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Abstract

In the finance and insurance industries, collective risk models, where the aggregate claim
amount of a portfolio is defined in terms of random sums, play a crucial rule. In these models,
it is common to assume that the number of claims and their amounts are independent, even if
this might not always be the case. This paper uses Archimedean and hierarchical Archimedean
copulas in collective risk models, to model the dependence between claim counts and the amounts
involved in the random sum. Such dependence structures allow us to derive a computational
methodology for the assessment of the aggregate claim amount. While being very flexible, this
methodology is easy to implement, and can easily fit more complicated hierarchical structures.
Using specific distributions for the number and the amounts of claims, we also derive explicit
expressions for the aggregate claim amount and its related quantities.

Keywords: Random sums; Collective Risk Models; Archimedean Copulas; Hierarchical Archimedean
Copulas
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1 Introduction

Random sums are often used to model the aggregated losses of an insurance company. For a given
portfolio of policyholders, the total amount S paid on all claims over a fixed period of time is
defined as

S =
N∑
i=1

Xi,

where X = {Xi, i ∈ N} is a sequence of non-negative random variables (rvs), and N is a positive
counting rv. The rv N represents the number of claims and Xi corresponds to the amount of the
ith claim.

In the classical collective risk model, X1, X2, . . . are assumed to be independent of N ,
and also independent and identically distributed (iid) rvs (see e.g. [Rolski et al., 1999] and
[Klugman et al., 2009]). However in practice, these assumptions are not always verified. For exam-
ple, while analyzing a car insurance data-set, [Gschlößl and Czado, 2007] found that the number
and the size of claims are significantly dependent. See also, e.g. [Kousky and Cooke, 2009] for
other related examples, such as the highlighted dependency between flood damage and wind dam-
age, using a catastrophic loss data.

While several papers proposed models that only account for the dependence between claim amounts
(see e.g., [Denuit et al., 2006]), few others considered an extra dependency between claim amounts
and claim counts as well. For example, claim counts can be considered as predictors for the
claim amounts, see e.g., [Gschlößl and Czado, 2007], [Frees et al., 2011] and [Garrido et al., 2016].
Among others, [Czado et al., 2012] and [Krämer et al., 2013] propose to use families of bivariate
copulas to model the dependency relationship between the number of claims and the average
claim amount. In another setting, inter-claim times and claim sizes are assumed to be depen-
dent in a compound Poisson process, see e.g., [Albrecher et al., 2014], [Boudreault et al., 2006],
[Cossette et al., 2008], and [Landriault et al., 2014].

In this paper, we look at collective risk models incorporating dependent components. The under-
lying dependence structure is induced via an Archimedean or a hierarchical Archimedean copula.
Here, a distinction is made between two types of dependency relationships: the one between the
components of X and the one between N and X. The risk model considered in this article is an
extension of the one studied in Section 4 of [Cossette et al., 2018], in which X = {Xj , j ∈ N} forms
a sequence of exchangeable rvs independent of the counting positive discrete rv N . In addition to
considering a dependence relationship between claim amounts, the proposed model here links N and
the exchangeable sequence X with an Archimedean or a hierarchical Archimedean copula. Based
on stochastic orderings, dependence properties are studied and links with [Liu and Wang, 2017]
are established. Similarly to [Cossette et al., 2018], a computational methodology is proposed to
analyze the distribution of the aggregate claim amount rv S, which is defined as a random sum.

The outline of the paper is as follows. In Section 2, the model is presented, and increasing convex
ordering inequalities on S are derived in different settings. Section 3 presents the computational
methodology for the distribution of S and its related quantities using either an Archimedean or
a hierarchical Archimedean copula. In the last section, an extension of the risk model described
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and studied in Section 2 of [Albrecher et al., 2011] is proposed, and explicit formulas are derived
in different setups.

2 Collective risk models with dependence

Let the aggregate claim amount be defined as S =
∑N

k=1Xk, where N is a counting rv (i.e., N ∈ N0

where N0 = N ∪ {0}), and X = (X1, X2, . . .) be a vector of exchangeable rvs, i.e., Xk ∼ X for
k ∈ N. Note that

∑0
k=1Xk = 0 by convention. Let (N,X) = (N,X1, X2, . . .) be a vector of rvs for

which the multivariate cumulative distribution function (cdf) (or its survival function) is defined
with the copula C and the univariate cdfs FN , FX1 , FX2 , . . . , (or the univariate survival functions
FN , FX1 , FX2 , . . .) of N,X1, X2, . . ., i.e.,

FN,X(k, x1, . . . , xk) = C (FN (k), FX1(x1), . . . , FXk(xk)) , k ∈ N, (1)

or
FN,X(k, x1, . . . , xk) = C

(
FN (k), FX1(x1), . . . , FXk(xk)

)
, k ∈ N, (2)

where C is an Archimedean or a hierarchical Archimedean copula. This model allows to incorporate
a dependence structure between the claim number and the claim amounts.

Archimedean copulas could be good candidates to model such a dependence structure due to their
flexibility, simple construction procedure, multivariate generalization, and their ability to capture
different tail dependencies. However, the inherent exchangeability in Archimedean copulas implies
that the dependence between the number of claims N and their amounts Xi for i ∈ N. is the
same as the dependence between the components of X. In practice, this exchangeability is a very
strong assumption. A more realistic dependence structure could be a hierarchical one. For example,
we can consider a one level hierarchical Archimedean copula allowing to have different dependency
relationships between N and Xi and between the rvs Xi for i = 1, 2, . . . Such a dependence structure
can be illustrated with a tree representation as shown in Figure 1. In this paper, we consider nested
Archimedean copulas and the hierarchical Archimedean copulas through compounding proposed in
[Cossette et al., 2017], to model the dependence structure depicted in Figure 1.

α0

N α1

X1 ... Xk

Figure 1: One level hierarchical tree structure.

Nested Archimedean copulas, first introduced by [Joe, 1997], are obtained by plugging-in
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Archimedean copulas into each other. The resulting copula can capture hierarchical Archimedean
dependence structures (i.e., different dependencies between and within groups), which can be more
appropriate and helpful for practical applications as discussed in, e.g., [Joe, 1997] and [Hofert, 2010].

A copula C is said to be a nested Archimedean copula if at least one of its arguments is an
Archimedean copula. Therefore, there are infinitely many ways to nest Archimedean copulas.
For instance, a one level d-dimensional nested Archimedean copula, that can fit the dependence
structure depicted in Figure 1, can be written as

C(u1, u2, . . . , ud) = C(u1, C(u2, . . . , ud)) = ψ0

(
ψ−1

0 (u1) + ψ−1
0 ◦ ψ1

(
d∑
i=2

ψ−1
1 (ui)

))
, (3)

where ψ0 and ψ1 are respectively the generators of the outer copula (also named the mother copula)
and the inner copula (or the child copula). Note that ψ0 and ψ1 are Laplace-Stieltjes transforms
(LSTs) of positive rvs Θ0 and Θ1 respectively. A sufficient condition for (3) to be a proper copula
is that ψ−1

0 ◦ ψ1 (or equivalently L−1
Θ0
◦ LΘ1) must have completely monotone derivatives (see

e.g. [Joe, 1997] and [McNeil, 2008] for more details). Such a condition implies that the function

ψ0,1 (t; θ) = exp
{
−θL−1

Θ0
◦ LΘ1 (t)

}
is a LST of positive a rv Θ0,1 (see e.g. [Joe, 2014] for details).

In general, for a hierarchical copula with several nesting levels, [Joe, 1997] and [McNeil, 2008] show
that for any node with parent i and child j, the complete monotonicity of the function L−1

i ◦ Lj ,
for (i < j), is a sufficient condition for a nested Archimedean copula to be a proper copula. Such

a condition implies that the function ψi,j (t; θ) = exp
{
−θL−1

Θi
◦ LΘj (t)

}
is a LST of a positive rv

(see e.g. [Joe, 2014] for details). In this paper, we only consider nested Archimedean copulas of
the form (3) for which the nesting condition is verified.

To bypass the constraints related to the nesting condition of the nested Archimedean cop-
ulas, several research papers proposed other hierarchical Archimedean structures (see e.g.
[Hering et al., 2010], [Brechmann, 2014], [Bedford and Cooke, 2002] and [Joe, 1997]). The ap-
proach recently proposed in [Cossette et al., 2017] consists of constructing a hierarchical copula
from a multivariate mixed exponential distribution.

Let us consider a risk portfolio with d different sectors of activity (subgroups), such that every
subgroup i = 1, . . . , d, is influenced by a mixing rv Θi, and the dependence between subgroups is
induced by the dependence linking the components of the vector Θ = (Θ1, . . . ,Θd). In this case,
the associated copula C can be written as

C (u) = LΘ

 n1∑
j=1

L−1
Θ1

(u1,j) , . . . ,

nd∑
j=1

L−1
Θd

(ud,j)

 , (4)

where u = (u1, . . . , ud) with ui = (ui,1, . . . , ui,ni) for i = 1, . . . , d.

Further, the dependence structure of the mixing vector Θ is modelled with a compound distribution
such that every mixing rv Θi, i = 1, . . . , d, can be represented as a random sum, i.e. Θi =

∑M
j=1Bi, j .

The rv M is a positive discrete rv and the elements of the sequence Bi = {Bi,j , j = 1, 2, . . .} are
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assumed to be iid and strictly positive rvs. Also, the sequences Bi, i = 1, . . . , d, are independent
from each other and from the rv M . With this assumption, the copula in (4) becomes

C (u) = LM

(
d∑
i=1

− ln

(
LBi

( ni∑
j=1

L−1
Θi

(ui,j)
)))

. (5)

We can adapt this hierarchical Archimedean structure to fit the dependence model presented in
this paper as follows

C (u1, . . . , ud) = LM

(
L−1
M (u1)− ln

(
LBi

( d∑
i=2

L−1
Θ (ui)

)))
. (6)

Let (N,X) = (N,X1, X2, . . .),
(
N (+), X(+,+)

)
=

(
N (+), X

(+,+)
1 , X

(+,+)
2 , . . .

)
, and(

N (⊥), X(⊥,⊥)
)

=
(
N (⊥), X

(⊥,⊥)
1 , X

(⊥,⊥)
2 , . . .

)
, where N (+) ∼ N (⊥) ∼ N and X(+,+) ∼ X(⊥,⊥) ∼

X, be, respectively, a vector of dependent rvs whose joint cdf is defined as in (1) with a hierarchical
Archimedean copula as in (3) or in (6), with dependence parameters α0 and α1, a vector of comono-
tonic rvs, and a vector of independent rvs. We define the rvs S, S(+,+), and S(⊥,⊥) respectively
by

S =
N∑
i=1

Xi,

S(+,+) =

N(+)∑
i=1

X
(+,+)
i ,

and

S(⊥,⊥) =
N(⊥,⊥)∑
i=1

X
(⊥,⊥)
i .

The expression of E [S] is given by

E [S] = EΘ0 [E [S|Θ0]] =

∫
E [S|Θ0 = θ0] dFΘ0 (θ0) . (7)

Given Θ0 = θ0, (N |Θ0 = θ0) and (X|Θ0 = θ0) are conditionally independent, which implies that

E [S|Θ0 = θ0] = E [N |Θ0 = θ0]E [X|Θ0 = θ0] . (8)

Inserting (8), (7) becomes

E [S] =

∫
E [N |Θ0 = θ0]E [X|Θ0 = θ0] dFΘ0 (θ0) . (9)

Note that (9) is obtained by only conditioning on Θ0. Hence, the expectation of S solely depends
on α0 (and not α1). Also, E

[
S(+,+)

]
= E

[
N (+)X(+,+)

]
(see e.g., [Liu and Wang, 2017]), and

E
[
S(⊥,⊥)

]
= E

[
N (⊥)

]
E
[
X(⊥,⊥)

]
(see e.g., [Klugman et al., 2009]).
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The popular risk measures Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR) are used namely
to determine the capital of the insurance portfolio. The VaR at the confidence level κ ∈ (0, 1) of
the rv S is defined as V aRκ (S) = F−1

S (κ), where F−1
S (κ) = inf {x ∈ R, FS(x) ≥ κ}, and the TVaR

at the confidence level κ ∈ (0, 1) of the rv S is given by

TV aRκ (S) =
1

1− κ

∫ 1

κ
V aRu (S) du.

In the example just below, we consider a simple case for which the probability mass function (pmf)
of the random sums rvs S, S(+,+), and S(⊥,⊥) can be easily and directly calculated even when using
a complicated dependence structure.

Example 1 Let N ∈ {0, 1, 2, 3} and Xi ∈ A = {1, 2, 3, . . .} for i = 1, 2, . . . , k. The joint distribu-
tion of (N,X) is defined as in (1) with a hierarchical Archimedean copula as in (3) or in (6), with
dependence parameters α0 and α1.

Note that the joint pmf of (N,X) can be derived from its joint cdf as follows

fN,X (k) =
∑
i1=0,1

. . .
∑
id=0,1

(−1)i1+...+id FN,X ((k1 − i1) , . . . , (kd − id)) , (10)

where k = (k1, . . . , kd), for k1 ∈ {0, 1, 2, 3}, d = k1 + 1, and ki ∈ N, for i = 2, . . . , d.

The pmf of S =
∑N

i=1Xi is given by

Pr (S = k) =



Pr (N = 0) , k = 0
Pr (N = 1, X1 = 1) , k = 1
Pr (N = 1, X1 = 2) + Pr (N = 2, X1 = 1, X2 = 1) , k = 2

Pr (N = 1, X1 = k) +
∑k

j=1 Pr (N = 2, X1 = j,X2 = k − j)
+
∑k

j=1

∑k−j
i=1 Pr (N = 2, X1 = j,X2 = i,X3 = k − i− j) , k ≥ 3

. (11)

A numerical illustration of Example 1 is provided in the following example.

Example 2 Let N ∼ Binomial(3, 0.1) and Xi = a Yi, where a = 10000 and Yi − 1 ∼
NegativeBinomial(10, 0.2), for i = 1, 2, . . . The joint distribution of (N,X) is assumed to
be defined with a hierarchical Archimedean copula through compounding as given in (6), with
M ∼ Logarithmic(q = 1 − e−α0) and Bi ∼ B ∼ Gamma(λ = 1/α1, 1). We consider the val-
ues 0.5 and 0.9 for q, and the values 0.04 and 0.2 for λ, which results in the following dependence
parameters of the copula α0 ' 0.7, 2, and α1 = 25, 5, respectively. Values of Fs, E[S], V ar(S),
V aRκ(S), and TV aRκ(S) are given in Table 1. For comparison purposes, the same quantities

are also provided for the case of comonotonic N (+) and X
(+,+)
i using (11) with the comonotonic

copula C(u1, . . . , un) = min(u1, . . . , un), for u1, . . . , un ∈ (0, 1), and for the independence case, i.e.,

X
(⊥,⊥)
i are iid and independent of N (⊥), for i = 1, 2, . . .. From this example, we can see that as the

dependence parameter α (α being the parameter of either the outer or the inner copula) increases,
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(α0, α1) (0.7, 5) (2, 5) (2, 25) (⊥,⊥) (+,+)

FS(0) 0.7290000 0.7290000 0.7290000 0.7290000 0.7290000

FS(40 a) 0.8435889 0.8112038 0.8112225 0.8575668 0.7290000

FS(160 a) 0.9996532 0.9994003 0.9992956 0.9999112 0.9902371

E [S] /a 12.91612 14.25007 14.25007 12.30000 18.37708

V ar (S) /a2 575.0697 689.7329 692.2178 513.87000 1230.54

V aR0.9 (S) 490000 530000 530000 470000 600000

V aR0.999 (S) 1420000 1510000 1540000 1270000 1960000

TV aR0.9 (S) 684865.8 744200.1 744234.9 653169.6 923295

TV aR0.999 (S) 1597225 1698044 1736602 1408195 3137555

Table 1: Values of the cdf, expectation, variance, VaR and TVaR of S as defined in Example 2.

the expectation, the variance and the TVaR increase as well. Also, if the outer parameter is fixed,
the expectation E[S] does not change when the inner dependence parameter changes, which is to be
expected. Moreover, we can see that the values of the TVaR always fall between the TVaR in the
independence case and the ones in the comonotonic case. In general, for collective risk models, the
comonotonic case is considered as the worst case dependence scenario.

These last observations made on Example 2 drove us to further investigate the dependence rela-
tionship connecting the components of (N,X). Further, since the computation of (10) becomes
more cumbersome, and even impossible for dimensions larger than 5, we need to find a calculation
method that is more suitable in large dimensions.

In the following two subsections, we will discuss different properties of the proposed model.

2.1 Impact of dependence on the aggregate claim amount

Stochastic orders are used to compare risks according to how risky and dangerous they are.
They have many applications in e.g. actuarial science, applied probability, reliability, and
economics. See [Müller and Stoyan, 2002], [Denuit et al., 2006], [Bäuerle and Müller, 2006], and
[Shaked and Shanthikumar, 2007] for a review on stochastic orders.

Definition 3 Let X and X∗ be two rvs with finite expectations. Then, X is said to be smaller
than X∗ according to the convex order (increasing convex order), denoted X �cx X∗ (X �icx X∗),
if E [φ(X)] ≤ E [φ(X∗)] for all (increasing) convex function φ, when the expectations exist.

The convex and increasing convex orders are variability orders. Note that, if X �icx X∗ and
E[X] = E[X∗], then X �cx X∗. Proposition 3.4.8 of [Denuit et al., 2006] provides an important
application of the increasing convex order in actuarial science and risk management:

X �icx X∗ if and only if TV aRκ(X) ≤ TV aRκ(X∗), for allκ ∈ (0, 1). (12)
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For properties and more details on the convex and the increasing convex orders, see e.g.
[Müller and Stoyan, 2002], and [Shaked and Shanthikumar, 2007]. Our objective is to examine
the impact of the degrees of dependence between the components of (N,X) on the aggregate claim
amount S. In the case of the collective risk model with dependence, [Liu and Wang, 2017] provide
the following result on increasing convex order and comonotonicity.

Proposition 4 Assume the multivariate distribution of (N,X) to be defined with an Archimedean
or a hierarchical Archimedean copula C with dependence parameters α0 and α1, using either (1) or
(2). Then,

S =
N∑
i=1

Xi �icx
N(+)∑
i=1

X
(+,+)
i = S(+,+),

Also, equivalently, TV aRκ (S) ≤ TV aRκ
(
S(+,+)

)
.

Proof. See [Liu and Wang, 2017].

In Proposition 4, we compare our proposed dependence structure for (N,X) with the case of perfect
positive dependence. What happens if we slightly increase the dependence? Can we compare two
random sums with the same dependence structure but different dependence parameters? In order
to address these questions, we resort to the supermodular dependence order.

Definition 5 Let f : Rn → R. The function f is supermodular if the following inequality is true:

f(x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi + ε, . . . , xj , . . . , xn)

≥ f(x1, . . . , xi, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi, . . . , xj , . . . , xn),

∀(x1, . . . , xn) ∈ Rn, ∀ε, δ > 0, and 1 ≤ i ≤ j ≤ n.

Definition 6 Let X = (X1, . . . , Xn) and X∗ = (X∗1 , . . . , X
∗
n) be two random vectors such that, for

i = 1, . . . , n, Xi and X∗i have the same marginal distribution. Then, X∗ is greater than X according
to the supermodular order, denoted X �sm X∗, if E [f (X)] ≤ E [f (X∗)], for any supermodular
function f , when the expectations exist.

The following two properties aim to compare, according to the supermodular order, two random
vectors (N,X) and (N∗, X∗) for which the multivariate distribution is defined with either an
Archimedean copula or a hierarchical Archimedean copula.

Proposition 7 Let the multivariate distributions of (N,X) and (N∗, X∗) be defined using either
(1) or (2), using an Archimedean copula C with dependence parameter α and α∗ respectively. If
α ≤ α∗, then,

Cα �sm Cα∗ ,
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(N,X1, . . . , Xk) �sm (N∗, X∗1 , . . . , X
∗
k) ,

and

S =

N∑
i=1

Xi �icx
N∗∑
i=1

X∗i = S∗. (13)

Proof. The proof for Cα �sm Cα∗ is given in [Wei and Hu, 2002]. Using the property of closure un-
der all increasing (or decreasing) transforms of the supermodular order (see, e.g. Theorem 9.A.9.(a)
of [Shaked and Shanthikumar, 2007]), we can conclude that (N,X1, . . . , Xk) �sm (N∗, X∗1 , . . . , X

∗
k),

for all k ∈ N. Also, we have that

S =
N∑
j=1

Xj =
∞∑
j=1

Xj1{N>j}.

We define Sk as

Sk =
k∑
j=1

Xj1{N>j} = φ (N,X1, ..., Xk) ,

where

φ (x0, x1, ..., xk) =
k∑
j=1

xj1{x0>j} (14)

is a supermodular function. Note that

S∞ = lim
k→∞

Sk = S.

Since (N,X1, . . . , Xk) �sm (N∗, X∗1 , . . . , X
∗
k), for all k ∈ N, and given that the function φ defined

in (14) is supermodular, it implies that

Sk �icx S∗k , (15)

for all k ∈ N (see Theorem 9.A.16 on page 399 of [Shaked and Shanthikumar, 2007] for more
details). Letting k →∞ in (15), we obtain the result in (13).

Proposition 8 Let the multivariate distributions of (N,X) and (N∗, X∗) be defined using either
(1) or (2), using a one level hierarchical Archimedean copula C as illustrated in Figure 1, with
parameters α0, α1 and α∗0, α

∗
1 respectively. Then, we have

1. if α0 ≤ α∗0 and α1 = α∗1, then Cα0,α1 �sm Cα∗0,α1;

2. if α0 = α∗0 and α1 ≤ α∗1, then Cα0,α1 �sm Cα0,α∗1
;

3. if α0 ≤ α∗0 and α1 ≤ α∗1, then Cα0,α1 �sm Cα∗0,α∗1 .
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Therefore, for all three cases, we have

(N,X1, . . . , Xk) �sm (N∗, X∗1 , . . . , X
∗
k) , ∀k ∈ N.

Then,

S =

N∑
i=1

Xi �icx
N∗∑
i=1

X∗i = S∗. (16)

Equivalently, by (12)
TV aRκ (S) ≤ TV aRκ (S∗) ,

for κ ∈ (0, 1).

Proof. The proofs for 8.1 and 8.2 can be found in [Wei and Hu, 2002], for nested Archimedean
copulas. Given the links between nested Archimedean copulas and hierarchical Archimedean copu-
las through compounding (see [Cossette et al., 2017] for details), this result also holds here for the
one-level hierarchical Archimedean copula defined in (6). If α0 ≤ α∗0 and α1 ≤ α∗1, then, using 8.1
and 8.2, we have Cα0,α1 �sm Cα∗0,α1 �sm Cα∗0,α∗1 .

Once again the property of closure under all increasing (or decreasing) transforms of the super-
modular order can be used to show that (N,X1, . . . , Xk) �sm (N∗, X∗1 , . . . , X

∗
k), for all k ∈ N.

Also, using the same steps as the ones in the proof of Proposition 7, we obtain the desired relation
in (16).

Remark 9 Note that if the dependence structures of both (N,X) and (N∗, X∗) are modelled with
the same hierarchical Archimedean copula with identical outer dependence parameter but different
inner dependence parameters, then the expectations of S and S∗ are equal. In this case, the result
given in (16) of Proposition 8 is given in terms of convex order instead of increasing convex order,
i.e., S �cx S∗.

2.2 Sampling Algorithm

Now that we better understand the dependence relationship linking different components of the pro-
posed model, we propose an efficient algorithm to generate samples of S. Inspired by the sampling
algorithms of both nested Archimedean copulas and hierarchical copulas through compounding (see
e.g., [Marshall and Olkin, 1988], [Hofert, 2008], and [Cossette et al., 2017]), we derive Algorithm
10, which is a general sampling algorithm that generates samples of a random sum S incorporating
the dependence structure defined earlier.

Let Θ0 and Θ0,1 denote the mixing rvs such that given Θ0 = θ0 and Θ0,1 = θ0,1,
(X1|Θ0 = θ0,Θ0,1 = θ0,1) , . . . , (Xk|Θ0 = θ0,Θ0,1 = θ0,1) are conditionally iid and independent of
(N |Θ0 = θ0). Note that if C is a nested Archimedean copula as in (3), Θ0 represents the mixing rv

related to the outer copula C and Θ0,1 is such that LΘ0,1 (t; θ) = exp
{
−θL−1

Θ0
◦ LΘ1 (t)

}
. As for the
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case where C is defined as in (6), the rv Θ0 plays the same role as the rv M , and Θ0,1 =
∑M

j=1Bi,j .

Algorithm 10 Let C be a one level hierarchical Archimedean copula with generators LΘ0 and
LΘ0,1 allowing to fit the dependence structure depicted in Figure 1.

1. Sample Θ0;

2. Sample R ∼ Exp(1);

3. Calculate U = LΘ0

(
R
Θ0

)
;

4. Return N = F−1
N (U);

5. If N = 0 return S = 0; else

5.1. Sample Θ0,1;

5.2. Sample Ri ∼ Exp(1) for i = 1, . . . , N ;

5.3. Calculate Ui = LΘ0,1

(
Ri

Θ0,1

)
for i = 1, . . . , N ;

5.4. Calculate Xi = F−1
X (Ui) for i = 1, . . . , N ;

5.5. Return S =
∑N

k=1Xi;

6. Return S.

In the following example, we provide an application of Algorithm 10.

Example 11 Let N ∼ Poisson(2) and Xi ∼ Pareto(3, 100), for i = 1, 2, . . . The joint distribution
of (N,X) is defined with the same copula and dependence parameters as in Example 2. Approxi-
mated values of E[S], V ar(S), V aRκ(S), and TV aRκ(S), using 10 million simulations, are given
in Table 2. As we can see in Figure 2, the three curves, representing the cdf of S for different values
of the dependence parameters, intersect multiple times which confirms the results of Proposition 8.
Values of the TVaR in Table 2 and in Figure 3 also illustrate the results of Proposition 8.

As discussed in Example 2, a computational methodology is needed to calculate the cdf of S in
high dimensions. The sampling algorithm just presented, can be used to derive approximated
values of the cdf of S via the Monte Carlo simulation method. This approach is efficient and
very practical especially in the case of continuous mixing rvs and/or continuous marginals. Based
on [Cossette et al., 2018], we derive, in the following section, another computational methodology
allowing to compute the exact values of the cdf of S, for discrete rvs Xi, i = 1, 2, . . ., even in high
dimensions.
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α0 = 0.7, α1 = 5 α0 = 2, α1 = 5 α0 = 2, α1 = 25

E [S] 108.0424 125.4414 125.440

V ar (S) 34426.7124 44913.8009 52347.687

V aR0.9 (S) 293.2429 348.5767 347.406

V aR0.99 (S) 852.9771 966.2973 1070.826

V aR0.999 (S) 1664.4522 1837.6631 2048.952

TV aR0.9 (S) 534.5209 616.3646 658.370

TV aR0.99 (S) 1211.5718 1351.9504 1500.564

TV aR0.999 (S) 2301.5431 2540.4982 2748.067

Table 2: Values of the expectation, variance, VaR and TVaR of S as defined in Example 11.

Figure 2: Cdf of S, for different values of α0 and α1, as defined in Example 11.

3 Computational Methodology

In this section, we adapt the computational methodology presented in [Cossette et al., 2018] to
derive an algorithm to compute the cdf of the random sum S, incorporating a dependence relation-
ship between the claim number rv N and the claim amounts rvs X1, X2, . . .. This paper only looks
at the case of discrete mixing rvs and discrete marginals, whilst the case of continuous marginals
or continuous mixing rvs can be treated in the similarly as in [Cossette et al., 2018].

3.1 A Simple hierarchical structure

Let (N,X) = (N,X1, X2, . . .) be a vector of rvs with a multivariate distribution defined
in terms of a one level hierarchical Archimedean copula C as defined in (3) or (6). Let

12



Figure 3: TV aRu(S) for different values of α0 and α1, as defined in Example 11.

Θ0 and Θ0,1 be the underlying mixing rvs such that, given Θ0 = θ0 and Θ0,1 = θ0,1,
(X1|Θ0 = θ0,Θ0,1 = θ0,1) , . . . , (Xk|Θ0 = θ0,Θ0,1 = θ0,1) are conditionally iid and independent of
(N |Θ0 = θ0). As explained in Section 2.2, such a dependence structure can fit both nested
Archimedean copulas and hierarchical Archimedean copulas constructed through compounding.

If the multivariate cdf FN,X of (N,X) is defined with (1), using the copula C and univariate
cdfs FN , FX1 , FX2 ,..., then, with the common mixture representation of hierarchical Archimedean
copulas, FN,X can be written as

FN,X (n, x) =

∫ ∞
0

FN |Θ0=θ0(n)

(∫ ∞
0

n∏
i=1

FXi|Θ0=θ0,Θ0,1=θ0,1 (xi) dFΘ0,1 (θ0,1)

)
dFΘ0 (θ0)

=

∫ ∞
0

e
−θ0L−1

Θ0
(FN (n))

(∫ ∞
0

n∏
i=1

e
−θ0,1L−1

Θ0,1
(FXi (xi))dFΘ0,1 (θ0,1)

)
dFΘ0 (θ0) , (17)

where x = (x1, x2, . . . , xn) for n ∈ N0,

FN |Θ0=θ0(n) = e
−θ0L−1

Θ0
(FN (n))

, n ∈ N0, (18)

and

FXi|Θ0=θ0,Θ0,1=θ0,1 (xi) = e
−θ0,1L−1

Θ0,1
(FXi (xi)) (i = 1, 2, . . . , n). (19)

Similarly, we define the multivariate distribution of (N,X) through its multivariate survival function
with the copula C and the univariate survival functions FN , FX1 , FX2 ,..., using (2). In this case,
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the common mixture representation of FN,X is given by

FN,X (n, x) =

∫ ∞
0

FN |Θ0=θ0(n)

(∫ ∞
0

n∏
i=1

FXi|Θ0=θ0,Θ0,1=θ0,1 (xi) dFΘ0,1 (θ0,1)

)
dFΘ0 (θ0)

=

∫ ∞
0

e
−θ0L−1

Θ0
(FN (n))

(∫ ∞
0

n∏
i=1

e
−θ0,1L−1

Θ0,1
(FXi (xi))dFΘ0,1 (θ0,1)

)
dFΘ0 (θ0) , (20)

where x = (x1, . . . , xn),

FN |Θ0=θ0(n) = e
−θ0L−1

Θ0
(FN (n)), n ∈ N0, (21)

and

FXi|Θ0=θ0,Θ0,1=θ0,1 (xi) = e
−θ0,1L−1

Θ0,1
(FXi (xi)) (i = 1, 2, . . . , n). (22)

Since the collective risk model with dependence presented in this paper is an extension of the one
presented in [Cossette et al., 2018], we will adapt its proposed computational strategy to our model.
The idea behind it is to use the conditional independence assumption to identify the conditional
distribution of N and Xi through (18) and (19) or (21) and (22). While this computational strategy
works naturally for discrete rvs Xi, discretization methods can be used to approximate continuous
rvs Xi, i = 1, 2, . . . (see details in [Cossette et al., 2018]; see also e.g. [Müller and Stoyan, 2002]
and [Bargès et al., 2009] for a review of different discretization methods).

In this section, we assume discrete marginals for Xi, i = 1, 2, . . . , and discrete mixing rvs Θ0 and
Θ0,1 with respective LSTs LΘ0 and LΘ0,1 , respective pmfs fΘ0 (θ0) = Pr (Θ0 = θ0) and fΘ0,1 (θ0,1) =

Pr (Θ0,1 = θ0,1), and respective cdfs FΘ0 (θ0) = Pr (Θ0 ≤ θ0) =
∑θ0

j=1 fΘ0 (j) and FΘ0,1 (θ0,1) =

Pr (Θ0,1 ≤ θ0,1) =
∑θ0,1

j=1 fΘ0,1 (j), for θ0, θ0,1 ∈ N. Let (N,X) = (N,X1, X2, . . .) be a vector of rvs,
where N is a counting rv, and X = (X1, X2, . . .) be a vector of discrete and exchangeable rvs, i.e.,
Xn ∼ X for n ∈ N and Xi ∈ A = {0, 1h, 2h, . . .} (i = 1, . . . , n). For S =

∑N
n=1Xn, (17) becomes

FN,X (n, kh) =

∞∑
θ0=0

e
−θ0L−1

Θ0
(FN (n))

∞∑
θ0,1=0

n∏
i=1

e
−θ0,1L−1

Θ0,1
(FXi (kih))

fΘ0,1 (θ0,1) fΘ0 (θ0) , (23)

where k = (k1, k2, . . . , kn), with n ∈ N. From (23), we have

FN |Θ0=θ0(n) = e
−θ0L−1

Θ0
(FN (n))

, ∀n ∈ N0.

Let Nθ0 and Xi,θ0,θ0,1 denote, respectively, the conditional rvs (N |Θ0 = θ0) and
(Xi|Θ0 = θ0,Θ0,1 = θ0,1), for i = 1, 2, . . . The pmf and the probability generating function
(pgf) of Nθ0 are respectively given by

Pr (Nθ0 = n) =

{
e
−θ0L−1

Θ0
(FN (0))

, n = 0

e
−θ0L−1

Θ0
(FN (n)) − e

−θ0L−1
Θ0

(FN (n−1))
, n ∈ N

, (24)
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and

PNθ0 (t) = E
[
tNθ0

]
=

∞∑
k=0

tk Pr (Nθ0 = k) . (25)

As for Xi,θ0,θ0,1 , we have

FXi,θ0,θ0,1 (kih) = e
−θ0,1L−1

Θ0,1
(FXi (kih))

, (26)

for ki ∈ N, i = 1, 2, . . ., and θ0,1 ∈ N. For i = 1, 2, ... and for each θ0,1 ∈ N, we can find the values
of fXi,θ0,θ0,1 (kih) with

fXi,θ0,θ0,1 (kih) =

 e
−θ0,1L−1

Θ0,1
(FXi (0))

, ki = 0

e
−θ0,1L−1

Θ0,1
(FXi (kih)) − e

−θ0,1L−1
Θ0,1

(FXi (ki−1))
, ki ∈ N

. (27)

Similar results are obtained when the dependence structure of (N,X) is induced via the copula C
and the survival functions as in (2). More precisely, the survival function of (N,X) is given by

FN,X (n, kh) =
∞∑
θ0=0

e
−θ0L−1

Θ0
(FN (n))

∞∑
θ0,1=0

n∏
i=1

e
−θ0,1L−1

Θ0,1
(FXi (kih))

fΘ0,1 (θ0,1) fΘ0 (θ0) , (28)

where k = (k1, . . . , kn) and n ∈ N. In this case, the pmf of Nθ0 is

Pr (Nθ0 = n) =

{
1− e

−θ0L−1
Θ0

(FN (0)) , n = 0

e
−θ0L−1

Θ0
(FN (n−1)) − e

−θ0L−1
Θ0

(FN (n)) , n ∈ N
. (29)

As for Xi,θ0,θ0,1 , we have

FXi,θ0,θ0,1 (kih) = e
−θ0,1L−1

Θ0,1
(FXi (kih))

, (30)

for ki ∈ N, i = 1, 2, . . ., and θ ∈ N.

The expression for fN,X (n, k1h, . . . , knh) in this case is consequently given by

fN,X (n, k1h, . . . , knh) =

∞∑
θ0=1

Pr (Nθ0 = n)


∞∑

θ0,1=1

n∏
i=1

fXi,θ0,θ0,1 (kih) fΘ0,1 (θ0,1)

 fΘ0 (θ0) . (31)

Let Sθ0,θ0,1 =
∑Nθ0

i=1 Xi,θ0,θ0,1 be the sum of conditionally independent rvs and fSθ0,θ0,1 be its corre-

sponding pmf. Let LXθ0,θ0,1 be the LST of Xθ0,θ0,1 , where Xi,θ0,θ0,1 ∼ Xθ0,θ0,1 , for i = 1, 2, . . . Then,

the LST of Sθ0,θ0,1 is given by

LSθ0,θ0,1 (t) = PNθ0
(
LXθ0,θ0,1 (t)

)
. (32)

Then, using (32) and FFT, it is easy to compute the exact values of fSθ0,θ0,1 for each θ0 and θ0,1.
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Finally, due to the representation of fN,X in (31), the unconditional pmf of S can be computed
using

fS (kh) =
∞∑
θ0=1

∞∑
θ0,1=1

fSθ0,θ0,1 (kh) fΘ0,1 (θ0,1) fΘ0 (θ0) , k ∈ N0. (33)

The computational methodology used to find the exact values of fS is summarized in the following
algorithm.

Algorithm 12 Computation of the values of fS

1. Fix θ0 = 1;

2. Fix θ0,1 = 1;

3. Calculate either FXi,θ0,θ0,1 (kih) with (26) or FXi,θ0,θ0,1 (kih) with (30), for ki ∈ N0;

4. Calculate fXi,θ0,θ0,1 (kih), for ki ∈ N0;

5. Use FFT to return the vector f̃
Xi,θ0,θ0,1

, where f̃ denotes the vector of values of the charac-

teristic function, also known as the Fourier transform (see e.g., [Klugman et al., 2009]);

6. For n = 0, 1, 2, . . ., calculate Pr (Nθ0 = n) using either (24) or (29);

7. Use the pgf of Nθ0 given in (25) to calculate f̃
Sθ0,θ0,1

such that

f̃
Sθ0,θ0,1

= PNθ0

(
f̃
Xθ0,θ0,1

)
;

8. Use FFT (inverse) to compute fSθ0,θ0,1 (kh) for k ∈ N0;

9. Repeat steps 3-8 for θ0,1 = 2, ..., θ∗0,1 where θ∗0,1 is chosen such that FΘ0,1

(
θ∗0,1
)
≤ 1− ε where

ε is fixed as small as desired (e.g. ε = 10−10);

10. Compute fS|Θ0=θ0 (kh) =
∑θ∗0,1

θ0,1=1 fSθ0,θ0,1 (kh) fΘ0,1 (θ0,1), for k ∈ N0;

11. Repeat steps 2-10 for θ0 = 2, ..., θ∗0 where θ∗0 is chosen such that FΘ0 (θ∗0) ≤ 1 − ε where ε is
fixed as small as desired (e.g., ε = 10−10);

12. Compute fS (kh) =
∑θ∗0

θ0=1 fS|Θ0=θ0 (kh) fΘ0 (θ0), for k ∈ N0.

An application of Algorithm 12 is provided in Example 13.

Example 13 Let N ∼ Poisson(2) and Xi − 1 ∼ Binomial(10, 0.1), for i = 1, 2, . . . Also, assume
that the joint distribution of (N,X) is defined as in (1) with a nested Ali-Mikhail-Haq (AMH) copula
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Exact values (Alg.12) 1M MC simulations (Alg.10) Comonotonicity

E [S] 4.039336 4.040922 5.25118

V ar (S) 10.482232 10.450744 35.58824

V aR0.9 (S) 8.000000 8.000000 12.00000

V aR0.99 (S) 14.000000 14.000000 30.00000

V aR0.9999 (S) 23.000000 23.000000 63.00000

TV aR0.9 (S) 10.809860 10.793440 18.79353

TV aR0.99 (S) 15.835839 15.781300 34.38692

TV aR0.9999 (S) 24.651145 24.630000 68.10100

Table 3: Values of the expectation, variance, VaR and TVaR of S as defined in Example 13.

with parameters α0 = 0.1 and α1 = 0.2, i.e., Θ0 ∼ Geometric(1 − α0), Θ1 ∼ Geometric(1 − α1),

and Θ0,1 ∼ ShiftedNegativeBinomial
(
α0,

1−α1
1−α0

)
. Using Algorithm 12, we compute the values

of fS allowing to derive the exact values of E[S], V ar(S), V aRκ(S), and TV aRκ(S), provided in
Table 3. The same quantities are also calculated using 1000000 Monte Carlo simulations (using

Algorithm 10), and also for comonotonic rvs N (+) and X
(+,+)
i , for i = 1, 2, . . . As expected, the

highest values for the TVaR of S are obtained for the perfect positive dependence case, which is in
line with Proposition 4. Also, we can see that the results for both the Algorithms 12 and 10 are
close, with comparable computation times.

Remark 14 If C is an Archimedean copula with mixing rv Θ, meaning that N,X1, X2, . . . are
conditionally independent given Θ = θ, the procedure of computation is nearly the same. One has
only to replace Θ0,1 and Θ0 by Θ and Algorithm 12 becomes the following:

Algorithm 15 Computation of the values of fS

1. Fix θ = 1;

2. Calculate either FX|Θ=θ (kih) = e−θL
−1
Θ (FX(kih)) or FX|Θ=θ (kih) = e−θL

−1
Θ (FX(kih)), for ki ∈

N0;

3. Deduce fX|Θ=θ (kih) from step 2;

4. Use FFT to return the vector f̃
X|Θ=θ

;

5. For n = 0, 1, 2, . . ., calculate Pr (Nθ = n) using either (24) or (29);

6. Use the pgf of Nθ given in (25) to calculate f̃
S|Θ=θ

: f̃
S|Θ=θ

= PNθ
(
f̃
X|Θ=θ

)
;

7. Use FFT (inverse) to compute fS|Θ=θ (kh) for k ∈ N0;

8. Repeat steps 2-7 for θ = 2, ..., θ∗ where θ∗ is chosen such that FΘ (θ∗) ≤ 1− ε where ε is fixed
as small as desired (e.g. ε = 10−10);

9. Compute fS (kh) =
∑θ∗

θ=1 fS|Θ=θ (kh) fΘ (θ), for k ∈ N0.
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3.2 General hierarchical structure

Until now, we have only considered one level hierarchical dependence structures. We can generalize
the proposed model to a multi-level hierarchical structure by considering the dependence structure
linking the rvs Xi, for i = 1, 2, . . ., to be a hierarchical one. Using the mixture representation as
in Section 3.1, Algorithm 12 can be easily modified to fit a multi-level hierarchical Archimedean
copula (see Section 7 of [Cossette et al., 2018]).

Another interesting generalization would be to consider a portfolio of different classes of business.
Let (N1, . . . , Nd) be a vector of discrete and positive counting random variables, and X1,..., Xd

sequences of positive rvs, where Xi = {Xi,j , j ∈ N}, for i = 1, . . . , d. Consider the random sums

Si =

Ni∑
j=1

Xi,j , ∀i ∈ {1, . . . , d}. (34)

Note that, for i = 1, . . . , d, Si is defined exactly as in Section 3.1, i.e., the dependence structure
linking Ni and Xi,j , for j = 1, 2, . . ., is defined via a one level hierarchical Archimedean copula.
To go for a more general case, we will consider an extra dependence between the counting rvs Ni,
for i = 1, . . . , d. More specifically, the rvs Ni are assumed to be exchangeable and linked via an
Archimedean copula. An example of such a dependence structure is depicted in Figure 4.

Θ0

Θ0,d

Xd,nd. . .Xd,1

. . .Θ0,1

X1,n1. . .X1,1

Θ0,N

Nd. . .N1

Figure 4: Example of a general hierarchical structure.

Let S =
∑d

i=1 Si. In order to derive the exact values of quantities of interest related to S, we use
the mixture representation of hierarchical Archimedean copulas as in Section 3.1 to adapt, once
again, the computation methodology of [Cossette et al., 2018] to the proposed model.

To apply the methodology in question, we need to assume positive and discrete marginals and that
all the mixing rvs Θ0,Θ0,N ,Θ0,1, . . . ,Θ0,d, are strictly positive discrete rvs with known distributions.
Let Θ = (Θ0,Θ0,N ,Θ0,1, . . . ,Θ0,d). Then, given Θ = θ, where θ = (θ0, θ0,N , θ0,1, . . . , θ0,d), it is
assumed that

(N1 | Θ = θ), . . . , (Nd | Θ = θ),

and
(X1,1 | Θ = θ), . . . , (X1,n1 | Θ = θ), . . . , (Xd,1 | Θ = θ), . . . , (Xd,nd | Θ = θ),
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are all conditionally independent. For i = 1, . . . , d, the conditional distribution of Ni is only
influenced by both Θ0,N and Θ0. Also, the conditional distributions of the components of Xi are
only influenced by Θ0,i and Θ0, for i = 1, . . . , d.

Assume that the joint cdf of (N,X) = (N1, . . . , Nd, X1,1, . . . , X1,n1 , . . . , Xd,1, . . . , Xd,nd) is defined
in terms of a hierarchical Archimedean copula C related to the hierarchical structure depicted in
Figure 4, as

FN,X (n1, . . . , nd, k1,1h, . . . , k1,n1h, . . . , kd,1h, . . . , kd,kdh)

= C
(
FN1(n1), . . . , FNd(nd), FX1,1(k1,1h), . . . , FX1,n1

(k1,n1h), . . . , FXd,1(kd,1h), . . . , FXd,nd (kd,nd)h
)

=

∞∑
θ0=1

 ∞∑
θ0,N=1

d∏
i=1

FNi|Θ0=θ0,Θ0,N=θ0,N (ni) fΘ0,N
(θ0,N )


×

d∏
i=1

 ∞∑
θ0,i

 ni∏
j=1

FXi,j |Θ0=θ0,Θ0,i=θ0,i(ki,jh)

 fΘ0,i(θ0,i)

 fΘ0(θ0), (35)

where FNi|Θ0=θ0,Θ0,N=θ0,N (ni) = e
−θ0,NL−1

Θ0,N
(FNi (ni)), and FXi,j |Θ0=θ0,Θ0,i=θ0,i(ki,jh) =

e
−θ0,iL−1

Θ0,i

(
FXi,j (ki,jh)

)
, for i = 1, . . . , d, and j = 1, . . . , ni. Also, we denote by fΘ0 , fΘ0,N

, and
fΘ0,i , for i = 1, . . . , d, the pmfs of Θ0, Θ0,N , and Θ0,i, for i = 1, . . . , d, respectively.

Remark 16 The multivariate distribution of (N,X) can also be defined with its survival function
as in Section 3.1. Since the procedure is the same, we simply consider the model given in (35).

Since (N1|Θ0 = θ0,Θ0,N = θ0,N ), ..., (Nd|Θ0 = θ0,Θ0,N = θ0,N ) are conditionally independent and
within each class i = 1, . . . , d, (Xi,1|Θ0 = θ0,Θ0,i = θ0,i), ..., (Xi,ni |Θ0 = θ0,Θ0,i = θ0,i) are also
conditionally independent, we can easily calculate the pmf of (Si|Θ0 = θ0,Θ0,N = θ0,N ) using the
same procedure as in Section 3.1. It implies that

fS|Θ0=θ0,Θ0,N=θ0,N (kh) = fS1|Θ0=θ0,Θ0,N=θ0,N ∗ . . . ∗ fSd|Θ0=θ0,Θ0,N=θ0,N (kh),

for k ∈ N0, where ∗ denotes the convolution product.

Finally, the unconditional pmf of S is given by

fS(kh) =

∞∑
θ0=1

∞∑
θ0,N=1

fS|Θ0=θ0,Θ0,N=θ0,N (kh)fΘ0,N
(θ0,N )fΘ0(θ0), (36)

for k ∈ N0.

We can summarize the computation methodology of fS as follows:
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Algorithm 17 Computation of the values of fS.

1. Fix θ0 = 1;

2. Fix θ0,N = 1;

3. For each class i = 1, . . . , d, fix θ0,i = 1;

(a) Calculate either FXi|Θ0=θ0,Θ0,i=θ0,i (ki,jh) = e
−θ0,iL−1

Θ0,i

(
FXi,j (ki,jh)

)
, for ki,j ∈ N0 (Xi,1 ∼

Xi,2 ∼ Xi);

(b) Deduce fXi|Θ0=θ0,Θ0,i=θ0,i (kih);

(c) Use FFT to return the vector f̃
Xi|Θ0=θ0,Θ0,i=θ0,i

;

(d) For ni = 0, 1, 2, . . ., calculate the pmf of (Ni|Θ0 = θ0,Θ0,N = θ0,N ), such that

FNi|Θ0=θ0,Θ0,N=θ0,N (ni) = e
−θ0,NL−1

Θ0,N
(FNi (ni));

(e) Use the pgf of (Ni|Θ0 = θ0,Θ0,N = θ0,N ) to calculate f̃
Si|Θ0=θ0,Θ0,N=θ0,N ,Θ0,1=θ0,1

;

(f) Use FFT (inverse) to compute fSi|Θ0=θ0,Θ0,N=θ0,N ,Θ0,1=θ0,1(kh) for k ∈ N0;

(g) Repeat steps 3a-3f for θ0,i = 2, ..., θ∗0,i where θ∗0,i is chosen such that FΘ0,i

(
θ∗0,i

)
≤ 1− ε

where ε is fixed as small as desired (e.g. ε = 10−10);

(h) Compute fSi|Θ0=θ0,Θ0,N=θ0,N (kh) =
∑θ∗0,i

θ0,i=1 fSi|Θ0=θ0,Θ0,N=θ0,N ,Θ0,1=θ0,1 (kh) fΘ0,i (θ0,i),
for k ∈ N0.

4. Convolute all fSi|Θ0=θ0,Θ0,N=θ0,N , for i = 1, . . . , d, to calculate fS|Θ0=θ0,Θ0,N=θ0,N

5. Repeat steps 3-4 for θ0,N = 2, ..., θ∗0,N where θ∗0,N is chosen such that FΘ0,N

(
θ∗0,N

)
≤ 1 − ε

where ε is fixed as small as desired (e.g. ε = 10−10);

6. Compute fS|Θ0=θ0 (kh) =
∑θ∗0

θ0,N=1 fS|Θ0=θ0,Θ0,N=θ0,N (kh) fΘ0,N
(θ0,N ), for k ∈ N0;

7. Repeat steps 2-6 for θ0 = 2, ..., θ∗0 where θ∗0 is chosen such that FΘ0 (θ∗0) ≤ 1 − ε where ε is
fixed as small as desired (e.g. ε = 10−10);

8. Compute fS (kh) =
∑θ∗0

θ0=1 fS|Θ0=θ0 (kh) fΘ0 (θ0), for k ∈ N0.

4 Explicit formulas for collective risks models with dependence

In this section, we consider a specific class of collective risk models within the framework defined in
Section 2. We focus on the family of multivariate mixed exponential distributions to derive explicit
expressions for the survival function of the random sum S incorporating a dependence relationship
between the underlying frequency and severity of the form (2).
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4.1 Archimedean copulas

We consider the class of collective risk models for which the dependence structure is modelled
via an Archimedean copula C using (2). This model is inspired from the one discussed in
[Albrecher et al., 2011] in which the claim sizes X are considered to be completely monotone with
a multivariate mixed exponential distribution. In our case, the class of collective risk models
incorporates an extra Archimedean dependence between the number of claims N and the claim
amounts.

Let Θ be a positive mixing rv (discrete or continuous) with cdf FΘ. As in [Albrecher et al., 2011],
consider that, given Θ = θ, the rvs (Xi|Θ = θ), for i = 1, 2, . . ., are conditionally independent
and distributed as Exp(θ). See e.g. [Marshall and Olkin, 1988] for more details concerning such
distributions. In order to obtain explicit formulas for quantities related to the random sum S =∑N

i=1Xi, assume also that, given Θ = θ, the rv (N |Θ = θ) follows a geometric distribution with

parameter qθ = 1 − (1− q)θ, and with pmf pn = qθ(1 − qθ)
n, for n ∈ N0, i.e., (N |Θ = θ) ∼

Geo
(

1− (1− q)θ
)

, with q ∈ (0, 1).

In this case, the univariate survival functions FN , FX1 , . . . , FXn are such that

FN (n) =

∫
(1− q)θ(n+1)dFΘ(θ) = LΘ (− (n+ 1) ln (1− q)) , n ∈ N0, (37)

and
FXi(xi) = LΘ (xi) , (38)

for xi ≥ 0, i = 1, 2, . . . , n, and n ∈ N.

Let C be an Archimedean copula with generator LΘ. Then, using (2), we can write the multivariate
survival function of (N,X) = (N,X1, X2, . . .) as

FN,X (n, x1, . . . , xn) = C
(
FN (n), FX1(x1), . . . , FXn(xn)

)
, (39)

for xi ≥ 0, i = 1, 2, . . . , n, and n ∈ N.

Combining (37), (38), and (39), the multivariate survival function of (N,X) becomes

FN,X(n, x1, . . . , xn) = LΘ

(
L−1

Θ

(
FN (n)

)
+

n∑
i=1

L−1
Θ

(
FXi(xi)

))
= LΘ

(
− (n+ 1) ln (1− q) + x1 + . . .+ xn

)
,

for n ∈ N.

Then, using the compound mixture representation as explained in [Cossette et al., 2018], it is clear
that the conditional distribution of (S|Θ = θ) is a compound geometric distribution where the
counting rv N follows a geometric distribution with parameter qθ = 1 − (1− q)θ and the claim
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amount follows an exponential distribution with parameter θ. This means that

FS|Θ=θ(x) =

∞∑
n=1

qθ (1− qθ)n FX1+...+Xn|Θ=θ(x)

=
∞∑
n=1

(
1− (1− q)θ

)
(1− q)θn e−θx

n−1∑
j=0

(θx)j

j!

=
∞∑
n=1

(1− q)θn e−θx
n−1∑
j=0

(θx)j

j!
−
∞∑
n=1

(1− q)θ(n+1) e−θx
n−1∑
j=0

(θx)j

j!
, x ≥ 0. (40)

Finally, using (40), the unconditional survival function of S is given by

FS(x) =

∫
FS|Θ=θ(x)dFΘ(θ)

=

∫ 
∞∑
n=1

(1− q)θn e−θx
n−1∑
j=0

(θx)j

j!
−
∞∑
n=1

(1− q)θ(n+1) e−θx
n−1∑
j=0

(θx)j

j!

dFΘ(θ)

=
∞∑
n=1

n−1∑
j=0

xj

j!

∫
θje−θ(x−n ln(1−q))dFΘ(θ)−

∞∑
n=1

n−1∑
j=0

xj

j!

∫
θje−θ(x−(n+1) ln(1−q))dFΘ(θ)

=

∞∑
n=1

n−1∑
j=0

xj

j!
(−1)j

dj

dxj
LΘ (x− n ln(1− q))−

∞∑
n=1

n−1∑
j=0

xj

j!
(−1)j

dj

dxj
LΘ (x− (n+ 1) ln(1− q))

=
∞∑
n=1

n−1∑
j=0

xj

j!
(−1)j

dj

dxj
{LΘ (x− n ln(1− q))− LΘ (x− (n+ 1) ln(1− q))} , x ≥ 0. (41)

Note that the generator derivatives appearing in (41) are known for different Archimedean copulas
with discrete or continuous mixing rvs (see e.g., [Hofert et al., 2012]).

4.2 Hierarchical Archimedean copulas

We can also generalize the class of collective risk model with dependence just presented, to allow for
asymmetric dependence relationship betweenN andXi, for i = 1, 2, . . . Let the multivariate survival
function of (N,X) = (N,X1, X2, . . .) to be defined with a one level hierarchical Archimedean
copula C with generators LΘ0 and LΘ0,1 as defined in Section 3.1 and depicted in Figure 1. Then,
given Θ0 = θ0 and Θ0,1 = θ0,1, the rvs (Xi|Θ0 = θ0,Θ01 = θ01) are conditionally independent and
exponentially distributed with mean 1

θ0,1
, for i = 1, 2, . . .. Also, given Θ0 = θ0, the rv (N |Θ0 = θ0)

is conditionally independent of (Xi|Θ0 = θ0,Θ01 = θ01), for i = 1, 2, . . ., and follows a geometric
distribution with parameter qθ0 = 1 − (1− q)θ0 , where q ∈ (0, 1). Then, (S|Θ0 = θ0,Θ01 = θ01)
has a compound geometric distribution where the counting rv follows a geometric distribution
with parameter qθ0 = 1− (1− q)θ0 and the claim amount follows an exponential distribution with
parameter θ01. The multivariate survival function of (N,X) and the conditional survival function

22



of S can hence be respectively written as

FN,X(n, x1, . . . , xn) = LΘ0

(
−(n+ 1) ln(1− q) + L−1

Θ0
◦ LΘ1 (x1 + . . .+ xn)

)
,

for x1 ≥ 0, . . . , xn ≥ 0 and n ∈ N, and,

FS|Θ0=θ0,Θ01=θ01
(x) =

∞∑
n=1

qθ0 (1− qθ0)n FX1+...+Xn|Θ0=θ0,Θ01=θ01
(x)

=

∞∑
n=1

qθ0 (1− qθ0)n e−θ01x
n−1∑
j=0

(θ01x)j

j!

=
∞∑
n=1

(
1− (1− q)θ0

)
(1− q)nθ0 e−θ01x

n−1∑
j=0

(θ01x)j

j!
, x ≥ 0. (42)

The unconditional survival function of S can be deduced from (42) as follows

FS(x) =

∫ ∫ 
∞∑
n=1

(
1− (1− q)θ0

)
(1− q)nθ0 e−θ01x

n−1∑
j=0

(θ01x)j

j!

dFΘ01(θ01)dFΘ0(θ0)

=

∫ 
∞∑
n=1

n−1∑
j=0

xj

j!

(
(1− q)nθ0 − (1− q)(n+1)θ0

)∫
e−θ01xθj01dFΘ01(θ01)

dFΘ0(θ0)

=

∫ ∫ 
∞∑
n=1

(
(1− q)nθ0 − (1− q)(n+1)θ0

)
e−θ01x

n−1∑
j=0

(θ01x)j

j!

dFΘ01(θ01)dFΘ0(θ0)

=

∫ 
∞∑
n=1

n−1∑
j=0

xj

j!

(
(1− q)nθ0 − (1− q)(n+1)θ0

)
(−1)j

dj

dxj
LΘ01(x)

dFΘ0(θ0), (43)

for x ≥ 0.

In order to investigate the general expression for the derivatives of the LST of Θ0,1, we rewrite
LΘ0,1 as a composition of two functions f and g, where f(x) = e−θ0x and g(x) = L−1

Θ0
◦ LΘ1(x),

∀x > 0. Using [McKiernan, 1956], the jth derivative of LΘ01 is given by

dj

dxj
LΘ01(x) =

j∑
r=1

f (r)(g(x))

r∑
s=0

(−1)r−s

s!(r − s)!
gr−s(x)× (gs)(j)(x)

=

j∑
r=1

(−1)rθr0 e−θ0×g(x)
r∑
s=0

(−1)r−s

s!(r − s)!
gr−s(x)× (gs)(j)(x). (44)

Combining (43) and (44), we obtain

FS(x) =

∫ ∞∑
n=1

n−1∑
j=0

xj

j!

(
(1− q)nθ0 − (1− q)(n+1)θ0

)
(−1)j
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×
j∑
r=1

(−1)rθr0 e−θ0×g(x)
r∑
s=0

(−1)r−s

s!(r − s)!
gr−s(x)× (gs)(j)(x)dFΘ0(θ0)

=

∞∑
n=1

n−1∑
j=0

j∑
r=1

(−1)j+r
xj

j!

∫ (
e−θ0(g(x)−n ln(1−q)) − e−θ0(g(x)−(n+1) ln(1−q))

)
θr0dFΘ0(θ0)

×

{
r∑
s=0

(−1)r−s

s!(r − s)!
gr−s(x)× (gs)(j)(x)

}

=

∞∑
n=1

n−1∑
j=0

j∑
r=1

(−1)j
xj

j!

{
dr

dtr
LΘ(t)

∣∣∣
g(x)−n ln(1−q)

− dr

dtr
LΘ(t)

∣∣∣
g(x)−(n+1) ln(1−q)

}

×

{
r∑
s=0

(−1)r−s

s!(r − s)!
gr−s(x)× (gs)(j)(x)

}
,

where g(x) = L−1
Θ0
◦ LΘ1(x), ∀x > 0. Note that the derivatives of gs(x) =

(
L−1

Θ0
◦ LΘ1

)s
(x), for

s ∈ N, can be obtained numerically.

5 Conclusion

Collective risk models under hierarchical Archimedean dependence settings were presented. A
sampling algorithm for the random sum S, and stochastic ordering inequalities on S for different
setups were derived. Moreover, a computational methodology for the pmf of S was presented. To
further complement our results, explicit formulas have been derived for the cdf of S for specific
classes of collective risk models based on Archimedean and hierarchical Archimedean copulas.
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