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T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I

“The rayer”:  
The 10 Steps of Advanced Risk 

and Portfolio Management
The first of a two-part article on the path from data  
analysis to optimal execution across all asset classes  

and investment styles.

T

T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I

he quantitative investment arena is populated by 
different players: portfolio managers, risk manag-
ers, algorithmic traders, etc. These players are fur-
ther differentiated by the asset classes they cover, 
the different time horizons of  their activities and 

a variety of  other distinguishing features. Despite the many 
differences, all the above “quants” are united by the common 
goal of  correctly modeling and managing the probability dis-
tribution of  the prospective P&L of  their positions.

Figure 1: The “ rayer”: A 10-Step Blueprint for 
Risk and Portfolio Management

In this article, we present Steps 1 – 4 of  “the rayer,” a 
blueprint of  10 sequential steps for quants across the board 
to achieve their common goal (see Figure 1, above). Steps 
5 – 10 will be discussed in the next Quant Classroom column, 
which will be published in the June issue of  Risk Professional.

By following the rayer, quants can avoid common pit-
falls and ensure that they are not missing important points 
in their models. Furthermore, quants are directed to areas of  
advanced research that extends beyond the traditional quant 
literature. We use the letter “ ” to signify the true probabil-
ity space of  the buy-side P&L, which stands in contrast to 
the risk-neutral probability space “ ” used on the sell-side to 
price derivatives (see Meucci [2011b]).

Each step of  the rayer is concisely encapsulated  into a 
definition with the required rigorous notation. Then a simple 
case study with a portfolio of  only stocks and call options il-
lustrates the steps with analytical solutions. 

Within each step, we prepare the ground for, and point  
to, advanced research that fine-tunes the models, or  
enhances the models’ flexibility, or captures more realistic  
and nuanced empirical features. Each of  these steps are  
deceptively simple at first glance. Hence, we highlight a  
few common pitfalls to further clarify the conceptual  
framework.

1: Quest for Invariance
The “quest for invariance” is the first step of  the rayer, and 
the foundation of  risk modeling. The quest for invariance is 

necessary for the practitioners to learn about the future by 
observing the past in a stochastic environment.

Key concept. The Quest for Invariance step is the process of  
extracting from the available market data the “invariants” – 
i.e., those patterns that repeat themselves identically and inde-
pendently (i.i.d.) across time. The quest for invariance consists 
of  two sub-steps: identification of  the risk drivers and extrac-
tion of  the invariants from the risk drivers.

The first step of  the quest for invariance is to identify for 
each security the risk drivers among the market variables.

Key concept. The risk drivers of  a given security are a set of  
random variables,

that satisfy the following two properties: (a) the risk drivers Yt, 
together with the security terms and conditions, completely 
specify the security price at any given time t; and (b) the risk 
drivers Yt, although not i.i.d., follow a stochastic process that is 
homogeneous across time, in that it is impossible to ascertain 
the sequential order of  the realizations of  the risk drivers from 
the study of  the risk drivers past time series 

The risk drivers are variables that fully determine the price 
of  a security, but in general they are not the price, because 
the price can be non-homogeneous across time: think, for in-
stance, of  a zero-coupon bond, whose price converges to the 
face value as the maturity approaches. 

Homogeneity ensures that we can apply statisti-
cal techniques to the observed time series of  the 
risk drivers       and project future distributions.  
Note that we use the standard convention where lower-case 
letters, such as yt, denote realized variables, whereas upper-
case letters, such as Yt, denote random variables.

Illustration. Consider first the asset class of  stocks. Denote by  
St the random price of  one stock at the generic time t. The log-
price of  the stock Yt 1n St, possibly adjusted by reinvesting the 
dividends, is not i.i.d. across time. 

However, the dynamics of  the stock log-price is homogeneous 
across time: it is not possible to isolate any special period in the 
stock’s future evolution that will distinguish its price pattern from 
a nearby period. Hence, to project into the future, the random 
variable Yt 1n St is a suitable candidate risk driver for the stock 
price St.
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Next, let’s consider a second asset class, namely stock options. 
Denote by Ct,k,e the random price of  a European call option on 
the stock, where k is a given strike and e is the given expiry date, 
or time of expiry. The call price, or its log-price, is not a risk 
driver, because the presence of  the expiry date breaks the time 
homogeneity in the statistical behavior of  the call option price.

In order to identify the risk drivers behind the call option, we 
transform the price into an equivalent, but homogeneous, vari-
able – namely, the implied volatility at a given time to expiry. 
More precisely, consider the Black-Scholes pricing formula

where vt  e–t is the time to expiry, t is the yet to be defined 
implied volatility for that time to expiry, and cBS is the Black-
Scholes formula

with  the standard normal cdf. At each time t, the price Ct,k,e 

in (2) is observable, and so are St and vt. Therefore, the option 
formula (2) defines a value for t, which for this reason is called 
implied volatility.

The implied volatility for a given time to expiry, or better, 
the logarithm of  the implied volatility 1n t, displays a homo-
geneous behavior through time and thus it is a good candidate 
risk driver for the option. From the option formula (2), we ob-
serve that the implied volatility alone is not sufficient to deter-
mine the call price in the future, as, in addition, the log-price 
1n St and the time to expiry vt are needed. 

Since the time to expiry is deterministic, the call option re-
quires two risk drivers to determine its price fully:

The second step of  the quest for invariance is the extrac-
tion of  the invariants – i.e.,  the repeated patterns – from the 
homogeneous series of  the risk drivers.

Key concept. The invariants are shocks that steer the stochas-
tic process of  the risk drivers Yt over a given time step tt +1:

The invariants satisfy the following two properties: (a) they are 
identically and independently distributed (i.i.d.) across differ-
ent time steps; and (b) they become known at the end of  the 
step – i.e., at time t +1.

(1)

(2)

(3)

(4)

(5)

we can apply statistical techniques to the observed time series of the risk drivers
{yt}t=1,...,T and project future distributions. Note that we use the standard
convention where lower-case letters such as yt denote realized variables, whereas
upper-case letters such as Yt denote random variables.

Illustration. Consider rst the asset class of stocks. Denote by St
the random price of one stock at the generic time t. The log-price of the
stock Yt ≡ lnSt, possibly adjusted by reinvesting the dividends, is not i.i.d.
across time. However, the dynamics of the stock log-price is homogeneous
across time: it is not possible to isolate any special period in the stock’s
future evolution that will distinguish its price pattern from a nearby period.
Hence, to project into the future, the random variable Yt ≡ lnSt is a suitable
candidate risk driver for the stock price St.
Next, consider a second asset class, namely stock options. Denote by

Ct,k,e the random price of a European call option on the stock, where k is a
given strike and e is the given expiry date. The call price, or its log-price,
is not a risk driver, because the presence of the expiry date breaks the time
homogeneity in the statistical behavior of the call option price.
In order to identify the risk drivers behind the call option, we transform

the price into an equivalent, but homogeneous, variable, namely the implied
volatility at a given time to expiry. More precisely, consider the Black-Scholes
pricing formula

Ct,k,e ≡ cBS (lnSt − ln k,Σt, υt) , (2)

where υt ≡ e − t is the time to expiry, Σt is the yet to be dened implied
volatility for that time to expiry, and cBS is the Black-Scholes formula

cBS (m,σ, υ) ≡ em

k
Φ(

m+ rυ + σ2υ/2

σ
√
υ

)− e−rυΦ(
m+ rυ − σ2υ/2

σ
√
υ

), (3)

with Φ the standard normal cdf. At each time t, the price Ct,k,e in (2) is
observable, and so are St and υt. Therefore, the option formula (2) denes
a value for Σt, which for this reason is called implied volatility.
The implied volatility, or better, the logarithm of the implied volatility

lnΣt, displays a homogeneous behavior through time and thus it is a good
candidate risk driver for the option. From the option formula (2) we observe
that the implied volatility alone is not sufficient to determine the call price
in the future, as, in addition, the log-price lnSt and the time to expiry υt
are needed. Since the time to expiry is deterministic, the call option requires
two risk drivers to fully determine its price

µ
Ys,t
Yσ,t

¶
≡
µ
lnSt
lnΣt

¶
. (4)

The second step of the quest for invariance is the extraction of the invariants,
i.e. the repeated patterns, from the homogeneous series of the risk drivers.
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Key concept. The invariants are shocks that steer the stochastic

process of the risk drivers Yt over a given time step t→ t+ 1.

εt→t+1 ≡ (ε1,t→t+1, . . . , εQ,t→t+1)
0 (5)

The invariants satisfy the following two properties: a) they are identically
and independently distributed (i.i.d.) across different time steps; b) they
become known at the end of the step, i.e. at time t+ 1.

Note that each of the D risk drivers (1) can be steered by one or more
invariants, therefore Q ≥ D.
To determine whether a variable is i.i.d. across time, the easiest test is to

scatter-plot the series of the variable versus its own lags. If the scatter-plot, or
better, its location-dispersion ellipsoid, is a circle, then the variable is a good
candidate for an invariant. For more on this and related tests see Meucci (2005).
Being able to identify the invariants that steer the dynamics of the risk

drivers is of crucial importance because it allows us to project the market ran-
domness to the desired investment horizon. Often, practitioners make the mis-
take of projecting variables they have on hand, most notably returns, instead
of the invariants. This, of course, leads to incorrect measurement of risk at the
horizon, and thus to suboptimal trading decisions.
The stochastic process for the risk drivers Yt is steered by the randomness

of the invariants εt→t+1. The most basic dynamics, yet the most statistically
robust, which connects the invariants εt→t+1 with the risk drivers Yt is the
random walk

Yt+1 = Yt + εt→t+1. (6)

More advanced processes for the risk drivers account for such features as auto-
correlations, stochastic volatility, and long memory. We refer to Meucci (2009a)
for a review of these more general processes and how they related to random
walk and invariants both in discrete and in continuous time, with theory, case
studies, and code. We refer to Meucci (2009b) for the multivariate case, and
how it relates to cointegration and statistical arbitrage.

Illustration. Consider our rst asset class example, the stock. As dis-
cussed, the only risk driver is the log-price Yt ≡ lnSt. The above scatter-plot
generally indicates that the compounded return ln (St+1/St) are approxi-
mately invariants

εt→t+1 ≡ lnSt+1 − lnSt. (7)

Therefore the risk driver Yt ≡ lnSt follows a random walk, as in (6).
Now, consider our second asset class, the call option example. The em-

pirical scatter-plot shows that the changes of the log-implied volatility are
approximately i.i.d. across time. Furthermore, our analysis of the stock ex-
ample (7) implies that the changes of the log-price are invariants. Therefore,
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Note that each of  the D risk drivers (1) can be steered by one 
or more invariants; therefore, Q D.

To determine whether a variable is i.i.d. across time, the 
easiest test is to scatter-plot the series of  the variable versus its 
own lags. If  the scatter-plot – or better, its location-dispersion 
ellipsoid – is a circle, then the variable is a good candidate for 
an invariant. For more on this and related tests. see Meucci 
(2005).

Being able to identify the invariants that steer the dynamics 
of  the risk drivers is of  crucial importance because it allows us 
to project the market randomness to the desired investment 
horizon. Often, practitioners make the mistake of  projecting 
variables they have on hand, most notably returns, instead of  
the invariants. This, of  course, leads to incorrect measurement 
of  risk at the horizon, and thus to suboptimal trading deci-
sions.

The stochastic process for the risk drivers Yt is steered by the 
randomness of  the invariants tt+1. The most basic dynamics, 
yet the most statistically robust, which connects the invariants 
tt+1 with the risk drivers Yt, is the random walk

More advanced processes for the risk drivers account for such 
features as autocorrelations, stochastic volatility and long 
memory. We refer to Meucci (2009a) for a review of  these 
more general processes and how they related to random walk 
and invariants – both in discrete and in continuous time – with 
theory, case studies and code. We also refer to Meucci (2009b) 
for the multivariate case and how it relates to cointegration 
and statistical arbitrage.

Illustration. Consider our first asset class example, the stock. 
As discussed, the only risk driver is the log-price Yt  1n St. The 
aforementioned scatter-plot generally indicates that the com-
pounded return 1n (St+1/St )are approximately invariants

Therefore, the risk driver Yt  1n St follows a random walk, as 
in (6).

Now, consider our second asset class, the call option ex-
ample. The empirical scatter-plot shows that the changes of  
the log-implied volatility are approximately i.i.d. across time. 
Furthermore, our analysis of  the stock example (7) implies that 
the changes of  the log-price are invariants. Therefore, using 
notation similar to (4), we obtain

Key concept. The invariants are shocks that steer the stochastic
process of the risk drivers Yt over a given time step t→ t+ 1.

εt→t+1 ≡ (ε1,t→t+1, . . . , εQ,t→t+1)
0 (5)
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scatter-plot the series of the variable versus its own lags. If the scatter-plot, or
better, its location-dispersion ellipsoid, is a circle, then the variable is a good
candidate for an invariant. For more on this and related tests see Meucci (2005).
Being able to identify the invariants that steer the dynamics of the risk

drivers is of crucial importance because it allows us to project the market ran-
domness to the desired investment horizon. Often, practitioners make the mis-
take of projecting variables they have on hand, most notably returns, instead
of the invariants. This, of course, leads to incorrect measurement of risk at the
horizon, and thus to suboptimal trading decisions.
The stochastic process for the risk drivers Yt is steered by the randomness

of the invariants εt→t+1. The most basic dynamics, yet the most statistically
robust, which connects the invariants εt→t+1 with the risk drivers Yt is the
random walk

Yt+1 = Yt + εt→t+1. (6)

More advanced processes for the risk drivers account for such features as auto-
correlations, stochastic volatility, and long memory. We refer to Meucci (2009a)
for a review of these more general processes and how they related to random
walk and invariants both in discrete and in continuous time, with theory, case
studies, and code. We refer to Meucci (2009b) for the multivariate case, and
how it relates to cointegration and statistical arbitrage.

Illustration. Consider our rst asset class example, the stock. As dis-
cussed, the only risk driver is the log-price Yt ≡ lnSt. The above scatter-plot
generally indicates that the compounded return ln (St+1/St) are approxi-
mately invariants

εt→t+1 ≡ lnSt+1 − lnSt. (7)

Therefore the risk driver Yt ≡ lnSt follows a random walk, as in (6).
Now, consider our second asset class, the call option example. The em-

pirical scatter-plot shows that the changes of the log-implied volatility are
approximately i.i.d. across time. Furthermore, our analysis of the stock ex-
ample (7) implies that the changes of the log-price are invariants. Therefore,
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This is also a random walk, as in (6). Notice that this is a 
multivariate random walk.

The outcome of  the quest for invariance – i.e., the set of  risk 
drivers and their corresponding invariants – depends on the 
asset class and on the time scale of  our analysis. For instance, 
for interest rates, a simple random walk assumption (6) can be 
viable for time steps of  one day, but for time steps of  the order 
of  one year, mean-reversion becomes important. 

Similarly, for stocks at high frequency steps of  the order of  
fractions of  a second, the very time step becomes a random 
variable, which calls for its own invariant. We refer to Meucci 
(2009a) for a review.

Pitfalls. “...The random walk is a stationary process...” A ran-
dom walk, such as Yt in (6), is not stationary. The steps of  
the random walk tt+1 are stationary, and actually they 
are the most stationary of  processes – namely, invariants.
“...The random walk is too crude an assumption...” Once the 
data is suitably transformed into risk drivers, the ran-
dom walk assumption is very hard to beat in practice (see 
Meucci [2009a]).
“...Returns are invariants ...” Returns are not invariants in 
general. In our call option example, the past returns of  the 
call option price do not teach us anything about the future 
returns of  the option.

2: Estimation
As highlighted in the Quest for Invariance Step 1, the sto-
chastic behavior of  the risk drivers is steered by the “invari-
ants.” Once the invariants have been identified, their distribu-
tion can be estimated from empirical analysis and from other 
sources of  information.

Because of  the invariance property, the distribution of  the 
invariants does not depend on the specific time t. We represent 
this distribution in terms of  its probability density function 
(pdf) f. Note that, although the invariants are distributed in-
dependently across time, multiple invariants can be correlated 
with each other over the same time step. Therefore, f needs to 
be modeled as a multivariate distribution.

Key concept. The Estimation Step is the process of  fitting a 
distribution f to both the observed past realizations {t}of  the 
invariants  and optionally additional information iT that is 

using notation similar to (4), we obtain
µ

εs,t→t+1

εσ,t→t+1

¶
≡
µ
lnSt+1
lnΣt+1

¶
−
µ
lnSt
lnΣt

¶
. (8)

This is also a random walk as in (6). Notice that this is a multivariate random
walk.

The outcome of the quest for invariance, i.e. the set of risk drivers and their
corresponding invariants, depends on the asset class and on the time scale of
our analysis. For instance, for interest rates a simple random walk assumption
(6) can be viable for time steps of one day, but for time steps of the order of one
year mean-reversion becomes important. Similarly, for stocks at high frequency
steps of the order of fractions of a second, the very time step becomes a random
variable, which calls for its own invariant. We refer to Meucci (2009a) for a
review.

Pitfalls. "...The random walk is a stationary process...". A random walk,
such as Yt in (6) is not stationary. The steps of the random walk εt→t+1 are
stationary, and actually they are the most stationary of processes, namely in-
variants.
"...The random walk is too crude an assumption...". Once the data is suit-

ably transformed into risk drivers, the random walk assumption is very hard to
beat in practice, see Meucci (2009a).
"...Returns are invariants ...". Returns are not invariants in general. In our

call option example, the past returns of the call option price do not teach us
anything about the future returns of the option.

P 2 Estimation
As highlighted in the Quest for Invariance Step P 1, the stochastic behavior of
the risk drivers is steered by the "invariants". Once the invariants have been
identied, their distribution can be estimated from empirical analysis and from
other sources of information.
Because of the invariance property, the distribution of the invariants does

not depend on the specic time t. We represent this distribution in terms of
its probability density function (pdf) fε. Note that, although the invariants
are distributed independently across time, multiple invariants can be correlated
with each other over the same time step. Therefore fε needs to be modeled as
a multivariate distribution.

Key concept. The Estimation Step is the process of tting a distrib-
ution fε to both the observed past realizations {�t} of the invariants ε and
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available at the current time T,

Simple estimation approaches only process the time series of  
the invariants, but various advanced techniques also process 
information such as market-implied forward looking quanti-
ties, subjective Bayesian priors, etc.

The simplest of  all estimators for the invariants distribution 
is the nonparametric empirical distribution, justified by the 
law of  large numbers – i.e., “i.i.d. history repeats itself.” The 
empirical distribution assigns an equal probability 1/T to each 
of  the past observations in the series {t}t=1,...,T of  the historical 
scenarios.

Alternatively, for the distribution of  the invariants, one can 
make parametric assumptions such as multivariate normal, el-
liptical, etc.

Illustration. To illustrate the parametric approach, we con-
sider our example (8), where the invariants  are changes in 
moneyness and changes in log-implied volatility from t to t+1. 
We can assume that the distribution f is bivariate normal with 
2x1 expectation vector (s, s)' and 2x2 covariance matrix,  
s2 as below:

The expectation can be estimated with the sample mean  
                   , and the covariance with the sample covariance 
                                           , where ' denotes the transpose.

In large multivariate markets, it is important to impose struc-
ture on the correlations of  the distribution of  the invariants 
f. This is often achieved in practice by means of  linear factor 
models. 

Linear factor models are an essential tool of  risk and portfo-
lio management, as they play a key role in the Estimation Step 

2, as well as, among others, in the Attribution Step 4 and 
the Optimization Step 8. We refer to Meucci (2010c) for a 
thorough review of  theory, code, empirical results and pitfalls 
of  linear factor models in these three (and other) contexts.

A highly flexible approach to estimate and model distribu-
tions is provided by the copula-marginal decomposition (see, 
e.g., Cherubini, Luciano and Vecchiato [2004]). In order to 
use this decomposition in practice, as well as any alternative 
outcome of  the estimation process, the only feasible option is 

optionally additional information iT that is available at the current time T

{�t}t=1,...,T , iT 7→ fε. (9)

Simple estimation approaches only process the time series of the in-
variants, but various advanced techniques also process information such as
market-implied forward looking quantities, subjective Bayesian priors, etc.

The simplest of all estimators for the invariants distribution is the non-
parametric empirical distribution, justied by the law of large numbers, i.e.
"i.i.d. history repeats itself". The empirical distribution assigns an equal prob-
ability 1/T to each of the past observations in the series {�t}t=1,...,T of the
historical scenarios.
Alternatively, for the distribution of the invariants, one can make parametric

assumptions such as multivariate normal, elliptical, etc.

Illustration. To illustrate the parametric approach, we consider our
example (8), where the invariants ε are changes in moneyness and changes
in log-implied volatility from t to t+1. We can assume that the distribution
fε is bivariate normal with 2× 1 expectation vector µ ≡ (µs, µσ)

0 and 2× 2
covariance matrix σ2 as below

µ
εs,t→t+1

εσ,t→t+1

¶
∼ N(

µ
µs
µσ

¶
,

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶
). (10)

The expectation can be estimated with the sample mean µ ≡ 1
T

P
t �t, and

the covariance with the sample covariance σ2≡ 1
T

P
t (�t − µ) (�t − µ)0, where

0 denotes the transpose.

In large multivariate markets it is important to impose structure on the
correlations of the distribution of the invariants fε. This is often achieved in
practice by means of linear factor models. Linear factor models are an essential
tool of risk and portfolio management, as they play a key role in the Estimation
Step P 2, as well as, among others, in the Attribution Step P 4 and the Opti-
mization Step P 8. We refer to Meucci (2010c) for a thorough review of theory,
code, empirical results, and pitfalls of linear factor models in these three and
other contexts.
A highly exible approach to estimate and model distributions is provided by

the copula-marginal decomposition, see e.g. Cherubini, Luciano, and Vecchiato
(2004). In order to use this decomposition in practice, as well as any alternative
outcome of the estimation process, the only feasible option is to represent dis-
tributions in terms of historical scenarios similar to the above, or Monte Carlo
generated scenarios, see Meucci (2011a).
The last important advanced topic is estimation risk. It is important to

emphasize that, regardless how advanced an estimation technique is applied
to model the joint distribution of the invariants, the nal outcome will be an
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to represent distributions in terms of  historical scenarios sim-
ilar to the above, or Monte Carlo- generated scenarios (see 
Meucci [2011a]).

The last important advanced topic is estimation risk. It is 
important to emphasize that, regardless how advanced an esti-
mation technique is applied to model the joint distribution of  
the invariants, the final outcome will be an estimate – i.e., only 
an approximation – of  the true, unknown, distribution of  the 
invariants f. Estimation risk is the risk stemming from using an 
estimate of  the invariants distribution in the process of  man-
aging the portfolio’s positions, instead of  the true, unknown 
distribution of  the invariants.

Advanced estimation techniques that attempt to address this 
issue include multivariate robust estimation with low influence 
function and high breakdown point, and multivariate Bayesian 
estimation. We refer to Meucci (2005) for an in-depth review.

Alternatively, to address estimation risk, practitioners rely 
on scenario analysis, where one joint scenario for the risk driv-
ers, plausible or extreme, is isolated, and its effect on the P&L 
is evaluated, as we will see in Step 4.

Pitfall. “... In order to estimate the return of  a bond I can analyze 
the time series of  the past bond returns ...” The price of  bonds 
with short maturity will soon converge to its face value. As 
a result, the returns are not invariants, and thus their past 
history is not representative of  their future behavior. Esti-
mation must always be linked to the quest for invariance.
“...In markets with a large number Q of  invariants, I use a cross-
sectional linear factor model on returns with KQ factors. This 
reduces the covariance parameters to be estimated from  Q2/2 to 
K2/2+Q ” A cross-sectional factor model has the same 
number of  unknown quantities as a time-series model. 
The cross-sectional factors are typically autocorrelated. 
The residuals in both cross-sectional and time-series mod-
els are not truly idiosyncratic, as they display non-zero 
correlation with each other. For more on these and related 
pitfalls for  linear factor models, see Meucci (2010c).

3: Projection
Ultimately, we are interested in the value of  our positions at 
the investment horizon. In order to determine the distribution 
of  our positions, we must first determine the distribution of  
the risk drivers at the investment horizon. This distribution, 
in turn, is obtained by projecting to the horizon the invariants 
distribution, obtained in the Estimation Step 2.

We denote the current time as tT and the generic invest-



58       RISK PROFESSIONAL   A P R I L  2 0 1 1 www.garp.org www.garp.org A P R I L  2 0 1 1  RISK PROFESSIONAL       59   

T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I

ment horizon tT+, where  is the distance to the horizon, 
say, one week.

Key concept. The Projection Step is the process of  obtaining 
the distribution at the investment horizon T+ of  the relevant 
risk drivers Yt from the distribution of  the invariants and ad-
ditional information it available at the current time T

In order to project the risk drivers, we must go back to their 
connection with the invariants analyzed in the Quest for In-
variance Step 1.

If  the drivers evolve as a random walk (6), then by recursion  
of  the random walk definition                                                  , 
                                      we obtain that the risk drivers at the 
horizon YT+ are the current observable value yT plus the sum 
of  all the intermediate invariants

Using the independence of  the invariants, (12) yields for the 
variance

Since all the ’s in (12) are i.i.d., all the variances in (13) are 
equal, and thus we obtain the well-known “square-root rule”  
for the projection of  the standard deviation                         . 
Note that we did not make any distributional assumption such 
as normality to derive the square-root rule.

Simple results to project other moments under the ran-
dom walk assumption (6), such as skewness and kurtosis, can 
be found in Meucci (2010a) and Meucci (2010d). Projecting 
the whole distribution is more challenging, but can still be ac-
complished using Fourier transform techniques (see Albanese, 
Jackson and Wiberg [2004]).

In the more general case where the drivers do not evolve 
as a random walk (6), the projection can be obtained by re-
drawing scenarios according to the given dynamics (see, e.g.,  
Meucci [2010b] for the parametric case and Paparoditis and 
Politis (2009) for the empirical distribution).

Illustration. In our oversimplified normal example the 
projection can be performed analytically. Indeed, from the 
normal distribution of  the invariants (10), it follows, from 
the preservation of  normality with the sum of  independent 
normal variables, that the sum of  the invariants is normal  

estimate, i.e. only an approximation, of the true, unknown, distribution of the
invariants fε. Estimation risk is the risk stemming from using an estimate of
the invariants distribution in the process of managing the portfolio’s positions,
instead of the true, unknown distribution of the invariants.
Advanced estimation techniques that attempt to address this issue include

multivariate robust estimation with low inuence function and high breakdown
point, and multivariate Bayesian estimation. We refer to Meucci (2005) for an
in-depth review.
Alternatively, to address estimation risk, practitioners rely on scenario analy-

sis, where one joint scenario for the risk drivers, plausible or extreme, is isolated,
and its effect on the P&L is evaluated, as we will see in Section P 4.

Pitfall. "...In order to estimate the return of a bond I can analyze the time
series of the past bond returns...". The price of bonds with short maturity will
soon converge to its face value. As a result, the returns are not invariants, and
thus their past history is not representative of their future behavior. Estimation
must always be linked to the quest for invariance.
"...In markets with a large number Q of invariants I use a cross-sectional

linear factor model on returns with K ¿ Q factors. This reduces the covariance
parameters to be estimated from ≈ Q2/2 to ≈ K2/2 + Q.". A cross-sectional
factor model has the same number of unknown quantities as a time-series model.
The cross-sectional factors are typically autocorrelated. The residuals in both
cross-sectional and time-series models are not truly idiosyncratic, as they display
non-zero correlation with each other. For more on these and related pitfalls for
linear factor models, see Meucci (2010c).

P 3 Projection
Ultimately we are interested in the value of our positions at the investment
horizon. In order to determine the distribution of our positions, we must rst
determine the distribution of the risk drivers at the investment horizon. This
distribution, in turn, is obtained by projecting to the horizon the invariants
distribution, obtained in the Estimation Step P 2.
We denote the current time as t ≡ T and the generic investment horizon

t ≡ T + τ , where the distance to the horizon τ is, say, one week.

Key concept. The Projection Step is the process of obtaining the
distribution at the investment horizon T + τ of the relevant risk drivers
Yt from the distribution of the invariants and additional information iT
available at the current time T

fε , iT 7→ fYT+τ . (11)
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In order to project the invariants we must go back to their connection with
the dynamics of the risk drivers analyzed in the Quest for Invariance Step P 1.
If the drivers evolve as a random walk (6), then by recursion of the random

walk denition Yt+2 = Yt+1 + εt+1→t+2 = Yt + εt→t+1 + εt+1→t+2 we obtain
that the risk drivers at the horizon YT+τ are the current observable value yT
plus the sum of all the intermediate invariants

YT+τ = yT + εT→T+1 + · · ·+ εT+τ−1→T+τ . (12)

Using the independence of the invariants, (12) yields for the variance

V {YT+τ} = V {εT→T+1}+ · · ·+V {εT+τ−1→T+τ} . (13)

Since all the ε’s in (12) are i.i.d., all the variances in (13) are equal, and thus
we obtain the well-known "square-root rule" for the projection of the standard
deviation Sd {YT+τ} =

√
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be performed analytically. Indeed, from the normal distribution of the in-
variants (10) it follows, from the preservation of normality with the sum
of independent normal variables, that the sum of the invariants is normal
εT→t+τ ∼ N(τµ, τσ2). Thus we obtain for the distribution of the two risk
drivers at the horizon
µ
lnST+τ
lnΣT+τ

¶
∼ N(

µ
ln sT
lnσT

¶
+ τ

µ
µs
µσ

¶
, τ

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶
). (14)

Pitfall. "...To project the market I assume normality and therefore I mul-
tiply the standard deviation by the square root of the horizon...". The square
root rule is true for all random walks with nite-variance invariants, regardless
of their distribution. However, the square-root rule only applies to the stan-
dard deviation and does not allow to determine all the other moments of the
distribution, unless the distribution is normal.
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P 4 Pricing
Now that we have the distribution of the risk drivers at the horizon YT+τ from
the Projection Step P 3, we are ready to compute the distribution of the security
prices in our book. Recall that the value of the securities at the investment
horizon, by design, is fully determined by a) risk drivers at the horizon YT+τ
and b) non-random information iT known at the current time, such as terms
and conditions

PT+τ = p (YT+τ ; iT ) . (15)

Then, given the security price at the horizon PT+τ , the security P&L from the
current date to horizon ΠT→T+τ is the difference between the horizon value
(15), which is a random variable, and the current value, which is observable and
thus part of the available information set iT . Thus the horizon prot function
reads

ΠT→T+τ = p (YT+τ ; iT )− pT . (16)

Note that the P&L must be adjusted for coupons and dividends, either by
reinvesting them in the pricing function (15), or by an additional cash ow term
in (16).

Key concept. The Pricing Step is the process of obtaining the distri-
bution of the securities P&L’s over the investment horizon from the distri-
bution of the risk drivers at the horizon and current information such as
terms and conditions, by means of the pricing function

fYT+τ , iT 7→ fΠT→T+τ (17)

At times it is convenient to approximate the pricing function (15) by its
Taylor expansion

p (y; iT ) = p (y; iT )+(y − y)0 ∂yp (y; iT )+(y − y)0
∂yyp (y; iT )

2
(y − y)+· · · (18)

where y is a signicative value of the risk drivers, often the current value y ≡ yT ;
∂yp (y; iT ) denotes the vector of the rst derivatives; and ∂yyp (y; iT ) denotes
the matrix of the second cross-derivatives.
Depending on its end users, the coefficients in the Taylor approximation

(18) are known under different names. In the derivatives world, they are called
the "Greeks": theta, delta, gamma, vega, etc. In the xed-income world the
coefficients are called carry, duration and convexity.

Illustration. In our stock example, the single risk driver is the log-price
Yt ≡ lnSt. Therefore the horizon pricing function (15) reads p (y) = ey. Its
Taylor approximation reads p (y) ≈ eyT (1 + y − yT ). Then the P&L of the
stock (16) reads

Πs,T→T+τ ≈ sT (lnST+τ − ln sT ) . (19)
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Hence, from the distribution of  the risk drivers (14), it follows 
that the distribution of  the stock P&L is approximately nor-
mal, as follows:

For our call option with strike k and expiry e, the risk drivers 
are the log-price Ys,t 1n St and the log-implied volatility Ys,t 

1n t, as in (4). The horizon pricing function (15) follows 
from the Black-Scholes formula (2), and reads

When the investment horizon is much shorter than the 
time to expiry of  the option – i.e.,  e–T, the following 
first-order Taylor approximation suffices to proxy the price  

option’s current Black-Scholes “delta” and                                                      
is the option’s current Black-Scholes “vega.” Then the P&L of  
the call option (16) reads

We stated in the distribution of  the risk drivers (14) that the 
log-changes in (22) are jointly normal. Therefore, the distribu-
tion of  the P&L is normal, because the linear combination of  
jointly normal variables is normal, as follows:
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Hence, from the distribution of the risk drivers (14), it follows that the dis-
tribution of the stock P&L is approximately normal

Πs,T→T+τ ∼ N(τsTµs, τs2Tσ2s). (20)

For our call option with strike k and expiry e, the risk drivers are the
log-price Ys,t ≡ lnSt and the log-implied volatility Yσ,t ≡ lnΣt, as in (4).
The horizon pricing function (15) follows from the Black-Scholes formula (2)
and reads

pBS (ys, yσ; iT ) = cBS (ys − ln k, eyσ , e− T − τ) . (21)

When the investment horizon is much shorter than the time to expiry of the
option, i.e. τ ¿ e−T , the following rst-order Taylor approximation suffices
to proxy the price pBS (ys, yσ; iT ) ≈ pBS (ys,T , yσ,T ; iT )+δBS,T ·(ys − ys,T )+
vBS,T · (yσ − yσ,T ), where δBS,T ≡ ∂pBS (ys, yσ) /∂ys is the option’s current
Black-Scholes "delta" and vBS,T ≡ ∂pBS (ys, yσ) /∂yσ is the option’s current
Black-Scholes "vega". Then the P&L of the call option (16) reads

Πc,T→T+τ ≈ (lnST+τ − ln sT ) δBS,T + (lnΣT+τ − lnσT ) vBS,T . (22)

We stated in the distribution of the risk drivers (14) that the log-changes
in (22) are jointly normal. Therefore, the distribution of the P&L is normal,
because the linear combination of jointly normal variables is normal

Πc,T→T+τ ∼ N(τµc, τσ2c), (23)

where

µc ≡ δBS,Tµs + vBS,Tµσ (24)

σ2c ≡ δ2BS,Tσ
2
s + v2BS,Tσ

2
σ + 2δBS,T vBS,Tρσsσσ. (25)

Notice how the expectation of the call option’s P&L depends on the expecta-
tions of the stock compounded return and the expectation of the log-changes
in implied volatility, multiplied by the horizon τ . A similar relationship holds
for the standard deviation of the call’s P&L.

It is worth noticing that pricing becomes a surprisingly easy task when the
distribution of the risk drivers is represented in terms of scenarios, as (16) is
simply repeated scenario-by-scenario by inputting discrete realized risk drivers
values.
We conclude the pricing step by highlighting two problems. First, a data

and analytics problem: in many companies there might not be readily available
pricing functions with all terms and conditions.
Second, the problem of liquidity risk. The pricing step assumes the existence

of one single price, which is fully determined by the risk drivers Pt = p (Yt; iT )
as in (15). In reality, for any security there exist multiple possible prices, which
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Notice how the expectation of  the call option’s P&L depends 
on the expectations of  the stock compounded return and the 
expectation of  the log-changes in implied volatility, multiplied 
by the horizon . A similar relationship holds for the standard 
deviation of  the call’s P&L.

It is worth noticing that pricing becomes a surprisingly easy 
task when the distribution of  the risk drivers is represented 
in terms of  scenarios, as (16) is simply repeated, scenario-by-
scenario, by inputting discrete realized risk drivers values.

We conclude the pricing step by highlighting two prob-
lems. First, a data and analytics problem: in many compa-
nies, there might not be readily available pricing functions 
with all terms and conditions.

Second, we have the problem of  liquidity risk. The pric-
ing step assumes the existence of  one single price, which is 
fully determined by the risk drivers Pt=p(Yt;iT), as in (15). In 
reality, for any security there exist multiple possible prices, 
which represent supply and demand. The actual execution 
price depends on supply and demand, on the size and style 
of  the transaction, and on other factors.

Techniques to model liquidity risk are very different from 
other types of  market risk. We will discuss in Steps 7, 8 
and 9  methodologies to address liquidity risk.
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(23)

(24)
(25)

By following the rayer, 
quants can avoid common 

pitfalls and ensure that  
they are not missing  
important points in  

their models.

In order to project the invariants we must go back to their connection with
the dynamics of the risk drivers analyzed in the Quest for Invariance Step P 1.
If the drivers evolve as a random walk (6), then by recursion of the random

walk denition Yt+2 = Yt+1 + εt+1→t+2 = Yt + εt→t+1 + εt+1→t+2 we obtain
that the risk drivers at the horizon YT+τ are the current observable value yT
plus the sum of all the intermediate invariants

YT+τ = yT + εT→T+1 + · · ·+ εT+τ−1→T+τ . (12)

Using the independence of the invariants, (12) yields for the variance

V {YT+τ} = V {εT→T+1}+ · · ·+V {εT+τ−1→T+τ} . (13)

Since all the ε’s in (12) are i.i.d., all the variances in (13) are equal, and thus
we obtain the well-known "square-root rule" for the projection of the standard
deviation Sd {YT+τ} =

√
τ Sd {ε}. Note that we did not make any distributional

assumption such as normality to derive the square-root rule.
Simple results to project other moments under the random walk assumption

(6), such as skewness and kurtosis, can be found in Meucci (2010a) and Meucci
(2010d). Projecting the whole distribution is more challenging, but can still be
accomplished using Fourier transform techniques, see Albanese, Jackson, and
Wiberg (2004).
In the more general case where the drivers do not evolve as a random walk

(6), the projection can be obtained by redrawing scenarios according to the given
dynamics, see e.g. Meucci (2010b) for the parametric case and Paparoditis and
Politis (2009) for the empirical distribution.

Illustration. In our oversimplied normal example the projection can
be performed analytically. Indeed, from the normal distribution of the in-
variants (10) it follows, from the preservation of normality with the sum
of independent normal variables, that the sum of the invariants is normal
εT→t+τ ∼ N(τµ, τσ2). Thus we obtain for the distribution of the two risk
drivers at the horizon
µ
lnST+τ
lnΣT+τ

¶
∼ N(

µ
ln sT
lnσT

¶
+ τ

µ
µs
µσ

¶
, τ

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶
). (14)

Pitfall. "...To project the market I assume normality and therefore I mul-
tiply the standard deviation by the square root of the horizon...". The square
root rule is true for all random walks with nite-variance invariants, regardless
of their distribution. However, the square-root rule only applies to the stan-
dard deviation and does not allow to determine all the other moments of the
distribution, unless the distribution is normal.
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P 4 Pricing
Now that we have the distribution of the risk drivers at the horizon YT+τ from
the Projection Step P 3, we are ready to compute the distribution of the security
prices in our book. Recall that the value of the securities at the investment
horizon, by design, is fully determined by a) risk drivers at the horizon YT+τ
and b) non-random information iT known at the current time, such as terms
and conditions

PT+τ = p (YT+τ ; iT ) . (15)

Then, given the security price at the horizon PT+τ , the security P&L from the
current date to horizon ΠT→T+τ is the difference between the horizon value
(15), which is a random variable, and the current value, which is observable and
thus part of the available information set iT . Thus the horizon prot function
reads

ΠT→T+τ = p (YT+τ ; iT )− pT . (16)

Note that the P&L must be adjusted for coupons and dividends, either by
reinvesting them in the pricing function (15), or by an additional cash ow term
in (16).

Key concept. The Pricing Step is the process of obtaining the distri-
bution of the securities P&L’s over the investment horizon from the distri-
bution of the risk drivers at the horizon and current information such as
terms and conditions, by means of the pricing function

fYT+τ , iT 7→ fΠT→T+τ (17)

At times it is convenient to approximate the pricing function (15) by its
Taylor expansion

p (y; iT ) = p (y; iT )+(y − y)0 ∂yp (y; iT )+(y − y)0
∂yyp (y; iT )

2
(y − y)+· · · (18)

where y is a signicative value of the risk drivers, often the current value y ≡ yT ;
∂yp (y; iT ) denotes the vector of the rst derivatives; and ∂yyp (y; iT ) denotes
the matrix of the second cross-derivatives.
Depending on its end users, the coefficients in the Taylor approximation

(18) are known under different names. In the derivatives world, they are called
the "Greeks": theta, delta, gamma, vega, etc. In the xed-income world the
coefficients are called carry, duration and convexity.

Illustration. In our stock example, the single risk driver is the log-price
Yt ≡ lnSt. Therefore the horizon pricing function (15) reads p (y) = ey. Its
Taylor approximation reads p (y) ≈ eyT (1 + y − yT ). Then the P&L of the
stock (16) reads

Πs,T→T+τ ≈ sT (lnST+τ − ln sT ) . (19)

9
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Pitfall. “... The delta approximation gives rise to parametric risk 
models that assume normality...” The Taylor approximation of  
the pricing function can be paired with any distributional 
assumption, not necessarily normal, on the risk drivers.
“... The goodness of  the Taylor approximation depends on the spe-
cific security ...” The goodness of  the Taylor approximation 
depends on the security and on the investment horizon: 
due to the square-root propagation of  the standard devia-
tion (13), the longer the horizon, the wider the distribution 
of  the risk drivers. Therefore the approximation worsens 
with longer horizons.

...To be continued in the next “classroom.”

Attilio Meucci is the chief  risk officer at Kepos Capital LP. He runs the 6-day “Ad-
vanced Risk and Portfolio Management Bootcamp,” see symmys.com. The author is 
grateful to Garli Beibi, Luca Spampinato and an anonymous referee.
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Often, practitioners make 
the mistake of project-

ing variables they have on 
hand, most notably  

returns, instead of the  
invariants. This, of course, 
leads to incorrect measure-
ment of risk at the horizon, 

and thus to suboptimal 
trading deci sions.


