

THE 10 REASONS

MOST MACHINE LEARNING FUNDS FAIL

Marcos López de Prado
*

First version: December 25, 2017

This version: January 27, 2018

*
 Research Fellow, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA

94720. E-mail: lopezdeprado@lbl.gov. Web: www.QuantResearch.org

The statements made in this communication are strictly those of the authors and do not represent the views of

Guggenheim Partners or its affiliates. No investment advice or particular course of action is recommended. All

rights reserved.

mailto:lopezdeprado@lbl.gov
http://www.quantresearch.org/

2

THE 10 REASONS

MOST MACHINE LEARNING FUNDS FAIL

ABSTRACT

The rate of failure in quantitative finance is high, and particularly so in financial machine

learning. The few managers who succeed amass a large amount of assets, and deliver

consistently exceptional performance to their investors. However, that is a rare outcome, for

reasons that will become apparent in this article. Over the past two decades, I have seen many

faces come and go, firms started and shut down. In my experience, there are ten critical mistakes

underlying most of those failures.

This paper is partly based on the book Advances in Financial Machine Learning (Wiley, 2018),

available at https://goo.gl/w6gMdq

Keywords: Big data, machine learning, high performance computing, investment strategies,

quantamental investing, backtest overfitting.

JEL Classification: G0, G1, G2, G15, G24, E44.

AMS Classification: 91G10, 91G60, 91G70, 62C, 60E.

https://goo.gl/w6gMdq

3

For almost a century, economics and finance have relied almost exclusively on the econometric

toolkit to perform empirical analyses. The essential tool of econometrics is multivariate linear

regression, an 18th-century technology that was already mastered by Gauss in 1794 (Stigler

[1981]). Standard econometric models do not learn. It is hard to believe that something as

complex as 21st-century finance could be grasped by something as simple as inverting a

covariance matrix.

Every empirical science must build theories based on observation. If the statistical toolbox used

to model these observations is linear regression, the researcher will fail to recognize the

complexity of the data, and the theories will be awfully simplistic, useless. Econometrics may be

a primary reason economics and finance have not experienced meaningful progress over the past

70 years (Calkin and López de Prado [2014a, 2014b]).

For centuries, medieval astronomers made observations and developed theories about celestial

mechanics. These theories never considered non-circular orbits, because they were deemed

unholy and beneath God’s plan. The prediction errors were so gross, that ever more complex

theories had to be devised to account for them. It was not until Kepler had the temerity to

consider non-circular (elliptical) orbits that all of the sudden a much simpler general model was

able to predict the position of the planets with astonishing accuracy. What if astronomers had

never considered non-circular orbits? Well … what if economists finally started to consider non-

linear functions? Where is our Kepler? Finance does not have a Principia because no Kepler

means no Newton.

In recent years, quantitative fund managers have experimented and succeeded with the use of

machine learning (ML) methods. An ML algorithm learns patterns in a high-dimensional space

without being specifically directed. A common misconception is that ML methods are black

boxes. This is not necessarily true. When correctly used, ML models do replace theory, they

guide it. Once we understand what features are predictive of a phenomenon, we can build a

theoretical explanation, which can be tested on an independent dataset. Students of economics

and finance would do well enrolling in ML courses, rather than econometrics. Econometrics may

be good enough to succeed in financial academia (for now), but succeeding in business requires

ML.

At the same time, ML is no panacea. The flexibility and power of ML techniques have a dark

side. When misused, ML algorithms will confuse statistical flukes with patterns. This fact,

combined with the low signal-to-noise ratio that characterizes finance, all but ensures that

careless users will produce false discoveries at an ever-greater speed. The goal of this article is to

expose some of the most common errors made by ML experts when they apply their techniques

on financial datasets. The following sections summarize those pitfalls (listed in Exhibit 1), and

propose solutions. The interested reader may find a more detailed explanation in López de Prado

[2018].

PITFALL #1: THE SISYPHUS PARADIGM

Discretionary portfolio managers (PMs) make investment decisions that do not follow a

particular theory or rationale (if there were one, they would be systematic PMs). They consume

raw news and analyses, but mostly rely on their judgment or intuition. They may rationalize

4

those decisions based on some story, but there is always a story for every decision. Because

nobody fully understands the logic behind their bets, investment firms ask them to work

independently from one another, in silos, to ensure diversification. If you have ever attended a

meeting of discretionary PMs, you probably noticed how long and aimless they can be. Each

attendee seems obsessed about one particular piece of anecdotal information, and giant

argumentative leaps are made without fact-based, empirical evidence. This does not mean that

discretionary PMs cannot be successful. On the contrary, a few of them are. The point is, they

cannot naturally work as a team. Bring 50 discretionary PMs together, and they will influence

one another until eventually you are paying 50 salaries for the work of one. Thus it makes sense

for them to work in silos so they interact as little as possible.

Wherever I have seen that formula applied to quantitative or ML projects, it has led to disaster.

The boardroom’s mentality is, let us do with quants what has worked with discretionary PMs.

Let us hire 50 PhDs and demand that each of them produce an investment strategy within six

months. This approach tends to backfire, because each PhD will frantically search for investment

opportunities and eventually settle for (1) a false positive that looks great in an overfit backtest or

(2) standard factor investing, which is an overcrowded strategy with a low Sharpe ratio, but at

least has academic support. Both outcomes will disappoint the investment board, and the project

will be cancelled. Even if 5 of those PhDs identified a true discovery, the profits would not

suffice to cover for the expenses of 50, so those 5 will relocate somewhere else, searching for a

proper reward.

SOLUTION #1: THE META-STRATEGY PARADIGM

If you have been asked to develop ML strategies on your own, the odds are stacked against you.

It takes almost as much effort to produce one true investment strategy as to produce a hundred,

and the complexities are overwhelming: data curation and processing, HPC infrastructure,

software development, feature analysis, execution simulators, backtesting, etc. Even if the firm

provides you with shared services in those areas, you are like a worker at a BMW factory who

has been asked to build an entire car by using all the workshops around you. One week you need

to be a master welder, another week an electrician, another week a mechanical engineer, another

week a painter… You will try, fail, and circle back to welding. How does that make sense?

Every successful quantitative firm I am aware of applies the meta-strategy paradigm (López de

Prado [2014]). Tasks of the assembly line are clearly divided into subtasks. Quality is

independently measured and monitored for each subtask. The role of each quant is to specialize

in a particular task, to become the best there is at it, while having a holistic view of the entire

process. Teamwork yields discoveries at a predictable rate, with no reliance on lucky strikes. No

particular individual is responsible for these discoveries, as they are the outcome of team efforts

where everyone contributes. Of course, setting up these financial laboratories takes time, and

requires people who know what they are doing and have done it before. But what do you think

has a higher chance of success, this proven paradigm of organized collaboration or the Sisyphean

alternative of having every single quant rolling their immense boulder up the mountain?

5

PITFALL #2: RESEARCH THROUGH BACKTESTING

One of the most pervasive mistakes in financial research is to take some data, run it through an

ML algorithm, backtest the predictions, and repeat the sequence until a nice-looking backtest

shows up. Academic journals are filled with such pseudo-discoveries, and even large hedge

funds constantly fall into this trap. It does not matter if the backtest is a walk-forward out-of-

sample. The fact that we are repeating a test over and over on the same data will likely lead to a

false discovery. This methodological error is so notorious among statisticians that they consider

it scientific fraud, and the American Statistical Association warns against it in its ethical

guidelines (American Statistical Association [2016], Discussion #4). It typically takes about 20

such iterations to discover a (false) investment strategy subject to the standard significance level

(false positive rate) of 5%.

SOLUTION #2: FEATURE IMPORTANCE ANALYSIS

Suppose that you are given a pair of matrices (𝑋, 𝑦), that respectively contain features and labels

for a particular financial instrument. We can fit a classifier on (𝑋, 𝑦) and evaluate the

generalization error through cross-validation. Suppose that we achieve good performance. The

next natural question is to try to understand what features contributed to that performance.

Maybe we could add some features that strengthen the signal responsible for the classifier’s

predictive power. Maybe we could eliminate some of the features that are only adding noise to

the system. Most critical, understanding feature importance opens up the proverbial black box.

We can gain insight into the patterns identified by the classifier if we understand what source of

information is indispensable to it. This is one of the reasons why the black box mantra is

somewhat overplayed by the ML skeptics. Yes, the algorithm has learned without us directing

the process (that is the whole point of ML!) in a black box, but that does not mean that we cannot

(or should not) take a look at what the algorithm has found. Hunters do not blindly eat everything

their smart dogs retrieve for them, do they? Once we have found what features are important, we

can learn more by conducting a number of experiments. Are these features important all the time,

or only in some specific environments? What triggers a change in importance over time? Can

those regime switches be predicted? Are those important features also relevant to other related

financial instruments? Are they relevant to other asset classes? What are the most relevant

features across all financial instruments? What is the subset of features with the highest rank

correlation across the entire investment universe? This is a much better way of researching

strategies than the foolish backtest cycle. Remember, feature importance is a research tool, and

backtesting is not.

PITFALL #3: CHRONOLOGICAL SAMPLING

In order to apply ML algorithms on your unstructured data, we need to parse it, extract valuable

information from it, and store those extractions in a regularized format. Most ML algorithms

assume a table representation of the extracted data. Finance practitioners often refer to those

tables’ rows as “bars.”

Although time bars are perhaps the most popular among practitioners and academics, they should

be avoided for two reasons. First, markets do not process information at a constant time interval.

The hour following the open is much more active than the hour around noon (or the hour around

midnight in the case of futures). As biological beings, it makes sense for humans to organize

their day according to the sunlight cycle. But today’s markets are operated by algorithms that

6

trade with loose human supervision, for which CPU processing cycles are much more relevant

than chronological intervals (Easley, López de Prado, and O’Hara [2011]). This means that time

bars oversample information during low-activity periods and undersample information during

high-activity periods. Second, time-sampled series often exhibit poor statistical properties, like

serial correlation, heteroscedasticity, and non-normality of returns (Easley, López de Prado, and

O’Hara [2012]). GARCH models were developed, in part, to deal with the heteroscedasticity

associated with incorrect sampling.

SOLUTION #3: THE VOLUME CLOCK

We can avoid the two problems described earlier by forming bars as a subordinated process of

trading activity. This approach is sometimes referred to as the volume clock (Easley, López de

Prado, and O’Hara [2013]). For instance, dollar bars are formed by sampling an observation

every time a pre-defined market value is exchanged. Of course, the reference to dollars is meant

to apply to the currency in which the security is denominated, but nobody refers to euro bars,

pound bars, or yen bars.

Let me illustrate the rationale behind dollar bars with a couple of examples. First, suppose that

we wish to analyze a stock that has exhibited an appreciation of 100% over a certain period of

time. Selling $1,000 worth of that stock at the end of the period requires trading half the number

of shares it took to buy $1,000 worth of that stock at the beginning. In other words, the number

of shares traded is a function of the actual value exchanged. Therefore, it makes sense sampling

bars in terms of dollar value exchanged, rather than ticks or volume, particularly when the

analysis involves significant price fluctuations. This point can be verified empirically. If you

compute tick bars and volume bars on E-mini S&P 500 futures for a given bar size, the number

of bars per day will vary wildly over the years. That range and speed of variation will be reduced

once you compute the number of dollar bars per day over the years, for a constant bar size.

Exhibit 2 plots the exponentially weighted average number of bars per day when we apply a

fixed bar size on tick, volume, and dollar sampling methods.

A second argument that makes dollar bars more interesting than time, tick, or volume bars is that

the number of outstanding shares often changes multiple times over the course of a security’s

life, as a result of corporate actions. Even after adjusting for splits and reverse splits, there are

other actions that will impact the amount of ticks and volumes, like issuing new shares or buying

back existing shares (a very common practice since the Great Recession of 2008). Dollar bars

tend to be robust to those actions. Still, you may want to sample dollar bars where the size of the

bar is not kept constant over time. Instead, the bar size could be adjusted dynamically as a

function of the free-floating market capitalization of a company (in the case of stocks), or the

outstanding amount of issued debt (in the case of fixed-income securities).

There are more sophisticated types of bars, which sample observations as a function of the

arrival of asymmetric information. They are beyond the scope of this article, and the interested

reader can learn about them in López de Prado [2018], chapter 2.

7

PITFALL #4: INTEGER DIFFERENTIATION

It is common in finance to find non-stationary time series. What makes these series non-

stationary is the presence of memory, i.e. a long history of previous levels that shift the series’

mean over time. In order to perform inferential analyses, researchers need to work with invariant

processes, such as returns on prices (or changes in log-prices), changes in yield, or changes in

volatility. These data transformations make the series stationary, at the expense of removing all

memory from the original series (Alexander [2001], chapter 11). Although stationarity is a

necessary property for inferential purposes, it is rarely the case in signal processing that we wish

all memory to be erased, as that memory is the basis for the model’s predictive power. For

example, equilibrium (stationary) models need some memory to assess how far the price process

has drifted away from the long-term expected value in order to generate a forecast. The dilemma

is that returns are stationary, however memory-less, and prices have memory, however they are

non-stationary. The question arises: What is the minimum amount of differentiation that makes a

price series stationary while preserving as much memory as possible?

Supervised learning algorithms typically require stationary features. The reason is that we need

to map a previously unseen (unlabeled) observation to a collection of labeled examples, and infer

from them the label of that new observation. If the features are not stationary, we cannot map the

new observation to a large number of known examples. But stationarity does not ensure

predictive power. Stationarity is a necessary, non-sufficient condition for the high performance

of an ML algorithm. The problem is, there is a trade-off between stationarity and memory. We

can always make a series more stationary through differentiation, but it will be at the cost of

erasing some memory, which will defeat the forecasting purpose of the ML algorithm.

Returns are just one kind of (and in most cases suboptimal) price transformation among many

other possibilities. Part of the importance of cointegration methods is their ability to model series

with memory. But why would the particular case of zero differentiation deliver best outcomes?

Zero differentiation is as arbitrary as 1-step differentiation. There is a wide region between these

two extremes (fully differentiated series on one hand, and zero differentiated series on the other).

SOLUTION #4: FRACTIONAL DIFFERENTIATION

Virtually all the financial time series literature is based on the premise of making non-stationary

series stationary through integer transformation (see Hamilton [1994] for an example). But why

would integer 1 differentiation (like the one used for computing returns on log-prices) be

optimal?

Fractional differentiation (FracDiff) allows us to generalize the notion of returns to non-integer

(positive real) differences 𝑑. Given a time series of observations {𝑥𝑡}𝑡=1,…,𝑇, the FracDiff

transformation of order 𝑑 at time 𝑡 is �̃�𝑡 = ∑ 𝜔𝑘𝑥𝑡−𝑘
∞
𝑘=0 , with 𝜔0 = 1 and

𝜔𝑘 = −𝜔𝑘−1

𝑑 − 𝑘 + 1

𝑘

For the derivation and meaning of the above equation, please see López de Prado [2018], chapter

5. For instance, for 𝑑 = 0, all weights are 0 except for 𝜔0 = 1. That is the case where the

8

differentiated series coincides with the original one. For 𝑑 = 1, all weights are 0 except for

𝜔0 = 1 and 𝜔1 = −1. That is the standard first-order integer differentiation, which is used to

derive log-price returns. Anywhere in between these two cases, all weights after 𝜔0 = 1 are

negative and greater than -1. Exhibit 3 plots the weights for different orders of differentiation

𝑑 ∈ [0,1].

Consider the series of E-mini S&P 500 log-prices. The statistic of an ADF test on the original

series (𝑑 = 0) is -.3387, at which value we cannot reject the null hypothesis of unit root with

95% confidence (the critical value is -2.8623). However, the value of an ADF statistic computed

on the FracDiff series with 𝑑 = .4 is -3.2733, and we can reject the null hypothesis with a

confidence level in excess of 95%. Furthermore, the correlation between the original series and

the FracDiff series with 𝑑 = .4 is very high, around 0.995, indicating that most of the memory is

still preserved. Exhibit 4 plots the ADF statistic and the correlation to the original series for

various values of 𝑑. In contrast, at 𝑑 = 1 (the standard returns), the FracDiff series has an ADF

statistic of -46.9114, with a correlation to the original series of only 0.05. In other words,

standard returns over-differentiate the series, in the sense of wiping-out much more memory than

it was necessary to achieve stationarity.

The above finding is not specific of E-mini S&P 500 log-prices. López de Prado [2018] shows

that out of the 87 most liquid future contracts traded around the world, all of their log-prices

achieve stationarity at 𝑑 < .6, and in fact the great majority are stationary at 𝑑 < .3. The

conclusion is that, for decades, most empirical studies have worked with series where memory

has been unnecessarily wiped-out. The reason this is a dangerous practice is that fitting a

memory-less series will likely lead to a spurious pattern, a false discovery. Incidentally, this

over-differentiation of time series may explain why the Efficient Markets Hypothesis is still so

prevalent among academic circles: Without memory, series will not be predictive, and

researchers may draw the false conclusion that markets are unpredictable.

PITFALL #5: FIXED-TIME HORIZON LABELING

As it relates to finance, virtually all ML papers label observations using the fixed-time horizon

method. This method can be described as follows. Consider a set of features {𝑋𝑖}𝑖=1,…,𝐼, drawn

from some bars with index 𝑡 = 1,… , 𝑇, where 𝐼 ≤ 𝑇. An observation 𝑋𝑖 is assigned a label

𝑦𝑖 ∈ {−1,0,1},

𝑦𝑖 = {

−1 if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ < −𝜏

 0 if |𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ| ≤ 𝜏

1 if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ > 𝜏

where 𝜏 is a pre-defined constant threshold, 𝑡𝑖,0 is the index of the bar immediately after 𝑋𝑖 takes

place, 𝑡𝑖,0 + ℎ is the index of h bars after 𝑡𝑖,0, and 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ is the price return over a bar horizon

h,

9

𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ =
𝑝𝑡𝑖,0+ℎ

𝑝𝑡𝑖,0

− 1

Because the literature almost always works with time bars (see Pitfall #3), h implies a fixed-time

horizon. Despite its popularity, there are several arguments to avoid this approach. First, as we

saw earlier, time bars do not exhibit good statistical properties. Second, the same threshold 𝜏 is

applied regardless of the observed volatility. Suppose that 𝜏 = 1𝐸 − 2, where sometimes we

label an observation as 𝑦𝑖 = 1 subject to a realized bar volatility of 𝜎𝑡𝑖,0
= 1𝐸 − 4 (e.g., during

the night session), and sometimes 𝜎𝑡𝑖,0
= 1𝐸 − 2 (e.g., around the open). The large majority of

labels will be 0, even if return 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ was predictable and statistically significant. Third, it is

simply unrealistic to build a strategy that profits from positions that would have been stopped-out

by the fund, exchange (margin call) or investor.

SOLUTION #5: THE TRIPLE-BARRIER METHOD

A better approach is to label observations according to the condition that triggers an exit of a

position. Let us see one way to accomplish this. First, we set two horizontal barriers and one

vertical barrier. The two horizontal barriers are defined by profit-taking and stop-loss limits,

which are a dynamic function of estimated volatility (whether realized or implied). The third

barrier is defined in terms of number of bars elapsed since the position was taken (an activity-

based, not fixed-time expiration limit). If the upper horizontal barrier is touched first, we label

the observation as a 1. If the lower horizontal barrier is touched first, we label the observation as

a -1. If the vertical barrier is touched first, we have two choices: The sign of the return, or a 0. I

personally prefer the former as a matter of realizing a profit or loss within limits, but you should

explore whether a 0 works better in your particular problems.

You may have noticed that the triple barrier method is path-dependent. In order to label an

observation, we must take into account the entire path spanning [𝑡𝑖,0, 𝑡𝑖,0 + ℎ], where h defines

the vertical barrier (the expiration limit). We will denote 𝑡𝑖,1 the time of the first barrier touch,

and the return associated with the observed feature is 𝑟𝑡𝑖,0,𝑡𝑖,1
. For the sake of clarity, 𝑡𝑖,1 ≤ 𝑡𝑖,0 +

ℎ and the horizontal barriers are not necessarily symmetric. Exhibit 5 illustrates this labeling

method.

PITFALL #6: LEARNING SIDE AND SIZE SIMULTANEOUSLY

A common error in financial ML is to build over-complex models that must learn side and size

of a position simultaneously. Let me argue why this is in general a mistake. The “side” decision

(whether to buy or sell) is a strictly fundamental decision that has to do with the fair value of a

security under a particular set of circumstances, characterized by the features matrix. However,

the “size” decision is a risk management decision. It has to do with your risk budget, funding

capabilities, and very importantly, with your confidence on the “side” decision. Combining these

two distinct decisions into a single model is unnecessary. The additional complexity involved is

unwarranted.

10

In practice, it is often better to build two models, one to predict the side, and another to predict

the size of the position. The goal of the primary model is to predict the sign of the position’s

return. The goal of the secondary model is to predict the accuracy of the primary model’s

prediction. In other words, the secondary model does not attempt to predict the market, but to

learn from the weaknesses of the primary model. You can also think of the primary model as

making trading decisions, whereas the secondary model as making risk management decisions.

There is another argument for splitting the side/size decision. Many ML models exhibit high

precision (the number of true positives relative to the total number of predicted positives) and

low recall (the number of true positives relative to the total number of positives). This is

problematic, because these models are too conservative and miss most of the opportunities. Even

if these models were virtually infallible, once they enter into a drawdown, they may remain

underwater for a long time, as a result of their infrequent trading. It is better to develop models

with a high F1-score (the harmonic average between precision and recall). This can be

accomplished by splitting the side and size decisions into two models, where the secondary

model applies meta-labeling.

SOLUTION #6: META-LABELING

Meta-labeling is particularly helpful when you want to achieve higher F1-scores. First, we build

a primary model that achieves high recall (e.g., in predicting market rallies), even if the precision

is not particularly high. Second, we correct for the low precision by labeling the bets of the

primary model according to their outcome (positive or negative). The goal of these meta-labels is

to increase your F1-score by filtering out the false positives, where the positives have already

been identified by the primary model. Stated differently, the role of the secondary ML algorithm

is to determine whether a positive from the primary (side decision) model is true or false. It is not

its purpose to come up with a betting opportunity. Its purpose is to determine whether we should

act or pass on the opportunity that has been presented.

Meta-labeling is a very powerful tool to have in your arsenal, for four additional reasons. First,

ML algorithms are often criticized as black boxes. Meta-labeling allows you to build an ML

system on top of a white box (like a fundamental model founded on economic theory). This

ability to transform a fundamental model into a ML model should make meta-labeling

particularly useful to “quantamental” firms. Second, the effects of overfitting are limited when

you apply meta-labeling, because ML will not decide the side of your bet, only the size. There is

not a single model or parameter combination that controls the overall strategy behavior. Third,

by decoupling the side prediction from the size prediction, meta-labeling enables sophisticated

strategy structures. For instance, consider that the features driving a rally may differ from the

features driving a sell-off. In that case, you may want to develop an ML strategy exclusively for

long positions, based on the buy recommendations of a primary model, and an ML strategy

exclusively for short positions, based on the sell recommendations of an entirely different

primary model. Fourth, achieving high accuracy on small bets and low accuracy on large bets

will ruin you. As important as identifying good opportunities is to size them properly, so it

makes sense to develop an ML algorithm solely focused on getting that critical decision (sizing)

11

right. In my experience, meta-labeling ML models can deliver more robust and reliable outcomes

than standard labeling models.

PITFALL #7: WEIGHTING OF NON-IID SAMPLES

Most non-financial ML researchers can assume that observations are drawn from IID processes.

For example, you can obtain blood samples from a large number of patients, and measure their

cholesterol. Of course, various underlying common factors will shift the mean and standard

deviation of the cholesterol distribution, but the samples are still independent: There is one

observation per subject.

Suppose you take those blood samples, and someone in your laboratory spills blood from each

tube to the following 9 tubes to their right. That is, tube 10 contains blood for patient 10, but also

blood from patients 1 to 9. Tube 11 contains blood from patient 11, but also blood from patients

2 to 10, and so on. Now you need to determine the features predictive of high cholesterol (diet,

exercise, age, etc.), without knowing for sure the cholesterol level of each patient.

This “spilled samples” problem is equivalent to the challenge that we face in financial ML,

where: (1) labels are decided by outcomes; (2) outcomes are decided over multiple observations;

(3) because labels overlap in time, we cannot be certain about what observed features caused an

effect.

SOLUTION #7: UNIQUENESS WEIGHTING AND SEQUENTIAL BOOTSTRAPPING

Two labels 𝑦𝑖 and 𝑦𝑗 are concurrent at observation 𝑡 when both are a function of at least one

common return, 𝑟𝑡−1,𝑡 =
𝑝𝑡

𝑝𝑡−1
− 1. We can measure the degree of uniqueness of observations as

follows:

1. For each observation 𝑡 = 1,… , 𝑇, we form a binary array, {1𝑡,𝑖}𝑖=1,…,𝐼
, with 1𝑡,𝑖 ∈ {0,1},

which indicates whether its outcome spans over return 𝑟𝑡−1,𝑡.

2. We compute the number of labels concurrent at 𝑡, 𝑐𝑡 = ∑ 1𝑡,𝑖
𝐼
𝑖=1 .

3. The uniqueness of a label 𝑖 at time 𝑡 is 𝑢𝑡,𝑖 = 1𝑡,𝑖𝑐𝑡
−1.

4. The average uniqueness of label 𝑖 is the average 𝑢𝑡,𝑖 over the label’s lifespan, �̅�𝑖 =

(∑ 𝑢𝑡,𝑖
𝑇
𝑡=1)(∑ 1𝑡,𝑖

𝑇
𝑡=1)

−1
.

5. Sample weights can be defined in terms of the sum of the attributed returns over the

event’s lifespan, [𝑡𝑖,0, 𝑡𝑖,1],

�̃�𝑖 = | ∑
𝑟𝑡−1,𝑡

𝑐𝑡

𝑡𝑖,1

𝑡=𝑡𝑖,0

|

𝑤𝑖 = �̃�𝑖𝐼 (∑�̃�𝑗

𝐼

𝑗=1

)

−1

The rationale for this method is that we weight an observation as a function of the absolute log

returns that can be attributed uniquely to it. López de Prado [2018], chapter 4, shows how this

12

weighting scheme can be further used to bootstrap samples with low uniqueness. The general

notion is that, rather than drawing all samples simultaneously, the draw the samples sequentially,

where at each step we increase the probability of drawing highly unique observations, and reduce

the probability of drawing observations with low uniqueness. Monte Carlo experiments

demonstrate that sequential bootstrapping can significantly increase the average uniqueness of

samples, hence injecting more information into the model and reducing the “spilled samples”

effect.

PITFALL #8: CROSS-VALIDATION LEAKAGE

One reason k-fold CV fails in finance is because observations cannot be assumed to be drawn

from an IID process. Leakage takes place when the training set contains information that also

appears in the testing set. Consider a serially correlated feature X that is associated with labels Y

that are formed on overlapping data: (1) Because of the serial correlation, 𝑋𝑡 ≈ 𝑋𝑡+1; (2) because

labels are derived from overlapping data points, 𝑌𝑡 ≈ 𝑌𝑡+1. Then, placing t and t+1 in different

sets leaks information. When a classifier is first trained on (𝑋𝑡, 𝑌𝑡), and then it is asked to predict

E[𝑌𝑡+1] based on an observed 𝑋𝑡+1, this classifier is more likely to achieve 𝑌𝑡+1 = E[𝑌𝑡+1] even

if X is an irrelevant feature. In the presence of irrelevant features, leakage leads to false

discoveries.

SOLUTION #8: PURGING AND EMBARGOING

One way to reduce leakage is to eliminate from the training set all observations whose labels

overlapped in time with those labels included in the testing set. I call this process purging.

Consider a label 𝑌𝑗 that is a function of observations in the closed range 𝑡 ∈ [𝑡𝑗,0, 𝑡𝑗,1], 𝑌𝑗 =

𝑓 [[𝑡𝑗,0, 𝑡𝑗,1]] (with some abuse of notation). For example, in the context of the triple barrier

labeling method, it means that the label is the sign of the return spanning between price bars with

indices 𝑡𝑗,0 and 𝑡𝑗,1, that is sgn [𝑟𝑡𝑗,0,𝑡𝑗,1
]. A label 𝑌𝑖 = 𝑓 [[𝑡𝑗,0, 𝑡𝑗,1]] overlaps with 𝑌𝑗 if any of the

three sufficient conditions is met: (1) 𝑡𝑗,0 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1; (2) 𝑡𝑗,0 ≤ 𝑡𝑖,1 ≤ 𝑡𝑗,1; (3) 𝑡𝑖,0 ≤ 𝑡𝑗,0 ≤

𝑡𝑗,1 ≤ 𝑡𝑖,1.

Since financial features often incorporate series that exhibit serial correlation (like ARMA

processes), we should eliminate from the training set observations that immediately follow an

observation in the testing set. I call this process embargo. The embargo does not need to affect

training observations prior to a test, because training labels 𝑌𝑖 = 𝑓 [[𝑡𝑖,0, 𝑡𝑖,1]], where 𝑡𝑖,1 < 𝑡𝑗,0

(training ends before testing begins), contain information that was available at the testing time

𝑡𝑗,0. We are only concerned with training labels 𝑌𝑖 = 𝑓 [[𝑡𝑖,0, 𝑡𝑖,1]] that take place immediately

after the test, 𝑡𝑗,1 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1 + ℎ. We can implement this embargo period h by setting 𝑌𝑗 =

𝑓 [[𝑡𝑗,0, 𝑡𝑗,1 + ℎ]] before purging. A small value ℎ ≈ .01𝑇, where 𝑇 is the number of bars, often

suffices to prevent all leakage. Exhibit 6 illustrates how purging and embargoing would be

implemented on a particular train/test split.

13

PITFALL #9: WALK-FORWARD (OR HISTORICAL) BACKTESTING

The most common backtest method in the literature is the walk-forward (WF) approach. WF is a

historical simulation of how the strategy would have performed in past. Each strategy decision is

based on observations that predate that decision. WF enjoys two key advantages: (1) WF has a

clear historical interpretation. Its performance can be reconciled with paper trading. (2) History

is a filtration; hence, using trailing data guarantees that the testing set is out-of-sample (no

leakage), as long as purging has been properly implemented.

WF suffers from three major disadvantages: First, a single scenario is tested (the historical path),

which can be easily overfit (Bailey et al. [2014]). Second, WF is not necessarily representative of

future performance, as results can be biased by the particular sequence of datapoints. Proponents

of the WF method typically argue that predicting the past would lead to overly optimistic

performance estimates. And yet, very often fitting an outperforming model on the reversed

sequence of observations will lead to an underperforming WF backtest. The truth is, it is as easy

to overfit a walk-forward backtest as to overfit a walk-backward backtest, and the fact that

changing the sequence of observations yields inconsistent outcomes is evidence of that

overfitting. If proponents of WF were right, we should observe that walk-backwards backtests

systematically outperform their walk-forward counterparts. That is not the case, hence the main

argument in favor of WF is rather weak. To make this second disadvantage clearer, suppose an

equity strategy that is backtested with a WF on S&P 500 data, starting January 1, 2007. Until

March 15, 2009, the mix of rallies and sell-offs will train the strategy to be market neutral, with

low confidence on every position. After that, the long rally will dominate the dataset, and by

January 1, 2017, buy forecasts will prevail over sell forecasts. Performance would be very

different if we played the information backwards, from January 1, 2017 to January 1, 2007 (a

long rally followed by a sharp sell-off). By exploiting a particular sequence, a strategy selected

by WF may set us up for a debacle. The third disadvantage of WF is that the initial decisions are

made on a smaller portion of the total sample. Even if a warm-up period is set, most of the

information is used by only a small portion of the decisions.

SOLUTION #9: COMBINATORIAL PURGED CROSS-VALIDATION

The three pitfalls of WF can be addressed by simulating a large number of scenarios, where each

scenario provides us with a backtest path. This in turn will allow us to fully use the data and

avoid warm-up periods. One way to achieve this is by generating thousands of train/test splits, so

that every part of the series is tested multiple times (not just once). Let us outline how the

combinatorial purged cross-validation (CPCV) method works.

Consider T observations partitioned into N groups without shuffling, where groups 𝑛 =

1, … , 𝑁 − 1 are of size ⌊𝑇/𝑁⌋, the Nth group is of size 𝑇 − ⌊𝑇/𝑁⌋(𝑁 − 1), and ⌊. ⌋ is the floor or

integer function. For a testing set of size k groups, the number of possible training/testing splits is

(
𝑁

𝑁 − 𝑘
) =

∏ (𝑁 − 𝑖)𝑘−1
𝑖=0

𝑘!

Since each combination involves k tested groups, the total number of tested groups is 𝑘 (
𝑁

𝑁 − 𝑘
).

And since we have computed all possible combinations, these tested groups are uniformly

14

distributed across all N (each group belongs to the same number of training and testing sets). The

implication is that from k-sized testing sets on N groups we can backtest a total number of paths

𝜑[𝑁, 𝑘],

𝜑[𝑁, 𝑘] =
𝑘

𝑁
(

𝑁
𝑁 − 𝑘

) =
∏ (𝑁 − 𝑖)𝑘−1

𝑖=1

(𝑘 − 1)!

Exhibit 7 illustrates the composition of train/test splits for 𝑁 = 6 and 𝑘 = 2. There are (
6
4
) = 15

splits, indexed as S1,…,S15. For each split, the figure marks with a cross (x) the groups included

in the testing set, and leaves unmarked the groups that form the training set. Each group forms

part of 𝜑[6,2] = 5 testing sets, therefore this train/test split scheme allows us to compute 5

backtest paths.

Exhibit 8 shows the assignment of each tested group to one backtest path. For example, path 1 is

the result of combining the forecasts from (𝐺1, 𝑆1), (𝐺2, 𝑆1), (𝐺3, 𝑆2), (𝐺4, 𝑆3), (𝐺5, 𝑆4) and

(𝐺6, 𝑆5). Path 2 is the result of combining forecasts from (𝐺1, 𝑆2), (𝐺2, 𝑆6), (𝐺3, 𝑆6), (𝐺4, 𝑆7),

(𝐺5, 𝑆8) and (𝐺6, 𝑆9), and so on.

In the example above we have generated only 5 paths, however CPCV allows us to generate

thousands of paths on a sufficiently long series. The number of paths 𝜑[𝑁, 𝑘] increases with

𝑁 → 𝑇 and with 𝑘 → 𝑁/2. A key advantage of CPCV is that it allows us to derive a distribution

of Sharpe ratios, as opposed to a single (likely overfit) Sharpe ratio estimate.

PITFALL #10: BACKTEST OVERFITTING

Given a sample of IID random variables, 𝑥𝑖~𝑍, 𝑖 = 1,… , 𝐼, where Z is the standard normal

distribution, the expected maximum of that sample can be approximated as

E[max{𝑥𝑖}𝑖=1,…,𝐼] ≈ (1 − 𝛾)𝑍−1 [1 −
1

𝐼
] + 𝛾𝑍−1 [1 −

1

𝐼
𝑒−1] ≤ √2log[𝐼]

where 𝑍−1[.] is the inverse of the CDF of 𝑍, 𝛾 ≈ 0.5772156649 … is the Euler-Mascheroni

constant and 𝐼 ≫ 1 (see Bailey et al. [2014] for a proof). Now suppose that a researcher

backtests I strategies on an instrument that behaves like a martingale, with Sharpe ratios

{𝑦𝑖}𝑖=1,…,𝐼, E[𝑦𝑖] = 0, 𝜎2[𝑦𝑖] > 0, and
𝑦𝑖

𝜎[𝑦𝑖]
~𝑍. Even though the true Sharpe ratio is zero, we

expect to find one strategy with a Sharpe ratio of

E[max{𝑦𝑖}𝑖=1,…,𝐼] = E[max{𝑥𝑖}𝑖=1,…,𝐼]𝜎[𝑦𝑖]

WF backtests exhibit high variance, 𝜎[𝑦𝑖] ≫ 0, for at least one reason: A large portion of the

decisions are based on a small portion of the dataset. A few observations will have a large weight

on the Sharpe ratio. Using a warm-up period will reduce the backtest length, which may

contribute to making the variance even higher. WF’s high variance leads to false discoveries,

15

because researchers will select the backtest with the maximum estimated Sharpe ratio, even if the

true Sharpe ratio is zero. That is the reason why it is imperative to control for the number of

trials (I) in the context of WF backtesting. Without this information, it is not possible to

determine the Family-Wise Error Rate (FWER), False Discovery Rate (FDR), Probability of

Backtest Overfitting (PBO) or similar.

SOLUTION #10: THE DEFLATED SHARPE RATIO

The probabilistic Sharpe ratio (PSR) provides an adjusted estimate of the Sharpe ratio, by

removing the inflationary effect caused by short series with skewed and/or fat-tailed returns.

Given a user-defined rejection threshold 𝑆𝑅∗, and an observed Sharpe ratio 𝑆�̂�, PSR estimates

the probability that 𝑆�̂� is greater than a hypothetical 𝑆𝑅∗. Following Bailey and López de Prado

[2012], PSR can be estimated as

𝑃𝑆�̂�[𝑆𝑅∗] = 𝑍

[

(𝑆�̂� − 𝑆𝑅∗)√𝑇 − 1

√1 − 𝛾3𝑆�̂� +
𝛾4 − 1

4 𝑆�̂�2
]

where 𝑍[.] is the CDF of the standard Normal distribution, T is the number of observed returns,

𝛾3 is the skewness of the returns, and 𝛾4 is the kurtosis of the returns (𝛾4 = 3 for Gaussian

returns). For a given 𝑆𝑅∗, 𝑃𝑆�̂� increases with greater 𝑆�̂� (in the original sampling frequency, i.e.

non-annualized), or longer track records (T), or positively skewed returns (𝛾3), but it decreases

with fatter tails (𝛾4).

The deflated Sharpe ratio (DSR) computes the probability that the true Sharpe ratio exceeds a

rejection threshold 𝑆𝑅∗, where that rejection threshold is adjusted to reflect the multiplicity of

trials. Following Bailey and López de Prado [2014], DSR can be estimated as 𝑃𝑆�̂�[𝑆𝑅∗], where

the benchmark Sharpe ratio, 𝑆𝑅∗, is no longer user-defined. Instead, 𝑆𝑅∗ is estimated as

𝑆𝑅∗ = √𝑉[{𝑆�̂�𝑛}] ((1 − 𝛾)𝑍−1 [1 −
1

𝑁
] + 𝛾𝑍−1 [1 −

1

𝑁
𝑒−1])

where 𝑉[{𝑆�̂�𝑛}] is the variance across the trials’ estimated SR, N is the number of independent

trials, 𝑍[.] is the CDF of the standard Normal distribution, 𝛾 is the Euler-Mascheroni constant,

and 𝑛 = 1,… ,𝑁.

The rationale behind DSR is the following: Given a set of SR estimates, {𝑆�̂�𝑛}, its expected

maximum is greater than zero, even if the true SR is zero. Under the null hypothesis that the

actual Sharpe ratio is zero, 𝐻0: 𝑆𝑅 = 0, we know that the expected maximum 𝑆�̂� can be

estimated as the 𝑆𝑅∗. Indeed, 𝑆𝑅∗ increases quickly as more independent trials are attempted (N),

or the trials involve a greater variance (𝑉[{𝑆�̂�𝑛}]).

16

CONCLUSIONS

Many of the most successful hedge funds in history apply ML techniques. However, ML is far

from being a panacea, and a large number of funds that have attempted to join ML investing

have failed. The reason is, financial datasets exhibit properties that violate standard assumptions

of ML applications. When ML techniques are applied to financial datasets in disregard of those

properties, these techniques produce false positives. In the context of investing, the implication is

that most ML funds fail to deliver the expected performance. In this article we have reviewed

some of the most pervasive errors made by ML experts when they attempt to apply ML

techniques to financial datasets.

17

REFERENCES

Alexander, C. (2001): Market Models. 1st edition, John Wiley & Sons.

American Statistical Association (2016): “Ethical guidelines for statistical practice.” Committee

on Professional Ethics of the American Statistical Association (April). Available at

http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014): “Pseudo-mathematics and

financial charlatanism: The effects of backtest overfitting on out-of-sample performance.”

Notices of the American Mathematical Society, Vol. 61, No. 5, pp. 458–471. Available at

http://ssrn.com/abstract=2308659

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk,

Vol. 15, No. 2, pp. 3–44.

Bailey, D. and M. López de Prado (2014): “The deflated Sharpe ratio: Correcting for selection

bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No. 5,

pp. 94-107.

Calkin, N. and M. López de Prado (2014a): “Stochastic flow diagrams.” Algorithmic Finance,

Vol. 3, No. 1, pp. 21–42.

Calkin, N. and M. López de Prado (2014b): “The topology of macro financial flows: An

application of stochastic flow diagrams.” Algorithmic Finance, Vol. 3, No. 1, pp. 43–85.

Easley, D., M. López de Prado, and M. O’Hara (2011): “The volume clock: Insights into the high

frequency paradigm.” Journal of Portfolio Management, Vol. 37, No. 2, pp. 118–128.

Easley, D., M. López de Prado, and M. O’Hara (2012): “Flow toxicity and liquidity in a high

frequency world.” Review of Financial Studies, Vol. 25, No. 5, pp. 1457–1493.

Easley, D., M. López de Prado, and M. O’Hara (2013): High Frequency Trading: New Realities

for Traders, Markets and Regulators. 1st edition, Risk Books.

Hamilton, J. (1994): Time Series Analysis, 1st edition. Princeton University Press.

López de Prado, M. (2014): “Quantitative meta-strategies.” Practical Applications, Institutional

Investor Journals, Vol. 2, No. 3, pp. 1–3.

López de Prado, M. (2018): Advances in Financial Machine Learning. 1st edition, Wiley.

https://www.amazon.com/dp/1119482089

Stigler, Stephen M. (1981): “Gauss and the invention of least squares.” Annals of Statistics, Vol.

9, No. 3, pp. 465–474.

http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf
http://ssrn.com/abstract=2308659
https://www.amazon.com/dp/1119482089

18

EXHIBITS

Exhibit 1 – The 10 reasons most machine learning funds fail

Exhibit 2 - Average daily frequency of tick, volume, and dollar bars

Category Pitfall Solution

1 Epistemological The Sisyphus paradigm The meta-strategy paradigm

2 Epistemological Research through backtesting Feature importance analysis

3 Data processing Chronological sampling The volume clock

4 Data processing Integer differentiation Fractional differentiation

5 Classification Fixed-time horizon labeling The triple-barrier method

6 Classification Learning side and size simultaneously Meta-labeling

7 Classification Weighting of non-IID samples
Uniqueness weighting; sequential

bootstrapping

8 Evaluation Cross-validation leakage Purging and embargoing

9 Evaluation Walk-forward (historical) backtesting Combinatorial purged cross-validation

10 Evaluation Backtest overfitting
Backtesting on synthetic data; the

deflated Sharpe ratio

19

Exhibit 3 – 𝜔𝑘 (y-axis) as k increases (x-axis). Each line is associated with

a particular value of 𝑑 ∈ [0,1], in 0.1 increments

Exhibit 4 – ADF statistic as a function of d, on E-mini S&P 500 futures log prices

20

Exhibit 5 – The triple-barrier method

Exhibit 6 – Purging overlap plus embargoing training examples after test

21

Exhibit 7 – Paths generated for 𝜑[6,2] = 5

Exhibit 8 – Assignment of testing groups to each of the 5 paths

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Paths

G1 x x x x x 5

G2 x x x x x 5

G3 x x x x x 5

G4 x x x x x 5

G5 x x x x x 5

G6 x x x x x 5

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Paths

G1 1 2 3 4 5 5

G2 1 2 3 4 5 5

G3 1 2 3 4 5 5

G4 1 2 3 4 5 5

G5 1 2 3 4 5 5

G6 1 2 3 4 5 5

