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ABSTRACT 

 

The rate of failure in quantitative finance is high, and particularly so in financial machine 

learning. The few managers who succeed amass a large amount of assets, and deliver 

consistently exceptional performance to their investors. However, that is a rare outcome, for 

reasons that will become apparent in this article. Over the past two decades, I have seen many 

faces come and go, firms started and shut down. In my experience, there are ten critical mistakes 

underlying most of those failures. 

 

This paper is partly based on the book Advances in Financial Machine Learning (Wiley, 2018), 

available at https://goo.gl/w6gMdq  
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For almost a century, economics and finance have relied almost exclusively on the econometric 

toolkit to perform empirical analyses. The essential tool of econometrics is multivariate linear 

regression, an 18th-century technology that was already mastered by Gauss in 1794 (Stigler 

[1981]). Standard econometric models do not learn. It is hard to believe that something as 

complex as 21st-century finance could be grasped by something as simple as inverting a 

covariance matrix. 

 

Every empirical science must build theories based on observation. If the statistical toolbox used 

to model these observations is linear regression, the researcher will fail to recognize the 

complexity of the data, and the theories will be awfully simplistic, useless. Econometrics may be 

a primary reason economics and finance have not experienced meaningful progress over the past 

70 years (Calkin and López de Prado [2014a, 2014b]). 

 

For centuries, medieval astronomers made observations and developed theories about celestial 

mechanics. These theories never considered non-circular orbits, because they were deemed 

unholy and beneath God’s plan. The prediction errors were so gross, that ever more complex 

theories had to be devised to account for them. It was not until Kepler had the temerity to 

consider non-circular (elliptical) orbits that all of the sudden a much simpler general model was 

able to predict the position of the planets with astonishing accuracy. What if astronomers had 

never considered non-circular orbits? Well … what if economists finally started to consider non-

linear functions? Where is our Kepler? Finance does not have a Principia because no Kepler 

means no Newton. 

 

In recent years, quantitative fund managers have experimented and succeeded with the use of 

machine learning (ML) methods. An ML algorithm learns patterns in a high-dimensional space 

without being specifically directed. A common misconception is that ML methods are black 

boxes. This is not necessarily true. When correctly used, ML models do replace theory, they 

guide it. Once we understand what features are predictive of a phenomenon, we can build a 

theoretical explanation, which can be tested on an independent dataset. Students of economics 

and finance would do well enrolling in ML courses, rather than econometrics. Econometrics may 

be good enough to succeed in financial academia (for now), but succeeding in business requires 

ML. 

 

At the same time, ML is no panacea. The flexibility and power of ML techniques have a dark 

side. When misused, ML algorithms will confuse statistical flukes with patterns. This fact, 

combined with the low signal-to-noise ratio that characterizes finance, all but ensures that 

careless users will produce false discoveries at an ever-greater speed. The goal of this article is to 

expose some of the most common errors made by ML experts when they apply their techniques 

on financial datasets. The following sections summarize those pitfalls (listed in Exhibit 1), and 

propose solutions. The interested reader may find a more detailed explanation in López de Prado 

[2018]. 

 

PITFALL #1: THE SISYPHUS PARADIGM 

Discretionary portfolio managers (PMs) make investment decisions that do not follow a 

particular theory or rationale (if there were one, they would be systematic PMs). They consume 

raw news and analyses, but mostly rely on their judgment or intuition. They may rationalize 
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those decisions based on some story, but there is always a story for every decision. Because 

nobody fully understands the logic behind their bets, investment firms ask them to work 

independently from one another, in silos, to ensure diversification. If you have ever attended a 

meeting of discretionary PMs, you probably noticed how long and aimless they can be. Each 

attendee seems obsessed about one particular piece of anecdotal information, and giant 

argumentative leaps are made without fact-based, empirical evidence. This does not mean that 

discretionary PMs cannot be successful. On the contrary, a few of them are. The point is, they 

cannot naturally work as a team. Bring 50 discretionary PMs together, and they will influence 

one another until eventually you are paying 50 salaries for the work of one. Thus it makes sense 

for them to work in silos so they interact as little as possible. 

 

Wherever I have seen that formula applied to quantitative or ML projects, it has led to disaster. 

The boardroom’s mentality is, let us do with quants what has worked with discretionary PMs. 

Let us hire 50 PhDs and demand that each of them produce an investment strategy within six 

months. This approach tends to backfire, because each PhD will frantically search for investment 

opportunities and eventually settle for (1) a false positive that looks great in an overfit backtest or 

(2) standard factor investing, which is an overcrowded strategy with a low Sharpe ratio, but at 

least has academic support. Both outcomes will disappoint the investment board, and the project 

will be cancelled. Even if 5 of those PhDs identified a true discovery, the profits would not 

suffice to cover for the expenses of 50, so those 5 will relocate somewhere else, searching for a 

proper reward. 

 

SOLUTION #1: THE META-STRATEGY PARADIGM 

If you have been asked to develop ML strategies on your own, the odds are stacked against you. 

It takes almost as much effort to produce one true investment strategy as to produce a hundred, 

and the complexities are overwhelming: data curation and processing, HPC infrastructure, 

software development, feature analysis, execution simulators, backtesting, etc. Even if the firm 

provides you with shared services in those areas, you are like a worker at a BMW factory who 

has been asked to build an entire car by using all the workshops around you. One week you need 

to be a master welder, another week an electrician, another week a mechanical engineer, another 

week a painter… You will try, fail, and circle back to welding. How does that make sense? 

 

Every successful quantitative firm I am aware of applies the meta-strategy paradigm (López de 

Prado [2014]). Tasks of the assembly line are clearly divided into subtasks. Quality is 

independently measured and monitored for each subtask. The role of each quant is to specialize 

in a particular task, to become the best there is at it, while having a holistic view of the entire 

process. Teamwork yields discoveries at a predictable rate, with no reliance on lucky strikes. No 

particular individual is responsible for these discoveries, as they are the outcome of team efforts 

where everyone contributes. Of course, setting up these financial laboratories takes time, and 

requires people who know what they are doing and have done it before. But what do you think 

has a higher chance of success, this proven paradigm of organized collaboration or the Sisyphean 

alternative of having every single quant rolling their immense boulder up the mountain? 
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PITFALL #2: RESEARCH THROUGH BACKTESTING 

One of the most pervasive mistakes in financial research is to take some data, run it through an 

ML algorithm, backtest the predictions, and repeat the sequence until a nice-looking backtest 

shows up. Academic journals are filled with such pseudo-discoveries, and even large hedge 

funds constantly fall into this trap. It does not matter if the backtest is a walk-forward out-of-

sample. The fact that we are repeating a test over and over on the same data will likely lead to a 

false discovery. This methodological error is so notorious among statisticians that they consider 

it scientific fraud, and the American Statistical Association warns against it in its ethical 

guidelines (American Statistical Association [2016], Discussion #4). It typically takes about 20 

such iterations to discover a (false) investment strategy subject to the standard significance level 

(false positive rate) of 5%. 

 

SOLUTION #2: FEATURE IMPORTANCE ANALYSIS 

Suppose that you are given a pair of matrices (𝑋, 𝑦), that respectively contain features and labels 

for a particular financial instrument. We can fit a classifier on (𝑋, 𝑦) and evaluate the 

generalization error through cross-validation. Suppose that we achieve good performance. The 

next natural question is to try to understand what features contributed to that performance. 

Maybe we could add some features that strengthen the signal responsible for the classifier’s 

predictive power. Maybe we could eliminate some of the features that are only adding noise to 

the system. Most critical, understanding feature importance opens up the proverbial black box. 

We can gain insight into the patterns identified by the classifier if we understand what source of 

information is indispensable to it. This is one of the reasons why the black box mantra is 

somewhat overplayed by the ML skeptics. Yes, the algorithm has learned without us directing 

the process (that is the whole point of ML!) in a black box, but that does not mean that we cannot 

(or should not) take a look at what the algorithm has found. Hunters do not blindly eat everything 

their smart dogs retrieve for them, do they? Once we have found what features are important, we 

can learn more by conducting a number of experiments. Are these features important all the time, 

or only in some specific environments? What triggers a change in importance over time? Can 

those regime switches be predicted? Are those important features also relevant to other related 

financial instruments? Are they relevant to other asset classes? What are the most relevant 

features across all financial instruments? What is the subset of features with the highest rank 

correlation across the entire investment universe? This is a much better way of researching 

strategies than the foolish backtest cycle. Remember, feature importance is a research tool, and 

backtesting is not. 

 

PITFALL #3: CHRONOLOGICAL SAMPLING 

In order to apply ML algorithms on your unstructured data, we need to parse it, extract valuable 

information from it, and store those extractions in a regularized format. Most ML algorithms 

assume a table representation of the extracted data. Finance practitioners often refer to those 

tables’ rows as “bars.” 

 

Although time bars are perhaps the most popular among practitioners and academics, they should 

be avoided for two reasons. First, markets do not process information at a constant time interval. 

The hour following the open is much more active than the hour around noon (or the hour around 

midnight in the case of futures). As biological beings, it makes sense for humans to organize 

their day according to the sunlight cycle. But today’s markets are operated by algorithms that 
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trade with loose human supervision, for which CPU processing cycles are much more relevant 

than chronological intervals (Easley, López de Prado, and O’Hara [2011]). This means that time 

bars oversample information during low-activity periods and undersample information during 

high-activity periods. Second, time-sampled series often exhibit poor statistical properties, like 

serial correlation, heteroscedasticity, and non-normality of returns (Easley, López de Prado, and 

O’Hara [2012]). GARCH models were developed, in part, to deal with the heteroscedasticity 

associated with incorrect sampling. 

 

SOLUTION #3: THE VOLUME CLOCK 

We can avoid the two problems described earlier by forming bars as a subordinated process of 

trading activity. This approach is sometimes referred to as the volume clock (Easley, López de 

Prado, and O’Hara [2013]). For instance, dollar bars are formed by sampling an observation 

every time a pre-defined market value is exchanged. Of course, the reference to dollars is meant 

to apply to the currency in which the security is denominated, but nobody refers to euro bars, 

pound bars, or yen bars.  

 

Let me illustrate the rationale behind dollar bars with a couple of examples. First, suppose that 

we wish to analyze a stock that has exhibited an appreciation of 100% over a certain period of 

time. Selling $1,000 worth of that stock at the end of the period requires trading half the number 

of shares it took to buy $1,000 worth of that stock at the beginning. In other words, the number 

of shares traded is a function of the actual value exchanged. Therefore, it makes sense sampling 

bars in terms of dollar value exchanged, rather than ticks or volume, particularly when the 

analysis involves significant price fluctuations. This point can be verified empirically. If you 

compute tick bars and volume bars on E-mini S&P 500 futures for a given bar size, the number 

of bars per day will vary wildly over the years. That range and speed of variation will be reduced 

once you compute the number of dollar bars per day over the years, for a constant bar size. 

Exhibit 2 plots the exponentially weighted average number of bars per day when we apply a 

fixed bar size on tick, volume, and dollar sampling methods. 

 

A second argument that makes dollar bars more interesting than time, tick, or volume bars is that 

the number of outstanding shares often changes multiple times over the course of a security’s 

life, as a result of corporate actions. Even after adjusting for splits and reverse splits, there are 

other actions that will impact the amount of ticks and volumes, like issuing new shares or buying 

back existing shares (a very common practice since the Great Recession of 2008). Dollar bars 

tend to be robust to those actions. Still, you may want to sample dollar bars where the size of the 

bar is not kept constant over time. Instead, the bar size could be adjusted dynamically as a 

function of the free-floating market capitalization of a company (in the case of stocks), or the 

outstanding amount of issued debt (in the case of fixed-income securities). 

 

There are more sophisticated types of bars, which sample observations as a function of the 

arrival of asymmetric information. They are beyond the scope of this article, and the interested 

reader can learn about them in López de Prado [2018], chapter 2. 
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PITFALL #4: INTEGER DIFFERENTIATION 

It is common in finance to find non-stationary time series. What makes these series non-

stationary is the presence of memory, i.e. a long history of previous levels that shift the series’ 

mean over time. In order to perform inferential analyses, researchers need to work with invariant 

processes, such as returns on prices (or changes in log-prices), changes in yield, or changes in 

volatility. These data transformations make the series stationary, at the expense of removing all 

memory from the original series (Alexander [2001], chapter 11). Although stationarity is a 

necessary property for inferential purposes, it is rarely the case in signal processing that we wish 

all memory to be erased, as that memory is the basis for the model’s predictive power. For 

example, equilibrium (stationary) models need some memory to assess how far the price process 

has drifted away from the long-term expected value in order to generate a forecast. The dilemma 

is that returns are stationary, however memory-less, and prices have memory, however they are 

non-stationary. The question arises: What is the minimum amount of differentiation that makes a 

price series stationary while preserving as much memory as possible?  

 

Supervised learning algorithms typically require stationary features. The reason is that we need 

to map a previously unseen (unlabeled) observation to a collection of labeled examples, and infer 

from them the label of that new observation. If the features are not stationary, we cannot map the 

new observation to a large number of known examples. But stationarity does not ensure 

predictive power. Stationarity is a necessary, non-sufficient condition for the high performance 

of an ML algorithm. The problem is, there is a trade-off between stationarity and memory. We 

can always make a series more stationary through differentiation, but it will be at the cost of 

erasing some memory, which will defeat the forecasting purpose of the ML algorithm. 

 

Returns are just one kind of (and in most cases suboptimal) price transformation among many 

other possibilities. Part of the importance of cointegration methods is their ability to model series 

with memory. But why would the particular case of zero differentiation deliver best outcomes? 

Zero differentiation is as arbitrary as 1-step differentiation. There is a wide region between these 

two extremes (fully differentiated series on one hand, and zero differentiated series on the other). 

 

SOLUTION #4: FRACTIONAL DIFFERENTIATION 

Virtually all the financial time series literature is based on the premise of making non-stationary 

series stationary through integer transformation (see Hamilton [1994] for an example). But why 

would integer 1 differentiation (like the one used for computing returns on log-prices) be 

optimal? 

 

Fractional differentiation (FracDiff) allows us to generalize the notion of returns to non-integer 

(positive real) differences 𝑑. Given a time series of observations {𝑥𝑡}𝑡=1,…,𝑇, the FracDiff 

transformation of order 𝑑 at time 𝑡 is �̃�𝑡 = ∑ 𝜔𝑘𝑥𝑡−𝑘
∞
𝑘=0 , with 𝜔0 = 1 and 

 

𝜔𝑘 = −𝜔𝑘−1

𝑑 − 𝑘 + 1

𝑘
 

 

For the derivation and meaning of the above equation, please see López de Prado [2018], chapter 

5. For instance, for 𝑑 = 0, all weights are 0 except for 𝜔0 = 1. That is the case where the 
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differentiated series coincides with the original one. For 𝑑 = 1, all weights are 0 except for 

𝜔0 = 1 and 𝜔1 = −1. That is the standard first-order integer differentiation, which is used to 

derive log-price returns. Anywhere in between these two cases, all weights after 𝜔0 = 1 are 

negative and greater than -1. Exhibit 3 plots the weights for different orders of differentiation 

𝑑 ∈ [0,1].  
 

Consider the series of E-mini S&P 500 log-prices. The statistic of an ADF test on the original 

series (𝑑 = 0) is -.3387, at which value we cannot reject the null hypothesis of unit root with 

95% confidence (the critical value is -2.8623). However, the value of an ADF statistic computed 

on the FracDiff series with 𝑑 = .4 is -3.2733, and we can reject the null hypothesis with a 

confidence level in excess of 95%. Furthermore, the correlation between the original series and 

the FracDiff series with 𝑑 = .4 is very high, around 0.995, indicating that most of the memory is 

still preserved. Exhibit 4 plots the ADF statistic and the correlation to the original series for 

various values of 𝑑. In contrast, at 𝑑 = 1 (the standard returns), the FracDiff series has an ADF 

statistic of -46.9114, with a correlation to the original series of only 0.05. In other words, 

standard returns over-differentiate the series, in the sense of wiping-out much more memory than 

it was necessary to achieve stationarity. 

 

The above finding is not specific of E-mini S&P 500 log-prices. López de Prado [2018] shows 

that out of the 87 most liquid future contracts traded around the world, all of their log-prices 

achieve stationarity at 𝑑 < .6, and in fact the great majority are stationary at 𝑑 < .3. The 

conclusion is that, for decades, most empirical studies have worked with series where memory 

has been unnecessarily wiped-out. The reason this is a dangerous practice is that fitting a 

memory-less series will likely lead to a spurious pattern, a false discovery. Incidentally, this 

over-differentiation of time series may explain why the Efficient Markets Hypothesis is still so 

prevalent among academic circles: Without memory, series will not be predictive, and 

researchers may draw the false conclusion that markets are unpredictable. 

 

PITFALL #5: FIXED-TIME HORIZON LABELING 

As it relates to finance, virtually all ML papers label observations using the fixed-time horizon 

method. This method can be described as follows. Consider a set of features {𝑋𝑖}𝑖=1,…,𝐼, drawn 

from some bars with index 𝑡 = 1,… , 𝑇, where 𝐼 ≤ 𝑇. An observation 𝑋𝑖 is assigned a label 

𝑦𝑖 ∈ {−1,0,1}, 
 

𝑦𝑖 = {

−1   if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ < −𝜏

   0   if |𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ| ≤ 𝜏

1   if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ > 𝜏

 

 

where 𝜏 is a pre-defined constant threshold, 𝑡𝑖,0 is the index of the bar immediately after 𝑋𝑖 takes 

place, 𝑡𝑖,0 + ℎ is the index of h bars after 𝑡𝑖,0, and 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ is the price return over a bar horizon 

h,  
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𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ =
𝑝𝑡𝑖,0+ℎ

𝑝𝑡𝑖,0

− 1 

 

Because the literature almost always works with time bars (see Pitfall #3), h implies a fixed-time 

horizon. Despite its popularity, there are several arguments to avoid this approach. First, as we 

saw earlier, time bars do not exhibit good statistical properties. Second, the same threshold 𝜏 is 

applied regardless of the observed volatility. Suppose that 𝜏 = 1𝐸 − 2, where sometimes we 

label an observation as 𝑦𝑖 = 1 subject to a realized bar volatility of 𝜎𝑡𝑖,0
= 1𝐸 − 4 (e.g., during 

the night session), and sometimes 𝜎𝑡𝑖,0
= 1𝐸 − 2 (e.g., around the open). The large majority of 

labels will be 0, even if return  𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ was predictable and statistically significant. Third, it is 

simply unrealistic to build a strategy that profits from positions that would have been stopped-out 

by the fund, exchange (margin call) or investor. 

 

SOLUTION #5: THE TRIPLE-BARRIER METHOD 

A better approach is to label observations according to the condition that triggers an exit of a 

position. Let us see one way to accomplish this. First, we set two horizontal barriers and one 

vertical barrier. The two horizontal barriers are defined by profit-taking and stop-loss limits, 

which are a dynamic function of estimated volatility (whether realized or implied). The third 

barrier is defined in terms of number of bars elapsed since the position was taken (an activity-

based, not fixed-time expiration limit). If the upper horizontal barrier is touched first, we label 

the observation as a 1. If the lower horizontal barrier is touched first, we label the observation as 

a -1. If the vertical barrier is touched first, we have two choices: The sign of the return, or a 0. I 

personally prefer the former as a matter of realizing a profit or loss within limits, but you should 

explore whether a 0 works better in your particular problems. 

 

You may have noticed that the triple barrier method is path-dependent. In order to label an 

observation, we must take into account the entire path spanning [𝑡𝑖,0, 𝑡𝑖,0 + ℎ], where h defines 

the vertical barrier (the expiration limit). We will denote 𝑡𝑖,1 the time of the first barrier touch, 

and the return associated with the observed feature is 𝑟𝑡𝑖,0,𝑡𝑖,1
. For the sake of clarity, 𝑡𝑖,1 ≤ 𝑡𝑖,0 +

ℎ and the horizontal barriers are not necessarily symmetric. Exhibit 5 illustrates this labeling 

method. 

 

PITFALL #6: LEARNING SIDE AND SIZE SIMULTANEOUSLY 

A common error in financial ML is to build over-complex models that must learn side and size 

of a position simultaneously. Let me argue why this is in general a mistake. The “side” decision 

(whether to buy or sell) is a strictly fundamental decision that has to do with the fair value of a 

security under a particular set of circumstances, characterized by the features matrix. However, 

the “size” decision is a risk management decision. It has to do with your risk budget, funding 

capabilities, and very importantly, with your confidence on the “side” decision. Combining these 

two distinct decisions into a single model is unnecessary. The additional complexity involved is 

unwarranted. 
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In practice, it is often better to build two models, one to predict the side, and another to predict 

the size of the position. The goal of the primary model is to predict the sign of the position’s 

return. The goal of the secondary model is to predict the accuracy of the primary model’s 

prediction. In other words, the secondary model does not attempt to predict the market, but to 

learn from the weaknesses of the primary model. You can also think of the primary model as 

making trading decisions, whereas the secondary model as making risk management decisions. 

 

There is another argument for splitting the side/size decision. Many ML models exhibit high 

precision (the number of true positives relative to the total number of predicted positives) and 

low recall (the number of true positives relative to the total number of positives). This is 

problematic, because these models are too conservative and miss most of the opportunities. Even 

if these models were virtually infallible, once they enter into a drawdown, they may remain 

underwater for a long time, as a result of their infrequent trading. It is better to develop models 

with a high F1-score (the harmonic average between precision and recall). This can be 

accomplished by splitting the side and size decisions into two models, where the secondary 

model applies meta-labeling. 

 

SOLUTION #6: META-LABELING 

Meta-labeling is particularly helpful when you want to achieve higher F1-scores. First, we build 

a primary model that achieves high recall (e.g., in predicting market rallies), even if the precision 

is not particularly high. Second, we correct for the low precision by labeling the bets of the 

primary model according to their outcome (positive or negative). The goal of these meta-labels is 

to increase your F1-score by filtering out the false positives, where the positives have already 

been identified by the primary model. Stated differently, the role of the secondary ML algorithm 

is to determine whether a positive from the primary (side decision) model is true or false. It is not 

its purpose to come up with a betting opportunity. Its purpose is to determine whether we should 

act or pass on the opportunity that has been presented. 

 

Meta-labeling is a very powerful tool to have in your arsenal, for four additional reasons. First, 

ML algorithms are often criticized as black boxes. Meta-labeling allows you to build an ML 

system on top of a white box (like a fundamental model founded on economic theory). This 

ability to transform a fundamental model into a ML model should make meta-labeling 

particularly useful to “quantamental” firms. Second, the effects of overfitting are limited when 

you apply meta-labeling, because ML will not decide the side of your bet, only the size. There is 

not a single model or parameter combination that controls the overall strategy behavior. Third, 

by decoupling the side prediction from the size prediction, meta-labeling enables sophisticated 

strategy structures. For instance, consider that the features driving a rally may differ from the 

features driving a sell-off. In that case, you may want to develop an ML strategy exclusively for 

long positions, based on the buy recommendations of a primary model, and an ML strategy 

exclusively for short positions, based on the sell recommendations of an entirely different 

primary model. Fourth, achieving high accuracy on small bets and low accuracy on large bets 

will ruin you. As important as identifying good opportunities is to size them properly, so it 

makes sense to develop an ML algorithm solely focused on getting that critical decision (sizing) 
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right. In my experience, meta-labeling ML models can deliver more robust and reliable outcomes 

than standard labeling models. 

 

PITFALL #7: WEIGHTING OF NON-IID SAMPLES 

Most non-financial ML researchers can assume that observations are drawn from IID processes. 

For example, you can obtain blood samples from a large number of patients, and measure their 

cholesterol. Of course, various underlying common factors will shift the mean and standard 

deviation of the cholesterol distribution, but the samples are still independent: There is one 

observation per subject. 

 

Suppose you take those blood samples, and someone in your laboratory spills blood from each 

tube to the following 9 tubes to their right. That is, tube 10 contains blood for patient 10, but also 

blood from patients 1 to 9. Tube 11 contains blood from patient 11, but also blood from patients 

2 to 10, and so on. Now you need to determine the features predictive of high cholesterol (diet, 

exercise, age, etc.), without knowing for sure the cholesterol level of each patient. 

 

This “spilled samples” problem is equivalent to the challenge that we face in financial ML, 

where: (1) labels are decided by outcomes; (2) outcomes are decided over multiple observations; 

(3) because labels overlap in time, we cannot be certain about what observed features caused an 

effect. 

 

SOLUTION #7: UNIQUENESS WEIGHTING AND SEQUENTIAL BOOTSTRAPPING 

Two labels 𝑦𝑖 and 𝑦𝑗 are concurrent at observation 𝑡 when both are a function of at least one 

common return, 𝑟𝑡−1,𝑡 =
𝑝𝑡

𝑝𝑡−1
− 1. We can measure the degree of uniqueness of observations as 

follows: 

1. For each observation 𝑡 = 1,… , 𝑇, we form a binary array, {1𝑡,𝑖}𝑖=1,…,𝐼
, with 1𝑡,𝑖 ∈ {0,1}, 

which indicates whether its outcome spans over return 𝑟𝑡−1,𝑡. 

2. We compute the number of labels concurrent at 𝑡, 𝑐𝑡 = ∑ 1𝑡,𝑖
𝐼
𝑖=1 . 

3. The uniqueness of a label 𝑖 at time 𝑡 is 𝑢𝑡,𝑖 = 1𝑡,𝑖𝑐𝑡
−1. 

4. The average uniqueness of label 𝑖 is the average 𝑢𝑡,𝑖 over the label’s lifespan, �̅�𝑖 =

(∑ 𝑢𝑡,𝑖
𝑇
𝑡=1 )(∑ 1𝑡,𝑖

𝑇
𝑡=1 )

−1
. 

5. Sample weights can be defined in terms of the sum of the attributed returns over the 

event’s lifespan, [𝑡𝑖,0, 𝑡𝑖,1], 
 

�̃�𝑖 = | ∑
𝑟𝑡−1,𝑡

𝑐𝑡

𝑡𝑖,1

𝑡=𝑡𝑖,0

| 

𝑤𝑖 = �̃�𝑖𝐼 (∑�̃�𝑗

𝐼

𝑗=1

)

−1

 

 

The rationale for this method is that we weight an observation as a function of the absolute log 

returns that can be attributed uniquely to it. López de Prado [2018], chapter 4, shows how this 
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weighting scheme can be further used to bootstrap samples with low uniqueness. The general 

notion is that, rather than drawing all samples simultaneously, the draw the samples sequentially, 

where at each step we increase the probability of drawing highly unique observations, and reduce 

the probability of drawing observations with low uniqueness. Monte Carlo experiments 

demonstrate that sequential bootstrapping can significantly increase the average uniqueness of 

samples, hence injecting more information into the model and reducing the “spilled samples” 

effect. 

 

PITFALL #8: CROSS-VALIDATION LEAKAGE 

One reason k-fold CV fails in finance is because observations cannot be assumed to be drawn 

from an IID process. Leakage takes place when the training set contains information that also 

appears in the testing set. Consider a serially correlated feature X that is associated with labels Y 

that are formed on overlapping data: (1) Because of the serial correlation, 𝑋𝑡 ≈ 𝑋𝑡+1; (2) because 

labels are derived from overlapping data points, 𝑌𝑡 ≈ 𝑌𝑡+1. Then, placing t and t+1 in different 

sets leaks information. When a classifier is first trained on (𝑋𝑡, 𝑌𝑡), and then it is asked to predict 

E[𝑌𝑡+1] based on an observed 𝑋𝑡+1, this classifier is more likely to achieve 𝑌𝑡+1 = E[𝑌𝑡+1] even 

if X is an irrelevant feature. In the presence of irrelevant features, leakage leads to false 

discoveries. 

 

SOLUTION #8: PURGING AND EMBARGOING 

One way to reduce leakage is to eliminate from the training set all observations whose labels 

overlapped in time with those labels included in the testing set. I call this process purging. 

Consider a label 𝑌𝑗 that is a function of observations in the closed range 𝑡 ∈ [𝑡𝑗,0, 𝑡𝑗,1], 𝑌𝑗 =

𝑓 [[𝑡𝑗,0, 𝑡𝑗,1]] (with some abuse of notation). For example, in the context of the triple barrier 

labeling method, it means that the label is the sign of the return spanning between price bars with 

indices 𝑡𝑗,0 and 𝑡𝑗,1, that is sgn [𝑟𝑡𝑗,0,𝑡𝑗,1
]. A label 𝑌𝑖 = 𝑓 [[𝑡𝑗,0, 𝑡𝑗,1]] overlaps with 𝑌𝑗 if any of the 

three sufficient conditions is met: (1) 𝑡𝑗,0 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1; (2) 𝑡𝑗,0 ≤ 𝑡𝑖,1 ≤ 𝑡𝑗,1; (3) 𝑡𝑖,0 ≤ 𝑡𝑗,0 ≤

𝑡𝑗,1 ≤ 𝑡𝑖,1. 

 

Since financial features often incorporate series that exhibit serial correlation (like ARMA 

processes), we should eliminate from the training set observations that immediately follow an 

observation in the testing set. I call this process embargo. The embargo does not need to affect 

training observations prior to a test, because training labels 𝑌𝑖 = 𝑓 [[𝑡𝑖,0, 𝑡𝑖,1]], where 𝑡𝑖,1 < 𝑡𝑗,0 

(training ends before testing begins), contain information that was available at the testing time 

𝑡𝑗,0. We are only concerned with training labels 𝑌𝑖 = 𝑓 [[𝑡𝑖,0, 𝑡𝑖,1]] that take place immediately 

after the test, 𝑡𝑗,1 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1 + ℎ. We can implement this embargo period h by setting 𝑌𝑗 =

𝑓 [[𝑡𝑗,0, 𝑡𝑗,1 + ℎ]] before purging. A small value ℎ ≈ .01𝑇, where 𝑇 is the number of bars, often 

suffices to prevent all leakage. Exhibit 6 illustrates how purging and embargoing would be 

implemented on a particular train/test split.  
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PITFALL #9: WALK-FORWARD (OR HISTORICAL) BACKTESTING 

The most common backtest method in the literature is the walk-forward (WF) approach. WF is a 

historical simulation of how the strategy would have performed in past. Each strategy decision is 

based on observations that predate that decision. WF enjoys two key advantages: (1) WF has a 

clear historical interpretation. Its performance can be reconciled with paper trading. (2) History 

is a filtration; hence, using trailing data guarantees that the testing set is out-of-sample (no 

leakage), as long as purging has been properly implemented. 

 

WF suffers from three major disadvantages: First, a single scenario is tested (the historical path), 

which can be easily overfit (Bailey et al. [2014]). Second, WF is not necessarily representative of 

future performance, as results can be biased by the particular sequence of datapoints. Proponents 

of the WF method typically argue that predicting the past would lead to overly optimistic 

performance estimates. And yet, very often fitting an outperforming model on the reversed 

sequence of observations will lead to an underperforming WF backtest. The truth is, it is as easy 

to overfit a walk-forward backtest as to overfit a walk-backward backtest, and the fact that 

changing the sequence of observations yields inconsistent outcomes is evidence of that 

overfitting. If proponents of WF were right, we should observe that walk-backwards backtests 

systematically outperform their walk-forward counterparts. That is not the case, hence the main 

argument in favor of WF is rather weak. To make this second disadvantage clearer, suppose an 

equity strategy that is backtested with a WF on S&P 500 data, starting January 1, 2007. Until 

March 15, 2009, the mix of rallies and sell-offs will train the strategy to be market neutral, with 

low confidence on every position. After that, the long rally will dominate the dataset, and by 

January 1, 2017, buy forecasts will prevail over sell forecasts. Performance would be very 

different if we played the information backwards, from January 1, 2017 to January 1, 2007 (a 

long rally followed by a sharp sell-off). By exploiting a particular sequence, a strategy selected 

by WF may set us up for a debacle. The third disadvantage of WF is that the initial decisions are 

made on a smaller portion of the total sample. Even if a warm-up period is set, most of the 

information is used by only a small portion of the decisions. 

 

SOLUTION #9: COMBINATORIAL PURGED CROSS-VALIDATION 

The three pitfalls of WF can be addressed by simulating a large number of scenarios, where each 

scenario provides us with a backtest path. This in turn will allow us to fully use the data and 

avoid warm-up periods. One way to achieve this is by generating thousands of train/test splits, so 

that every part of the series is tested multiple times (not just once). Let us outline how the 

combinatorial purged cross-validation (CPCV) method works. 

 

Consider T observations partitioned into N groups without shuffling, where groups 𝑛 =

1, … , 𝑁 − 1 are of size ⌊𝑇/𝑁⌋, the Nth group is of size 𝑇 − ⌊𝑇/𝑁⌋(𝑁 − 1), and ⌊. ⌋ is the floor or 

integer function. For a testing set of size k groups, the number of possible training/testing splits is 

 

(
𝑁

𝑁 − 𝑘
) =

∏ (𝑁 − 𝑖)𝑘−1
𝑖=0

𝑘!
 

 

Since each combination involves k tested groups, the total number of tested groups is 𝑘 (
𝑁

𝑁 − 𝑘
). 

And since we have computed all possible combinations, these tested groups are uniformly 
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distributed across all N (each group belongs to the same number of training and testing sets). The 

implication is that from k-sized testing sets on N groups we can backtest a total number of paths 

𝜑[𝑁, 𝑘], 
 

𝜑[𝑁, 𝑘] =
𝑘

𝑁
(

𝑁
𝑁 − 𝑘

) =
∏ (𝑁 − 𝑖)𝑘−1

𝑖=1

(𝑘 − 1)!
 

 

Exhibit 7 illustrates the composition of train/test splits for 𝑁 = 6 and 𝑘 = 2. There are (
6
4
) = 15 

splits, indexed as S1,…,S15. For each split, the figure marks with a cross (x) the groups included 

in the testing set, and leaves unmarked the groups that form the training set. Each group forms 

part of 𝜑[6,2] = 5 testing sets, therefore this train/test split scheme allows us to compute 5 

backtest paths. 

 

Exhibit 8 shows the assignment of each tested group to one backtest path. For example, path 1 is 

the result of combining the forecasts from (𝐺1, 𝑆1), (𝐺2, 𝑆1), (𝐺3, 𝑆2), (𝐺4, 𝑆3), (𝐺5, 𝑆4) and 

(𝐺6, 𝑆5). Path 2 is the result of combining forecasts from (𝐺1, 𝑆2), (𝐺2, 𝑆6), (𝐺3, 𝑆6), (𝐺4, 𝑆7), 

(𝐺5, 𝑆8) and (𝐺6, 𝑆9), and so on. 

 

In the example above we have generated only 5 paths, however CPCV allows us to generate 

thousands of paths on a sufficiently long series. The number of paths 𝜑[𝑁, 𝑘] increases with 

𝑁 → 𝑇 and with 𝑘 → 𝑁/2. A key advantage of CPCV is that it allows us to derive a distribution 

of Sharpe ratios, as opposed to a single (likely overfit) Sharpe ratio estimate. 

 

PITFALL #10: BACKTEST OVERFITTING 

Given a sample of IID random variables, 𝑥𝑖~𝑍, 𝑖 = 1,… , 𝐼, where Z is the standard normal 

distribution, the expected maximum of that sample can be approximated as 

 

E[max{𝑥𝑖}𝑖=1,…,𝐼] ≈ (1 − 𝛾)𝑍−1 [1 −
1

𝐼
] + 𝛾𝑍−1 [1 −

1

𝐼
𝑒−1] ≤ √2log[𝐼] 

 

where 𝑍−1[. ] is the inverse of the CDF of 𝑍, 𝛾 ≈ 0.5772156649 … is the Euler-Mascheroni 

constant and 𝐼 ≫ 1 (see Bailey et al. [2014] for a proof). Now suppose that a researcher 

backtests I strategies on an instrument that behaves like a martingale, with Sharpe ratios 

{𝑦𝑖}𝑖=1,…,𝐼, E[𝑦𝑖] = 0, 𝜎2[𝑦𝑖] > 0, and 
𝑦𝑖

𝜎[𝑦𝑖]
~𝑍. Even though the true Sharpe ratio is zero, we 

expect to find one strategy with a Sharpe ratio of  

 

E[max{𝑦𝑖}𝑖=1,…,𝐼] = E[max{𝑥𝑖}𝑖=1,…,𝐼]𝜎[𝑦𝑖] 

 

WF backtests exhibit high variance, 𝜎[𝑦𝑖] ≫ 0, for at least one reason: A large portion of the 

decisions are based on a small portion of the dataset. A few observations will have a large weight 

on the Sharpe ratio. Using a warm-up period will reduce the backtest length, which may 

contribute to making the variance even higher. WF’s high variance leads to false discoveries, 
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because researchers will select the backtest with the maximum estimated Sharpe ratio, even if the 

true Sharpe ratio is zero. That is the reason why it is imperative to control for the number of 

trials (I) in the context of WF backtesting. Without this information, it is not possible to 

determine the Family-Wise Error Rate (FWER), False Discovery Rate (FDR), Probability of 

Backtest Overfitting (PBO) or similar. 

 

SOLUTION #10: THE DEFLATED SHARPE RATIO 

The probabilistic Sharpe ratio (PSR) provides an adjusted estimate of the Sharpe ratio, by 

removing the inflationary effect caused by short series with skewed and/or fat-tailed returns. 

Given a user-defined rejection threshold 𝑆𝑅∗, and an observed Sharpe ratio 𝑆�̂�, PSR estimates 

the probability that 𝑆�̂� is greater than a hypothetical 𝑆𝑅∗. Following Bailey and López de Prado 

[2012], PSR can be estimated as 

 

𝑃𝑆�̂�[𝑆𝑅∗] = 𝑍

[
 
 
 

(𝑆�̂� − 𝑆𝑅∗)√𝑇 − 1

√1 − 𝛾3𝑆�̂� +
𝛾4 − 1

4 𝑆�̂�2
]
 
 
 

 

 

where 𝑍[. ] is the CDF of the standard Normal distribution, T is the number of observed returns, 

𝛾3 is the skewness of the returns, and 𝛾4 is the kurtosis of the returns (𝛾4 = 3 for Gaussian 

returns). For a given 𝑆𝑅∗, 𝑃𝑆�̂� increases with greater 𝑆�̂� (in the original sampling frequency, i.e. 

non-annualized), or longer track records (T), or positively skewed returns (𝛾3), but it decreases 

with fatter tails (𝛾4). 

 

The deflated Sharpe ratio (DSR) computes the probability that the true Sharpe ratio exceeds a 

rejection threshold 𝑆𝑅∗, where that rejection threshold is adjusted to reflect the multiplicity of 

trials. Following Bailey and López de Prado [2014], DSR can be estimated as 𝑃𝑆�̂�[𝑆𝑅∗], where 

the benchmark Sharpe ratio, 𝑆𝑅∗, is no longer user-defined. Instead, 𝑆𝑅∗ is estimated as 

 

𝑆𝑅∗ = √𝑉[{𝑆�̂�𝑛}] ((1 − 𝛾)𝑍−1 [1 −
1

𝑁
] + 𝛾𝑍−1 [1 −

1

𝑁
𝑒−1]) 

 

where 𝑉[{𝑆�̂�𝑛}] is the variance across the trials’ estimated SR, N is the number of independent 

trials, 𝑍[. ] is the CDF of the standard Normal distribution, 𝛾 is the Euler-Mascheroni constant, 

and 𝑛 = 1,… ,𝑁. 

 

The rationale behind DSR is the following: Given a set of SR estimates, {𝑆�̂�𝑛}, its expected 

maximum is greater than zero, even if the true SR is zero. Under the null hypothesis that the 

actual Sharpe ratio is zero, 𝐻0: 𝑆𝑅 = 0, we know that the expected maximum 𝑆�̂� can be 

estimated as the 𝑆𝑅∗. Indeed, 𝑆𝑅∗ increases quickly as more independent trials are attempted (N), 

or the trials involve a greater variance (𝑉[{𝑆�̂�𝑛}]). 
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CONCLUSIONS 

Many of the most successful hedge funds in history apply ML techniques. However, ML is far 

from being a panacea, and a large number of funds that have attempted to join ML investing 

have failed. The reason is, financial datasets exhibit properties that violate standard assumptions 

of ML applications. When ML techniques are applied to financial datasets in disregard of those 

properties, these techniques produce false positives. In the context of investing, the implication is 

that most ML funds fail to deliver the expected performance. In this article we have reviewed 

some of the most pervasive errors made by ML experts when they attempt to apply ML 

techniques to financial datasets. 
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EXHIBITS 

 

 

 

 
Exhibit 1 – The 10 reasons most machine learning funds fail  

 

 

 
Exhibit 2 - Average daily frequency of tick, volume, and dollar bars 

 

# Category Pitfall Solution

1 Epistemological The Sisyphus paradigm The meta-strategy paradigm

2 Epistemological Research through backtesting Feature importance analysis

3 Data processing Chronological sampling The volume clock

4 Data processing Integer differentiation Fractional differentiation

5 Classification Fixed-time horizon labeling The triple-barrier method

6 Classification Learning side and size simultaneously Meta-labeling

7 Classification Weighting of non-IID samples
Uniqueness weighting; sequential 

bootstrapping

8 Evaluation Cross-validation leakage Purging and embargoing

9 Evaluation Walk-forward (historical) backtesting Combinatorial purged cross-validation

10 Evaluation Backtest overfitting
Backtesting on synthetic data; the 

deflated Sharpe ratio
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Exhibit 3 – 𝜔𝑘 (y-axis) as k increases (x-axis). Each line is associated with 

a particular value of 𝑑 ∈ [0,1], in 0.1 increments 

 

 
Exhibit 4 – ADF statistic as a function of d, on E-mini S&P 500 futures log prices 
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Exhibit 5 – The triple-barrier method 

 

 
Exhibit 6 – Purging overlap plus embargoing training examples after test 
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Exhibit 7 – Paths generated for 𝜑[6,2] = 5 

 

 

 
Exhibit 8 – Assignment of testing groups to each of the 5 paths 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Paths

G1 x x x x x 5

G2 x x x x x 5

G3 x x x x x 5

G4 x x x x x 5

G5 x x x x x 5

G6 x x x x x 5

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Paths

G1 1 2 3 4 5 5

G2 1 2 3 4 5 5

G3 1 2 3 4 5 5

G4 1 2 3 4 5 5

G5 1 2 3 4 5 5

G6 1 2 3 4 5 5


