result, the Jarque-Bera

statistic reaches 5,419,808, rejecting normality at any level of significance. The Jarque-Bera

statistic also leads to a strong rejection of normality for weekly and monthly data. The ag-

gregational gaussianity, the phenomenon in which the empirical distribution of log-returns

tends to normality as the time scale ∆t over which the returns are calculated increases,

observed by Cont (2001) on the S&P500, has a much weaker effect on the SHCOMP.

[Place Figure 1 here]

[Place Table 1 here]
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B. Stylized Fact 2: Log returns on the SHCOMP do not exhibit

significant autocorrelation

Figure 2 shows that the autocorrelation of daily log returns is low. The autocorrelation

does not appear statistically meaningful and partial autocorrelation up to lag 20 stays within

the interval [−0.03, 0.06]. This implies that the SHCOMP does not have a short-term

memory: today’s return does not help to forecast tomorrow’s return.

[Place Figure 2 here]

C. Stylized Fact 3: No fewer than six states are necessary to

capture the evolution of the returns with a Gaussian Hidden

Markov Chain

Hidden Markov Models (HMMs) are a useful way to model the behavior of a physical or

economic system when we suspect that this behavior is determined by the transition between

a finite number of underlying but unobservable “regimes” or “states.” We refer the reader

to Rabiner (1989) and Rabiner and Juang (1993) for an excellent tutorial on HMMs.

The simplest, and often the best, HMM models are Gaussian Hidden Markov Chains.

In these models, the returns in each state are normally distributed, but the parameters of

the distribution depend on the state. As the state changes over time, the returns will be

drawn from different distributions, resulting in an aggregate distribution that bears little

resemblance to a normal one. Gaussian HMMs are estimated via the Baum-Welch algo-

rithm (Baum, Petrie, Soules, and Weiss, 1970), an application of the well-known EM algo-

rithm (see Dempster, Laird, and Rubin, 1977).

One of the difficulties is to find the optimal number of states for the model. To that end,
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it is customary to use an information criterion such as the Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC) to discriminate between model formula-

tions. The optimal model will minimize the criterion.

Table 2 presents the LogLikelihood, AIC and BIC for a fitted HMM with one to seven

states. Contrary to the LogLikelihood, the AIC and BIC penalize the model for the number

of parameters used. For the SHCOMP, we find that the optimal model specification, the

specification that minimizes the AIC and BIC, is a six state model.

[Place Table 2 here]

The transition probability matrix P equals



8.7520e− 01 3.9815e− 03 1.1249e− 01 1.5765e− 27 7.1677e− 03 1.1572e− 03

8.6346e− 51 2.3576e− 01 1.0069e− 04 7.5280e− 01 2.1882e− 193 1.1332e− 02

3.5656e− 02 2.2829e− 02 9.4090e− 01 4.6334e− 06 6.1205e− 04 6.8722e− 51

1.0453e− 45 4.4398e− 01 2.5787e− 02 5.3023e− 01 3.4880e− 236 1.7463e− 20

2.6672e− 01 1.9219e− 228 7.0054e− 187 4.8388e− 298 7.3328e− 01 1.5823e− 238

4.2126e− 108 1.3715e− 01 3.2580e− 83 1.1485e− 30 2.3927e− 275 8.6285e− 01


The initial probability and the parameters of the normal distribution for each state are given

in Table 3.

[Place Table 3 here]

Finally, we use the Vitterbi (1967) aalgorithm to backtrack the evolution of the HMM

for the SHCOMP. The most likely historical path of the HMM across the six states is shown

in Figure 3.
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[Place Figure 3 here]

D. Stylized Fact 4: Downturns and large market movements occur

frequently

The return distribution of the SHCOMP has fat tails, which indicates that extreme events

are more likely to occur than a Normal distribution would predict. In fact, we counted 26

market movements with cumulative returns of 10% or more and 24 market movements with

losses of 10% or more in the 25 years since the SHCOMP started trading.

Earlier studies, such as Lleo and Ziemba (2015a,b), defined an equity market downturn

or crash as a decline of at least 10% from peak to trough based on the closing prices for the

day, over a period of at most one year. Given the frequency of large market movements in

the SHCOMP, we redefine an equity market downturn or crash as a decline of at least 20%

in the level of the SHCOMP from peak to trough based on closing prices for the day, over a

period of at most one year (252 trading days).

We identify a correction on the day when the daily closing price crosses the 20% threshold.

The identification algorithm is as follows:

1. Identify all the local troughs in the data set. Today is a local trough if there is no lower

closing price within ±d business days.

2. Identify the crashes. Today is a crash identification day if all of the following conditions

hold:

(a) The closing level of the SHCOMP is down today at least 20% from its highest

level within the past year, and the loss was less than 20% yesterday;
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(b) This highest level reached by the SHCOMP prior to the present crash differs from

the highest level corresponding to a previous crash; and

(c) This highest level occurred after the local trough that followed the last crash.

The objective of these rules is to guarantee that the downturns we identify are distinct. Two

downturns are not distinct if they occur within the same larger market decline. Although

these rules might be argued with, they have the advantage of being unambiguous, robust

and easy to apply.

Table 4 presents the 18 downturns that occurred between December 19, 1990 and October

31, 2015. On average, a downturn lasted 199 days and caused a 35.1% decline in the value

of the SHCOMP.

[Place Table 4 here]

III. How Equity Downturn Prediction Models Work

From these stylized facts, it is clear that the SHCOMP behaves differently from the

mature markets in Europe and North America. In order to apply the equity downturn pre-

diction models to the SHCOMP, we need to examine the inner workings of these models:

how they are constructed, how to convert them into a testable model, and how to test the

accuracy of their predictions.

The construction process for the signal and hit sequence is crucial to ensure that the

crash prediction models produce out of sample predictions free from look-ahead bias. It also

eliminates data snooping by setting the parameters ex ante during the signal construction,

with no possibilities of changing them when we construct the hit sequence. More importantly,

the construction of the hit sequence removes the effect of autocorrelation, making it possible
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to test the accuracy of the measures using a standard likelihood ratio test. In addition to

the standard likelihood ratio test using the asymptotic χ2 distribution, we conduct a Monte

Carlo study on the empirical distribution to address small sample bias.

A. Signal Construction

Equity market crash prediction models such as the BSEYD (Ziemba and Schwartz, 1991;

Lleo and Ziemba, 2012, 2015b), the high P/E model (Lleo and Ziemba, 2015b), the varia-

tions on Warren Buffett’s market value-to-GNP measure (Lleo and Ziemba, 2015a), or the

continuous time disorder detection model (Shiryaev, Zitlukhin, and Ziemba, 2014, 2015)

generate a signal to indicate a downturn in the equity market at a given horizon h. This

signal occurs whenever the value of a crash measure crosses a threshold. Given a prediction

measure M(t), a crash signal occurs whenever

SIGNAL(t) = M(t)− K(t) > 0(1)

where K(t) is a time-varying threshold for the signal.

Three key parameters define the signal: (i) the choice of measure M(t); (ii) the definition

of threshold K(t); and (iii) the specification of a time interval H between the occurrence of

the signal and that of an equity market downturn.

We test the measures using two time-varying thresholds: (1) a dynamic confidence in-

terval based on a Normal distribution; and (ii) a dynamic confidence interval using Cantelli’

s inequality - see Problem 7.11.9 in Grimmett and Stirzaker (2001) for a statement of the

mathematical result, and Lleo and Ziemba (2012, 2015b) for applications to crash predictions.

To construct the confidence intervals, we compute the sample mean and standard devia-
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tion of the distribution of the measures as a moving average and a rolling horizon standard

deviation respectively. Using rolling horizon means and standard deviations has the ad-

vantage of providing data consistency. Importantly, this construction is purely in-sample.

The h-day moving average at time t, denoted by µh
t , and the corresponding rolling horizon

standard deviation σh
t are

µh
t =

1

h

h−1∑
i=0

xt−i, σh
t =

√√√√ 1

h− 1

h−1∑
i=0

(xt−i − µh
t )

2.

We establish the one-tailed confidence interval at a 95% level. This corresponds to 1.645

standard deviations above the mean in the Normal distribution.

Cantelli’s inequality relates the probability that the distance between a random variable

X and its mean µ exceeds a number k > 0 of standard deviations σ to provide a robust

confidence interval:

P [X − µ ≥ kσ] ≤ 1

1 + k2
.

Setting α = 1
1+k2

yields P
[
X − µ ≥ σ

√
1
α
− 1
]
≤ α. The parameter α provides an upper

bound for a one-tailed confidence level on any distribution. In our analysis, the horizon for

the rolling statistics is h = 252 days. We select α = 25% which produces a slightly higher

threshold than the standard confidence interval. In a Normal distribution, we expect 5%

of the observations to lie in the right tail, whereas Cantelli’s inequality implies that the

percentage of outliers in a distribution may reach up to 25%.

The last parameter we need to specify is the horizon H. Recall that the crash identification

time is the date by which the SHCOMP has declined by at least 20% in the last year (252

trading days). We define the local market peak as the highest level reached by the market
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index within 252 trading days before the crash. We set the horizon H to a maximum of 252

trading days prior to the crash identification date.

B. Construction of the Hit Sequence X

Crash prediction models have two components: (1) a signal, which takes the value 1

or 0 depending on whether the measure has crossed the confidence level, and (2) a crash

indicator, which takes the value 1 when an equity market correction occurs and 0 otherwise.

From a probabilistic perspective, these components are Bernoulli random variables, but

they exhibit a high degree of autocorrelation, that is, a value of 1 (0) for the crash signal is

more likely to be followed by another value of 1 (0) on the next day. This autocorrelation

makes it difficult to test the accuracy of the model.

To remove the autocorrelation effect, we define a signal indicator sequence S = {St, t = 1, . . . , T}.

This sequence records as the signal date the first day in a series of positive signals, and it

only counts distinct signal dates. Two signals are distinct if a new signal occurs more than

30 days after the previous signal. The objective is to have enough time between two series of

signals to identify them as distinct. The signal indicator St takes the value 1 if date t is the

starting date of a distinct signal, and 0 otherwise. Thus, the event “a distinct signal starts

on day t” is represented as {St = 1}. We express the signal indicator sequence as the vector

s = (S1, . . . , St, . . . , ST ). This construction effectively removes the effect of autocorrelation.

For the crash indicator, we denote by Ct,H the indicator function returning 1 if the crash

identification date of at least one equity market correction occurs between time t and time

t + H. We identify the vector CH with the sequence CH := {Ct,H , t = 1, . . . , T −H} and

define the vector cH := (C1,H , . . . , Ct,H , . . . CT−H,H). The number of correct predictions n is
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defined as

n =
T∑
t=1

Ct,H = 1′cH .

The accuracy of the crash prediction model is the conditional probability P (Ct,H = 1|St =

1) of a crash being identified between time t and time t+H, given that we observed a signal

at time t. The higher the probability, the more accurate the model.

We use maximum likelihood to estimate this probability and to test whether it is sig-

nificantly higher than a random guess. We obtain a simple analytical solution because

the conditional random variable {Ct,H = 1|St = 1} is a Bernoulli trial with probability p =

P (Ct,H = 1|St = 1).

To estimate the probability p, we change the indexing to consider only events along the

sequence {St|St = 1, t = 1, . . . T} and denote by X := {Xi, i = 1, . . . , N} the “hit sequence”

where xi = 1 if the ith signal is followed by a crash and 0 otherwise. Here N denotes the

total number of signals, that is

N =
T∑
t=1

St = 1′s

where 1 is a vector with all entries set to 1 and v′ denotes the transpose of vector v. The

sequence X can be expressed in vector notation as x = (X1, X2, . . . , XN). The empirical

probability p is the ratio n/N .
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C. Maximum Likelihood Estimate of p = P (Ct,H |St) and Likelihood

Ratio Test

The likelihood function L associated with the observations sequence X is

L(p|X) :=
N∏
i=1

pXi(1− p)1−Xi

and the log likelihood function L is

L(p|X) := lnL(p|X) =
N∑
i=1

Xi ln p+

(
N −

N∑
i=1

Xi

)
ln(1− p)

This function is maximized for p̂ :=
∑N

i=1 Xi

N
so the maximum likelihood estimate of the prob-

ability p = P (Ct,H |St), is in fact the historical proportion of correct predictions.

We apply a likelihood ratio test to test the null hypothesis H0 : p = p0 against the

alternative hypothesis HA : p ̸= p0. The null hypothesis reflects the idea that the probability

of a random, uninformed signal correctly predicting crashes is p0. A significant departure

above this level indicates that the measure we are considering contains some information

about future equity market corrections. The likelihood ratio test is:

Λ =
L(p = p0|X)

maxp∈(0,1) L(p|X)
=

L(p = p0|X)

L(p = p̂|X)
.(2)

The statistic Y := −2 lnΛ is asymptotically χ2-distributed with ν = 1 degree of freedom.

We reject the null hypothesis H0 : p = p0 and accept that the model has some predictive

power if Y > c, where c is the critical value chosen for the test.

We perform the test for the three critical values 2.71, 3.84, and 6.63 corresponding re-

spectively to a 90%, 95% and 99% confidence level.
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The probability p0 is the probability to identify an equity market downturn within 252

days of a randomly selected period. To compute p0 empirically, we tally the number of days

that are at most 252 days before a crash identification date and divide by the total number

of days in the sample.

D. Monte Carlo Study for Small Sample Bias

A limitation of this likelihood ratio test is that the χ2 distribution is only valid asymp-

totically. In our case, the number of correct predictions follows a binomial distribution with

an estimated probability of success p̂ and N trials. However, “only” 18 crashes occurred

during the period considered in this study: the continuous χ2 distribution might not provide

an adequate approximation for this discrete distribution. This difficulty is an example of

small sample bias. We use Monte Carlo methods to obtain the empirical distribution of test

statistics and address this bias.

The Monte Carlo algorithm is as follows. Generate K = 10, 000 paths. For each path

k = 1, . . . , K, simulate N Bernoulli random variables with probability p0 of obtaining a

“success.”

Denote by Xk :=
{
Xk

i , i = 1, . . . , N
}

the realization sequence where xk
i = 1 if the ith

Bernoulli variable produces a “success” and 0 otherwise.

Next, compute the maximum likelihood estimate for the probability of success given the

realization sequence Xk as p̂ :=
∑N

i=1 X
k
i

N
, and the test statistic for the path as

Yk = −2 lnΛk = −2 ln L(p = p0|Xk)

maxp∈(0,1) L(pk|Xk)
= −2 ln L(p = p0|Xk)

L(p = p̂k|Xk)
.
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Once all the paths have been simulated, we use all K test statistics Yk, k = 1, . . . , K to

produce an empirical distributions for the test statistic Y .

From the empirical distribution, we obtain critical values at a 90%, 95% and 99% con-

fidence level, against which we assess the crash prediction test statistic Y . The empirical

distribution also enables us to compute a p-value for the crash prediction test statistics.

Finally, we compare the results obtained with the empirical distribution to those derived

using the asymptotic χ2 distribution.

We are ready to implement this approach on a first predictive measure: the price-to-

earnings ratio.

IV. The Price-to-Earnings Ratio

Practitioners have used the price-to-earnings (P/E) ratio to gauge the relative valua-

tion of stocks and stock markets since at least the 1930s (for example, Graham and Dodd,

1934, discuss the use of the P/E ratio in securities analysis and valuation). In this sec-

tion, we analyze the predictive ability of the P/E ratio calculated using current earnings.

The advantage of this definition for the SHCOMP is that it is available over the entire period.

Table 5 shows that the P/E and logarithm of the P/E generated a total of 18 signals

(based on normally distributed confidence intervals) and 19 signals (based on Cantelli’s in-

equality). The number of correct predictions across models ranges from 15 to 18 and the

accuracy of the models ranges from 83.33% for a signal based on the P/E ratio, to 94.74%

for a signal computed using the logarithm of the P/E ratio. The type of confidence interval

- normal distribution or Cantelli’s inequality - only have a minor influence on the end result.
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Next, we test the accuracy of the prediction statistically. Before applying the likelihood

ratio test, we need to compute the uninformed prior probability p0 that a day picked at

random will precede a crash identification date by 252 days or less. We find that this proba-

bility is very high, at p0 = 71.17%. This finding is consistent with the stylized facts discussed

in Section 2. The Likelihood ratio test then shows that the logarithm of the P/E ratio is

a significant predictor of bear markets at (or near) a 99% confidence level. Although the

accuracy of the P/E ratio is markedly higher than p0, we cannot conclude that this measure

is in itself significant.

[Place Table 5 here]

We continue our analysis with a Monte Carlo test for small sample bias, presented in

Table 6. We compute the critical values at a 90%, 95% and 99% confidence level for the

empirical distribution. Because we only have a limited number of signals, the distribution is

lumpy, making it difficult to obtain meaningful p-values. Still, we find that the Monte Carlo

analysis confirms our earlier conclusions about significance of the logarithm of the P/E ratio.

[Place Table 6 here]

V. The Cyclically-Adjusted Price-to-Earnings Ratio and

the Bond-Stocks Earnings Yield Differential Model

The drawback of the P/E ratio calculated using current earnings is that it might be might

be overly sensitive to current economic and market conditions. Graham and Dodd (1934)

warned against this risk and advocated the use of a P/E ratio based on average earnings

over ten years. In their landmark survey, Campbell and Shiller (1988) found that the R2

of a regression of log returns on the S&P 500 over a 10-year period against the log of the
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price-earnings ratio computed using average earnings over the previous 10 and 30 years is

significant (see Lleo and Ziemba, 2015b, for a review of the literature and a discussion of the

key results.). This led Shiller to suggest the use of a Cyclically Adjusted Price-to-Earnings

ratio (CAPE), or a price-to-earnings ratio using 10-year average earnings, to forecast the

evolution of the equity risk premium (see Shiller, 2015).

The BSEYD, the second model we test, relates the yield on stocks (measured by the

earnings yield, which is also the inverse of the P/E ratio) to that on nominal Government

bonds.

(3) BSEYD(t) = r(t)− ρ(t) = r(t)− E(t)

P (t)
,

where ρ(t) is the earnings yield at time t and r(t) is the current 10-year government bond

yield r(t). The BSEYD was initially developed for the Japanese market shortly before the

crash of 1990 (Ziemba and Schwartz, 1991), and it has since been used successfully on a

number of international markets (see the review article Lleo and Ziemba, 2015c), including

the 2007-2008 SHCOMP meltdown (Lleo and Ziemba, 2012).

In this section, we test the forecasting ability of four measures:

1. PE0: P/E ratio based on current earnings. This is the measure we tested in Section IV;

2. CAPE10: CAPE, which is a P/E ratio computed using average earnings over the

previous 10-years;

3. BSEYD0: BSEYD based on current earnings;

4. BSEYD10: BSEYD using average earnings over the previous 10-years.

We also test the logarithm of these measures: logPE0, logCAPE10, logBSEYD0 and

logBSEYD10.
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Because the CAPE10 and BSEYD10 require 10 years of earnings data, and the Bloomberg

data series for 10-year government bonds only starts on October 31, 2006, we cannot use

the full range of stock market data. The analysis in this section covers the period between

October 31, 2006 and September 30, 2015. Over this period, the SHCOMP experienced six

declines of more than 20% of its value.

Table 7 displays the results for the eight measures, calculated with a confidence interval

based on a normal distribution. The results for a confidence interval based on Cantelli’s in-

equality are identical and have been omitted. The measures in our study generated between

three signals for CAPE10 and logCAPE10 and six signals for BSEYD0. The accuracy of

the measures reaches a low of 50% for logBSEYD0 and a high of 100% for CAPE10 and

logCAPE10. Only four of the eight measures are 75% accurate or better.

By comparison, the uninformed prior probability that a day picked at random will pre-

cede a crash identification date by 252 days or less is p0 = 70.99%. Because of the relatively

short period and small number of downturns, only CAPE10 and logCAPE10 appear signif-

icant. However, these two models only predicted three of the six crashes.

Overall, the BSEYD-based models do not perform as well as the P/E-based models. This

is surprising, because the BSEYD model contains additional information that is not in the

P/E, namely government bond yields. In addition, the BSEYD and logBSEYD models have

been shown to perform better than the P/E ratio and CAPE on the American market (Lleo

and Ziemba, 2015b). One possible explanation for this paradox is that the BSEYD-based

measures tend to produce a signal earlier than the P/E ratio. For example, if we double

the lead-time of the measures from 252 days to 504 days, the accuracy of the logBSEYD10

model improves to 100% with all 6 crashes predicted. However, the same adjustment does
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not produce a similarly spectacular improvement for the BSEYD0 and logBSEYD0 models.

[Place Table 7 here]

The Monte Carlo study for small sample bias, presented in Table 8 confirms these findings.

[Place Table 8 here]

VI. Conclusion

The Chinese stock market is certainly one of the most interesting equity markets in the

world. Its size, scope, structure and recency make it unique. These characteristics inevitably

affect its behavior and returns. Although the Shanghai Stock Exchange is currently world’s

fifth largest stock exchange by market capitalization, its behavior is much more volatile and

extreme than that of more mature equity markets in Europe, North America or East Asia.

Our investigation of traditional crash predictors reveals that the logarithm of the P/E

calculated using current earnings has successfully predicted crashes over the entire length of

the study. We also found that the P/E ratio outperformed an uninformed benchmark, but

that this outcome was not statistically significant.

We found mixed evidence for the BSEYD models and CAPE over a shorter 9-year period.

Although five of the eight models tested were 75% accurate or better, the historical sample

was too short to confirm whether this advantage was statistically significant. We also found

that the BSEYD measures performed less well than expected. The BSEYD provides an

accurate signal typically more than a year before a crash is identified, outside of the range

use for our test.
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Overall, this study shows clearly that crash prediction models can be applied directly to

the Chinese market, and reveals potential areas for further research both on the behavior of

Chinese equity markets and on crash prediction models.
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Figure 1: Evolution of the SHCOMP Index and empirical distribution of the daily log
return (December 19, 1990 - September 30, 2015).
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Descriptive Statistics Frequency
Daily Weekly Monthly

Number of observations 6,055 1,286 299
Mean 0.0572% 0.2714% 1.1152%
Median 0.0682% 0.0741% 0.7164%
Minimum -17.9051% -22.6293% -37.3283%
Maximum 71.9152% 90.0825% 101.9664%
Standard deviation 2.3999% 5.6249% 12.9767%
Variance 0.0006 0.0032 0.0168
Skewness 5.2594 5.3774 2.3729
Kurtosis 149.1905 78.3044 20.7136
Jarque-Bera statistics 5,419,808 310,056 4,190
(p-value) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)

Table 1: Descriptive statistics for daily, weekly and monthly log returns on the
SHCOMP
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Figure 2: Autocorrelation and partial autocorrelation of the daily log returns on the
SHCOMP
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Criterion 1 2 3 4 4 6 7
LogLikelihood 13,992.53 16,015.10 16,329.13 16,383.62 16,600.10 16,677.31 16,685.14
AIC -27,981.06 -32,016.20 -32,630.26 -32,721.25 -33,132.21 -33,260.61 -33,246.27
BIC -27,967.64 -31,969.24 -32,536.34 -32,566.95 -32,904.11 -32,945.31 -32,830.34

Table 2: Hidden Markov Model fitting for the daily log returns on the SHCOMP

State Initial Probability Mean Standard Deviation
1 0.00 -0.2909% 4.5990%
2 0.00 0.0580% 0.5096%
3 0.00 0.0973% 1.9328%
4 0.00 -0.0435% 1.2217%
5 1.00 9.4089% 17.1468%
6 0.00 -0.9600% 0.0519%

Table 3: Initial probability and parameters of the Gaussian distributions for each state
of the HMM
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Crash
Identifica-
tion Date

Peak Date SHCOMP
Index at Peak

SHCOMP
Level at

20% Cutoff

Trough date SHCOMP
Level at

trough

Peak-to-
trough de-

cline (%)

Peak-to-
trough du-

ration
(in days)

1 1992-06-03 1992-05-25 1421.57 1137.26 1992-11-17 393.52 72.3% 176
2 1993-03-01 1993-02-15 1536.82 1229.46 1993-03-31 925.91 39.8% 44
3 1994-09-30 1994-09-13 1033.47 826.78 1995-02-07 532.49 48.5% 147
4 1995-10-04 1995-05-22 897.42 717.94 1996-01-22 516.46 42.5% 245
5 1996-12-17 1996-12-09 1247.66 998.13 1996-12-24 865.58 30.6% 15
6 1997-07-02 1997-05-12 1500.40 1200.32 1997-09-23 1041.97 30.6% 134
7 1998-08-17 1998-06-03 1420 .00 1136.00 1998-08-17 1070.41 24.6% 75
8 1999-12-22 1999-06-29 1739.21 1391.36 1999-12-27 1345.35 22.6% 181
9 2001-09-17 2001-06-13 2242.42 1793.94 2002-01-22 1358.69 39.4% 223
10 2003-01-10 2002-07-08 1732.93 1386.35 2003-03-26 1384.86 20.1% 261
11 2004-06-25 2004-04-06 1777.52 1422.01 2004-09-13 1260.32 29.1% 160
12 2005-08-12 2004-09-23 1464.78 1171.82 2005-12-05 1079.19 26.3% 438
13 2007-11-27 2007-10-16 6092.06 4873.65 2008-11-04 1706.70 72.0% 385
14 2009-08-31 2009-08-04 3471.44 2777.15 2009-08-31 2667.75 23.2% 27
15 2010-08-18 2009-11-23 3338.66 2670.93 2010-09-20 2588.71 22.5% 301
16 2011-08-08 2010-11-08 3159.51 2527.61 2012-01-05 2148.45 32.0% 423
17 2012-12-03 2012-03-02 2460.69 1968.55 2012-12-03 1959.77 20.4% 276
18 2015-06-29 2015-06-12 5166.35 4133.08 2015-08-26 2927.29 43.3% 75

Table 4: The SHCOMP Index experienced 18 crashes between December 19, 1990
and October 31, 2015.
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Signal Model Total num-
ber of signals

Number
of
correct
predic-
tions

ML Estimate
p̂

L(p̂) Likelihood
ratio Λ

Test statistics
−2 lnΛ

p-value

PE (confidence) 18 15 83.33% 3.0000e-04 0.4854 1.4455 22.93%
PE (Cantelli) 19 16 84.21% 2.5175e-04 0.4854 1.7717 18.32%
logPE (confi-
dence)

19 18 94.74% 1.9888e-02 0.0318 6.8962** 0.86%

logPE (Cantelli) 18 17 94.44% 2.1025e-02 0.0423 6.3271* 1.19%
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 5: Maximum likelihood estimate and likelihood ratio test for the PE and logPE

Signal Model Total number of signals ML Estimate p̂ Critical Value: 90% confidence Critical Value: 95% confidence Critical Value: 99% confidence Test statistics −2 lnΛ(p0)
PE (confidence) 18 83.33% 3.30 3.56 6.33 1.4455
PE (Cantelli) 19 84.21% 3.30 3.56 6.33 1.7717
logPE (confidence) 19 94.74% 2.90 3.75 6.90 6.8962*
logPE (Cantelli) 18 94.44% 2.90 3.75 6.90 6.3271**

* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 6: Monte Carlo likelihood ratio test for the PE and logPE
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Signal Model Total num-
ber of signals

Number
of
correct
predic-
tions

ML Estimate
p̂

L(p̂) Likelihood
ratio Λ

Test statistics
−2 lnΛ

p-value

BSEYD0 4 3 75.00% 1.0547e-01 0.9840 0.0322 85.76%
logBSEYD0 6 3 50.00% 1.5625e-02 0.5590 1.1631 28.08%
PE0 4 3 75.00% 1.0547e-01 0.9840 0.0322 85.76%
logPE0 4 3 75.00% 1.0547e-01 0.9840 0.0322 85.76%
BSEYD10 3 2 66.67% 1.4815e-01 0.9868 0.0265 87.07%
logBSEYD10 5 3 60.00% 3.4560e-02 0.8712 0.2758 59.95%
CAPE10 3 3 100.00% ∞ - - -
logCAPE10 3 3 100.00% ∞ - - -
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 7: Maximum likelihood estimate and likelihood ratio test for the BSEYD0, PE0,
BSEYD10 and CAPE10 and their logarithm

Signal Model Total number of signals ML Estimate p̂ Critical Value: 90% confidence Critical Value: 95% confidence Critical Value: 99% confidence Test statistics −2 lnΛ(p0)
BSEYD0 4 75.00% 2.74 3.61 3.61 0.0322
logBSEYD0 6 50.00% 4.11 4.11 4.11 1.1631
PE0 4 75.00% 2.74 3.61 3.61 0.0322
logPEE 4 75.00% 2.74 3.61 3.61 0.0322
BSEYD10 3 66.67% 2.06 2.06 7.43 0.0265
logBSEYD10 5 60.00% 3.43 3.43 5.58 0.2758
CAPE10 3 100.00% 2.06 2.06 7.43 ∞
logCAPE10 3 100.00% 2.06 2.06 7.43 ∞

* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 8: Monte Carlo likelihood ratio test for the BSEYD0, PE0, BSEYD10 and
CAPE10 and their logarithm
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