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Analyzing Hedging Strategies for Fixed Income Portlios:
A Bayesian Approach for Model Selection

Abstract

During the recent European sovereign debt cristsiyms on EMU government bond portfoli-
0s experienced substantial volatility clusterirgptbkurtosis and skewed returns, as well as
correlation spikes. Asset managers invested in @& government bonds had to derive new
hedging strategies to deal with the changing repraperties and the higher level of uncer-
tainty. In this market environment, conditional érseries approaches such as GARCH mod-
els might be better suited to achieve a superidging performance relative to unconditional
hedging approaches such as OLS. The aim of thdystito develop and investigate im-
proved hedging strategies for EMU bond portfolios hon-crises and crises periods. The
empirical analysis includes OLS, constant condélaorrelation (CCC), and dynamic condi-
tional correlation (DCC) multivariate GARCH models. addition, we introduce a Bayesian
composite hedging strategy, attempting to combieestrengths of OLS and GARCH mod-
els, thereby endogenizing the dilemma of selediwegbest estimation model. During the re-
cent sovereign debt crisis yield spreads among Ehithber countries widened and the well
established hedging instruments such as the Bundegisuddenly were inapt to minimize the
risk exposure of European government bond portoliss a consequence, Eurex introduced
new future contracts on Italian government se@si{BTP). Therefore, in this study we ana-
lyze single and composite hedging strategies wigh@German Bund and the Italian BTP fu-
tures contracts empirically and evaluate the heglgifectiveness in an out-of-sample setting.
Thus, the pivotal research question is whetheribore important to introduce new and better
suited futures contracts, or to employ more sopaittd statistical models to determine opti-
mal hedge ratios. Our empirical results demonsttiaé¢ the Bayesian composite hedging
strategy was particularly beneficial during theergicsovereign debt crisis period.
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I. Introduction

Subsequent to the introduction of the Euro in 1988%ernment bond yields of coun-
tries within the European monetary union (EMU) cerged. Consequently, EMU govern-
ment bond yields basically co-moved, resultingetatively stable yield spreads (Figure 1),
revealing little differences in sovereign risk @t before the beginning of the financial crisis
in 2008. Consequently, there was a high level dkstutability in a sense that futures con-
tracts on bonds of one country could be used foiefitly hedge government bonds of other
EMU countries. Thus, the theoretically ideal sitiatoccurred that trading was concentrated
in one or two future contracts based on German rgovent bonds which were traded at
Eurex, offering market participants market deptt hguidity. Turnover on futures contracts
based on French, Italian and Spanish bonds dedréas$estorical low levels and, as a conse-

quence, were finally closed and removed from theketgBlanco, 2001).

With the emerging of the financial crisis in midd&) sovereign risk became increasing-
ly important for EMU bond portfolios, and governmdond returns became highly depend-
ent on political events. Figure 2 presents imparfaoditical events that occurred during the
sovereign debt crisis and illustrates its influemoeEMU bond-portfolio and German Bund
and Italian BTP futures returns. During the sovgradebt crisis the time series of EMU gov-
ernment bond returns exhibits positive excess kigtand GARCH-effects (Sibbertsen, We-
gener, and Basse, 2014). Asset managers investedrapean government bonds had to de-
rive new hedging strategies to deal with the ineedlauncertainty and changing return dynam-
ics. In addition, as sovereign risk levels of EMi@mber countries diverged, the established
hedging instruments on German government bonds we for hedging sovereign risk of
lower rated EMU countries. Thus, futures contramisitalian government securities (BTP)

were (re-) introduced.



The objective of this study is to develop and stigate improved hedging strategies
for EMU bond portfolios for non-crises and crisesipds. Given the heterogeneity of sover-
eign risk levels during the recent sovereign deisis; we analyze the improvement in hedg-
ing performance by extending the hedging framewiookn one instrument hedges (single
hedges) to two instrument-hedges (composite hedgeg)loying traditional (Bund-futures)
and newly (re-)introduced futures contracts ondtabovernment bonds (BTP-futures). From
a modeling perspective, traditional unconditionatiing approaches such as the minimum
variance OLS hedge (Houthakker, 1959; Johnson,;1S&Mn, 1961) might not yield efficient
hedging results during the sovereign debt crisis tfluthe assumption of a constant return
covariance matrix. In contrast, hedging strategesed on multivariate GARCH (MGARCH)
models (Baillie and Myers, 1991; Cecchetti, Cumhy &inglewski, 1988)might provide a
superior hedging efficiency. Therefore, in thisdgtwe employ OLS, constant conditional
correlation (CCC) (Bollerslev, 1990), and dynamanditional correlation (DCC) (Engle,
2002) multivariate GARCH models for hedging Eurapgavernment bond portfolios before
and during the sovereign debt crisis and evaluate mpare their out-of-sample hedging
effectiveness. Finally, we employ a Bayesian heglginategy (Poomimars, Cadle and Theo-
bald, 2003), attempting to control for estimatioroes in GARCH models and to reduce fu-

tures turnover.

Our research contributes to the literature in svd#imensions. First, we provide empir-
ical evidence on the hedging effectiveness of sn@lLS and sophisticated time series hedg-
ing (MGARCH) strategies for bond portfolios duritige pre-crisis and the sovereign debt
crisis period. While, there are numerous studieshenhedging effectiveness of OLS- com-
pared to MGARCH hedging strategies for commoditiesrency, and equity portfolios (Bail-

lie and Myers, 1991; Myers, 1991; Kroner and SylE893; Tong 1996; Lien, Tse and Tsuli,

! Related approaches include cointegration metheds Ghosh, 1993; Kroner and Sultan, 1993).
3



2002; Alexander and Barbosa, 2006), there islgti# evidence on the performance of these
models for bond portfolios and during financial sesi periods (Cecchetti, Cumby and
Finglewski, 1988; Koutmos and Pericil 1999). Thecass of a hedging strategy is particular-
ly important during crisis periods in which asseturns are highly volatile and the risk of
severe losses is increased. Conditional time shadging approaches (MGARCH) might be
particularly beneficial compared to unconditionpipeoaches (OLS) during crisis periods.
Second, we analyze single and composite hedgdsMaf government bond portfolios, em-
ploying German and the (re)introduced Italian fatucontracts during crisis and non-crisis
periods for conditional (MGARCH) and uncondition®LS) hedging methods. Chen and
Sutcliffe (2012), Bookstaber and Jacob (1986), Ravami, (1991), Piepta, (1990), Morgan
(2008) and Leschhorn (2001), Bessler and Wolff @0drovide evidence that combining
multiple futures contracts improves the hedging@feness. However, so far these potential
benefits were not investigated for conditionalrestion methods such as MGARCH for bond
portfolios. Moreover, most studies neglect the diisatages associated with an increase in
transaction costs resulting from employing addaiohedging instruments. Therefore, we
explicitly take transaction costs into account andlyze the relative importance of employ-
ing additional hedging instruments (single vs. cosife hedges) compared to employing
more sophisticated hedge ratio estimation methDdSARCH vs. OLS hedges). Third, we
extend Poomimars, Cadle and Theobald’'s (2003) Baydsedging strategy on composite

hedges in order to control for estimation errorM@ARCH models.

Overall, our empirical results indicate, in hinddigthat EMU bond portfolio managers
should have employed composite hedges with the BumdBTP-futures relying on OLS or
Bayesian hedging techniques. We find evidenceBlagesian hedging techniques dominated
MGARCH hedges, resulting in a superior hedgingaifeness and reduced futures turnover

relative to pure MGARCH hedges. Compared to OL8,Bhyesian composite hedging strat-



egy turns out to be particularly beneficial durthg sovereign debt crisis period, while in the

pre-crisis period the difference in hedging effeetiess is only marginal.

The remainder of the paper is organized as foll@eapter 2 reviews the relevant liter-
ature on hedging, hedge ratios and hedging effaoéiss measures. The employed dataset is
discussed in chapter 3. In Chapter 4 we discuss & @®ell as CCC- and DCC-MGARCH
hedging methodologies. Chapter 5 presents desaiptatistics, the GARCH model selection
process and the empirical hedging results for Ohd GARCH hedging strategies. Chapter 6
presents the methodology as well as the empirezallts for the Bayesian hedging technique.

Chapter 7 concludes.

[I. Literature Review

Two crucial aspects in determining the optimal hedgtrategy are the selection of ade-
quate hedging instruments and the computation efogitimal hedge ratios. In the simplest
case of a direct hedge, derivatives on the spatiposre used as hedging instruments. How-
ever, if derivatives on the spot position are nailable (as it is the case for EMU bond port-
folios), other hedging instruments which may beesteld based on the magnitude of correla-
tion between the asset and the future returns ttatbe employed (cross hedge). Usually the
hedging instrument(s) having the highest returmetation(s) with the spot position should be
selected (Ederington, 1979). In a large numbera$sshedges a hedging strategy with more
than one hedging instrument (composite hedge) niighhore effective compared to hedges

with only one instrument.

1. Single versus Composite Hedging

Several studies provide evidence for the benefitsomposite hedges for hedging bond

portfolios. Bookstaber and Jacob (1986) and Ramas\E091) hedge high-yield corporate



bonds using US Treasury bond futures and futurethercorresponding company’s equity,
finding that composite hedges achieve superior ingdgesults compared to single hedges.
Grieves (1986) and Marcus and Ors (1996) providelai results when hedging US invest-
ment-grade corporate bonds with S&P500 and Tredsamy futures.

Leschhorn (2001), Pieptea (1990) and Morgan (2088)rt that hedges with futures on
long- and short-term bonds, thus using informattong the yield curve, are superior to sin-
gle futures hedges when hedging US or German gmarhbonds. In contrast, Koutmos and
Pericili (2000) employ multiple futures contracts dreasury Notes with different maturities
(2, 5 and 10 years) to hedge mortgage-backed sesufMBS). They conclude that compo-
site hedges - employed in an out-of-sample settirge inferior compared to single hedges
with the 10-year Treasury-Note futures only. Howevleis may be more due to the fact that
the characteristics of MBS are quite different froaNotes rather than due to using different
contracts along the yield curve.

Overall, the academic literature provides some angbievidence for the benefits of
composite hedges with equity and fixed income fguin the presence of default risk, but
mixed results for hedging with various fixed incomstruments that differ only in the ma-
turity of the underlying. However, a drawback of shetudies is that they neglect the disad-
vantages associated with an increase in transaotists due to employing additional hedging

instruments.

2. Determination of Optimal Hedge Ratios

While the selection of the optimal hedging instrumsds not trivial, the determination of
the optimal hedge ratios might be even more chgitgn Various approaches for computing
optimal hedge ratios were proposed in the litemtlihe optimal hedge ratio depends on the
particular objective function which may either fscanly on minimizing risk of the hedge

portfolio (one-dimensional) or may include retuttmacacteristics as well (two-dimensional).
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Moreover, various risk measures can be employed i(€turn variance, semi-variance, value-
at-risk etc.), resulting in different hedge rati@hen, Lee, and Shrestha (2003) and Lien and
Tse (2011) provide an extensive review of differidoretical approaches to derive the opti-
mal hedge ratio.

Unconditional Minimum Variance Hedging Approach

The probably most commonly used hedging approacthénacademic literature and
amongst practitioners is the one-dimensional mimmwariance approach due to its simplici-
ty and its validity under ‘reasonable’ assumptioki®reover, if the expected returns of the
hedging instruments are zero, as it might be tise d¢ar instance for fixed income futures
contracts if interest rate changes are not antethahe one and two dimensional approaches
result in identical optimal hedge ratios. Houthakie959), Johnson (1960) and Stein (1961)
propose unconditional minimum variance hedges baseshmple variances and covariances
of the spot and futures returns. Ederington (1$M@ws that the unconditional minimum var-
iance hedge ratio is equivalent to the OLS regoassoefficient when regressing spot on fu-
tures returns. Implicitly in OLS hedging strategigsis assumed that variances and
covariances of futures and spot returns are constar time. Moreover, all observations
during the sample period obtain equal weights. Thue shortcomings of this approach are
that first most recent developments might not besiered adequately and second fluctua-

tions of return variances and covariances are eghor

Conditional Hedging Approaches

If the return variances and covariances are timgirvg and follow certain regularities,
hedgers might benefit from including information thre contemporaneous market condition
® when estimating the optimal hedge ratio (Bell &rdsker, 1986). Following this argu-
ment, conditional hedging approaches estimate maem and covariances conditional on the

available information séd. Several empirical studies (e.g. Mandelbrot, 136&ument the
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phenomenon of volatility clustering in financialtum time series. Engel (1982) and
Bollerslev (1986) develop autoregressive conditidrederoskedasticity models (ARCH) and
generalized autoregressive conditional heteroskiedgsnodels (GARCH) for modeling and
estimating time varying volatilities. The extensiohthese models from univariate to multi-
variate cases was proposed by Engel, Granger aaitl (084) for ARCH and by Bollerslev,
Engel and Wooldridge (1988) for GARCH models. Theltimariate GARCH (MGARCH)
models transfer the notion of volatility clusteritg a dynamic modeling of covariances in
general and to covariance clustering specificalyfew studies apply the MGARCH frame-
work for estimating minimum variance single hedggos for commodity and equity markets
(e.g. Cecchetti, Cumby and Flingwelisky, 1988; Baiand Myers, 1991; Meyers, 1991;
Sephton, 1993; Brooks, Henry and Persand, 2002y, Oise and Tsui, 2002; Alexander and
Barbosa, 2006).

However, several studies suggest that sophisticatedometric models for estimating
minimum-variance hedge ratios usually provide rgigle economic benefits (Lence, 1995;
Chen, Lee and Shrestha, 2003; Bystréom, 2003; Aldxaand Barbosa 2007; Carbonez, Ngu-
yen and Sercu, 2011; Cotter and Hanly, 2012). M@eanore advanced econometric regres-
sion models result in much greater variability bé toptimal hedge ratio and substantially
larger transaction costs (Alexander and Barbos@7RWMNevertheless, particularly during cri-
sis periods such as the sovereign debt crisis,acterized by volatility clustering, time-
varying and clustered correlations, skewed and t&led bond portfolio returns, the
MGARCH approach might lead to a superior hedgirigativeness compared to OLS. While
earlier studies do not evaluate the performandd®@ARCH hedging strategies during crisis
periods, we contribute to the literature by evahgthedging strategies during the European
pre-crisis and recent sovereign debt crises pesgpérately. Moreover, with the exception of

Chen and Sutcliffe (2012), two-instrument (comp)sMGARCH hedges have been neglect-



ed in the literature. We also contribute to theréture by employing composite MGARCH
hedges.

Bollerslev, Engel and Wooldridge’s (1988) proposieaible VECH MGARCH model
which was employed for single instrument hedgediyers (1991). As a shortcoming, this
model requires a large number of estimation pararsefor a composite hedge with two
hedging instruments, the number of coefficientegstmate amounts to 78. The large number
of estimation parameters is associated with higimesion risk and requires large datasets for
implementation. Therefore, the VECH MGARCH modetrss inappropriate for computing
composite hedges. For the same reason the BEKK-MGARodel proposed by Engel and
Kroner (1995) was only applied for single instrumbedges by Baillie and Myers (1991),
Kroner and Sultan (1995), Koutmos and Pericil ()98hd Brooks, Henry and Persand
(2002). More restricive MGARCH models are appliey Cecchetti, Cumby and
Flingwelisky (1988) based on a multivariate ARCHnfrework or by Baillie and Myers
(1991), Bera, Garcia and Roh (1997), Yang and A{RG05) and Cotter and Hanly (2012)
who apply a diagonal VECH specification as devetbpg Bollerslev, Engel and Wooldridge
(1988). Given the restrictions on the diagonal VEGHodel to ensure positive
semidefinitnessas well as the inflexibility of the multivariateRCH model to present higher
order of volatility clustering, these models seerappropriate for practical implementation
for modeling unknown time varying covariance masicBrooks, Henry and Persand (2002)
as well as Cotter and Hanly (2012) apply asymm&t@ARCH models in order to consider
asymmetric properties of the return distributionewrestimating the optimal hedge ratio. Ac-
cording to their studies the out-of-sample hedgffgctiveness of this additional specifica-

tion is rather limited.

2 See Engel and Kroner (1995) and Attanasio (1991)tle exact model requirements for positive
semidefiniteness and the difficulty to implemerggt during the estimation process.
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Bollerslev (1990) proposes a constant conditiomatetation (CCC) MGARCH specifi-
cation which is employed for hedging by Kroner addltan (1993), Park and Schwitzer
(1995), Bera, Garcia and Roh (1997), Lien, Tse Bsul (2002), Bystrom (2003), Carbonez,
Nguyen and Sercu (2011). Compared to the other MGARhodels the CCC model is more
parsimonious and requires only 12 parameters forposite hedges. As a shortcoming, the
CCC model assumes constant correlations of modeluals. A less restrictive, but also par-
simonious model is the dynamic conditional coriefat(DCC) MGARCH model (Engle,
2002). The DCC model requires 14 parameters forposite hedges, but has not been used
for hedging in the literature so far. We contribtdethe literature by evaluating single instru-
ment and composite hedging strategies based on @a@CDCC-MGARCH models.

A shortcoming of all MGARCH models is that the largnumber of estimation parame-
ters compared to OLS is associated with highemasibn errors. As a result, MGARCH
models often involve a large level of futures tweoresulting in high implementation costs
which might impede their practical implementatiétiekander and Barboza, 2007; Line, Tse
and Tsui, 2002; Poomimars, Cadle and Theobald, ;2d@8e 2004; Yang and Allen, 2004).
Poomimars, Cadle and Theobald (2003) propose asiaybedging strategy in order to con-
trol for estimation errors in MGARCH models. Wea&xdl this Bayesian hedging approach on

composite hedges and to DCC-MGARCH models.
3. Hedging effectiveness measures

After having implemented a specific hedging strgtdbe success or hedging effective-
ness has to be evaluated. Several measures oétlggny effectiveness have been proposed
in the academic literature. The most prominent @@gin is to measure the variance reduction
(Ederington, 1976). However, this measure is dowdvisased, understating the benefits of
hedging and, favoring OLS hedges especially in cadesmall estimation windows, small

out-of-sample periods, and small variations ind¢beditional variance and missing structural
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brakes (Lien, 2005, 2009). Cotter and Hanly (20dr2ploy alternative measures of risk re-
duction, including the reduction of a portfolio’alue-at-risk and the reduction of a portfolio’s
lower partial moments (LPM). We employ the hedgafigctiveness measures of Ederington
(1976) and Cotter and Hanly (2012) and additionailyasure the futures turnover to deter-

mine the associated costs of each hedging strategy.

1. Data

We analyze strategies for hedging EMU governmenthaortfolios during the time pe-
riod from January 2000 to October 2013 and sepdhatdull sample period into two sub-
periods. The first sub-period ranges from Janu@802o December 2006 and covers the pe-
riod after the introduction of the Euro but beftie financial crisis. This period is character-
ized by low and relatively stable yield spreadsnvaeetn EMU government bond yields. The
second sub-period ranges from January 2007 to @cta®l3 and includes the financial as
well as the sovereign debt crisis period.

To represent EMU government bond portfolios we wythe JP Morgan EMU Gov-
ernment Bond Index 1-10 years. This index reflédm¢sdevelopment of the Euro denominated
government bond market and is widely employed astmark for EMU fixed income port-
folios. It contains market capitalization weightgovernment bonds of EMU member coun-
tries with maturities of 1-10 years and is rebaémhon a monthly basis. To compute optimal
hedge ratios we rely on the price index. Hedgefpartperformance is computed based on
the total return index which assumes that coupgmeats are retained and reinvested.

As hedging instruments we employ German Bund aalchit BTP10 government bond
future contracts. Bund and BTP10 futures are cotd#ran fictive bonds with 6% coupon and
ten years maturity issued by the governments ofm@ry and lItaly, respectively. While Ger-

man bond futures should be better suited for heplpw sovereign risk bonds or during the
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pre-crisis period, Italian BTP contracts are expedd be more appropriate for hedging EMU
government bonds with a higher level of sovereigk during the crisis period. We assume
that futures contracts are rolled forward to impdetnthe hedging strategies. Specifically, at
the last day of the month before delivery, futurestracts are rolled over to the futures with
the second nearest maturity. Market prices of &dwontracts are obtained from Thomson

Reuters Datastream.

IV. Methodology

1. Unconditional Minimum Variance Hedge Ratio Estimation (OLS)

For computing optimal hedge ratios we focus onahe dimensional minimum variance
approaches as it is reasonable to assume thaaillyeegpected returns of the applied hedging
instruments are zefoWith zero returns for all hedging instruments tesulting optimal
hedge ratios are identical for both the one andwltedimensional target functions. The min-
imum variance hedge ratio is derived by minimizihg return variance of the hedge portfolio
(P), consisting of spot (S) and futures positida) (vith h being the hedge ratio for the hedg-
ing instrument (i). For a single hedge, in whicHyoone futures contract is employed, the

minimization problem is given by:

mi in var(,) =var(,) + h12 varf:) - 2hcovSF), (1)

¥ BTP futures contracts were introduced and fimtléd in December 2009. To investigate the contdhut
of these futures contracts for hedging EMU bondfpbos throughout the entire financial crisis asmvereign
debt crisis period, a longer time series is regliféherefore, we compute ‘fair’ BTP futures prides the time
period from January 2006 to December 2009 and ws&ehprices when available. To calculate theoBii®
futures prices, we compute the implied repo ra®Rjlin each quarter of the set of deliverable atalgovern-
ment bonds, which is provided by ‘Eurex’. From thie identify the cheapest-to-deliver bond and cotmploe
theoretic futures price, taking into account acdrirgerest, financing costs, and the appropriateversion fac-
tor. As robustness check, we compare the theollgticamputed prices with the market prices for pexiod
after introduction of the futures. The theoretices differ only marginally from the market pricésgghlighting
the accurateness of our calculations. As additioolalistness check, we analyze the sub-periodsthébretic
and actual market prices separately. The resultsodaliffer qualitatively for both sub-periods confing the
robustness of our results.

* This aspect will be discussed and fortified inptea 4: Data.
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The first order condition leads to the minimum wade single hedge ratio:

_Cov(SF)
W varf)

2)

In the unconditional minimum variance hedge, the@a variances and covariances are em-
ployed. The hedge ratio is equivalent to the ongilaast squares (OLS) regression coeffi-
cient, regressing spot returns on futures retuHhsutthaker, 1959; Johnson, 1960; Stein,
1961; Ederington, 1979; Malliaris & Urrutia, 199Benet, 1992). Therefore, we refer to the
unconditional approach as OLS hedge.

In a composite hedge with two hedging instrumetits, hedge ratios are derived as

(Chen and Sutcliffe, 2012):

h = COV(Iyli) Var(re,) = COV(royfep) COV(I 1i,) )
! var(ry) var(re,) — cov(rg,rs,)’

h = cov(,Is,) var(y) —cov(y, ') COV(y;, ')
? var(y) var(e,) — Cov(g,Is,)’

(4)

In the unconditional (OLS) composite hedge, the@amariances and covariances are
employed in equations (3) and (4), assuming thatréturn distribution and correlations are

constant over time. This assumption is relaxedhéndonditional MGARCH models discussed

in the next section.

2. Conditional Minimum Variance Hedge Ratio Estimation

In the GARCH framework, the daily returng) of the spot and future contracts (i) are
modeled as:
(O =m+u () (5)
where yt) is the return residual capturing the deviatioom the long run mean non
day t. The residual's mean is zero with varian¢g.We follow this very simplified presenta-

tion of the assets conditional mean without a mg\amerage or autoregressive component as
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the model selection analysis discussed in chaptoe$ not provide support for a moving
average or autocorrelation effect in the returmesefThis model specification is in line with
most of the previous studies (Myers, 1991; Cottat tlanly, 2012) on MGARCH hedging
approaches and supports the notion of short tenqonedictability of spot and future returns.

The volatility clustering of the spot and futuréuras is modeled in the residual terytt)u

u; (t) :\/hi(t) “€ (1) (6)
The standardized residualis normally distributed with zero mean and a cansvari-
ance of one. The return variangé)his modeled based on a GARCH framework depending

on past estimations of the return variange land lagged squared residual§_, with the

coefficients K, G and A and lag parameters P and Q
P Q
vafr (1) [©)=h, () =K +> G h, + > Au?, (7)
n=1 =l

In the MGARCH setting, ift) are the elements of the conditional covariamegrix H. In
line with the hedging studies of Kroner and Sultd®93), Park and Schwitzer (1995), Bera,
Garcia and Roh (1997), Lien, Tse and Tsui (2003%st®m (2003), Carbonez, Nguyen and
Sercu (2011), we adopt the constant conditionaletation (CCC) MGARCH specification
proposed by Bollerslev (1990) to model the covargamatrix H. Based on information crite-
ria for model selection, we employ a parsimoniol3CeMGARCH(1,1) model where the
diagonal elements of the conditional covariancerimadd; (conditional variance of the spot

and future series) are dependent on their pashattinsh; ,_, and the variance shock in the
previous period? .

hy(t) =K +Ghg,, + Auszs,t—l (8a)

® The data analysis provided in chapter 3 suppartsapproach to employ a very parsimonious GARCH(1,1
model with P and Q equal to one which is line witilers (1991); Baillie and Meyers (1991), Bera, i@and
Rho (1997), Miffre, (2004), Cotter and Hanly (2012)
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e, () =K +Ghe, s +AUZ, withn{12} (8b)

The conditional covariance between the spot angrduteturns is defined indirectly by

the following variance correlation relationship:

hoen( = YN0 * Vher(0 *p (es(D.Een () with nOf12 (9)

The conditional variance covariance matrixigithus defined as:

H, =D,RD, (10)
where D presents the diagonal matrix of conditional statidgeviations and R is the cor-
relation matrix of the standardized residugl@) which under the CCC-MGARCH specifica-
tion is assumed to be constant over the estimgtgsiod. Given the assumption of constant
correlation, the matrix R is equal to the sampleeatation matrix (Bollerslev, 1990).

However, particularly during crisis periods, coatedns might fluctuate over time and the
assumption of constant correlations might be iresmrrresulting in severe hedging errors.
Therefore, in addition to the CCC-MGARCH model, vatax the assumption of constant
correlation and implement the dynamic conditionadrelation (DCC) MGARCH model of
Engle (2002). This is the first study that adopis model for estimating minimum variance
hedge ratios. In this setting, the correlationstahdardized residuals are time varying and are
modeled within a separate GARCH framework for tbgaciance of standardized residuals

Oisrr- I this framework the covariance is modeled &snation of past covariance estima-

tions (g,_,), contemporaneous covariance sho@(é_wan,t_W) and the sample covariance

q sFn .

q tSFn = COVt (ss(t)’ aFn (t)) = (1_ - aw - ZBW J@ + Z a m (8 S,t—Wan,t—W ) + ZBvqt—v (11)

W v=1 w=1

The conditional covariance matrix i the DCC MGARCH model is defined as:
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H, =D,RD, (12)
with p (g4(t),€¢, (1)) = Aigen ¥ +/Nse ¥ 4/Ne, DEING the elements of the time varying corre-

lation matrixR, .

We compute each unconditional (OLS) and conditi¢g6&C and DCC) hedging strategy
out-of-sample for the period from 2000 to 2013. -Ousample means that we use daily re-
turn data available until day (t) to compute theldesratio employed on the next day (t+1).
We employ rolling estimation windows of 250 dayshaequally weighted observations in the
base case and implement different estimation wirsdasvrobustness check. Figure 3 provides
an overview of the hedging approaches employedisnstudy including the required number

of estimation parameters and the estimation praeedu

V. Empirical Results: OLS versus GARCH Hedging Strateges
1. Descriptive Statistics

Descriptive statistics of the daily return series the JPM bond index (price index), the
German Bund futures and the Italian BTP futuregpaogided in table 1. Panel A presents the
descriptive statistics for the pre-crisis periodnfr 2000 to 2006, and panel B includes the
statistics for the financial and sovereign debsisrperiod ranging from 2007 to 2013. The
average annualized daily return of the JPM govenirbend price index is negative during
the first period but positive for the second periddis observation can partly be explained by
the changing interest rate environment. While ggerates in Europe slightly increased from
2000 to 2006, interest rates declined to very levels between 2007 and 2013. All return
series exhibit substantial excess kurtosis anchthehypothesis of normally distributed re-
turns is rejected at the 1%-level. To account fam-normal returns and tail-risk, we compare

the value-at-risk and the lower partial momentstifi@ hedged and the unhedged portfolio as
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described in section 2. The augmented Dickey Ftdisis with lags from 1 to 30 do not indi-
cate any sign of non-stationarity.

In Figure 4 we present the rolling correlation ¢imefnts of the JPM bond index returns
with the German Bund and Italian BTP10 futuresmetu The figure illustrates that the corre-
lations between the bond portfolio returns andftheres returns fluctuate substantially over
time. Therefore, the constant conditional correlagiCCC) and dynamic conditional correla-
tion (DCC) models might be better suited for hedgiman the OLS approach, which assumes
constant correlations within the sample period. Ewsv, by employing a rolling sample esti-
mation method, the OLS model might partially capttive changing correlations. Moreover,
figure 4 illustrates that the correlation betweka Bund future and the JPM index declines
sharply subsequent to March 2010, indicating that Bund futures contract lost its ad-
vantages as an efficient hedging instrument forghmgd EMU bond portfolios after 2010.
Thus, an additional hedging instrument might basiregl such as the BTP futures to improve
the hedging result during this crisis period.

[Table 1 about here]

2. GARCH Model Selection
To select the appropriate GARCH model, we relyrdormation criteria for model se-

lection. We estimate different GARCH models withiymag lag parameters for the condition-
al variance (P,Q) and the conditional mean (R,M3s&l on the Schwarz-Bayes information
criterion (BIC) for model selection, the ARMA (0,0bARCH(1,1) model provides the best
specification for capturing the conditional mearnl aariance returns for the JPM, Bund- and
BTP10 futures. An additional likelihood ratio tesiidates this result. The model residuals do
not show any sign of significant autocorrelation jufig-Box-Pierce-Q test) or

heteroscedasticity (Engel-ARCH-test), confirming Htcurateness of the selected model.
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3. Analysis of optimal Hedge Ratios

In Figure 5 we present the time-varying optimaldedatios for the period from 2000 to 2013
for the single hedges with the Bund and BTP10 &gwontracts, for the OLS (bold line), the
CCC- (left-hand-side) and the DCC-GARCH (right-hade) models. Figure 6 shows the
optimal hedge ratio for the composite hedges, sanebusly employing Bund and BTP10-
futures contracts. The figure illustrates that @RCH optimal hedge ratios fluctuate sub-
stantially over time, resulting in enormous fututeéovers and transaction costs. In contrast,
the OLS hedge ratios exhibit only moderate vanmetiover time. Moreover, it is evident that
the hedge ratios based on MGARCH models partiguléwictuate during the period from
2010 to 2012 when the EMU sovereign debt crisis atats summit. The hedging effective-
ness measures in the next section provide furtigghts on the relative performance of the

different hedging strategies.

4. Hedging Effectiveness Measures

Next, we compute several hedging effectiveness unesgo evaluate the quality of the
employed hedging strategies. First we compute #m@ance reduction of the hedged relative

to the unhedged portfolio according to equation:(13

var(y,)

VariancdRkeductiorr1- ,
var(g)

(13)

where () is the return of the hedged portfolio ang) (s the return of the unhedged port-
folio, i.e. the return of the bond portfolio (Edegion, 1979).

In line with Cotter and Hanly (2012), we additidgatompute alternative measures of
risk reduction including the reduction of a poriftd value-at-risk (according to equation 14)

and the reduction of a portfolio’s lower partial ments (LPM) (equation 15), thereby ac-
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counting for non-normally distributed returns ahe @ssociated tail risk which particularly

might exist during the sovereign debt crisis period

- 0,
VaR-90%- Reductiorr 1—M : (14)
VaR-90%,
LPM- Reduction=1- ="M (15)
LPM

VaR-90% (LPMy) is the 90%-value-at-risk (lower partial momernitttee empirical distribu-
tion of the realized hedged position’s returns éidR-90%;) (LPMs) is the 90%-value-at-
risk (lower partial moment) of the empirical disution of the realized unhedged bond port-
folio returns. VaR-90% is the 10%-quantile of thapérical return distribution. The lower
partial moment (LPM) is computed as average lossraviioss is defined as return smaller
than zero. To estimate the transaction costs imebWith each hedging strategy, we compute
the futures trading volume of each hedging stratégyine with Chen and Sutcliffe (2012),
we assume a linear relationship between transactsts and futures positions traded and
proxy transaction costs by the value of futurestjpos traded each year. The required yearly
futures trading (Fj) to implement hedging strategy (i) is the averalgsolute change in daily
hedge ratios (h) over the T rebalancing pointsnretand across the N implemented hedging

instruments multiplied with the number of tradirmyd per year (250):

[ERN

_iiq IJt+1 I]t‘)QSO, (16)

=1 ]:

_|

where h;;; denotes the hedge ratio of futures j at time teumdging strategy i. If two hedg-

ing strategies achieve the same hedging effectsggribe one with the lower turnover is pref-

erably, because its implementation requires lowarsiaction costs.

Table 2 presents the hedging effectiveness measoragte OLS, CCC- and DCC-

GARCH hedging strategies. Panel A includes thelte$or the first sub-period (2000-2006).
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During this period the Bund futures was the onlgikable futures contracts on EMU gov-

ernment bonds. The hedging effectiveness measndésate that the OLS hedges with the
Bund futures contract worked well. The portfoliai@ace was reduced by over 67% with the
OLS approach. CCC- and DCC-GARCH models only maitirenhanced the hedging effec-
tiveness, while the futures turnover increased dtarally. Thus, they perform inferior during

the non-crises period.

Panel B of table 2 presents the hedging effectisemaeasures for the second sub-
period from 2007 to 2013 for single hedges, eitigng the Bund or the BTP10 futures con-
tracts. The results reveal that the BTP10 futuokgeae a higher variance and tail risk reduc-
tion compared to the Bund futures for all analyhediging strategies. The CCC-GARCH
model works slightly better than the OLS hedgingrapch. Interestingly, the DCC-GARCH
model achieves a substantially higher hedging gfiecess compared to OLS with the Bund
futures, indicating that the DCC-GARCH model istbesuited to capture the changing corre-
lation structure during the sovereign debt crisis.

Panel C of table 2 includes the hedging effectigemeeasures for the composite hedges
with the Bund and the BTP10 futures. The resuli®akthat the composite hedges almost
achieve the same hedging results during the g&ied (2007-2013) as the single hedge with
the Bund during the pre-crisis (2000-2006) peripangl A). Surprisingly, for the composite
hedges the CCC- and DCC-GARCH models perform $lightrse than the simple OLS ap-
proach. The likely explanation is that in the MGARGodels the estimation parameters and
hence estimation errors rapidly increase with thmlmer of hedging instruments. Consequent-
ly, in composite hedges the theoretical advantafjise MGARCH model compared to OLS
are outweighed by the increase in estimation error.

To analyze the relative performance of the hedgimgroaches over time, we compute

the rolling variance reduction which is presentedrigure 7. Evidently, there are some peri-
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ods in which GARCH models substantially outperfd@hS hedges. However, most of the
time there are only marginal differences in thednegl performance of MGARCH compared
to OLS hedging strategies.

Summarizing our results so far, is seems fair tchae that, on the one hand, hedging
strategies based on MGARCH models improve the Ingdgesults of OLS single-hedges.
However, on the other hand, MGARCH models haveossrproblems arising from estima-
tion errors, resulting in inferior hedging resutlscomposite hedges and a drastic increase in
futures turnover. Moreover, the benefits of MGARGetging strategies are only observable
in some short sub-periods, while mostly there ary earginal differences in the hedging
effectiveness between the different hedging strasegmplementing a Bayesian approach
that controls for estimation errors in the MGARCHbaels might be able to improve the

hedging performance. This approach is analyzedemext section.

VI. Bayesian Approach for Model Selection
1. Methodology of Bayesian Hedges

The idea of the Bayesian approach to model seledcsidao improve the out-of-sample
hedging performance by combining the strength ef@.S and MGARCH models endoge-
nously. On the one hand, MGARCH models requiregelaaumber of estimation parameters
which involve estimation errors and often leadrtefiicient hedge ratios. Moreover, GARCH
models are very sensitive to changes in marketnmtion processing and to market shocks.
Examples are political announcements during the Etisis which resulted in a high futures
turnover and transaction costs. On the other h#dr&,OLS method produces very stable
hedge ratios which, however, might be too inaceupairticularly during crisis periods due to

the assumption of constant correlations and hondaste returns. Overall, the OLS ap-
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proach is not very adaptive to new distributionganties and the hedge ratio critically de-
pends on the estimation window lengths.

Poomimars, Cadle, and Theobald (2003) propose aday hedging strategy to es-
timate the optimal hedge ratios. Bayesian estimathwild on a prior and sample information
in order to control for model uncertainty and pagten estimation risk. In the literature,
Bayesian estimation approaches are widely estadigh the context of portfolio optimiza-
tion for estimating returns or the covariance matri asset return (Alexander and Resnick,
1985; Jorion, 1985, 1986; Ledoit and Wolf, 2003203b). In the context of hedging, Bayesi-
an estimation techniques were proposed for estigaiptimal mean-variance hedge ratios
(Lence and Hayes, 1994a, 1994b; Shi and Irwin, 005

The Bayesian minimum variance hedging approachdmnimars, Cadle, and The-
obald (2003) combines the static estimation me(@dS) and the dynamic estimation meth-
od (GARCH). In line with Vasicek (1973) for estinmeg CAPM betas, they compute the pos-

terior hedge ratio as:

N - N -
2 -1 2
OHRearcH* [0“oHr-cArRcH|  + OHRoLs* |0 oHRr-oLs
2 -1 2 -1
O 0oHR-GARCH| *|0"0oHRr-0LS

OHR(posterio) = a7

This Bayesian hedging strategy employs the OLS éedtjo as prior (shrinkage tar-
get) and the model precision of the GARCH relatvéhe OLS model as the shrinkage fac-
tor. While Poomimars, Cadle, and Theobald (2003pleynthe Bayesian hedging approach
for single instrument hedges for commodities, welemcomposite hedges on bond portfoli-

os during the sovereign debt crisis. The empirieslilts are provided in the next section.

2. Empirical Results of Bayesian Hedges
In Figure 8 we present the optimal hedge ratiothefBayesian-CCC-GARCH and

the Bayesian-DCC-GARCH composite hedge comparegdedDLS hedge ratios. The figure
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indicates that the Bayesian hedge ratios are mash Volatiie compared to the pure
MGARCH hedge ratios presented in figure 6. Henatyrés turnover and the costs of hedg-
ing are substantially reduced. The optimal hedgegan the Bayesian CCC and DCC ap-
proach seem to be very similar. The hedging effenigss measures provided in table 3 pro-
vide further insights on the performance of thatsgies. Table 3 shows that the Bayesian
(CCC and DCC) hedging approaches dominate the ¢cttgpeCCC- and DCC-MGARCH
hedges. The Bayesian strategies (CCC and DCC)\exlaearger level of risk reduction
compared to pure MGARCH hedges presented in tal#@n2ultaneously, the Bayesian (CCC
and DCC) hedging approaches substantially reduteefs turnover by roughly 50% com-
pared to the pure MGARCH models.

Compared to OLS, the Bayesian hedging approachemea the hedging effective-
ness particularly during the crisis period. Howewrring the relatively stable pre-crisis peri-
od (2000-2006), the improvement of the hedgingatifeness is only marginal (below one
percentage point). Consequently, it seems suffidie employ the OLS model in the pre-
crisis period, because the assumption of constari&nces and correlations is not critically
violated. In contrast, the benefits of the Bayediadge compared to the OLS hedge become
more pronounced during the crisis period (2007-20T8is is in line with the observation
that during the crisis period compared to the pigiscperiod changing correlations, volatility
clustering, and market shocks due to political ameements are much more important. .

Figure 9 summarizes the results of the rolling arace reduction of the OLS, the
DCC and the Bayesian-DCC composite hedge duringtiises period. The figure illustrates
that the Bayesian hedging approach virtually alwagkieves a larger variance reduction
compared to OLS and the DCC-MGARCH model. Therefdrean be concluded that the
Bayesian hedging approach successfully reduceshastn error in the MGARCH models

and improves the out-of-sample hedging performahimevever, compared to OLS, imple-
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menting the Bayesian approaches results in a migitehfutures turnover and hence are
more expensive to implement. Therefore, the Bayek&dging approach does not dominate
OLS. Consequently, there exists a trade-off betwbheradditional benefits in risk reduction
and the cost of the higher futures turnover. Hettee decision whether to employ an OLS or
a Bayesian hedging strategy depends on the invesisk aversion and the variable transac-
tion costs for trading futures. Thus, implementstatistically more demanding and sophisti-
cated hedging approaches requires well functioamdyefficiently organized futures markets,
which offer market participants low transactionsfeminimal margin requirements, and basi-
cally no counterparty risk. Hence, introducing saction taxes on futures positions as cur-
rently discussed in the European Union will notyar@sult in lower market turnover and low-
er market liquidity, but possibly also in the chmiaf less sophisticated hedging approaches
that involve lower futures turnover but may notiolly minimize risk for market partici-

pants. Overall this may result in an inferior r&tuation.

3. Performance of Bayesian MGARCH vs. OLS hedges

To gain further insights under which conditions O/SBayesian hedging strategies
are relatively more attractive, we compute the grentince (Sharpe ratios) of the hedging
strategies for different levels of transaction s83tVe assume a linear relationship between
transaction costs and futures positions tradedaino Chen and Sutcliffe (2012). In Table 4
we present the Sharpe ratio measures for the OdShenBayesian hedging strategies. The
Sharpe ratio measures are computed net of traosamiists for variable transaction costs for
futures trading between 0 and 50 basis points. IPargresents the results for the 2000 to
2006 non-crisis period for hedges with the BundHfes. In Panel B we provide the results for

the 2007 to 2013 crisis period for composite hedgiéls the Bund and BTP10 futures. The

® To compute Sharpe ratios we use a risk-free fatero. Usually the risk-free rate is approximalgdgovern-
ment bond yields which does not seem plausiblevatuating EMU government bond portfolios.
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results in Panel A indicate that the OLS approaak sufficient for hedging EMU bond port-
folios during the non-crisis period. The BayesiaDGCMGARCH approach only marginally
improved the Sharpe ratio of the OLS hedged paotfolr very low variable transaction costs
(below 10 basis points). For higher transactiontsctise optimal hedging strategy (based on
the Sharpe ratio as selection criteria) was the @i3oach.

However, the ranking of optimal hedging strateggedifferent for the 2007 to 2013
crisis period. Panel B of table 4 reveals thatrythe crisis period the Bayesian-DCC strate-
gy achieved the highest Sharpe ratio for varialdasaction costs up to 30 basis points. For
higher transaction costs the OLS approach was faorative due to its lower futures trading
volume. The explanation for this finding is thaé tBayesian MGARCH models do improve
the performance of OLS hedging strategies. Howehés,improvement is offset by transac-
tion costs if the variable transaction costs faufes trading exceed a certain level. During the
non-crises period the critical level of transactamsts was 10 basis points, while it was 35
basis points in the crisis periddrhis result confirms our finding that the benefifsmore
complex hedging strategies are much higher duriigijsgoeriods than during ‘normal’ non-

crisis periods.

VIl.  Conclusion
In this study we analyze hedging strategies for Ebind portfolios for non-crises
and crisis periods. We analyze the improvementeidging performance when the hedging
framework is extended from one instrument hedgieglés hedges) to two instrument-hedges
(composite hedges), employing traditional (Bund#fes) and newly (re-)introduced futures
contracts on Italian government bonds (BTP-futurg®reover we evaluate the improvement
in hedging effectiveness when moving from simpleSCtb more complex CCC- and DCC-

MGARCH hedging strategies (Bollerslev, 1990; En¢d802). To overcome the potential

" Critical value of transaction costs refers toltheel of transaction costs at which two hedgingtsigies
achieve the same Sharpe ratio.
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problems of estimation errors and oversensitivityrtarket shocks, we additionally employ
Bayesian hedging strategies based on Poomimarsg @ad Theobald (2003) and extend the
approach on composite hedges for hedging EMU bonidigtios.

Our empirical results suggest that while hedginghwhe Bund futures contract
worked well during the pre-crisis period from 20@02006, it performed poorly during the
crisis period with hedging effectiveness measurepmng from almost 70% to below 40%.
However, simultaneously employing Bund and BTP1iQrkes contracts in composite hedges
almost achieved the pre-crisis hedging results. g2oing different hedging methods, we find
that CCC- and DCC-GARCH hedges only marginally iower the hedging effectiveness of
OLS for single hedges. For composite hedges, GARG#&tegies are even inferior to OLS
due to estimation errors. A Bayesian hedging amtrodesigned to control for estimation
errors, produces superior hedging results and wegokubstantial lower futures turnover
(transaction costs) than MGARCH models. Compare®lIt&, Bayesian hedges achieve a
larger level of risk reduction but involve highertdres turnover (transaction costs). There-
fore, the decision whether to employ OLS or Bayes$iadges depends on the individual risk
aversion and the variable transaction costs falingafutures. Moreover, the Bayesian com-
posite hedging strategy turns out to be particulbdneficial during the sovereign debt crisis
period when risk reduction opportunities were mostteded. Overall our results suggest that
EMU bond portfolio managers should employ compobielges with the Bund and BTP-

Futures and rely on OLS or Bayesian hedging tectasig
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Figure 3: Overview of Hedging Approaches
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Figure 9: Rolling Hedging Effectiveness Composite 5, CCC/DCC, and Bayesian
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Table 1: Descriptive statistics of monthly return tme series

Panel A: 2000-2006 JP Morgan PI Bund BTP 10Y
Sample Size 2087 2087 /
Mean (ann.) -1,38% 0,03% /
Median 0,00% 0,01% /
Volatility (ann.) 2,76% 5,06% /
Kurtosis 1,52 1,49 /
Skewness -0,49 -0,48 /
Max 0,67% 1,23% /
Min -0,86% -1,55% /
Normal (JB-Test 99%) no no /

Panel B: 2007-2013 JP Morgan PI Bund BTP 10Y
Sample Size 1784 1784 1784
Mean (ann.) 0,87% 2,83% -0,01%
Median 0,00% 0,01% 0,00%
Volatility (ann.) 3,29% 6,40% 9,19%
Kurtosis 8,23 1,61 14,50
Skewness 0,75 -0,15 0,41
Max 1,85% 1,96% 5,68%
Min -0,95% -2,01% -3,87%
Normal (JB-Test 99%) no no no
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Table 2: Hedge Effectiveness: OLS, CCC, DCC, singend composite hedges

Hedging Strategy

Evaluation of Hedge Strategy

OoLS CCC-GARCH DCC-GARCH
Panel A: 2000-2006: Single hedge Bund Bund Bund
Variance Reduction 67,68% 68,19% 68,15%
VaR-99% Reduction 49,82% 50,25% 50,14%
Lower Partial Moment Reduction 44,61% 44.77% 44 57%
Turnover p.a. 0,38 4,02 6,46
Panel B: 2007-2013: Single hedge Bund BTP10 Bund BTP10 Bund BTP10
Variance Reduction 37,66% 45,67% 38,37% 46,61% 42,39%  74%6,
VaR-99% Reduction 23,41% 34,36% 23,77% 33,51% 29,09% 9%d,2
Lower Partial Moment Reduction 28,96% 30,83% 29,32% 4533, 31,26% 32,03%
Turnover p.a. 0,46 0,45 5,74 7,75 12,19 9,59
Panel C: 2007-2013: Conposite hedge Bund & BTP10 Bund & BTP10 Bund & BTP10
Variance Reduction 65,76% 64,12% 65,02%
VaR-99% Reduction 50,70% 48,72% 51,36%
Lower Partial Moment Reduction 49,08% 47,81% 48,71%
Turnover p.a. 0,89 11,90 15,09

Table 3: Analysis of Hedge Effectiveness for Bayasi Hedging Approaches

Evaluation of Hedge Strategy

Bayesian Composite hedge (Bund & BTP10)

OLS-CCC OLS-DCC
Panel A: 2000-2007: Single Hedge (Bund)  absolute AOLS absolute AOLS
Variance Reduction 68,40% 0,72% 68,42% 0,74%
VaR-99% Reduction 49,69% -0,12% 49,91% 0,10%
Lower Partial Moment Reduction 44 97% 0,36% 44.88% 0,27
Turnover p.a. 2,07 1,69 3,28 2,90
Panel B: 2007-2013: Single hedge (BTP10)
Variance Reduction 48,47% 2,80% 48,81% 3,13%
VaR-99% Reduction 37,30% 2,95% 37,16% 2,81%
Lower Partial Moment Reduction 32,48% 1,65% 32,43% %,60
Turnover p.a. 3,89 3,44 481 4,36
Panel B: 2007-2013: Conmposite hedge (Bund & BTP10)
Variance Reduction 68,24% 2,48% 68,58% 2,81%
VaR-99% Reduction 52,84% 2,14% 53,18% 2,48%
Lower Partial Moment Reduction 49,91% 0,83% 50,37% %,29
Turnover p.a. 6,55 5,66 8,48 7,59

35



Table 4: Performance of Hedging Approaches net of fiinsaction Costs

Hedging Strategy

cost: unhedged OLS Bayesian OLS-CCC Bayesian OLS-DCC
Panel A: 2000-2007: Single Hedge (Bund)
Obp 1,91 2,92 2,93 291
5bp 1,91 2,92 2,93 2,90
10bp 1,91 2,93 2,93 2,90
15bp 1,91 2,92 2,92 2,89
20bp 1,91 2,92 291 2,88
25bp 1,91 2,92 2,90 2,86
30bp 191 2,92 2,90 2,85
35bp 191 2,92 2,89 2,84
40bp 191 2,92 2,88 2,83
45bp 1,91 2,92 2,88 2,82
50bp 1,91 2,78 2,14 1,65
COSte unhedged OLS Bayesian OLS-CCC Bayesian OLS-DCC
Panel B: 2007-2013: Cormposite Hedge (Bund+BTP10)
Obp 1,34 1,85 191 1,98
5bp 1,34 1,85 1,89 1,96
10bp 1,34 1,84 1,88 1,94
15bp 1,34 1,84 1,86 1,92
20bp 1,34 184 1,84 1,89
25bp 1,34 184 1,82 1,87
30bp 1,34 184 1,81 1,85
35bp 1,34 1,83 1,79 1,82
40bp 1,34 1,83 1,77 1,80
45bp 1,34 1,83 1,75 1,78
50bp 134 1,83 1,74 1,75
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