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1. Abstract 

It is a common belief that for using the famous Black-Scholes framework for Option Pricing, we need to 
assume that Stock Volatility and Risk Free Interest Rate have to be constant.  We prove that this belief is 
only partially true and there are work arounds, in which the volatility and interest rates can be held as non-
constant parameters.   
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2. Overview 

It is a common belief that for using the famous Black-Scholes framework for Option Pricing, we need to 
assume that Stock Volatility and Risk Free Interest Rate have to be constant.  We prove that this belief is 
only partially true and there are work arounds, in which the volatility and interest rates can be held as non-
constant parameters.   

In this white paper, we derive the famous Black-Scholes PDE (partial differential equation) first, from the first 
principles of no arbitrage.  Thereafter we stop at a point where we take a de-tour and apply a famous 
numerical technique for solving the PDEs, i.e. FDM (Finite Difference Method) to prove that indeed volatilities 
and rates do not have to be constant, to solve the Black-Scholes PDE. 

 

3. Deriving the Black-Scholes PDE 

We start by considering the following Geometric Brownian motion: 

��� � ����� � ����	� 
We also set up a special portfolio, called Π, which consists of one long option and one short stock.  We short 
only ∆ quantities of this stock.  So our special portfolio Π becomes: 


� � ���, �� � ∆�� 
Now as the time passes, we need to consider the change in our portfolio.  We consider the change in our 
portfolio in a very small time step i.e. t → t + dt.  Therefore the change in our portfolio is: 

�
� � ����, �� � ∆��� 
Now we consider the Taylor Series expansion for dV, i.e.: 

����, �� � ����, ���� �� � ����, ���� �� � 12 �����, ����� ��� 

 

We know that: 

��� � �������� � ������	�� � 2��������	� 
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However, since the time step dt is a very small time step, so: 

��� → 0 

�	�� → �� 

���	� → 0 

So, we have: 

��� � ������� 

Substituting this form of dS2 and dS in the Taylor Series expansion for the Option Price yields: 

����, �� � �����, ���� � ��� ����, ���� � 12 ����� �����, ����� � �� � ��� ����, ���� �	� 
Substituting the above expression in our expression for change in portfolio i.e. dΠ, we have: 

�
 � �����, ���� � ��� ����, ���� � 12 ����� �����, ����� � �� � ��� ����, ���� �	� � ∆������ � ����	�� 

Note that the above expression contains terms in dX, which is an increment in Brownian Motion.  Therefore 
any risk present in our portfolio is because of this random Brownian increment.  So we need to make the 
coefficients of dX equal to zero, to make our Portfolio Risk less.  So, we must have the following, to achieve 
a risk free portfolio: 

��� ����, ���� �	� � ∆����	� � 0 

This gives: 

∆� ����, ����  

Therefore the above choice of ∆, makes our portfolio completely risk less.  The above term is also called 
Delta.  It determines the quantity of stock to be shorted.   
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Now we will substitute the expression for ∆ in our expression for change in portfolio, to get: 

�
 � �����, ���� � 12 ����� �����, ����� � �� 

This change in portfolio is completely riskless, as we do the Dynamic Hedging using ∆.  Now we know that if 
we manage to create a completely risk less portfolio, then its growth should be same as of a growth rate of 
an amount which is put in a risk free interest bearing account. 

Hence we should have: 

�
 � �
�� 

�����, ���� � 12 ����� �����, ����� � �� � �����, �� � ∆����� 

     
�����, ���� � 12 ����� �����, ����� � �� � � ����, �� � ����, ���� ��� �� 

On dividing by dt and rearranging, we get the famous Black-Scholes equation: 

����, ���� � 12 ����� �����, ����� � ��� ����, ���� � ����, �� � 0 

The Black-Scholes equation is a Linear Parabolic Partial Differential Equation. 

In the subsequent sections, we examine if we need to keep the volatility constant, to solve the above PDE.  
We also solve this equation using a famous numerical method, i.e. FDM (Finite Difference Method). 
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4. A brief note about constant volatilities and int erest rates 

In the derivation of the above Black-Scholes PDE we have not assumed the volatilities to be constant 
anywhere.  However, simply having the Black-Scholes PDE is no good for practical purposes.  We need a 
solution of the above PDE, given the particular Final Conditions and Boundary Conditions.  

There are two broad methods to find the solution to the above PDE, analytical methods and numerical 
methods.  Analytical methods are more popular than the numerical methods, as they give very elegant 
closed form solutions to the PDE.  For e.g. the following is the closed form solution to value a Call Option on 
a Stock: 

����  !�" # $��%& ���, �� � �'��(� � )&*+�,*��'���� 

-.&�&     �( � log �� )2 � � �� � (
� ����3 � ��

�√3 � �  

   �� � log �� )2 � � �� � (
� ����3 � ��

�√3 � �  

However, the problem in the analytical methods to solve the Black-Scholes PDE is that, they are not very 
simple if we assume the volatility to change with time.  At most we can use some kind of average volatility, 
but the above formula really needs one hard number for the volatility.  Further, the above formulae are not 
valid for the American Options, where the user has the right to exercise the option anytime till its maturity.   

Worst still, if one has to value American Options, using a volatility which is changing with time, then the 
closed form solutions do not remain very elegant and approachable.  These arguments remain true for 
interest rates as well, i.e. if we were to make interest rates, a function of time, then analytical methods do not 
remain very approachable. 

To overcome this limitation the trading industry has resorted to numerical methods to solve the above PDE.  
In the next section, we explain one of the basic numerical techniques to solve the Black-Scholes PDE and 
show that we can use this powerful method to value American Options as well and change the volatility and 
interest rates throughout the process as we wish. 
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5. Finite Difference Method 

Recall that we have to solve the following Black-Scholes PDE: 

���� � 12 ���� ������ � �� ���� � �� � 0 

The above PDE is a Linear Parabolic PDE and given the particular final and boundary conditions, we need to 
find the value of “V” in this PDE. 

In this section we explain how to solve this PDE using a robust numerical technique called Finite Difference 
Method.  First we introduce some notation.  We let the Stock price vary from 0 to N and we divide the Stock 
price into small increments of δS.  Similarly we vary the time from 0 to M and we divide the time into small 
increments of δt.  So, we have, 

� � #5�                          0 6 # 6 ',    
� � 75�                0 6 7 6 8 

 

Now we consider the different terms of our PDE.  We first consider the first term i.e. the term dV/ dt.  It is 
called the Theta.  This is the derivative of the Option price w.r.t time.  It follows that: 

���� � lim;→<
���, � � .� � ���, ��.  

 5�5�  =  �;> � �;>*(
5�  

To see how accurate we are in the above approximation, we consider the Taylor Series of Option value at 
the asset value S and time t, as follows: 

���, � � 5�� � ���, �� � 5� ����, ���� � ?����� 
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We translate the above differential equation into the following difference equation: 

�;> �  �;>*( � 5� ���� � ?�5��� 

 ���� � �;> � �;>*( 5� � ?�5�� 

So now that we have the difference equation for the first term i.e. Theta of our PDE, let us consider the next 
term i.e. Delta dV/ dS.  Consider the following Taylor Series first, 

��� � 5�, �� � ���, �� � 5� ����, ���� � 12 ��� �����, ����� � ?���@� 

Similarly, 

��� � 5�, �� � ���, �� � 5� ����, ���� � 12 ��� �����, ����� � ?���@� 

Subtracting from one another, dividing by 2δS and rearranging gives: 

���� � �;A(> � �;*(>  25� � ?�5��� 

The above is the second term of our BS PDE, i.e. Delta.  Finally let us consider the third term of our PDE i.e. 
Gamma d2V/ d2S.  Consider the Forward difference and Backward difference forms of the Delta, i.e. 

B �-��� C"DD&�&#E& �  �;A(> � �;> 5�  

F�EG-��� C"DD&�&#E& �  �;> � �;*(>  5�  

Take the difference between the forward difference and backward difference and divide it by δS, to see how 
this difference is changing w.r.t change in underlying stock price.  So, we have: 

������ � �;A(> � 2�;> � �;*(>  5�� � ?�5��� 
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So now we finally write all the above results at one place: 

���� � 12 ���� ������ � �� ���� � �� � 0 � � � �1 

���� � �;> � �;>*(
5� � ?�5�� � � � �2 

���� � �;A(> � �;*(>
25� � ?�5���  � � � �3 

������ � �;A(> � 2�;> � �;*(>
5�� � ?�5���  � � � �4 

-.&�&  
� � #5�   0 6 # 6 '    
� � 75�  0 6 7 6 8 

We write 1 as:   ���� � � ������ � J ���� � E� � 0 � � � �5 

� �  12 ����, J � ��, E � �� 

Now substitute 2, 3 and 4 into 5 to get 

  
L�;> � �;>*(

5� M � � L�;A(> � 2�;> � �;*(>
5�� M � J L�;A(> � �;*(>

25� M � E�;> � ?�5�, 5��� 

Multiply by 5� and take �;>*( on LHS 

�;>*( �  �;> � 5�5�� �N�;A(> � 2�;> � �;*(> O � 5�25� JN�;A(> � �;*(> O � 5�E�;> � ?�5��, 5�5��� 
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Collect the terms in �;*(> , �;> and �;A(>  

�;>*( �  N 5�5�� � � 5�25� JO�;*(> � N1 � 25�5�� � � 5�EO�;> � N 5�5�� � � 5�25� JO�;A(> � ?�5��, 5�5��� 

Substitute �( � P�
PQR �#� �� � P�

PQ , so  

�;>*( �  N�(� � 12 ��JO�;*(> � N1 � 2�(� � 5�EO�;> � N�(� � 12 ��JO�;A(> � ?�5��, 5��� 

�;>*( �  S;>�;*(> � N1 � F;>O�;> � �;>�;A(> � � � � � �6 

Where 

S;> � �(� � 12 ��J 

F;> � �2�(� � ��E 

�;> � �(� � 12 ��J 

Eqn 6 is of the form  

�;>*( �  DN�;*(> , �;>, �;A(> O 
This equation has an error of ?�5��, 5�5��� 
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5.a Boundary conditions 

Boundary Condition 1:  

For a call option when S = 0 then V = 0, so �UU � 0. 
Boundary Condition 2:  

We know that the price of the call option is  

����  !�" # $��%& ���, �� � �'��(� � )&*+�,*��'���� 

   -.&�&     �( � WXYZQ [2 \A�+A]R^R��,*��
^√,*�  

   �� � log �� )2 � � �� � (
� ����3 � ��

�√3 � �  

Now when � → ∞, �( → ∞, '��(� → 1, '���� → 1 

So, we have, 

���, �� � � � )&*+�,*��
 

So boundary condition is 

�̀> � '5� � )&*+>P� 

Boundary Condition 3:  

As S = 0, the BSE becomes  

���� � �� � 0 
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Numerically this becomes  

�U>*( � �U>5� � ��U> � 0 

�U>*( � �U> � �5��U> 

�U> � �U>*(�1 � �5�� 

Boundary Condition 4:  

From BC 2, we know that when  

� → ∞, �( → ∞, '��(� → 1, '���� → 1 

So, we have, 

���, �� � � � )&*+�,*�� 
This is linear payoff. So, 

���� → 1 �#� ������ → 0 

This means, 

�̀ *(> � �̀> � �̀ *�>
2  

Or, 

�̀> � 2�̀ *(> � �̀ *�>  

This is a boundary condition for vanishing gamma. 
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5.b The method to change the volatilities and inter est rates 

The expression for S;> , F;> �#� �;>  can be further simplified. Recall that, 

S;> � �(� � 12 ��J 

F;> � �2�(� � ��E 

�;> � �(� � 12 ��J 

Substitute the values for V1 ,V2, a, b and c  

�( � ����� , �� � ���� , � �  12 ����, J � ��, E � �� 

Also we use # �  Q
PQ 

So we have  

S;> � 5�5��
12 ���� � 12 5�5� �� 

S;> � 12 ���#� � �#�5� 

F;> � �2 5�5��
12 ���� � 5����� 

F;> � ����#� � ��5� 

�;> � 5�5��
12 ���� � 12 5�5� �� 

�;> � 12 ���#� � �#�5� 
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Now that we have the expressions for S;> , F;> �#� �;>, examine our earlier difference equation, 

�;>*( �  S;>�;*(> � N1 � F;>O�;> � �;>�;A(>
 

The above difference is of the form, 

�;>*( �  DN�;*(> , �;>, �;A(> O 
Note that the above difference equation implies that, we can calculate the option value one step back in time, 
from three option values which are one step ahead in time, but at three different points of the underlying 
Stock price.  This is really the crux of the Finite Difference Methods.  We can travel back in time, using option 
values at different points, which are one step ahead in time. 

Now examine the expressions for S;> , F;> �#� �;> 

S;> � 12 ���#� � �#�5� 

F;> � ����#� � ��5� 

�;> � 12 ���#� � �#�5� 

Note that only # �  Q
PQ and 5�, need to be held constant (because we have to define these from the start 

of our algorithm).  Rest of the parameters in the above equations are volatility(σ) and interest rate(r).  So we 
can vary these as we like while we are moving back in time, calculating option values.   

In this framework, we can even make very realistic assumptions that volatilities are some functions of the 
underlying stock price and time, and we can implement some external econometric processes like GARCH/ 
ARIMA etc., which can give us volatilities and interest rates at different points of underlying stock price and 
time.  

Our objective in this paper was to show that Black-Scholes framework does not really imply that volatilities 
and interest rates have to be held constant to compute the prices of the derivatives.  We hope that we are 
able to demystify this common misbelief. 

 


