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T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I

“The rayer”:  
The 10 Steps of Advanced Risk  

and Portfolio Management – Part 2
The second of a two-part article on the path from data  
analysis to optimal execution across all asset classes  

and investment styles.

T

T H E  Q U A N T  C L A S S R O O M  b y  AT T I L I O  M E U C C I

he quantitative investment arena is populated by 
different players: portfolio managers, risk manag-
ers, algorithmic traders, etc. These players are fur-
ther differentiated by the asset classes they cover, 
the different time horizons of  their activities and 

a variety of  other distinguishing features. Despite the many 
differences, all the above "quants" are united by the common 
goal of  correctly modeling and managing the probability dis-
tribution of  the prospective P&L of  their positions.

Figure 1: "The rayer”: A 10-Step Blueprint for 
Risk and Portfolio Management

Here, we continue our journey through “The rayer,” a blue-
print of  10 sequential steps for quants across the board to 
achieve their common goal. Steps 1-4 were discussed in the 
Quant Classroom published in the April issue of  Risk Profes-
sional (also available at symmys.com). In this article, we discuss 
the remaining Steps 5-10. Please refer to Figure 1 (left) for a 
map of  The rayer.

 5 Aggregation
The Pricing Step  4 yields the projected P&L’s of  the single 
securities. The Aggregation Step generates the P&L distribu-
tion for a portfolio with multiple securities.

Consider a market of  N securities, whose P&L’s   (1, . 

. . N)' are obtained from the Pricing Step  4. We drop from 
the notation of  the P&L the subscript T T+, because it is 
understood that from now on The rayer focuses on the pro-
jected P&L between now and the future investment horizon.

Consider a portfolio, which is defined by the holdings in 
each position at the beginning of  the period h  (h1, . . . hN)'. 
The holdings are the number of  shares for stocks, the number 
of  standardized-notional contracts for swaps, the number of  
standardized-face-value-bond for bonds, etc.

The portfolio P&L is determined by the "conservation law 
of  money": the total portfolio P&L is the sum of  the holding 
in each security times the P&L generated by each security, as 
follows:
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where we have assumed no rebalancing during the period.

Key concept. The Aggregation Step is the process of  com-
puting the distribution of  the portfolio P&L h by aggregat-
ing the joint distribution of  the securities P&L with the given 
holdings

Given one single scenario for the risk drivers YT+, and thus 
for the securities P&L’s   (1, . . . N)', the computation of  the 
portfolio P&L h is immediately determined by the conserva-
tion law of  money (1) as the sum of  the single-security P&Ls 
in that scenario.

However, to arrive at the whole continuous distribution of  
the portfolio P&L fh, we must compute multiple integrals, as 
follows:

which is in general a very challenging operation. On the other 
hand, the computation of  the aggregate P&L distribution be-
comes trivial when the market is represented in terms of  sce-
narios, as the conservation law of  money (1) is simply repeated 
in a discrete way, scenario-by-scenario.

Illustration. In our example with a stock and a call option, 
whose P&Ls are normally distributed, suppose we hold a posi-
tive or negative number hs of  shares of  the stock and a positive 
or negative number hc of  the call. Then the total P&L follows 
from applying the aggregation rule (1) to the stock P&L and 
the option P&L, which were obtained in the first part of  this 
article in terms of  their delta-vega pricing approximation – i.e., 

Thus, from the joint normal assumption for        and 
      , and from the fact that sums of  jointly normal  
variables are normal, the total portfolio is normally distribut-
ed. Isolating the horizon , we obtain

where

Previously, we described in full the Aggregation Step. How-
ever, this topic is not complete without comparing the aggrega-
tion of  the P&L with an equivalent, more popular — yet more 
error-prone — formulation in terms of  returns.

The reader is probably familiar with the notion of  returns, 
which allow for performance comparisons across different se-
curities and portfolio weights. The return is the ratio of  the 
P&L over the current price                  . The  
weight of  a security is its relative market value within the port-
folio                                          and satisfies the "pie-chart"  
rule 

The conservation law of  money (1) becomes easier to in-
terpret in terms of  returns and weights, as the total portfolio 
return is the following weighted average of  the single-security 
returns:

where we dropped the horizon subscript for simplicity.
In “The rayer,” we refrain from conceptualizing the ag-

gregation and the subsequent steps in terms of  returns, and 
we rely on returns only for interpretation purposes, for the fol-
lowing reasons.

First, P&L and holdings are always unequivocal, whereas 
returns and weights are subjective. Indeed, for leveraged se-
curities, such as swaps and futures, the definition of  returns 
and weights is not straightforward. In these circumstances, we 
need to introduce a subjective "basis" denominator d known 
at the beginning of  the return period, such that both the re-
turn R/d and the weight (see Meucci, 2010d) are always 
defined.

Second, returns are often confused with the invariants, and 
thus incorrectly used for estimation.

Third, the linear returns (pT+ – pT)/ pT, which appear in the 
aggregation rule (8), are often confused with the compounded 
returns 1n(pT+/pT), which do not satisfy the aggregation rule.

Pitfall. "...Returns are invariants. Therefore, we can estimate their 
distribution from their past realizations and aggregate this distribu-
tion to the portfolio level using the weights..." Only in asset classes 
such as stocks do the concepts of  invariant and return 
dangerously overlap  (see Meucci, 2010b).

6 Attribution
With the Aggregation Step  5, we have arrived at the project-
ed portfolio P&L distribution. In order to assess, manage and 
hedge a portfolio with h  (h1, . . . hN)' holdings, it is important to 

Consider a market of N securities, whose P&L’s Π ≡ (Π1, . . . ,ΠN )0 are
obtained from the Pricing Step P 4. We drop from the notation of the P&L
the subscript T → T + τ , because it is understood that from now on the Prayer
focuses on the projected P&L between now and the future investment horizon.
Consider a portfolio, which is dened by the holdings in each position at

the beginning of the period h ≡ (h1, . . . , hN )0. The holdings are the number of
shares for stocks, the number of standardized-notional contracts for swaps, the
number of standardized-face-value-bond for bonds, etc.
The portfolio P&L is determined by the "conservation law of money": the

total portfolio P&L is the sum of the holding in each security times the P&L
generated by each security

Πh =
PN

n=1 hnΠn, (1)

where we have assumed no rebalancing during the period.

Key concept. The Aggregation Step is the process of computing the
distribution of the portfolio P&L Πh by aggregating the joint distribution
of the securities P&L with the given holdings

fΠ , h 7→ fΠh (2)

Given one single scenario for the risk drivers YT+τ and thus for the secu-
rities P&L’s Π ≡ (Π1, . . . ,ΠN )0, the computation of the portfolio P&L Πh is
immediately determined by the conservation law of money (1) as the sum of the
single-security P&L’s in that scenario.
However, to arrive at the whole continuous distribution of the portfolio P&L

fΠh we must compute multiple integrals

fΠh (x) dx =

Z

h0π∈dx
fΠ (π1, . . . , πN ) dπ1 · · · dπN , (3)

which is in general a very challenging operation. On the other hand, the com-
putation of the aggregate P&L distribution becomes trivial when the market is
represented in terms of scenarios, as the conservation law of money (1) is simply
repeated in a discrete way scenario-by-scenario.

Illustration. In our example with a stock and a call option, whose P&L’s
are normally distributed, suppose we hold a positive or negative number hs
of shares of the stock and a positive or negative number hc of the call. Then
the total P&L follows from applying the aggregation rule (1) to the stock
P&L and the option P&L which were obtained in the rst part of this article
in terms of their delta-vega pricing approximation

Πh ≈ hssT ln
ST+τ
sT
+ hc(δBS,T ln

ST+τ
sT
+ vBS,T ln

ΣT+τ
σT
) (4)

= (hssT + hcδBS,T ) ln
ST+τ
sT
+ hcvBS,T ln

ΣT+τ
σT
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Thus, from the joint normal assumption for ln ST+τ
sT

and ln ΣT+τσT
, and the

fact that sums of jointly normal variables are normal, the total portfolio is
normally distributed. Isolating the horizon τ we obtain

Πh ∼ N(τµh, τσ2h), (5)

where

µh ≡ (hssT + hcδBS,T )µs + hcvBS,Tµσ (6)

σ2h ≡ (hssT + hcδBS,T )
2
σ2s + h2cv

2
BS,Tσ

2
σ (7)

+2 (hssT + hcδBS,T )hcvBS,Tρσsσσ.

Above we described in full the Aggregation Step. However, this topic is not
complete without comparing the aggregation of the P&L with an equivalent,
more popular, yet more error-prone, formulation in terms of returns.
The reader is probably familiar with the notion of returns, which allow for

performance comparisons across different securities, and portfolio weights. The
return is the ratio of the P&L over the current price RT→T+τ ≡ ΠT→T+τ/pT .
The weight of a security is its relative market value within the portfolio wn ≡
hnpn,T /

P
m hmpm,T and satises the "pie-chart" rule

P
nwn = 1.

The conservation law of money (1) becomes easier to interpret in terms of
returns and weights, as the total portfolio return is the weighted average of the
single-security returns

Rh =
PN

n=1wnRn, (8)

where we dropped the horizon subscript for simplicity.
In the Prayer, we refrain from conceptualizing the aggregation and the sub-

sequent steps in terms of returns, and we rely on returns only for interpretation
purposes, for the following reasons.
First, P&L and holdings are always unequivocal, whereas returns and weights

are subjective. Indeed, for leveraged securities, such as swaps and futures, the
denition of returns and weights is not straightforward. In these circumstances
we need to introduce a subjective "basis" denominator d known at the begin-
ning of the return period, such that the return R ≡ Π/d is always dened, and
so is the weight, see Meucci (2010d).
Second, returns are often confused with the invariants, and thus incorrectly

used for estimation.
Third, the linear returns (pT+τ − pT ) /pT which appear in the aggregation

rule (8) are often confused with the compounded returns ln (pT+τ/pT ), which
do not satisfy the aggregation rule.

Pitfall. "...Returns are invariants. Therefore we can estimate their distrib-
ution from their past realizations and aggregate this distribution to the portfolio
level using the weights...". Only in asset classes such as stocks do the concepts
of invariant and return dangerously overlap. Furthermore, even for stocks, the
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ascertain the sources of  risk that affect it. Given the distribu-
tion of  the projected portfolio P&L, we would like to identify 
a parsimonious set of  relevant factors Z  (Z1, . . . ZK)' that drive 
the portfolio P&L and that have a known joint distribution 
with the portfolio P&L fh,z.

More specifically, because the identification of  the factors 
should be actionable and easy to interpret, the attribution 
should be linear. Thus, the attribution is defined by coefficients 
bh  (bh,1, . . . bh,K)', as follows:

Note that the attribution to arbitrary factors in general gives 
rise to a portfolio-specific residual. The formulation (9) covers 
this case, by setting such a residual as one of  the factors Zk, 
with attribution coefficient bh,k 1.

Key concept. The Attribution Step decomposes the project-
ed portfolio P&L linearly into a set of  K relevant risk factors Z, 
yielding the K portfolio specific exposures bh

The relevant question is which attribution factors Z to use. 
Naturally, different intentions of  the trader or portfolio man-
ager call for different choices of  attribution factors.

The most trivial attribution assigns the projected portfolio 
P&L back to the contributions from each security: i.e., Zkk 
is the projected P&L from the generic k-th security; bh,k  hk 

are the holdings of  the k-th security in the portfolio; and the 
number of  factors is KN (the number of  securities). Then 
the attribution equation (9) becomes the conservation law of  
money (1).

If  on the other hand the trader wishes to hedge a given risk 
— say, volatility risk — then he or she will choose as a factor 
Zk the projected P&L k of  a truly actionable instrument, such 
as a variance swap, that might or might not have been part of  
the original portfolio.

Alternatively, the portfolio manager might wish to monitor 
the exposure to a given risk factor, without the need to hedge 
it. If, for instance, the manager is interested in the total "vega" 
of  its portfolio, then he or she will use changes in implied vola-
tility as one of  the risk factors.

Furthermore, in case too many possible factors or hedging 
instruments exist, the manager will want to express his or her 
portfolio as a function of  only those few factors that truly affect 
the P&L.

Notice that (9) is a portfolio-specific, top-down linear factor 
model. The flexible choice of  the optimal attribution factors Z 
and optimal exposures bh with flexible constraints that define 
this linear factor model — along with its connections with the 
linear factor models introduced in the Estimation Step P2 — 
is the spirit of  the "Factors on Demand" approach in Meucci 
(2010a).

Illustration. In our stock and option example, we look at a 
simple attribution (9) to the original sources of  risk. According-
ly, we set as attribution factors the stock compounded return 
Zs1n(ST+/sT) and the implied volatility log-change Z1n 
(T+./T) Thus, we have K2 factors. From the expression of  
the portfolio P&L (4), we immediately obtain

where the total exposures to Zs and Z read, respectively,

Pitfall. “...If  I use a factor model to estimate the returns distribu-
tion of  some stocks and I want my portfolio to be neutral to a given 
factor, I simply make sure that the exposure to that factor is zero 
in my portfolio..." Ensuring a null-exposure coefficient for 
one factor does not guarantee immunization, because the 
given factor is in general correlated with other factors. To 
provide full immunization, we must resort to Factors on 
Demand.

 7 Evaluation
Up to this step, we have obtained the projected distribution of  
the P&L h of  a generic portfolio with holdings h and attrib-
uted it to relevant risk factors Z. In the evaluation step, the goal 
is to compare the P&L distribution of  the current portfolio h 
with the P&L distribution of  a different potential portfolio h~. 
Evaluation is one of  the risk and portfolio manager’s primary 
tasks.

Since each portfolio is represented by the whole projected 
distribution of  its P&L, it is not possible to compare two port-
folios in terms of  which P&L is higher. To obviate this prob-
lem, typically practitioners rely on one or more summary sta-
tistics for the projected P&L distribution.

The most standard statistics are the expected value, the stan-
dard deviation and the Sharpe ratio — also known, respective-
ly, as expected outperformance, tracking error and informa-

tion ratio in the case of  benchmarked portfolio management. 
Other measures include the value-at-risk (VaR), the expect-

ed shortfall (ES or CVaR), skewness, kurtosis, etc. More inno-
vative statistics include coherent measures of  risk aversion (see 
Artzner, Delbaen, Eber and Heath, 1997); spectral measures 
of  risk aversion (see Acerbi, 2002); and measures of  diversi-
fication, such as the "effective number of  bets" (see Meucci, 
2009).

We emphasize that, in this context, all the above are ex-ante 
measures of  risk for the projected portfolio P&L h, rather 
than ex-post measures of  performance.

Key concept. The Evaluation Step consists of  two sub-steps. 
The first sub-step is the computation of  one or more summary 
statistics S for the projected distribution of  the given portfolio 
P&L h with holdings h 

The second (optional) sub-step is the attribution of  the sum-
mary statistics S(h) to the fully flexible attribution factors Z uti-
lized in the Attribution Step

where bh,k represents the "amount" of  the factor Zk in the port-
folio-projected P&L and Sk represents the "per-unit" contribu-
tion to the statistic S(h) from the factor Zk .

Illustration. In our simple, normal market of  one stock 
and one option, any portfolio is determined by the holdings 
h(hs,hc)'. Let us focus on the first sub-step (13) and let us com-
pute the most basic summary statistics of  the P&L: namely, 
its expected value. Then, from the distribution of  a generic 
portfolio P&L (5), we obtain

Similarly, if  the manager cares about a measure of  volatility, a 
suitable measure is the standard deviation

where h is defined in (7).

For the optional summary statistics attribution sub-step 
(14), a simple linear decomposition that mirrors the attribu-
tion equation (9) is not feasible. For instance, for the standard  
deviation, it is well known that                                              . 

However, notice that numerous summary statistics, such as 
expectation, standard deviation, VaR, ES and spectral mea-
sures, display an interesting feature: they are homogeneous — 
i.e., by doubling all the holdings in the portfolio, those summa-
ry statistics, also double. As proved by Euler, for homogeneous 
statistics, the following identity holds true:

Therefore, if  the summary statistics are homogeneous, we 
can take advantage of  Euler’s identity (17) to perform the sum-
mary statistics attribution sub-step (14), which becomes (17).

In particular, for the VaR, the decomposition (17) amounts 
to the classical definition of  marginal contributions to VaR 
(see, e.g., Garman, 1997), and, for the standard deviation, the 
decomposition (17) amounts to the "hot-spots" (see Litterman, 
1996).

We recall that the simplest case of  the flexible, top-down, 
Factors on Demand attribution of  the portfolio P&L (9) is the 
bottom-up attribution to the individual securities through the 
conservation law of  money (1). Similarly, the simplest case of  
attribution of  the summary statistics (14) is the attribution of  
the summary statistics S(h) to the individual securities

Illustration. To illustrate the attribution to a summary statis-
tic of  the portfolio projected P&L, we rely on our example of  
a stock and a call option. We focus on the standard deviation 
(16).

The exposure bh,s of  the projected portfolio P&L (9) to the 
stock factor Zs1n(ST+/sT) and the exposure bh, to the im-
plied volatility factor Z1n(ST+/T) were calculated in (12). 
Then the attribution (17) to each of  the two risk drivers of  the 
standard deviation of  the projected portfolio P&L becomes

where h is defined in (7) (see the proof  in the technical ap-
pendix available at http://symmys.com/node/63). The total 
contributions to risk from the factors follow by multiplying the 
entries on the left-hand side of  (19) by the respective exposures.

For the attribution to the individual securities — i.e., the 
stock and the call option — a similar calculation yields

projection does not apply directly to the returns, and thus one has to follow all
the steps of the Prayer, see Meucci (2010b).

P 6 Attribution
With the Aggregation Step P 5, we have arrived at the projected portfolio
P&L distribution. In order to assess, manage, and hedge a portfolio with h ≡
(h1, . . . , hN )

0 holdings, it is important to ascertain the sources of risk that affect
it. Given the distribution of the projected portfolio P&L, we would like to
identify a parsimonious set of relevant factors Z ≡ (Z1, . . . , ZK)0 that drive
the portfolio P&L and whose joint distribution with the portfolio P&L fΠh,Z is
known.
More specically, because the identication of the factors should be action-

able and easy to interpret, the attribution should be linear. Thus, the attribu-
tion is dened by coefficients bh ≡ (bh,1, . . . , bh,K)0, as follows

Πh =
PK

k=1 bh,kZk. (9)

Note that the attribution to arbitrary factors in general gives rise to a portfolio-
specic residual. The formulation (9) covers this case, by setting such residual
as one of the factors Zk, with attribution coefficient bh,k ≡ 1.

Key concept. The Attribution Step decomposes the projected portfolio
P&L linearly into a set ofK relevant risk factors Z, yielding theK portfolio-
specic exposures bh

fΠh,Z 7→ bh (10)

The relevant question is which attribution factors Z to use. Naturally, dif-
ferent intentions of the trader or portfolio manager call for different choices of
attribution factors.
The most trivial attribution assigns the projected portfolio P&L back to

the contributions from each security, i.e. Zk ≡ Πk is the projected P&L from
the generic k-th security, bh,k ≡ hk are the holdings of the k-th security in the
portfolio, and the number of factors is K ≡ N , i.e. the number of securities.
Then the attribution equation (9) becomes the conservation law of money (1).
If on the other hand the trader wishes to hedge a given risk, say volatility risk,

then he will choose as a factor Zk the projected P&L Πk of a truly actionable
instrument, such as a variance swap, which might or might not have been part
of the original portfolio.
Alternatively, the portfolio manager might wish to monitor the exposure to

a given risk factor, without the need to hedge it. If for instance the manager
is interested in the total "vega" of its portfolio for example, then he will use
changes in implied volatility as one of the risk factors.
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Furthermore, in case there exist too many possible factors or hedging instru-
ments, the manager will want to express his portfolio as a function of only those
few factors that truly affect the P&L.
Notice that (9) is a portfolio-specic top-down linear factor model. The

exible choice of the optimal attribution factors Z and optimal exposures bh
with exible constraints which dene this linear factor model, along with its
connections with the linear factor models introduced in the Estimation Step P
2 , is the spirit of the "Factors on Demand" approach in Meucci (2010a).

Illustration. In our stock and option example, we look at a simple attri-
bution (9) to the original sources of risk. Accordingly, we set as attribution
factors the stock compounded return Zs ≡ ln (ST+τ/sT ) and the implied
volatility log-change Zσ ≡ ln (ΣT+τ/σT ). Thus, we have K ≡ 2 factors.
From the expression of the portfolio P&L (4) we immediately obtain

Πh = bh,sZs + bh,σZσ, (11)

where the total exposures to Zs and Zσ read respectively

bh,s ≡ hssT + hcδBS,T , bh,σ ≡ hcvBS,T . (12)

Pitfall. "...If I use a factor model to estimate the returns distribution of
some stocks and I want my portfolio to be neutral to a given factor, I simply make
sure that the exposure to that factor is zero in my portfolio...". Ensuring a null-
exposure coefficient for one factor does not guarantee immunization, because
the given factor is in general correlated with other factors. To provide full
immunization we must resort to Factors on Demand.

P 7 Evaluation
Up to this step, we have obtained the projected distribution of the P&L Πh
of a generic portfolio with holdings h and attributed it to relevant risk factors
Z. In the evaluation step, the goal is to compare the P&L distribution of the
current portfolio h with the P&L distribution of a different potential portfolio
eh. Evaluation is one of the risk and portfolio manager’s primary tasks.

Since each portfolio is represented by the whole projected distribution of
its P&L, it is not possible to compare two portfolios in terms of which P&L
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spectral measures of risk aversion, see Acerbi (2002); and measures of diversi-
cation, such as the "effective number of bets", see Meucci (2009).
We emphasize that, in this context, all the above are ex-ante measures of

risk for the projected portfolio P&L Πh, rather than ex-post measures of per-
formance.

Key concept. The Evaluation Step consists of two sub-steps. The rst
sub-step is the computation of one or more summary statistics S for the
projected distribution of the given portfolio P&L Πhwith holdings h

fΠh 7→ S (h) . (13)

The second, optional, sub-step is the attribution of the summary statistics
S(h) to the fully exible attribution factors Z utilized in the Attribution
Step

fΠh,Z , bh 7→ S (h) =
PK

k=1 bh,kSk, (14)

where bh,k represents the "amount" of the factor Zk in the portfolio pro-
jected P&L and Sk represents the "per-unit" contribution to the statistic
S (h) from the factor Zk.

Illustration. In our simple normal market of one stock and one option,
any portfolio is determined by the holdings h ≡ (hs, hc)0. Let us focus on the
rst sub-step (13) and let us compute the most basic summary statistics of
the P&L, namely its expected value. Then from the distribution of a generic
portfolio P&L (5) we obtain

S (hs, hc) ≡ E {Πh} = τµh = τhssTµs + τhc (δBS,Tµs + vBS,Tµσ) . (15)

Similarly, if the manager cares about a measure of volatility, a suitable mea-
sure is the standard deviation

S (hs, hc) ≡ Sd {Πh} =
√
τσh, (16)

where σh is dened in (7).

For the optional summary statistics attribution sub-step (14), a simple linear
decomposition that mirrors the attribution equation (9) is not feasible. For in-
stance, for the standard deviation it is well known that Sd {Πh} 6=

PK
k=1 bh,k Sd {Zk}.

However, notice that numerous summary statistics such as expectation, stan-
dard deviation, VaR, ES, and spectral measures display an interesting feature:
they are homogeneous, i.e. by doubling all the holdings in the portfolio, those
summary statistics also double. As proved by Euler, for homogeneous statistics
the following identity holds true

S (h) =
PK

k=1 bh,k
∂S (h)
∂bh,k

. (17)
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Therefore, if the summary statistics is homogeneous, we can take advantage
of Euler’s identity (17) to perform the summary statistics attribution sub-step
(14), which becomes (17).
In particular, for the VaR, the decomposition (17) amounts to the classical

denition of marginal contributions to VaR, see e.g. Garman (1997), and, for
the standard deviation, the decomposition (17) amounts to the "hot-spots", see
Litterman (1996).
We recall that the simplest case of the exible, top-down, Factors on De-

mand attribution of the portfolio P&L (9) is the bottom-up attribution to the
individual securities through the conservation law of money (1). Similarly, the
simplest case of attribution of the summary statistics (14) is the attribution of
the summary statistics S (h) to the individual securities

S (h) =
PN

n=1 hn
∂S (h)
∂hn

. (18)

Illustration. To illustrate the attribution to a summary statistic of the
portfolio projected P&L, we rely on our example of a stock and a call option.
We focus on the standard deviation (16).
The exposure bh,s of the projected portfolio P&L (9) to the stock factor

Zs ≡ ln (ST+τ/sT ) and the exposure bh,σ to the implied volatility factor
Zσ ≡ ln (ΣT+τ/σT ) were calculated in (12). Then the attribution (17) to each
of the two risk drivers of the standard deviation of the projected portfolio
P&L becomes

Ã
∂ Sd{Πh}
∂bh,s

∂ Sd{Πh}
∂bh,σ

!
=

√
τ

σh

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶µ
hssT + hcδBS,T

hcvBS,T

¶
, (19)

where σh is dened in (7), see the proof in the technical appendix available
at http://symmys.com/node/62. The total contributions to risk from the
factors follow by multiplying the entries of (19) by the respective exposures
(12).
For the attribution to the individual securities, i.e. the stock and the call

option, a similar calculation yields
Ã

∂ Sd{Πh}
∂hs

∂ Sd{Πh}
∂hσ

!
=

√
τ

σh

µ
s2Tσ

2
s σΠs,Πc

σΠs,Πc σ2Πc

¶µ
hs
hc

¶
, (20)

where

σ2Πc ≡ σ2sδ
2
BS,T + σ2σv

2
BS,T + 2σσσsρδBS,T vBS,T (21)

σΠs,Πc ≡ δBS,T sTσ
2
s + sT vBS,Tσσσsρ, (22)

see the proof in the technical appendix available at
http://symmys.com/node/62. The total contributions to risk from the
stock and the call option follow by multiplying the entries of (20) by the
respective holdings hs and hc.
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where

see the proof  in the technical appendix available at http://
symmys.com/node/63. The total contributions to risk from 
the stock and the call option follow by multiplying the entries 
on the left hand side of  (20) by the respective holdings hs and hc.

The computation of  the summary statistics S(h) is hard to 
perform in practice, unless the market is normal as in our ex-
ample (16), because complex multiple integrals are involved. 
For instance, using the same notation as in (3), the VaR with 
confidence c is defined by

To address this problem, one can rely on approximation 
methods such as the Cornish-Fisher expansion or the elliptical 
assumption (see Meucci, 2005a) for a review. The computa-
tion of  the partial derivatives for the decomposition (17) of  the 
summary statistics is even harder, unless the market is normal, 
as in our example (19)-(20). Fortunately, these computations 
become simple when the market distribution is represented in 
terms of  scenarios (see Meucci, 2010a).

Before concluding, we must address two key problems of  
risk and portfolio management: estimation risk, introduced in 
the Estimation Step  2, and liquidity risk, introduced in the 
Pricing Step  4. 

As far as estimation risk is concerned, the projected distribu-
tion of  the P&L h that we are evaluating is only an estimate, 
not the true projected distribution, which is unknown. There-
fore, estimation risk affects the Evaluation Step. As a simple, 
effective way to address this issue, risk managers perform stress 
tests or scenario analysis, which amounts to evaluating the 
P&L under specific — typically, extreme or historical — real-
izations of  the risk drivers. 

A more advanced general approach to stress testing is "Fully 
Flexible Probabilities" (see Meucci, 2010c), which allows the 
portfolio manager to assign non-equal probabilities to the 
historical scenarios, according to such criteria as exponential 
smoothing, rolling window, kernel conditioning and, more 

Clearly, the optimal allocation should not violate a set of  
hard constraints, such as the budget constraint, or soft con-
straints, such as constraints on leverage, risk, etc. We denote 
by C the set of  all such constraints and by "h  C" the condition 
that the allocation h satisfies the given constraints.

Key concept. The Optimization Step is the process of  com-
puting the holdings that maximize satisfaction, while not vio-
lating a given set of  investment constraints, as follows:

We emphasize that the choice of  the most suitable index of  
satisfaction S, as well as the specific constraints C, vary widely 
depending on the profile of  the securities P&L distribution, the 
investment horizon and other features of  the market and the 
investor.

Illustration. In our stock and option example, we can com-
pute the best hedge for one call option. In this context, the 
general framework (24) becomes

Then the first order condition on the P&L standard deviation, 
computed in (5)-(7), yields

If  the correlation  between implied volatility and underlying 
were null, the best hedge would consist in shorting a "delta" 
amount of  underlying. In general,  is substantially negative: 
for instance, the sample correlation between VIX and S&P 
500 is  ≈ -0.7. Therefore, a correction to the simplistic delta 
hedge must be applied.

In general, the numerical optimization (24) is a challeng-
ing task. To address this issue, one can resort to the two-step 
mean-variance heuristic. First, the mean-variance efficient 
frontier is computed, as follows: 

This step reduces the dimension of  the problem from N, and 
the dimension of  the market, to 1, the value of  . The optimi-
zation (27) can be solved by variations of  quadratic program-
ming. The optimization becomes particularly efficient when 
a linear factor model makes the covariance of  the securities' 

P&Ls sparse (see Meucci, 2010f).
In the second step of  the mean-variance heuristic, the opti-

mal portfolio is selected by a one-dimensional search

The optimization (28) can be performed by a simple grid-
search.

As it was the case for the Evaluation Step 7, we must ad-
dress estimation risk, introduced in the Estimation Step 2: the 
projected distribution of  the P&L that we are optimizing is only 
an estimate, not the true projected distribution, which is un-
known. As it turns out, the optimal portfolio is extremely sensi-
tive to the input estimated distribution, which makes estimation 
risk particularly relevant for the Optimization Step 8.

To address the issue of  estimation risk, portfolio managers 
rely on more advanced approaches than the simple two-step 
mean-variance heuristic (27)-(28). These advanced approaches 
include robust optimization, which relies on cone program-
ming (see Ben-Tal and Nemirovski, 2001, and Cornuejols and 
Tutuncu, 2007); Bayesian allocation (see Bawa, Brown and 
Klein, 1979); robust Bayesian allocation (see Meucci, 2005b); 
and resampling (see Michaud, 1998). We refer to Meucci 
(2005a) for an in-depth review.

Since estimation is imperfect, tactical portfolio construction 
enhances performance by blending market views and predic-
tive signals into the estimated market distribution. Well-known 
techniques to perform tactical portfolio construction are the 
approach by Grinold and Kahn (1999), which mixes signals 
based on linear factor models for returns; the Bayesian in-
spired methodology by Black and Litterman (1990); and the 
generalized Bayesian approach "Entropy Pooling" in Meucci 
(2008).

Due to the rapid decay of  the quality of  predictive tactical 
signals, managers separate tactical portfolio construction from 
strategic rebalancing, which takes into account shortfall and 
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range from dynamic programming to heuristics (see, e.g., Mer-
ton, 1992, Grossman and Zhou, 1993, and Browne and Ko-
sowski, 2010. Refer to Meucci, 2010e, for a review and code).

Finally, liquidity risk, discussed in the Pricing Step 4, im-
pacts the Optimization Step: transaction costs must be paid to 
reallocate capital, and the process of  executing a transaction 
impacts the execution price. Therefore, market impact mod-
els must be embedded in the portfolio optimization process. 
The standard approach in this direction is a power-law impact 

Therefore, if the summary statistics is homogeneous, we can take advantage
of Euler’s identity (17) to perform the summary statistics attribution sub-step
(14), which becomes (17).
In particular, for the VaR, the decomposition (17) amounts to the classical

denition of marginal contributions to VaR, see e.g. Garman (1997), and, for
the standard deviation, the decomposition (17) amounts to the "hot-spots", see
Litterman (1996).
We recall that the simplest case of the exible, top-down, Factors on De-

mand attribution of the portfolio P&L (9) is the bottom-up attribution to the
individual securities through the conservation law of money (1). Similarly, the
simplest case of attribution of the summary statistics (14) is the attribution of
the summary statistics S (h) to the individual securities

S (h) =
PN

n=1 hn
∂S (h)
∂hn

. (18)

Illustration. To illustrate the attribution to a summary statistic of the
portfolio projected P&L, we rely on our example of a stock and a call option.
We focus on the standard deviation (16).
The exposure bh,s of the projected portfolio P&L (9) to the stock factor

Zs ≡ ln (ST+τ/sT ) and the exposure bh,σ to the implied volatility factor
Zσ ≡ ln (ΣT+τ/σT ) were calculated in (12). Then the attribution (17) to each
of the two risk drivers of the standard deviation of the projected portfolio
P&L becomes

Ã
∂ Sd{Πh}
∂bh,s

∂ Sd{Πh}
∂bh,σ

!
=

√
τ

σh

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶µ
hssT + hcδBS,T

hcvBS,T

¶
, (19)

where σh is dened in (7), see the proof in the technical appendix available
at http://symmys.com/node/62. The total contributions to risk from the
factors follow by multiplying the entries of (19) by the respective exposures
(12).
For the attribution to the individual securities, i.e. the stock and the call

option, a similar calculation yields
Ã

∂ Sd{Πh}
∂hs

∂ Sd{Πh}
∂hσ

!
=

√
τ

σh

µ
s2Tσ

2
s σΠs,Πc

σΠs,Πc σ2Πc

¶µ
hs
hc

¶
, (20)

where

σ2Πc ≡ σ2sδ
2
BS,T + σ2σv

2
BS,T + 2σσσsρδBS,T vBS,T (21)

σΠs,Πc ≡ δBS,T sTσ
2
s + sT vBS,Tσσσsρ, (22)

see the proof in the technical appendix available at
http://symmys.com/node/62. The total contributions to risk from the
stock and the call option follow by multiplying the entries of (20) by the
respective holdings hs and hc.
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(25)

(26)
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The computation of the summary statistics S (h) is hard to perform in prac-
tice, unless the market is normal as in our example (16), because complex mul-
tiple integrals are involved. For instance, using the same notation as in (3), the
VaR with condence c is dened by

1− c ≡
Z

h0π≤V aR
fΠ (π1, . . . , πN ) dπ1 · · · dπN . (23)

To address this problem, one can rely on approximation methods such as the
Cornish-Fisher expansion, or the elliptical assumption, see Meucci (2005a) for
a review. The computation of the partial derivatives for the decomposition (17)
of the summary statistics is even harder, unless the market is normal as in our
example (19)-(20). Fortunately, these computations become simple when the
market distribution is represented in terms of scenarios, see Meucci (2010a).
Before concluding, we must address two key problems of risk and portfo-

lio management: estimation risk, introduced in the Estimation Step P 2, and
liquidity risk, introduced in the Pricing Step P 4.
As far as estimation risk is concerned, the projected distribution of the P&L

Πh that we are evaluating is only an estimate, not the true projected distribu-
tion, which is unknown. Therefore, estimation risk affects the Evaluation Step.
As a simple, effective way to address this issue, risk managers perform stress-
test or scenario analysis, which amounts to evaluating the P&L under specic,
typically extreme or historical, realizations of the risk drivers. A more advanced
general approach to stress testing is "Fully Flexible Probabilities", see Meucci
(2010c), which allows the portfolio manager to assign non-equal probabilities
to the historical scenarios, according to such criteria as exponential smoothing,
rolling window, kernel conditioning and, more exibly, the generalized Bayesian
approach "entropy pooling".
As far as liquidity risk is concerned, the projected distribution of the P&L

Πh that we are evaluating does not account for the effect of our own trading. A
theory to correct for this effect in the context of risk management was developed
in Cetin, R., and Protter (2004) and Acerbi and Scandolo (2007). For an easy
to implement liquidity adjustment to the P&L distribution refer to Meucci and
Pasquali (2010).

Pitfall. "...To compute the volatility of the P&L we can simply run the
sample standard deviation of the past P&L realizations...". The history of the
past P&L can be informative only if the P&L is an invariant. This seldom
happens, consider for instance the P&L generated by a buy-and-hold strategy
in one call option. In general, one has to follow all the steps of the Prayer to
compute risk numbers.
Pitfall. "...To compute the VaR I can multiply the standard deviation by

a threshold number such as 1.96...". This calculation is only correct with very
specic, unrealistic, typically normal, models for the market distribution.
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P 8 Optimization
In the Evaluation Step P 7, the risk manager or portfolio manager obtains
a set of computed summary statistics S to assess the goodness of a portfolio
with holdings h. These statistics can be combined in a subjective manner to
give rise to new statistics. For instance, a portfolio with expected return of
2% and standard deviation of 5% could be good for an investor with low risk
tolerance, but bad for an aggressive trader. In this case, a trade-off statistic
S (h) ≡ E {Πh} − γ Sd {Πh} can rank the portfolios according to the prefer-
ences of the investor, reected in the parameter γ. Alternatively, we can use
a subjective utility function u and rank portfolios based on expected utility
S (h) ≡ E {u (Πh)}.
More in general, we call index of satisfaction the function that translates

the P&L distribution of the portfolio with holdings h ≡ (h1, . . . , hN )0 into a
personal preference ranking. We denote the index of satisfaction by the general
notation S (h) used in (13) for the evaluation summary statistics, because any
index of satisfaction is also a summary statistic.
Given an index of satisfaction S (h), it is now possible to optimize the hold-

ings h accordingly. Portfolio optimization is the primary task of the portfolio
manager.
Clearly, the optimal allocation should not violate a set of hard constraints,

such as the budget constraint, or soft constraints, such as constraints on leverage,
risk, etc. We denote by C the set of all such constraints and by "h ∈ C" the
condition that the allocation h satises the given constraints.

Key concept. The Optimization Step is the process of computing
the holdings that maximize satisfaction, while not violating a given set of
investment constraints

h∗ ≡ argmax
h∈C

{S (h)} . (24)

We emphasize that the choice of the most suitable index of satisfaction S,
as well as the specic constraints C, vary widely depending on the prole of the
securities P&L distribution, the investment horizon, and other features of the
market and the investor.

Illustration. In our stock and option example we can compute the best
hedge for one call option. In this context, the general framework (24) becomes

(hs, hc)
∗ ≡ argmax

hc≡1
{−Sd {Πh}} . (25)

Then the rst order condition on the P&L standard deviation, computed in
(5)-(7), yields

hs ≡ −
δBS,T
sT

− vBS,T
sT

ρ
σσ
σs
. (26)
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10If the correlation ρ between implied volatility and underlying were null, the
best hedge would consist in shorting a "delta" amount of underlying. In gen-
eral ρ is substantially negative: for instance, the sample correlation between
VIX and S&P 500 is ρ ≈ −0.7. Therefore, a correction to the simplistic delta
hedge must be applied.

In general, the numerical optimization (24) is a challenging task. To address
this issue one can resort to the two-step mean-variance heuristic. First, the
mean-variance efficient frontier is computed

hλ ≡ argmax
h∈C

{E {Πh} − λVr {Πh}} , λ ∈ R. (27)

This step reduces the dimension of the problem from N , the dimension of the
market, to 1, the value of λ. The optimization (27) can be solved by variations of
quadratic programming. The optimization becomes particularly efficient when
a linear factor model makes the covariance of the securities P&L’s sparse, see
Meucci (2010f).
Second, the optimal portfolio is selected by a one-dimensional search

h∗ ≡ argmax
λ∈R

{S (hλ)} . (28)

The optimization (28) can be performed by a simple grid-search.
As it was the case for the Evaluation Step P 7, we must address estima-

tion risk, introduced in the Estimation Step P 2 : the projected distribution
of the P&L that we are optimizing is only an estimate, not the true projected
distribution, which is unknown. As it turns out, the optimal portfolio is ex-
tremely sensitive to the input estimated distribution, which makes estimation
risk particularly relevant for the Optimization Step P 8.
To address the issue of estimation risk, portfolio managers rely on more

advanced approaches than the simple two-step mean-variance heuristic (27)-
(28). These advanced approaches include robust optimization, which relies on
cone programming, see Ben-Tal and Nemirovski (2001) and Cornuejols and Tu-
tuncu (2007); Bayesian allocation, see Bawa, Brown, and Klein (1979); robust
Bayesian allocation, see Meucci (2005b); and resampling, see Michaud (1998).
We refer to Meucci (2005a) for an in-depth review.
Since estimation is imperfect, tactical portfolio construction enhances per-

formance by blending market views and predictive signals into the estimated
market distribution. Well-known techniques to perform tactical portfolio con-
struction are the approach by Grinold and Kahn (1999), which mixes signals
based on linear factor models for returns; the Bayesian inspired methodology by
Black and Litterman (1990); and the generalized Bayesian approach "Entropy
Pooling" in Meucci (2008).
Due to the rapid decay of the quality of predictive tactical signals, managers

separate tactical portfolio construction from strategic rebalancing, which takes
into account shortfall and drawdown control and is optimized based on tech-
niques that range from dynamic programming to heuristics, see e.g. Merton
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flexibly, the generalized Bayesian approach "entropy pooling."
As far as liquidity risk is concerned, the projected distribu-

tion of  the P&L h that we are evaluating does not account for 
the effect of  our own trading. A theory to correct for this effect 
in the context of  risk management was developed in Cetin, R., 
and Protter (2004) and Acerbi and Scandolo (2007). For an 
easy to implement liquidity adjustment to the P&L distribu-
tion, refer to Meucci and Pasquali (2010).

Pitfall. "...To compute the volatility of  the P&L, we can simply 
run the sample standard deviation of  the past P&L realizations..." 
The history of  the past P&L can be informative only if  the 
P&L is an invariant. This seldom happens: consider, for 
instance, the P&L generated by a buy-and-hold strategy in 
one call option. In general, one has to follow all the steps 
of  The Prayer to compute risk numbers.

Pitfall. "...To compute the VaR, I can multiply the standard devia-
tion by a threshold number such as 1.96..." This calculation is 
only correct with very specific, unrealistic, typically nor-
mal models for the market distribution.
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In the Evaluation Step  7, the risk manager or portfolio man-
ager obtains a set of  computed summary statistics S to assess 
the goodness of  a portfolio with holdings h. These statistics 
can be combined in a subjective manner to give rise to new 
statistics. 

For instance, a portfolio with expected return of  2% and 
standard deviation of  5% could be good for an investor 
with low risk tolerance, but bad for an aggressive trader. In 
this case, a trade-off  statistic                                   can 
rank the portfolios according to the preferences of  the investor, 
reflected in the parameter . Alternatively, we can use a sub-
jective utility function u and rank portfolios based on expected 
utility                         

More generally, we call "index of  satisfaction" the function 
that translates the P&L distribution of  the portfolio with hold-
ings h  (h1, . . . hn)' into a personal preference ranking. We de-
note the index of  satisfaction by the general notation S(h) used 
in (13) for the evaluation summary statistics, because any index 
of  satisfaction is also a summary statistic.

Given an index of  satisfaction S(h), it is now possible to op-
timize the holdings h accordingly. Portfolio optimization is the 
primary task of  the portfolio manager.

(21)
(22)
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best across all books, whereas optimization is specific to 
each individual manager.

10 Ex-Post Analysis
In the Execution Step 9, we implemented the allocation 
h*(h*1,. . . h*N) for the period between the current date T 
and the investment horizon T+. Upon reaching the horizon, 
we must evaluate the P&L h* realized over the horizon by the 
allocation, where the lower-case notation emphasizes that the 
P&L is no longer a random variable, but rather a number that 
we observe ex-post.

Key concept. The Ex-Post Analysis Step identifies the contri-
butions to the realized P&L from different decision makers and 
market factors, as follows:

Ex-post performance analysis is a broad subject that attracts 
tremendous attention from practitioners, as their compensation 
is ultimately tied to the results of  this analysis. Ex-post perfor-
mance can be broken down into two components: performance 
of  the target portfolio from the Optimization Step 8 and slip-
page performance from the Execution Step 9.

To analyze the ex-post performance of  the target portfolio, 
the most basic framework decomposes this performance into 
an allocation term and a selection term (see, e.g., Brinson and 
Fachler, 1985). More recent work attributes performance to dif-
ferent factors, such as foreign exchange swings or yield-curve 
movements, consistently with the Attribution Step 6.

The slippage component can be decomposed into unexecut-
ed trades and implementation shortfall attributable to market 
impact (see, Perold, 1988). Furthermore, performance must be 
fairly decomposed across different periods (see, e.g., Carino, 
1999, and Menchero, 2000).

Illustration. In our stock and option example, we can decom-
pose the realized P&L into the cost incurred by the "trading 
at all costs" strategy: a stock component an implied volatility 
component, and a residual. In particular, the stock component  
reads                , as in (11), and the implied volatility  
component reads                       . The residual is the plugin  
term that makes the sum of  all components add up to the total 
realized P&L.

Pitfall. "...I prefer geometric performance attribution, because it can 
be aggregated exactly across time and across currencies..." The geo-

model (see, e.g., Keim and Madhavan, 1998).

Pitfall. "...Mean-variance assumes normality..." The mean-
variance approach does not assume normality: any market 
distribution can be fed into the two-step process (27)-(28).

9 Execution
The Optimization Step 8 delivers a desired allocation 
h*(h*1,. . . h*N)'. To achieve the desired allocation, it is nec-
essary to rebalance the positions from the current allocation 
hT(h1,T, . . . hN,T)'. This rebalancing is not executed immedi-
ately. As time evolves, the external market conditions change. 
Simultaneously, the internal state of  the book — represented 
by the updated allocation, the updated constraints, etc. — 
changes dynamically. To execute a rebalancing trade, this in-
formation must be optimally processed. 

Key concept. The Execution Step processes the evolving ex-
ternal market information i m

t and internal book information i b
t 

to attain the target portfolio h* by a sequence of  transactions 
at given prices pt  (pt,1..., pt,N)'

Note that often the execution step is implemented in ag-
gregate across different books. This aggregation is particularly 
useful, as it allows for netting of  conflicting buy-sell orders 
from different traders or managers. Performing this netting 
in the Optimization Step 8 would be advisable (see, e.g., 
O’Cinneide, Scherer and X., 2006, and Stubbs and Vanden-
bussche, 2007). However, this can be hard in practice.

Execution is closely related to liquidity risk, first introduced 
in the Pricing Step 4. The literature on liquidity, market im-
pact, algorithmic trading and optimal execution is very broad 
(see, e.g., Almgren and Chriss, 2000, and Gatheral, 2010).

Illustration. For illustrative purposes, we mention the sim-
plest execution algorithm, namely "trading at all costs." This 
approach disregards any information on the market or the 
book and delivers immediately the desired final allocation by 
depleting the cash reserve. We emphasize that trading at all 
costs can be heavily suboptimal.

Pitfall. "...The Execution Step 9 should be embedded into the 
Optimization Step 9..." In practice, it is not possible to pro-
cess simultaneously real-time information and all the pre-
vious steps of  The rayer. Furthermore, execution works 

metric, or multiplicative approach to ex-post performance 
is arguably less intuitive, because it does not accommodate 
naturally a linear decomposition in terms of  different risk 
or decisions factors.
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(1992), Grossman and Zhou (1993), Browne and Kosowski (2010), and refer to
Meucci (2010e) for a review and code.
Finally, liquidity risk, discussed in the Pricing Step P 4, impacts the Op-

timization Step: transaction costs must be paid to reallocate capital and the
process of executing a transaction impacts the execution price. Therefore, mar-
ket impact models must be embedded in the portfolio optimization process. The
standard approach in this direction is a power-law impact model, see e.g. Keim
and Madhavan (1998).

Pitfall. "...Mean-variance assumes normality...". The mean-variance ap-
proach does not assume normality: any market distribution can be fed into the
two-step process (27)-(28).

P 9 Execution
The Optimization Step P 8 delivers a desired allocation h∗ ≡ (h∗1, . . . , h∗N )

0. To
achieve the desired allocation, it is necessary to rebalance the positions from
the current allocation hT ≡ (h1,T , . . . , hN,T )0. This rebalancing is not executed
immediately. As time evolves, the external market conditions change. Simulta-
neously, the internal state of the book, represented by the updated allocation,
the updated constraints, etc., changes dynamically. To execute a rebalancing
trade, this information must be optimally processed.

Key concept. The Execution Step processes the evolving external
market information imt and internal book information ibt to attain the
target portfolio h∗ by a sequence of transactions at given prices pt ≡
(pt,1, . . . , pt,N )

0

h∗ , {imt }t≥T ,
©
ibt
ª
t≥T 7→ {pt}t≥T . (29)

Note that often the execution step is implemented in aggregate across dif-
ferent books. This aggregation is particularly useful, as it allows for netting of
conicting buy-sell orders from different traders or managers. Performing this
netting in the Optimization Step P 8 would be advisable, see e.g.O’Cinneide,
Scherer, and X. (2006) and Stubbs and Vandenbussche (2007). However, this
can be hard in practice.
Execution is closely related to liquidity risk, rst introduced in the Pric-

ing Step P 4. The literature on liquidity, market impact, algorithmic trading
and optimal execution is very broad, see e.g. Almgren and Chriss (2000) and
Gatheral (2010).
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(29)

(30)

Illustration. For illustrative purposes, we mention the simplest execu-
tion algorithm, namely "trading at all costs". This approach disregards any
information on the market or the book and delivers immediately the desired
nal allocation by depleting the cash reserve. We emphasize that trading at
all costs can be heavily suboptimal.

Pitfall. "...The Execution Step P 9 should be embedded into the Optimiza-
tion Step P 9...". In practice it is not possible to process simultaneously real-time
information and all the previous steps of the Prayer. Furthermore, execution
works best across all books, whereas optimization is specic to each individual
manager.

P 10 Ex-Post Analysis
In the Execution Step P 9 we implemented the allocation h∗ ≡ (h∗1, . . . , h∗N ) for
the period between the current date T and the investment horizon T + τ . Upon
reaching the horizon, we must evaluate the P&L πh∗ realized over the horizon
by the allocation, where the lower-case notation emphasizes that the P&L is no
longer a random variable, but rather a number that we observe ex-post.

Key concept. The Ex-Post Analysis Step identies the contributions
to the realized P&L from different decision makers and market factors

πh∗ 7→ (πa, πb, · · · ) . (30)

Ex-post performance analysis is a broad subject that attracts tremendous
attention from practitioners, as their compensation is ultimately tied to the
results of this analysis.
To analyze ex-post performance, rst, execution must be separated from

optimization.
Execution performance can be broken down into two components: perfor-

mance of the target portfolio from the Optimization Step P 8 and slippage
performance from the Execution Step P 9.
To analyze the ex-post performance of the target portfolio, the most basic

framework decomposes this performance into an allocation term and a selec-
tion term, see e.g. Brinson and Fachler (1985). More recent work attributes
performance to different factors, such as foreign exchange swings or yield curve
movements, consistently with the Attribution Step P 6.
The slippage component can be decomposed into unexecuted trades and

implementation shortfall attributable to market impact, see Perold (1988).
Furthermore, performance must be fairly decomposed across different peri-

ods, see e.g. Carino (1999) and J. (2000).
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Illustration. In our stock and option example, we can decompose the

realized P&L into the cost incurred by the "trading at all costs" strategy,
a stock component, an implied volatility component, and a residual. In
particular, the stock component reads bh,s ln (sT+τ/sT ) as in (11), and the
implied volatility component reads bh,s ln (σT+τ/sT ) The residual is the plug-
in term that makes the sum of all components add up to the total realized
P&L.

Pitfall. "...I prefer geometric performance attribution, because it can be
aggregated exactly across time and across currencies...". The geometric, or mul-
tiplicative approach to ex-post performance is arguably less intuitive, because
it does not accommodate naturally a linear decomposition in terms of different
risk or decisions factors.
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