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Abstract

This paper studies an equilibrium model with heterogeneous agents, asset
price bubbles, and trading constraints. Market liquidity is modeled as a stochas-
tic quantity impact from trading on the price. We introduce a different framework
for analyzing rational asset price bubbles, which are shown to exist in equilibrium
due to heterogeneous beliefs, heterogeneous preferences, and binding trading con-
straints. Positive price bubbles are larger in illiquid markets and when trading
constraints are more binding. A realization of systemic risk, defined as the risk
of market failure due to an exogenous shock to the economy, results in a signif-
icant loss of wealth in the economy as agents are unable to meet their trading
constraints and default. Systemic risk is shown to increase as: (i) the fraction
of agents seeing an asset price bubble increases, (ii) as the market becomes more
illiquid, and (iii) as trading constraints are relaxed.
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1 Introduction

The purpose of this paper is to study the effects of financial markets on the real macroe-
conomy. In the process, we introduce a different framework for analyzing rational asset
price bubbles in equilibrium, which should prove useful for formulating policy prescrip-
tions. In particular, we study how asset price bubbles, market liquidity, and trading
constraints affect systemic risk, a term often associated with the breakdown of the eco-
nomic and financial system (Billio et al. (2010) [10]). Indeed, many economic crises
have been associated with the failure of market liquidity and the bursting of asset price
bubbles. The two most recent examples are the liquidity crisis of 1998 due to the failure
of LTCM and the 2007 credit crisis due to bursting of the housing price bubble. Gov-
ernment intervention was necessary in both cases to ensure continued market liquidity
and (allegedly) to avoid market failure (see Brunnermeier and Pedersen (2008) [14] for
more details on these crises).

The sheer size of financial markets evidences its potential for impacting the real
economy. In this regard, consider some US household asset allocation data from the
Federal Reserve’s quarterly release of the Financial Accounts of the United States (Z.1)
data [29], which includes flow of funds, balance sheet, and integrated macroeconomic
accounts. The June 2017 release shows that the net-worth of US households and non-
profits rose to $94.8 trillion during the first quarter of 2017. For this time period, total
asset values were about $109.98 trillion and liabilities were about $15.15 trillion. Of
this, financial assets were about $77.11 trillion while the market value of equity shares
were $26.88 trillion. This means that financial assets constituted about 70% of total
asset value and equities about 24.44%. These numbers document the significance of
financial assets as a percent of total assets, and the importance of equity. In contrast,
for the same time period, non-financial assets constituted about $32.87 trillion and
among such assets, real estate accounted for about $26.86 trillion, which is 81.71% of
non-financial assets or 24.44% of total assets. Thus, equity and real estate represent
roughly same percent of US households’ total assets.

Given these magnitudes, it should come as no surprise that shocks to prices in finan-
cial and related asset markets can easily affect the real macroeconomy. The bursting
of price bubbles are an undeniable phenomena in asset markets, be it equities, real
estate/housing, or commodities1. One of the first recorded price bubbles was the Dutch

1All these markets are connected to the financial sector that intermediates the flow of funds within
the economy. We will use the terms financial sector or markets interchangeably. This should cause no
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tulip mania of the mid 1600s. Other notable bubbles were related to the South Sea
company in 1720 (Garber 1989,1990 [31][32]), the equity price bubble preceding the
Great Depression in the U.S. (White 1990 [62]), the dot com bubble (Brunnermeier
and Nagel, 2004 [13]), and the US housing price bubble before 2007 (Clark and Coggin,
2011 [24]). It has been argued that the Great Recession of 2007-9 was precipitated by
massive declines in both equity and real estate prices - the bursting of price bubbles in
these markets.

Market liquidity is another dimension of asset markets that interacts with asset price
bubbles to affect the macroeconomy. The liquidity of asset markets can affect both the
magnitude and severity of asset price bubbles. To understand this interaction, consider
housing versus equity markets, in particular the equity futures market. According to the
recent U.S. Census Bureau report [18], the median price of new homes sold in the U.S.
in June 2017 was $311,600. Compare that to the E-mini S&P 500 Index futures, one
of the most liquid index futures contracts, which traded around 2500 points (rounding
up) during the same period. The notional value of one contract is 2500 times 50 (the
multiplier) or $125,000. So three futures contracts total $375,000 in notional; about
the same value as the median home.

Now assume that an agent wants to sell their home. One can not ignore various
frictions associated with the sale, such as commissions and search cost. These costs
reflect the illiquid nature of the housing market. In contrast, assume that an agent
wants to sell three S&P 500 futures position. The process is literally just one click of
a button (or two depending on the broker), and the transaction costs, in every aspect
are negligible. Most brokers charge about $2.50 to $3 per-contract to open or close the
trade, which includes commissions and various fees. Consequently, one suspects that
price bubbles should be more prevalent in the S&P futures markets.

This paper constructs an equilibrium model to study the impact of asset price
bubbles and market liquidity on systemic risk. The model is an extension of Jarrow
(2017) [49]. The setting is discrete time with a finite horizon. The economy is populated
by heterogeneous agents/households facing trading constraints. Market liquidity costs
are modeled as a stochastic quantity impact from trading on price, where the size of
the impact depends on the trade size. Traded are two assets: a bond/money market
account and a risky asset/stock. Borrowing and lending occurs where agents can only
borrow up to a certain fraction of their equity value. Short sales are allowed but margin

confusion as asset markets essentially operate through the financial sector, be it lending, borrowing,
or insurance.
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must be posted to insure coverage of the short position at a future date2. All agents
are risk averse, maximizing the expected utility of terminal consumption.

In this economy, we show that asset price bubbles can arise endogenously in a ra-
tional equilibrium due to heterogeneous beliefs, heterogeneous preferences, and binding
trading constraints. A bubble is defined as the difference between the actual/observed
market price of the asset and the fundamental value that agents assign given their own
beliefs, preferences, and optimal (constrained) trading strategy. Due to this economic
structure, some agents may see bubbles while others may not. We define systemic risk
as the risk of market failure due to an exogenous shock to the economy that results
in funding illiquidity, which is the conjunction of market illiquidity (i.e. liquidity risk)
and binding trading constraints. In our setting this is equivalent to the shock resulting
in the inability of agents to meet their trading constraints, leading to default and the
nonexistence of an economic equilibrium. Such a market failure implies a large loss of
wealth in the economy.

Consistent with the previous intuition, we show the following.

• Due to borrowing constraints, negative price bubbles exist (assets are underval-
ued), and they are larger (smaller) in more liquid markets (illiquid markets).

• Due to short sale constraints, positive price bubbles exist (assets are overvalued),
and they are smaller (larger) in more liquid markets (illiquid markets).

• The percentage of agents in the economy who view negative asset price bubbles
increase as a market becomes more liquid.

• The percentage of agents in the economy who view positive asset price bubbles
decreases as a market becomes more liquid.

• The magnitude of a bubble increases when trading constraints are more restrictive.

• Systemic risk increases as the percentage of agents who see bubbles increases.

• Systemic risk increases as the market becomes more illiquid.
2Note that our trading constraint has a very general structure. First, it limits direct borrowing

by requiring collateral, a widely used approach in the macro literature. Second, it limits indirect
borrowing by restricting the magnitude of short positions. Although short sale restrictions are widely
used in the finance literature, this constraint is largely ignored in macro. Our formulation jointly
considers both of these constraints, and hereafter the term trading constraint will be used to describe
both of these restrictions.
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• Systemic risk decreases (increases) when the trading constraints are more restric-
tive (relaxed).

After the financial crisis of 2007-09, many scholarly papers in macro-finance have quali-
tatively discussed the interaction among systemic risk, market liquidity and asset price
bubbles, generally understood to be the difference between the market price and a
unique fundamental price (for example, see Brunnermeier and Oehmke (2012)[15], Hall
(2011)[34] and references therein.). The implication, of course, is that everyone sees
(or should see) the same price bubble. In contrast, in the context of our heterogeneous
agents economy, agents can differ both in whether a price bubble exists and if it does,
its magnitude3. The systemic risk implications of agents seeing bubbles is important
because the existence of bubbles increases systemic risk, i.e. massive agent defaults and
market failure, which leads to a significant loss of wealth in the economy.

This insight implies that what is relevant for macro/monetary policy is gauging
the total fraction of agents that see price bubbles and not whether the level of market
prices is too large4. In fact, it may be counterproductive for policy makers to seek a
universal price bubble that all agents agree on. To take action based on the level of
market prices, policy makers need to verify its existence and magnitude, which is a
difficult task5. Yet, with heterogeneous beliefs, policy makers need to only focus on the
fraction of agents that see bubbles, monitoring market sentiment using the financial
press, surveys, and other relevant borrowing and short sale interest data, and act when
that fraction becomes too large. Because bubbles are affected by market liquidity and
trading constraints, as detailed above, policy makers can affect the fraction of agents
seeing bubbles by making markets either more liquid or by making trading constraints
more restrictive. This indirect channel can be very effective in changing agents’ beliefs
regarding price bubbles, perhaps even more effective than interest rate monetary policy.

Our paper relates to the macroeconomics literature studying the impact of finan-
cial frictions. The classic papers in this area include Bernanke and Gertler (1989)

3This link between bubbles and heterogeneous beliefs was started by Harrison and Kreps (1978) [35].
In this literature, bubbles arise because agents disagree about an asset’s fundamental value and they
are trading/short sale constrained. See the review papers by Brunnermeier and Oehmke (2012)[15]
and Xiong (2013)[63] for more details.

4This statement formally applies only if we restrict ourselves to equilibrium prices. In disequilibrium
it is possible that all agents see the same uniform price bubble. This would occur, for example, in a
complete and arbitrage-free market, see Jarrow (2015)[44]. Characterizing systemic risk in terms of
the fraction of economic agents was first introduced in Lamichhane (2017)[52].

5For example, see the discussion by the president of the Federal Reserve Bank of Minneapolis Neel
Kashkari [50] on monetary policy and bubbles.
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[8], Kiyotaki and Moore (1997) [51], and Bernanke, Gertler, and Gilchrist (1999) [9].
These papers analyze how temporary financial shocks can have persistent effects on
the economy given the existence of financial frictions, such as borrowing or collateral
constraints. Some recent papers include He and Krishnamurthy (2012 [37], 2013 [38],
2014 [39]) and Brunnermeier and Sannikov (2014)[17]. For a review of this literature
see Brunnermeier, Eisenbach and Sannikov (2013) [16]. Our paper is closest to Brun-
nermeier and Sannikov (2014) [17], He and Krishnamurthy (2014) [39], and Lamichhane
(2017) [52] because these papers study systemic risk with a financial sector. Our paper
is also related to the papers by Huggett (1993) [41], Aiyagari (1994) [5], Benhabib,
Bisin and Zhu (2011 [6], 2014 [7]), and Achdou et al. (2015) [3]. Our model has het-
erogeneous beliefs across agents, as opposed to heterogeneous income or productivity
shocks considered in these papers.

With respect to finance, our paper relates to the literature studying an investor’s
optimal trading strategy with liquidity risk, see Cetin and Rogers [20], Vath, Mnif, and
Pham [61], Chebbi and Soner[21], and Pennanen [54]. We use a similar formulation as
contained in Pennanen [54]. In this literature, there are two papers studying dynamic
Radner equilibrium. These are the overlapping generations model of Acharya and Ped-
ersen [1] and the discrete time model of Jarrow[47]. Acharya and Pedersen [1] include
no short sales and liquidity risk is characterized by a fixed but stochastic transaction
cost that is independent of trade size. Jarrow [47] includes a stochastic liquidity cost
that depends on trade size, but there are no trading constraints. Standard transaction
costs are a special case of our formulation (see Jarrow and Protter [43] for a detailed
explanation). Our notion of market liquidity is related to but more general than the
market and funding liquidity as considered in Brunnermeier and Pedersen (2008)[14].

An outline for the paper is as follows. The next section presents the model structure.
Section 3 characterizes price bubbles and their relation to market liquidity. Section 4
analyzes systemic risk and section 5 concludes.

2 The Model

This section presents the details of the model, which is an extension of Jarrow (2017b)
[49].
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2.1 The Market

We consider a discrete time economy with a finite horizon t ∈ {0, 1, ..., T}. The
randomness in the economy is characterized by a given complete filtered probability
space (Ω,F ,F,P) where Ω is state space, P is the (statistical) probability measure, and
F = {F}t∈{0,1,...,T} is the filtration with F = FT . The economy is populated with het-
erogeneous agents of total mass one. These agents are partitioned into a finite number
of types, each type with a strictly positive mass, indexed by i = 1, . . . , I. The discrete
mass of a type i agent is denoted I(i) for i = 1, . . . , I with ∑ I

i=1I(i) = 1. Agent types
are heterogeneous in their beliefs Pi, wealth W i (to be defined later), and their prefer-
ences Ui : R × Ω → R which are defined over terminal consumption. We also assume
that Pi are equivalent to P for all i. This means that agents’ beliefs and the statistical
probability measure agree on zero probability events. The filtration F corresponds to
the information set of each agent implying that there is symmetric information.

Agents can trade two assets: a riskless bond, representing by a money market
account (mma) and a risky asset. The risky asset is arbitrary, so it can represent equity
(stock), physical capital, or even real estate depending upon the market analyzed. Here,
for convenience, we will use the term risky asset or stocks interchangeably. Borrowing
and lending takes place through a bond market that is in zero net supply. Agents also
face a borrowing constraint (discussed below). The risky asset is in positive supply,
which is constant across time. Short sales are allowed, but margin requirements are
imposed to insure that the short position can be covered at a future date. Without
loss of generality, prices are normalized by the value of the mma, i.e. the mma is the
numeraire. Alternatively, we can think of this numeraire as the units of consumption
good redeemable at the last date in the model.

We assume that the stock pays no dividends over times {0, . . . , T − 1}, but it pays
a liquidating dividend at time T .

Assumption. (Liquidating Dividends)
The risky asset St is assumed to have no cash flows (dividends) over times t ∈

{0, 1, ..., T} and has an exogenous liquidating dividend at time T , i.e. there exists a
ξ : Ω→ R at time T such that ST = ξ > 0 .

We assume that the stock is in positive supply with N > 0 shares outstanding and
that the mma is in zero net supply, for all times. At the terminal time T , all debts,
if any, must be paid, all the remaining positions liquidated, and the proceeds used
for consumption. Since all positions must be liquidated at time T , liquidity costs are
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necessarily incurred by agents prior to consumption. Time T + 1 is a non-trading date
when consumption occurs.

2.2 The Liquidity Cost Process

Market liquidity/illiquidity is captured by a stochastic quantity impact on the price
from trading, where the trade size affects the magnitude of the impact. In this regard,
we use the liquidity cost process of Cetin, Jarrow, Protter [19] as modified by Cetin
and Rogers [20]. Our approach is closely related to market liquidity as defined in
Brunnermeier and Pedersen (2008)[14]6.

Define st(x, ω) to be the per share market price of the stock for a trade of size x ∈ R.
Both purchases and short sales are allowed. This is sometimes called the supply curve.
We assume that: (i) st(x, ω) is B(R)⊗Ft measurable for each t where B(R) is the Borel
sigma-algebra on R, (ii) st(x, ω) > 0 in x for for all t a.e. P, and (iii) st(x, ω) is strictly
increasing in x for for all t a.e. P.

Define st(0, ω) ≡ St to be the market price for zero trades. This corresponds to the
market price in a world with no quantity impact from trading. St is the marked-to-
market price of the stock. We add the following assumption to characterize the liquidity
costs of trading.

Assumption. (Liquidity Cost Process)
Define ϕt(x, ω) to be the liquidity cost for selling/buying x shares at time t given ω,

i.e.
xst(x, ω) ≡ ϕt(x, ω)st(0, ω) = ϕt(x, ω)St.

We assume that7

1. ϕt(x, ω) is B(R)⊗Ft measurable for each t, and

2. for a fixed t ∈ {0, 1, . . . , T} and ω ∈ Ω, ϕt(x, ω) : R→ (−∞,∞] is strictly convex,
strictly increasing where ϕt(0) = 0, and ϕt is differentiable for all x.8

6See Nikolau (2009)[53] for a discussion of various liquidity notions. Our liquidity cost can also be
interpreted as an endogenous transaction cost. In equity markets this cost is incurred by having to
sell below the fair/mid-price or buying above the fair/mid-price. In housing or real estate markets this
reflects the costs associated with either buying or selling the real estate property. This implies that
standard transaction costs are a special case of our market liquidity formulation.

7For simplicity of notation, we will often drop the dependence of ϕt on ω.
8This implies that S̃t(x, ω) = xst(x, ω) is convex, lower semicontinuous with S̃t(0, ω) = 0 for every

ω. Hence, by Pennannen [54], p. 747, S̃t is a Ft - measurable normal integrand.
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This is a very general liquidity cost process. The functional form of ϕt(x) is given
exogenously, but validated endogenously in equilibrium. By condition (1), the larger
the quantity purchased, the larger the price paid per share. Conversely, the larger the
quantity sold, the less the price received per share. This captures the inelastic nature
of the supply curve for shares. The increasing condition, in conjunction with ϕt(0) = 0,
implies that ϕt(x) > 0 for x > 0 and ϕt(x) < 0 for x < 0.

The convexity condition is needed to incorporate nonlinearities in liquidity costs.
Indeed, when there is no quantity impact on the price from trading (the traditional
model), the quantity impact function is linear in the trade size, i.e.

ϕt(x) = x.

The strict convexity assumption insures that the liquidity cost is larger than propor-
tional as the trade size increases.

The marginal cost from trading dx additional shares in a trade of size x is

d (ϕt(x)St)
dx

= ϕ′t(x)St > 0.

This represents the quoted or transaction price when trading x shares. It is the price
paid/received for the last share traded. In this representation there is no distinction
between a quoted and transaction price, both are the same. Since ϕ′t(0) = 1 and ϕt(x)
is convex, ϕ′t(x) > 1 for x > 0 and ϕ′t(x) < 1 for x < 0.

Given this interpretation, we see that ϕ′t(0)St = St corresponds to the transaction
price when trading zero shares, or equivalently, the marked-to-market price. This im-
plies that ϕ′t(0+)St corresponds to the ask price paid for buying 0+ (an infinitesimal
quantity of) shares and ϕ′t(0−)St corresponds to the bid price received for selling 0− (an
infinitesimal quantity of) shares. The condition ϕ′t(0) = 1 along with the differentiabil-
ity of ϕt(x) for all x implies that ϕ′t(x) is continuous9, hence ϕ′t(0+)St = St = ϕ′t(0−)St,
i.e. the ask price equals the marked-to-market price which equals the bid price. Finally,
note that if there is no quantity impact on the price from trading, then ϕ′(x) = 1 for
all x, and the transaction and marked-to-market prices are always equal. An example
helps to clarify this assumption.

Example. (Liquidity Cost Process) Consider the following stochastic liquidity cost
9See Rockafellar [56], p. 246.
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Figure 1: Liquidity Cost Functions

process:

ϕt(x, ω) = eαt(ω)x − 1
αt(ω)

where αt(ω) > 0 is Ft - measurable. It can be easily checked that this process satisfies
all the previous assumptions. We see that

ϕ′t(x, ω) = eαt(ω)x

with ϕ′t(0) = 1. This liquidity cost process is graphed in Figure (1). The 45 degree line
corresponds to the no liquidity cost case where ϕt(x, ω) = x for all (t, ω). As we will
discuss in subsequent sections, the liquidity cost curves associated with higher αt(ω)
are relatively more illiquid compared to the curves with lower αt(ω).

This liquidity cost function is analogous to the non-linear adjustment cost of in-
vestment or capital in the macroeconomics literature. Firms or households that own
the capital face such costs when replacing old capital with new (physical) capital. Ad-
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justment cost functions are often represented by ϕ(It/kt) where ϕ(δ) = 0, ϕ′(.) > 0,
ϕ′′(.) > 0, and δ is the rate of capital depreciation. Here each unit of investment is
transformed into less than one unit of capital, reflecting adjustment costs. ϕt(.) usually
enters the capital evolution process as kt+1 = (1− δ)kt+ It−ktϕ(It/kt). In macro mod-
els, when this approach is used to analyze a firm’s investment decision, we get Tobin’s
Q-theory, as in Tobin (1969)[59] and Hayashi (1982)[36]. Further, such adjustment costs
can also arise due to investment changes between periods as in Christiano, Eichenbaum
and Evans (2005) where the investment adjustment cost function is ϕ(It/It−1) and in
steady state ϕ(1) = 0, ϕ′(1) = 0, and ϕ′′(1) > 0. Here, the capital accumulation is
given as kt+1 = (1 − ϕ(It/It−1))It + (1 − δ)kt. The adjustment cost function is often
assumed to be quadratic10.

An advantage of using this liquidity cost process to characterize market liquidity
is that it allows us to consider various asset market types with different liquidities.
For example, equities markets are more liquid than housing markets. This difference
is represented by different functional forms for the liquidity cost function ϕt(x). We
will exploit this benefit below. Additionally, this liquidity cost function can be used
to generate liquidity policies in an analogous function to how the Taylor rule is used
in monetary policy to set nominal interest rates depending on output/inflation gaps
and the unemployment rate (see Eggertsson and Krugman (2012)[28], Guerrieri and
Iacoviello (2017)[33]; also Christiano et al. (2010)[23] for a review of DSGE models
with monetary policy).

2.3 The Budget Set

In an asset pricing model, the budget set is characterized by the notion of a self-financing
trading strategy. With a liquidity cost function, defining an agent’s budget is subtle.
This is because a trading strategy’s wealth is not well defined. A trading strategy’s
wealth depends on the stock price, which depends on a trade quantity x. To avoid this
ambiguity, we focus on the shares in the budget set.

A trading strategy is defined to be a Ft−1 - measurable stochastic process (Xt, Yt)
representing the aggregate shares in stock and mma, given an initial position (x, y).

10Bernanke, Gertler and Gilchrist (1999)[9] use a similar non-linear adjustment cost to capital,
allowing for dynamic amplification of a negative shock with kt+1 = Ktϕ(It/kt) + (1− δ)kt. Here, ϕ(.)
there is increasing and concave. Brunnermeier and Sannikov (2014)[17] also use a similar approach
interpreting the concavity of such an adjustment function as capturing a technological illiquidity when
converting output to new capital and vice versa.
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The budget set, a self-financing trading strategy, for a generic (Xt, Yt) can be written
as

Yt+1 = Yt −∆Xt+1st(∆Xt+1) (1)

where ∆Xt+1 = Xt+1 −Xt. Using the liquidity cost function we get

Yt+1 = Yt − ϕt(∆Xt+1)St (2)

Starting from (x, y), this is a difference equation whose solution is

Yt+1 = y −
t∑

j=0
ϕj(∆Xj+1)Sj. (3)

By construction, the last trade occurs at time T , when the stock holdings are liquidated,
i.e.

∆XT+1 = −x−
T−1∑
t=0

∆Xt+1 = −XT .

This implies that

YT+1 = y − ϕT
(
−x−

T−1∑
t=0

∆Xt+1

)
ST −

T−1∑
t=0

ϕt(∆Xt+1)St. (4)

Given the self financing condition, we have that

{(x, y), Xt+1 for t ∈ {0, 1, . . . , T − 1}}

uniquely determines YT+1
11.

As seen above, the change in the budget set is determined by the change in the
mma and risky asset as agents borrow and trade amongst each other. Later on we will
see that this is related to the changes in the wealth of agents.

2.4 The Trading Constraints

We now characterize the trading constraints in the economy. This closely follows the
trading constraints in Jarrow (2017)[49]. We restrict the self-financing trading strategy

11Note that we do not need to include XT +1 in this expression because by construction it equals
zero.
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(Xt, Yt) to satisfy the following condition:

{Xt+1 ∈ Kt(ω) for t ∈ {0, 1, . . . , T − 1} a.e. P}

where Kt(ω) ⊂ R is a Ft - measurable12, nonempty, closed, convex set with 0 ∈ Kt and
{Xt+1 = Xt} ∈ int (Kt) for t ∈ {0, 1, . . . , T − 1} a.e. P where int(·) denotes the interior
in the usual topology on R.

In our paper, we represent the trading constraints in the economy by defining the
set Kt(ω) as follows.13.

Assumption. (Trading Constraints)

Kt(ω) =
{
Xt+1 ∈ R : Yt+1 ≥ −StXt+1

(
γ1Xt+1≥0 + (1 + γ)1Xt+1≤0

)}
where 0 ≤ γ ≤ 1, and Kt(ω) ⊂ R is a Ft measurable, nonempty, closed, convex set.

Proof. It is nonempty because 0 ∈ Kt(ω). We can rewrite the constraint set as
Kt(ω) = {Xt+1 ≥ 0 : Yt+1 ≥ −γStXt+1}+ {Xt+1 ≤ 0 : Yt+1 ≥ −(1 + γ)StXt+1}.

This set is closed and since each subset in the sum is convex, the sum is convex, see
Ruszczynski [58], p. 18.

Marked-to-market prices St are used to define the trading constraint because they
reflect prices readily observable in the market. This is contrasted with transaction prices
ϕ′t(x)St which depend on knowledge of the trade size and the liquidity cost paid via the
liquidity cost function ϕt(x). This constraint limits both borrowing and short selling.
To see this, note that if the trading strategy shorts the risky asset (Xt+1 < 0), then it
simplifies to Yt+1 ≥ −(1 + γ)StXt+1 > 0. This implies that to cover the short position,
a margin account must be held in the riskless asset consisting of the marked-to-market
value of the short position plus a fraction γ > 0 more. Next, if the trading strategy is
to buy the risky asset (Xt+1 > 0), then it simplifies to Yt+1 ≥ −γStXt+1 where Yt+1 < 0
is the borrowing. This implies that to finance the purchase, a borrowing of no more
than a fraction γ > 0 of the market-to-market value of the long position is allowed.

Note that the trading constraint only applies for times t ∈ {0, 1, ..., T − 1} because
at time T all the positions are liquidated. The assumption {0} ∈ Kt implies that

12Kt being Ft - measurable means that {ω ∈ Ω : Kt(ω) ∩A 6= ∅} ∈ Ft for every open set A ⊂ R2.
13See Jarrow (2017b)[49] for some examples of different types of trading constraint sets that fre-

quently arise in financial applications.
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zero holdings in the stock always satisfies the borrowing constraint. Xt+1 = Xt ∈
int(Kt) means that no trading at any time t is always feasible. Here, the restrictions
on the mma position are not explicit. However, the holdings in the mma are implicitly
restricted because Yt+1 is uniquely determined by the position in the stock and the
budget constraint.

Let us now define the normal cone to the set Kt for a given ω ∈ Ω as

NKt(X) =
{
κ ∈ R : κ(Z −X) ≥ 0 for all Z ∈ Kt

}
where X ∈ Kt and t ∈ {0, 1, ..., T − 1}. This set is Ft - measurable and by construction
NKT

(X) = NR(X) = {0}.
The following lemma will be needed to understand the shadow costs of the trading

constraints in subsequent sections.

Lemma 1. (Signs of the Elements κ ∈ NKt(Xt+1))
Let Xt+1 be a trading strategy and κ ∈ NKt(Xt+1).
(1) (Non-binding Constraint) If Xt+1 ∈ int(Kt), then κ = 0.
(2) (Binding Constraint) If Xt+1 ∈ bd(Kt) where bd(·) denotes the boundary in

the usual topology on R.
Given κ ∈ NKt(X) with κ 6= 0. Then,

(a) if Xt+1 > 0, then κ > 0.
(b) if Xt+1 = 0 and [−ε, 0] ⊂ Kt for ε > 0, then κ > 0.
(c) if Xt+1 < 0, then κ < 0.
(d) if Xt+1 = 0 and [0, ε] ⊂ Kt for ε > 0, then κ < 0.

Proof. If Xt+1 ∈ int(Kt), then NKt(Xt+1) = {0}, see Tuy [60], p. 22. Hence, if
κ ∈ NKt(Xt+1), then κ = 0.

(Case a) IfXt+1 ∈ bd(Kt), andXt+1 > 0, then by the convexity ofKt, [0, Xt+1] ⊂ Kt.
This implies NKt(Xt+1) 6= {0}. Hence, if κ 6= 0, then κ(Z−Xt+1) ≤ 0 for 0 ≤ Z ≤ Xt+1,
implying κ > 0.

(Case b) follows similarly.
(Case c) IfXt+1 ∈ bd(Kt), andXt+1 < 0, then by the convexity ofKt, [Xt+1, 0] ⊂ Kt.

This implies NKt(Xt+1) 6= {0}. Hence, if κ 6= 0, then κ(Z−Xt+1) ≤ 0 for 0 ≤ Xt+1 ≤ Z,
implying κ < 0.

(Case d) follows similarly. This completes the proof.
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This lemma shows that if Xt+1 is on the boundary and cannot increase (cases (a)
and (b)), then κ 6= 0 ∈ NKt(Xt+1) is strictly positive. Conversely, if Xt+1 is on the
boundary and cannot decrease (cases (c) and (d)), then κ 6= 0 ∈ NKt(Xt+1) is strictly
negative. This abstraction will be explicitly used below to characterize bubble. A
concrete version of this abstraction is the usual Lagrange multipliers in the optimization
problems, where the multiplier κ = 0 means the constraint is not binding, and κ 6= 0
means the constraint is binding.

2.5 The Optimization Problem

As noted earlier, the economy is populated by a finite number of heterogeneous agents
types indexed by i, with beliefs Pi and preferences Ui : R×Ω→ R defined over terminal
consumption. The agents of type i are initially endowed with shares in the stock and
mma (xi, yi). We assume that for all ω ∈ Ω, Ui(z, ω) is strictly increasing, strictly
concave, and satisfies the Inada conditions

lim
x→−∞

U ′i(z, ω) =∞, lim
x→0

U ′i(z, ω) = 0.

In addition, we assume that Ui(0, ω) = 0 and that Ui(z, ω), U ′i(z, ω) are bounded above
by Pi integrable random variables (independent of z) for all i.14

Agents choose shares in the stock and mma, subject to borrowing constraints, to
maximize their expected utility of terminal consumption:

ui(x, y) = sup
{Xt+1∈Kt: t∈{0,1,...,T−1}}

EPi [Ui(YT+1)] (5)

where expectation is taken under Pi.

2.6 Equilibrium

In an equilibrium, agents maximize their expected utility subject to their constraints,
such that the price of risky asset is endogenously determined in the equilibrium. The
aggregate holdings in stocks and mma are represented by the expectation with respect
to the distribution I(i) across agents. To formalize this description, we need some
definitions.

14These assumption imply that Ui(z, ω) is a normal integrand on R×Ω and when taking the derivative
of Ei [Ui(z)] with respect to z, one can exchange the expectation and derivative operators.
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Definition 2. (An Asset Market)
An asset market is a collection

(
(ϕ,K,N) , (Pi, Ui, (xi, yi)) Ii=1

)
where EI[yi] = 0 and EI[xi] = N .

As defined, an asset market is a liquidity cost process, a trading constraint, a supply
of shares outstanding i.e. (ϕ,K,N) and a set of economic agents (Pi, Ui, (xi, yi)) of total
mass one. The mma is in zero net supply and the supply of the risky asset is strictly
positive and equal to N . By construction, the total supply of shares and mma endowed
at time 0 must equal the total supply of shares and mma outstanding. Finally, the
underlying filtration and probability measure (Ω,F , (Ft)t∈{0,...,T},P) are implicit in the
specification of a market.

Definition 3. (Equilibrium)
Given an asset market

(
(ϕ,K,N) , (Pi, Ui, (xi, yi)) Ii=1

)
with EI[yi] = 0 and EI[xi] =

N .
An equilibrium is a price process S and risky asset demands (X i

t+1 : t ∈ {0, . . . , T −
1})Ii=1 a.e. P such that

(i). (X i
t+1 ∈ Kt : t ∈ {0, . . . , T − 1}) are optimal for all i, and

(ii) EI[∆X i
t+1] = 0 for t ∈ {0, . . . , T − 1} a.e. P such that the market clears i.e.

supply equals demand.
There is no trading at time T + 1.

This is standard definition of a dynamic competitive Radner equilibrium (Radner
(1982)[57]). Because the supply of shares is constant N for all times, in conjunction
with EI[xi] = EI[X i

0] = N this implies that EI[X i
t+1] = N for t ∈ {0, . . . , T − 1}. Note

that by the budget/self-financing condition (1), this implies that mma market decreases
in aggregate value if ∆X i

t+1 6= 0 for some i, i.e.

EI[∆Y i
t+1] = −EI[ϕt(∆X i

t+1)St] < 0 for t ∈ {0, . . . , T − 1} a.e. P.

This strict decrease in value follows because if ∆X i
t+1 6= 0 for some i, then by the strict

convexity of ϕt(∆X i
t+1), ϕt(∆X i

t+1) > ϕt(0) + ϕ′t(0)∆X i
t+1. The fact that ϕt(0) = 0 in

conjunction with EI[∆X i
t+1] = 0 yields

−EI[ϕt(∆X i
t+1)St] < −ϕ′t(0)StEI[∆X i

t+1] = 0 for t ∈ {0, . . . , T − 1} a.e. P.
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Thus, the decrease in the value of the aggregate mma market captures the the liquidity
costs incurred by the aggregate trading in the economy. The parties to whom the
liquidity costs are paid are the market makers in the exchange market. The equilibrium
in the exchange market endogenously determines the equilibrium liquidity cost function
ϕ. For the details of the exchange market equilibrium see Jarrow (2017b)[49]. In this
paper we take the liquidity cost function as given, but the functional form is itself
determined in equilibrium.

3 Bubbles and Market Liquidity

This section characterizes equilibrium asset price bubbles and their relation to market
liquidity. First, it can be shown, under a set of sufficient conditions, that there exists
an equilibrium for the economy previously described (see Jarrow (2017b)[49]). For the
subsequent analysis, therefore, we assume the existence of such an equilibrium and we
characterize this equilibrium.

3.1 Characterizing Asset Price Bubbles

We start with a theorem characterizing an agent’s first order conditions. This charac-
terization is given in the following theorem.

Theorem 4. (Individual Agent’s Optimal allocation)
Let S be an equilibrium price process.
Then, there exists a unique optimal trading strategy {Xt+1 ∈ Kt : t ∈ {0, . . . , T−1}}

characterized by the following equations

0 ∈ ∂EPi
t

[
Ui
(
Y i
T+1

)]
+NKt(X i

t+1) (6)

for t ∈ {0, . . . , T − 1} a.e. Pi
where15 Y i

T+1 = yi − ϕT
(
−xi −

∑T−1
t=0 ∆X i

t+1

)
ST −

∑T−1
t=0 ϕt(∆X i

t+1)St, ∆X i
T+1 =

−X i
T , ∂(·) is the subdifferential, and EPi

t [·] = EPi [· |Ft ].
Or equivalently,

15Note that when t = T , expression (6) is identically zero.
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ϕ′t(∆X i
t+1)(St − νit) is a martingale under

dQi

dPi
= U ′i(Y i

T+1)
EPi

[
U ′i(Y i

T+1)
] > 0

for t ∈ {0, . . . , T} where vit = κi
t

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

and κit ∈ NKt(X i
t+1).

Proof. (Step 1) Existence and Uniqueness
The above assumptions in conjunction with Examples 2.1 and 5.2 of Pennanen [54]

imply that the hypothesis of Theorem 5.1 in Pennanen [54] hold. This theorem states
that an optimal trading strategy exists. It is unique by the concavity of the utility
function.

(Step 2) Characterization of the Solution
We use backward induction.
At time T , with share holdings (X i

T , Y
i
T ), the optimal trading strategy is ∆XT+1 =

−XT since the portfolio must be liquidated.
At time t < T with share holdings (X i

t , Y
i
t ), having determined the optimal {X i

j+1 :
j ∈ {t+ 1, . . . , T − 1}}, the optimal Z ∈ Kt must maximize

EPi
t

[
Ui
(
Y i
T+1(Z)

)]
= EPi

t

[
Ui
(
yi − ϕT (−∑T−1

j=t+1 ∆X i
j+1 − Z)ST

−∑T−1
j=t+1 ϕj(∆X i

j+1)Sj − ϕt (Z −Xt)St + (Y i
t − yi)

)]
.

The first order condition, which is necessary and sufficient (see Tuy [60], p. 75), is that

0 ∈ ∂EPi
t

[
Ui
(
Y i
T+1(Xt+1)

)]
+NKt(X i

t+1).

But,
∂EPi

t

[
Ui
(
Y i
T+1(Xt+1)

)]
= dE

Pi
t [Ui(Y i

T +1(Xt+1))]
dXi

t+1

= EPi
t

[
U ′i(Y i

T+1)
(
ϕ′T (∆X i

T+1)ST − ϕ′t(∆X i
t+1)St

)]
.

Hence, there exists a κit ∈ NKt(X i
t+1) such that

EPi
t

[
U ′i
(
Y i
T+1

) (
ϕ′T (∆X i

T+1)ST − ϕ′t(∆X i
t+1)St

)]
+ κt = 0. (7)

E
Pi
t [U ′

i(Y i
T +1)(ϕ′

T (∆Xi
T +1)ST−ϕ′

t(∆Xi
t+1)St)]

E
Pi
t [U ′

i(Y i
T +1)] + κt

EPi [U ′
i(Y i

T +1)] = 0.

EQi
t

[
ϕ′T (∆X i

T+1)ST − ϕ′t(∆X i
t+1)St

]
+ κt

E
Pi
t [U ′

i(Y i
T +1)]

ϕ′
t(∆Xi

t+1)
ϕ′

t(∆Xi
t+1) = 0
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where EQi
t [·] = EQi [· |Ft ] is conditional expectation under Qi.

EQi
t

[
ϕ′T (∆X i

T+1)ST − ϕ′t(∆X i
t+1)St + ϕ′t(∆X i

t+1) κt

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

]
= 0.

Define vit = κi
t

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

. Note that κiT = 0 since NKT
(X) = {0} for all

X ∈ KT . Then,
EQi
t

[
ϕ′T (∆X i

T+1)(ST − viT )− ϕ′t(∆X i
t+1)(St − vit)

]
= 0.

This implies that ϕ′t(∆X i
t+1)(St− νit) is a martingale for t ∈ {0, . . . , T} under dQi

dPi
=

U ′
i(Y i

T +1)
EPi [U ′

i(Y i
T +1)] > 0. This completes the proof.

Given a characterization of the agent’s first order conditions in equilibrium, we now
turn to a characterization of asset price bubbles. We first need to define an asset’s
fundamental value.

Definition 5. (Fundamental Value)
The fundamental value of an asset to a type i agent is

EQi
t [ϕ′T (∆X i

T+1)ST ]

where EQi
t [.] = EQi [.|Ft] is conditional expectation taken under Qi.

The fundamental value is the time t expected liquidation value of the agent’s port-
folio at time T , given their optimal trading strategy. This liquidation value reflects the
transaction or market price for the last shares traded by the agent, i.e. ϕ′T (∆X i

T+1)ST .
The personalized state price density dQi

dPi
is used to value the future transaction because

it includes an adjustment for risk.16 The standard definition of a price bubble now
follows.

Definition 6. (Asset Price Bubble)
The asset price bubble for a type i agent is

βit = ϕ′t(∆X i
t+1)St − EQi

t [ϕ′T (∆X i
T+1)ST ].

From this definition it is clear that a price bubble is related to the beliefs of an
individual agent which translates into their personalized fundamental value for the

16The state price density is also called the stochastic discount factor.
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risky asset. Consequently, some agents may see a price bubble based on their beliefs,
while others may not. Note that if there were no liquidity costs to trading shares,
i.e. ϕ′t(∆X i

t+1) = 1, then the market and transaction prices would equal St, and this
definition collapses to the standard definition of an asset price bubble appearing in the
literature (see Jarrow [44]). We can now characterize an agent’s price bubble.

Corollary 7. (Bubbles in Equilibrium)
For all i = 1, . . . , n and t = 1, . . . , T ,

βit = −κit
EPi
t

[
U ′i
(
Y i
T+1

)]
ϕ′t(∆X i

t+1)
(8)

for κit ∈ NKt(X i
t+1).

If the constraint is non-binding, then βit = 0. No asset price bubble.
If the constraint is binding, then

(a) if Xt+1 > 0, then βit < 0.
(b) if Xt+1 = 0 and [−ε, 0] ⊂ Kt for ε > 0, then βit < 0.

In cases (a) and (b), the transaction price for the last share traded is a Qi sub-
martingale.

(c) if Xt+1 < 0, then βit > 0.
(d) if Xt+1 = 0 and [0, ε] ⊂ Kt for ε > 0, then βit > 0.

In cases (c) and (d) the transaction price for the last share traded is a Qi super-
martingale.

Proof. Given EPi
t

[
ϕ′T (∆X i

T+1)(ST − viT )− ϕ′t(∆X i
t+1)(St − vit)

]
= 0.

EPi
t

[
ϕ′T (∆X i

T+1)ST
]
− ϕ′t(∆X i

t+1)St + ϕ′t(∆X i
t+1)vit = 0.

Algebra yields
ϕ′t(∆X i

t+1)St − EPi
t

[
ϕ′T (∆X i

T+1)ST
]

= −ϕ′t(∆X i
t+1)vit, i.e.

βit = −ϕ′t(∆X i
t+1)vit. But, vit = κi

t

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

.

Hence βit = −κi
t

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

.
Using Lemma 1 completes the proof.

This corollary characterizes an individual agent’s asset price bubble. If trading
constraints are non-binding and κit = 0, then there are no asset price bubbles. However,
if trading constraints are binding with κit ≷ 0, then there are four cases. With respect
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to cases (a) and (b), the trader desires to buy more of the stock, but is constrained.
Hence, the stock price is too low relative to the trader’s valuation given their state
price density. Here the asset price bubble is negative (the stock is undervalued) and
the stock price process is a Qi submartingale. With respect to cases (c) and (d), the
trader desires to short more of the stock, but is constrained. Hence, the stock price
is too high relative to the trader’s valuation given their state price density. Here the
asset price bubble is positive (the stock is overvalued) and the stock price process is a
Qi supermartingale. This is analogous to the characterization of asset price bubbles in
continuous time, competitive, and frictionless markets (see Jarrow [44]).

This corollary can also be used to understand the birth and death of asset price bub-
bles in this market. In an asset market with no price bubbles, a bubble starts if trading
constraints suddenly become binding. This might occur because of exogenous shocks
to the constraints imposed by regulators, or because beliefs and or preferences change
so that a previously non-binding constraint becomes binding. Conversely, analogous
random shocks to the market can also cause bubbles to burst.

3.2 Characterizing Market Liquidity

Now we move on to characterize the relation between bubbles and market liquidity.
This characterization requires another definition.

Definition 8. (Liquid versus Illiquid Markets)
For a given t, let ϕlt and ϕnlt be two liquidity cost processes associated with different

market types that satisfy the assumptions given above, and such that

dϕl
t(x)
dx

<
dϕnl

t (x)
dx

if x > 0
dϕnl

t (x)
dx

<
dϕl

t(x)
dx

if x < 0
(9)

for all x 6= 0 a.e. P. Then, we say that the time t asset market with liquidity cost
ϕnlt (x) is illiquid (not liquid) relative to the market with liquidity cost ϕlt(x).

As defined above, a market is more liquid the smaller is the transaction price paid
d(ϕt(x)St)

dx
= ϕ′t(x)St for a purchase x > 0, and the larger the transaction price received

for a sale x < 0. Given the marked-to-market value of the stock, this is measured by
ϕ′t(x) 6= 1, hence the definition. It is easy to show that the more liquid the market, the
smaller is the liquidity cost function for a trade of size x 6= 0.
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Lemma 9. (Price Impact Costs)
Let the liquidity cost function ϕlt be more liquid than ϕnlt . Then

ϕlt(x) < ϕnlt (x) (10)

for all x 6= 0 a.e. P.

Proof. Using the fundamental theorem of calculus and the assumption that ϕkt (0) = 0,
we have ϕkt (x) =

∫ x
0
dϕk

t (u)
du

du for k ∈ {l, nl} for x > 0 and ϕkt (x) = −
∫ x

0
dϕk

t (u)
du

du

for k ∈ {l, nl} for x < 0. The result follows because the integral is a positive linear
operator.

We have already discussed asset markets that can have different liquidities (say
housing versus equity markets). The implication of the above lemma is that, if an
agent is buying or selling (shorting) a risky asset in a relatively illiquid market, the
liquidity cost is higher, i.e. an illiquid market is unfavorable to buyers or sellers in
terms of overall cost. This observation is central to many of the results below. This
lemma is also analogous to the liquidity cost function example in Figure (1). Larger
values of αt(ω) represent more illiquid markets. With above insights, we now analyze
the nature of bubbles in liquid versus illiquid markets.

Theorem 10. (Bubbles in Liquid vs. Illiquid Markets)
(Borrowing Constrained Bubbles, βit < 0)

If X i
t+1 > 0, then βit(ϕlt) < βit(ϕnlt ) < 0, i.e. bubbles in liquid markets are larger in

absolute value, all else constant.
(Short Selling Constrained Bubbles, βit > 0)

If X i
t+1 < 0, then 0 < βit(ϕlt) < βit(ϕnlt ), i.e. bubbles in illiquid markets are larger,

all else constant.

Proof. From expression (8),

βit = −κit
EPi
t

[
U ′i
(
Y i
T+1

)]
ϕ′t(∆X i

t+1)
.

Assume that Y i
T+1, κit, Xt+1, and ∆X i

t+1 are fixed. There are two cases to consider.
(Case 1) Assume that X i

t+1 > 0, then we know from above κit > 0, and ∆X i
t+1 > 0.

Thus, βit < 0 since ϕ′t(∆X i
t+1) > 0 for all ∆X i

t+1.
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By the definition (8), 1 > dϕnl
t (x)
dx

>
dϕl

t(x)
dx

> 0 for x > 0. This means the denominator
is larger for ϕnlt than for ϕlt.

Thus, the absolute value of the bubble |βit| is larger for ϕlt, implying βit(ϕlt) < 0 is a
larger negative number.

(Case 2) Assume that X i
t+1 < 0, then we know from above κit < 0, and ∆X i

t+1 < 0.
Thus, βit > 0 since ϕ′t(∆X i

t+1) > 0 for all ∆X i
t+1.

By the definition (8), 1 < dϕnl
t (x)
dx

<
dϕl

t(x)
dx

for x < 0. This means that the denomi-
nator is smaller for ϕnlt than for ϕlt.

Thus, the bubble βit > 0 is larger for ϕnlt .

This theorem shows that market liquidity and the magnitude of asset price bubbles
have an asymmetric relation depending on the sign of the price bubble. When the risky
asset is undervalued due to borrowing constraints and the price bubble is negative,
bubbles are smaller in illiquid markets. In contrast, when the risky asset is overvalued
due to short selling constraints and the price bubble is positive, bubbles are larger
in illiquid markets. This asymmetry is due to the difference in the agents’ actions
to exploit the perceived mispricing and the asymmetry in the liquidity cost function’s
transaction price ϕ′t(x)St across the two actions.

When agents view the risky asset as undervalued, they borrow to purchase the asset.
The more risky assets they purchase, the larger the transaction price paid per share
in an illiquid market. Due to the convexity of ϕ′t(x), this increase in the transaction
price occurs at an increasing rate in an illiquid market relative to a liquid market. This
increasing marginal cost of a purchase at an increasing rate, relative to the marginal
benefit attained, reduces the optimal constrained purchase quantity in an illiquid market
relative to a liquid market, consequently reducing the size of the price bubble in a more
illiquid market.

In contrast, when agents’ view the risky asset as overvalued, they want to short sell
the risky asset and provide margin to cover the short position. The more assets they
short sell, the smaller the transaction price proceeds received per share in an illiquid
market. Due to the convexity of ϕ′t(x), this decrease in the transaction price is at
an decreasing rate in an illiquid market relative to a liquid market. This decreasing
marginal cost of a sale at a decreasing rate, relative to the marginal benefit attained,
increases the optimal constrained sale quantity in an illiquid market relative to a liquid
market, consequently increasing the size of the price bubble in a more illiquid market.

We now move on to characterize the percentage of agents in an economy that see
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bubbles at any given time. A direct application of Theorem 10 yields the following
result.

Theorem 11. (Liquidity and Size of the Price Bubble Distribution)
Let I−βt

≡ I(i : βit < 0) denote the percentage of agents in the economy that see
negative bubbles at time t, and I+

βt
≡ I(i : βit > 0) denote the percentage of agents in the

economy that see positive bubbles at time t. Then,
(i) I−βt

(ϕlt) > I−βt
(ϕnlt ), i.e. the percentage of agents viewing negative bubbles increase

in more liquid markets, and
(ii) I+

βt
(ϕlt) < I+

βt
(ϕnlt ), i.e. the percentage of agents viewing positive bubbles increase

in more illiquid markets.

Proof. This follows from the following facts. For case (i), if X i
t+1 > 0, then βit(ϕlt) <

βit(ϕnlt ) < 0. Thus, more agents will see bubbles in liquid markets, everything else
constant, because there will be some agents with βit(ϕnlt ) = 0 but βit(ϕlt) < 0. The same
argument holds for case (ii).

This theorem states that when market liquidity declines in a given asset market,
the percentage of agents seeing price bubbles declines as well. Consequently, Theorems
(10) and (11) have policy implications with respect to the existence of asset price
bubbles. This is especially true for monetary policy, which can immediately affect
market liquidity. In our model, in equilibrium, bubbles depend on agents’ beliefs and
preferences. This means that what is relevant for macro-policy is the percentage of
agents in the economy that see bubbles, and not whether a uniform price bubble exists.
This frees policy makers from determining the existence and magnitude of a uniform
price bubble. Instead, policy makers can simply monitor the financial markets and
statistically infer traders’ beliefs concerning bubbles and react accordingly.

While a separate model is needed to fully explore the policy implications we have
just discussed, our results provide a framework for analyzes these issues. In the next
section of the paper we show a direct relation between the percentage of agents in the
economy viewing price bubbles and systemic risk. We now explore the relation between
the magnitude of the trading constraints and the size of asset price bubbles.
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3.3 Characterizing the Shadow Price of Trading Constraints

This subsection characterizes the shadow price of the trading constraints in equilibrium.

Theorem 12. (Trading Constraint and Shadow Price)
Let the trading constraint be binding at time t.
Then, as γ increases,
(i) κit > 0 decreases when X i

t+1 > 0, and
(ii) κit < 0 increases in absolute value when X i

t+1 < 0.

Proof. At time t, the optimal share holdings are either X i
t+1 > 0 or X i

t+1 < 0. Since the
constraint is binding at the optimum, when X i

t+1 > 0, Y i
t+1 < 0 and when X i

t+1 < 0,
Y i
t+1 > 0 . This follows from our trading constraint set Kt(ω) as discussed before.

Consequently, at time t, only one side of the constraint

Kt(ω) =
{
Xt+1 ∈ R : Yt+1 ≥ −StXt+1

(
γ1Xt+1≥0 + (1 + γ)1Xt+1≤0

)}
is binding for each agent i. Thus, in the time t optimization problem, the original
constraint can be replaced by the constraint

Kt(ω) = {Xt+1 ∈ R++ : −γStXt+1 ≤ Yt+1} =
{
Xt+1 ∈ R++ : − Yt+1

StXt+1
≤ γ

}

for Xt+1 > 0, and

Kt(ω) = {Xt+1 ∈ R−− : − (1 + γ)StXt+1 ≤ Yt+1} =
{
Xt+1 ∈ R−− : Yt+1

StXt+1
≤ − (1 + γ)

}

for Xt+1 < 0 without changing the optimal solution.
Note that Yt+1 = Yt − ϕt(Xt+1 −Xt)St from expression (2).
Define the function f(Xt+1) = −

(
Yt−ϕt(Xt+1−Xt)St

StXt+1

)
on Xt+1 ∈ R.

We note that
f ′(Xt+1) = Yt−ϕt(Xt+1−Xt)St

StX2
t+1

+ ϕ′
t(Xt+1−Xt)St

StXt+1
= Yt+1+ϕ′

t(Xt+1−Xt)StXt+1
StX2

t+1
.

We have, f ′(Xt+1) > 0 when Xt+1 > 0.
Indeed, ϕ′t(Xt+1 − Xt)StXt+1 > γStXt+1 when Xt+1 > 0 because ϕ′t(x) > 1 > γ

when x > 0.
Thus, f ′(Xt+1) = Yt+1+ϕ′

t(Xt+1−Xt)StXt+1
StX2

t+1
> Yt+1+γStXt+1

StX2
t+1

≥ 0 because Yt+1+γStXt+1 ≥
0 when Xt+1 > 0.
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We have, f ′(Xt+1) > 0 when Xt+1 < 0.
Indeed, (1 + γ)StXt+1 < ϕ′t(Xt+1 −Xt)StXt+1 when Xt+1 < 0 because ϕ′t(x) < 1 <

1 + γ when x < 0.
Thus, f ′(Xt+1) = Yt+1+ϕ′

t(Xt+1−Xt)StXt+1
StX2

t+1
> Yt+1+(1+γ)StXt+1

StX2
t+1

≥ 0 because Yt+1 +
(1 + γ)StXt+1 ≥ 0 when Xt+1 < 0.

We can rewrite the time t constraint as:
(i) f(Xt+1) ≤ γ when the optimum is Xt+1 > 0, and
(ii) g(Xt+1) ≤ δ when the optimum is Xt+1 < 0 with g(Xt+1) = −f(Xt+1) and

δ = −(1 + γ).
(Case 1) At time t the optimum isX i

t+1 > 0 with a binding constraint and f ′(Xt+1) >
0.

Looking at the proof of Theorem 4, we see that at time t the optimization problem
is

υ(γ) = sup
{Xt+1∈R}

EPi [Ui(YT+1(Xt+1)] subject to f(Xt+1) = γ

where the constraint is binding. As written, the Lagrangian is

L = EPi

[
Ui
(
Y i
T+1(Xt+1)

)]
+ λt (f(Xt+1)− γ) .

The first order (necessary and sufficient) condition is

dEPi

[
Ui
(
Y i
T+1(Xt+1)

)]
dXt+1

+ λtf
′(Xt+1) = 0.

From the proof of Theorem 4, expression (7), we have that κt = λtf
′(Xt+1), i.e. λt =

κt

f ′(Xt+1) .
But, standard results yield υ′(γ) = λt, see Holmes [40], p. 39. Hence, υ′(γ) = λt =
κt

f ′(Xt+1) . By Lemma 1, κt > 0 for Xt+1 > 0, and f ′(Xt+1) > 0 implies that λt > 0.
Also, it is well known that the value function is concave (in the parameter γ), see

Holmes [40], p. 37. Hence, υ′′(γ) < 0, which implies that as γ increases the slope
υ′(γ) = λt = κt

f ′(Xt+1) decreases. Since f ′(Xt+1) > 0, all else equal, this implies that
κt > 0 decreases.

(Case 2) At time t the optimum isX i
t+1 < 0 with a binding constraint and g′(Xt+1) =

−f ′(Xt+1) < 0.
A similar argument to Case 1 yields that λt = κt

g′(Xt+1) . By Lemma 1, κt < 0 for
Xt+1 < 0. So, g′(Xt+1) < 0 implies that λt > 0.
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By standard results υ′(δ) = λt, hence υ′(δ) = κt

g′(Xt+1) > 0. By the concavity of v(δ),
υ′′(δ) < 0, which implies that as δ increases, the slope υ′(δ) = λt = κt

g′(Xt+1) decreases.
Since g′(Xt+1) < 0, this implies that κt < 0 becomes less negative, i.e. decreases in
absolute value. But, δ = − (1 + γ) increasing implies that γ decreases. Hence, as γ
increases, κt < 0 becomes more negative, i.e. increases in absolute value.

This completes the proof.

Using expression (8), we get an immediate corollary relating trading constraints to
the size of asset price bubbles.

Corollary 13. (Trading Constraints and Bubble Magnitudes)
Suppose that the trading constraint is made more restrictive. Then, the absolute

value of a bubble’s magnitude increases, i.e. |βit| increases.

Proof. Given βit = −κi
t

E
Pi
t [U ′

i(Y i
T +1)]ϕ′

t(∆Xi
t+1)

, we have that γ increasing (decreasing) implies:

(i) κit > 0 decreases (increases) when X i
t+1 > 0, which implies βit < 0 decreases (in-

creases) in absolute value, and (ii) κit < 0 increases in absolute value when X i
t+1 < 0,

which means βit > 0 increases as there is a negative sign in the above expression.
We note the asymmetry in the increase of γ. In case (i) when X i

t+1 > 0, γ decreas-
ing means the constraint is becoming more binding/restrictive (less borrowing possible).
In case (ii) when X i

t+1 < 0, γ increasing means the constraint is becoming more bind-
ing/restrictive (less short selling possible). Thus, as γ becomes more binding, in both
cases the bubble increases in absolute value.

This result is subtle and might appear to be counter-intuitive. One might argue that
relaxing the trading constraints should lead to more speculative behavior and larger
bubbles. However, this argument ignores the reason bubbles exist in our economy.
As we have shown, there are no bubbles in an economy when trading constraints are
non-binding i.e. κit = 0. They only appear when the constraints are binding. Hence,
given their beliefs, agents would like to either buy or short sell more stocks to reduce
their personalized under- and over-valuation. But, they cannot. The more binding
the trading constraints, the larger the personalized under- and over-valuation. This is
consistent with the fact that bubbles appear when either the short selling or borrowing
constraints are binding.
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4 Systemic Risk

This section studies the relation between asset price bubbles, market illiquidity, trading
constraints, and systemic risk. We will show that systemic risk is the risk of market
failure resulting from funding risk, which is the conjunction of increased market illiq-
uidity (liquidity risk) due to widespread selling pressure (like a fire-sale), leading to
binding trading constraints that generate massive defaults across agents. As implied,
funding risk is closely related to the notions of default, an accelerator effect, and the
percentage of agents in an economy that see bubbles. To see all of these relationships,
we first need to define an agent’s wealth.

Definition 14. (Wealth)
Let W i

t denote the wealth (or net-worth of a self-financing trading strategy) of an
individual agent of type i, defined as

W i
t = X i

t+1St + Y i
t+1

for all times t ∈ {0, 1, ..., T − 1}.

Analogous to the definition of the trading constraint, wealth is defined using the
marked-to-market value of the risky assets. This makes sense because the transaction
price requires keeping track of the share purchases at any time t and the liquidity cost
paid ϕ′t(x). In addition, defining wealth using market-to-market price implies that an
agent’s wealth is always positive, as the following lemma shows.

Lemma 15. (Wealth is Always Nonnegative)
If X i

t+1 > 0 and βit < 0, then Y i
t+1 = −γStX i

t+1 and W i
t = (1− γ)X i

t+1St > 0.
If X i

t+1 < 0 and βit > 0, then Y i
t+1 = −(1 + γ)StX i

t+1 and W i
t = −γX i

t+1St > 0.

Intuitively, systemic risk is the risk of market failure in an economy due to an
exogenous and unanticipated shock that causes massive defaults. In our setting, we
define a market failure as the nonexistence of an equilibrium. The shock could be due
to catastrophic events or changes in monetary policy, fiscal policy, regulatory policy
(trading constraints), or changes to agents’ beliefs and preferences. Thus, in our setting
market failure results from an exogenous and unanticipated shock that causes the non-
existence of an economic equilibrium due to the inability of some agents to satisfy
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their trading constraints, thereby defaulting with a corresponding loss in wealth. As
characterized, systemic risk is the result of a funding illiquidity (funding risk), which
is the conjunction of market illiquidity and binding trading constraints that lead to
defaults across agents.

It is important to note that the exogenous shock must be unanticipated and not
included in the original specification of the economy. Indeed, if the shock is anticipated
and included into the economy’s structure, then because our equilibrium is a Radner
equilibrium, it holds for all times t a.e. P. Hence, the economy is always in equilibrium
and there is never any market failure. Anticipated but random shocks only increase the
volatility/risk of consumption and equilibrium prices. In equilibrium, agents’ trading
constraints are never violated, and there is no default (wealth stays positive). This
is a direct implication of the existence of an agent’s optimal portfolio subject to the
trading constraints. We show below that for systemic risk effects, the price shocks do
not have to be large. The aggregate effect of small price shocks can also lead to the
realization of funding illiquidity and market failure, leading to a significant wealth loss
in the economy.

We use a reduced form approach to represent an exogenous shock to the economy.
Rather than explore an exogenous shock to the fundamentals of the economy (beliefs,
preferences, endowments, trading constraints) and explore its implications on economic
equilibrium prices and consumption, we analyze the implications of an exogenous shock
on the price process itself. This reduced form approach simplifies the analytics because
it enables us to determine, in a competitive economy where all agents are price takers,
whether an optimal portfolio still exists after the shock, given the trading constraints.
Alternatively stated, it enables us to determine if such an exogenous shock to prices
causes any agents to default, i.e. violate the trading constraints, which corresponds to
too much debt or an inability to meet short sale margin calls. Default for an agent
type, which represents a positive mass in the economy I−βt

or I+
βt
, implies market failure

because it results in the non-existence of an economic equilibrium.
Given this discussion, we analyze an unanticipated random shock to the price process

equal to ∆S at time t, which could be a large or small, positive or negative change from
St to St + ∆S. The next theorem characterizes the conditions under which such a price
shock results in the non-existence of an economic equilibrium and market failure, which
is an instance of systemic risk materializing into systemic crisis.

Theorem 16. (Margin Calls, Market Failure, Wealth Loss)
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(Borrowing Constrained)
If X i

t+1 > 0 and βit < 0.
Let the price shock be ∆S < 0 at time t.
Then, the minimum sale ∆X i < 0 necessary to satisfy the borrowing constraint

satisfies (
ϕt(∆X i)− γ∆X i

)
= γ

∆S
St + ∆SX

i
t+1.

A feasible ∆X i < 0 exists (staying in equilibrium) if and only if ϕt(∆X i) < γ∆X i.
Market failure occurs otherwise with a loss of wealth.

(Short Sale Constrained)
If X i

t+1 < 0 and βit > 0.
Let the price shock be ∆S > 0 at time t.
Then, the minimum purchase ∆X i > 0 necessary to satisfy the margin constraint

satisfies (
ϕt(∆X i)− (1 + γ) ∆X i

)
= (1 + γ) ∆S

St + ∆SX
i
t+1.

A feasible ∆X i > 0 exists (staying in equilibrium) if and only if ϕt(∆X i) <

(1 + γ) ∆X i.
Market failure occurs otherwise with a loss of wealth.

Proof. Two cases to consider.
(Case 1) X i

t+1 > 0 and βit < 0 with ∆S < 0 at time t.
Before the shock borrowings are Y i

t+1 = −γStX i
t+1 < 0.

After the shock, the maximum borrowings are −γ (St + ∆S)X i
t+1 > −γStX i

t+1.
Hence, the constraint is violated and the change in wealth is negative.

Indeed,(
X i
t+1St − γStX i

t+1

)
−
(
X i
t+1St − γ (St + ∆S)X i

t+1

)
= γX i

t+1∆S < 0.
This implies, borrowers must sell shares ∆X i < 0 to obtain cash to reduce borrow-

ings so that the constraint is not violated. Next, we determine the minimum shares to
sell to stay on the constraint.

After selling shares, the constraint is −γ (St + ∆S)
(
X i
t+1 + ∆X i

)
< 0.

The cash needed is −γ (St + ∆S)
(
X i
t+1 + ∆X i

)
+ γStX

i
t+1 > 0.

From the liquidity cost of trading, the cash obtained from selling shares is
−ϕt(∆X i) (St + ∆S) > 0.
From above cash needed/obtained conditions, the solution is ∆X i such that
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γ (St + ∆S)
(
X i
t+1 + ∆X i

)
− γStX i

t+1 = ϕt(∆X i) (St + ∆S).
γ (St + ∆S)X i

t+1 + γ (St + ∆S) ∆X i − γStX i
t+1 = ϕt(∆X i) (St + ∆S).

γ∆SX i
t+1 + γ (St + ∆S) ∆X i = ϕt(∆X i) (St + ∆S).

γ ∆S
St+∆SX

i
t+1 + γ∆X i = ϕt(∆X i).

γ ∆S
St+∆SX

i
t+1 = (ϕt(∆X i)− γ∆X i).

The left side is negative as ∆S < 0 and X i
t+1 > 0.

A solution exists with ∆X i < 0 if and only if ϕt(∆X i)− γ∆X i < 0.
(Case 2) X i

t+1 < 0 and βit > 0 with ∆S > 0 at time t.
Before the shock the margin is Y i

t+1 = − (1 + γ)StX i
t+1 > 0.

After the shock, the margin is − (1 + γ) (St + ∆S)X i
t+1 > − (1 + γ)StX i

t+1. Hence,
the constraint is violated and the change in wealth is negative as in case 1 above.

This implies, short sellers must buy shares ∆X i > 0 to reduce the short position so
that the margin constraint is not violated. Next, we determine the minimum shares to
buy to stay on the constraint.

After buying shares, the constraint is − (1 + γ) (St + ∆S)
(
X i
t+1 + ∆X i

)
> 0.

The cash reduction in the margin from purchase is
(1 + γ) (St + ∆S)

(
X i
t+1 + ∆X i

)
− (1 + γ)StX i

t+1 > 0.
The cash needed to buy shares is ϕt(∆X i) (St + ∆S) > 0.
From above cash reduction/needed conditions, the solution is ∆X i such that
(1 + γ) (St + ∆S)

(
X i
t+1 + ∆X i

)
− (1 + γ)StX i

t+1 = ϕt(∆X i) (St + ∆S) .
(1 + γ) (St + ∆S)X i

t+1 + (1 + γ) (St + ∆S) ∆X i − (1 + γ)StX i
t+1

= ϕt(∆X i) (St + ∆S).
(1 + γ) ∆SX i

t+1 + (1 + γ) (St + ∆S) ∆X i = ϕt(∆X i) (St + ∆S).
(1 + γ) ∆S

St+∆SX
i
t+1 + (1 + γ) ∆X i = ϕt(∆X i).

(1 + γ) ∆S
St+∆SX

i
t+1 = (ϕt(∆X i)− (1 + γ) ∆X i).

The left side is negative as ∆S > 0 and X i
t+1 < 0.

A solution exists with ∆X i > 0 if and only if ϕt(∆X i)− (1 + γ) ∆X i < 0.

Before discussing the theorem, we note that the price shock ∆S considered for both
the borrowing and short sale constrained agents results in a loss of wealth, independent
of whether or not market failure occurs. As shown below, the magnitude of the wealth
loss is larger when market failure occurs.

This theorem characterizes the conditions under which a price shock of size ∆S
results in the inability of an agent to satisfy her trading constraint, resulting in default
and market failure. There are two such possibilities. The first situation occurs when the
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ith agent is borrowing to buy the stock, is borrowing constrained, and therefore believes
the stock is undervalued (X i

t+1 > 0 and βit < 0). Default and market failure occur if the
liquidity cost of selling the stocks ∆X i < 0 to satisfy the constraint does not generate
enough cash. This occurs when 0 > ϕt(∆X i) > γ∆X i. This is the standard mechanism
often discussed intuitively in the literature (see Brunnermeier and Pedersen (2008)[14]
and Brunnermeier et al. (2013)[16]). The second situation is largely unexplored in
the macroeconomics literature. It occurs when the ith agent is short selling the stock,
is margin constrained, and therefore believes the stock is overvalued (X i

t+1 < 0 and
βit > 0). Default and market failure occur if the liquidity cost of buying back the
shorted stocks ∆X i > 0 to satisfy the constraint is too costly. This occurs when
ϕt(∆X i) > (1 + γ) ∆X i > 0. In both cases, when funding illiquidity (market illiquidity
and binding trading constraints) causes an agent’s default, market failure occurs and
there is a significant loss of wealth in the economy.

Market failure occurs in both of these situations because of funding illiquidity. In-
deed, the ith agent cannot sell/buy enough stock to satisfy the trading constraints due
to the liquidity costs of executing trades. In practice, both the stock and borrowing po-
sitions would be in the same brokerage account. If after the price shock an insufficient
quantity of stock/mma exists in the portfolio to satisfy the trading constraint, then
the entire brokerage account is necessarily liquidated by the agent’s broker. Under this
assumption, it is easy to show that under some mild conditions the ith agent’s wealth
becomes negative, which implies bankruptcy.

Corollary 17. (Market Failure Implies Bankruptcy)
Let market failure occur.
(Borrowing Constrained)
Let X i

t+1 > 0 , βit < 0, and ∆S < 0 at time t.
If ϕt(−X i

t+1) [St + ∆S] > γ(−X i
t+1)St, then the ith agent is bankrupt.

(Short Sale Constrained)
Let X i

t+1 < 0 , βit > 0, and ∆S > 0 at time t.
If Z < −X i

t+1 where Z > 0 is the solution to ϕt(Z) [St + ∆S] = − (1 + γ)StX i
t+1,

then the ith agent is bankrupt.

Proof. (Step 1)
Consider the first case where the agent is borrowing to buy the stock. Here, before
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the shock, the agent’s wealth is

W i
t = StX

i
t+1 + Y i

t+1 = (1− γ)StX i
t+1 > 0

because Y i
t+1 = −γStX i

t+1 < 0. After the price shock of ∆S < 0 , the agent can-
not satisfy the trading constraint. Given that the entire stock position is liquidated
(−X i

t+1 < 0), the wealth after liquidation is

W i
t (after) = −ϕt(−X i

t+1) [St + ∆S] + Y i
t+1

= −ϕt(−X i
t+1) [St + ∆S]− γStX i

t+1.

Note here that the position in the mma is fixed. This new wealth is negative if
ϕt(−X i

t+1) [St + ∆S] > −γStX i
t+1.

(Step 2)
Consider the second case where the agent has a margin account to short the stock.

Here, before the shock, the agent’s wealth is

W i
t = StX

i
t+1 + Y i

t+1 = −γStX i
t+1 > 0

because Y i
t+1 = − (1 + γ)StX i

t+1 > 0. After the price shock of ∆S > 0 , the agent
cannot satisfy the trading constraint. Given the entire mma position is liquidated to
buy stock to cover the short position, the wealth after buying back stock is

W i
t (after) = [St + ∆S] (X i

t+1 + Z)

where Z > 0 is the solution to ϕt(Z) [St + ∆S] = − (1 + γ)StX i
t+1. Note in this case

the position in the shorted shocks is fixed. This new wealth is negative if Z < −X i
t+1 .

This completes the proof.

The two sufficient conditions for bankruptcy are quite mild and similar to the mar-
ket failure conditions ϕt(∆X i) > γ∆X i for ∆X i < 0 when the agent is borrowing
constrained and ϕt(∆X i) > (1 + γ) ∆X i for ∆X i > 0 when the agent is short sale con-
strained where ∆X i correspond to the solutions to the respective equations in Theorem
16.

Besides characterizing the conditions under which default and market failure occur,
the previous theorem also provides some insights into the impact of the shock, if equi-
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librium still exists and a market failure does not occur. This implication is highlighted
in the following corollary.

Corollary 18. (An Accelerator Effect and Augmented Loss of Wealth)
Assuming the minimum purchase necessary to satisfy the trading constraints is fea-

sible in Theorem (16) i.e. staying in equilibrium, then the minimum sale or purchase
∆X i necessary to satisfy the trading i.e. borrowing or short sale constraint exceeds that
in an economy with no liquidity costs. Consequently, the loss of wealth is larger in an
economy with liquidity costs.

(Borrowing Constrained)
Let X i

t+1 > 0 , βit < 0, and ∆S < 0 at time t.
The wealth loss is for ∆X i > 0,

(1− γ)StX i
t+1 − (1− γ) [St + ∆St]

[
X i
t+1 + ∆X i

]
> 0.

(Short Sale Constrained)
Let X i

t+1 < 0 , βit > 0, and∆S > 0 at time t.
The wealth loss is for ∆X i < 0,

−γStX i
t+1 + γ [St + ∆St]

[
X i
t+1 + ∆X i

]
> 0.

Proof. (Step 1)
If X i

t+1 > 0 and βit < 0. Let the price shock be ∆S < 0 at time t. Then, by the previous
Theorem (16) the minimum sale ∆X i < 0, necessary to satisfy the borrowing constraint
satisfies ∆X i = 1(

ϕt(∆Xi)
∆Xi −γ

)γ ∆S
St+∆SX

i
t+1 > 1

(1−γ)γ
∆S

St+∆SX
i
t+1. The right side of this

inequality is the trade size in a market with no illiquidities where ϕt(∆X i) = ∆X i.
(Step 2)

If X i
t+1 < 0 and βit > 0. Let the price shock be ∆S > 0. Then, by the previous theorem

the minimum purchase ∆X i > 0 necessary to satisfy the margin constraint satisfies
∆X i = 1(

ϕt(∆Xi)
∆Xi −(1+γ)

) (1 + γ) ∆S
St+∆SX

i
t+1 >

1
γ

(1 + γ) ∆S
St+∆SX

i
t+1. The right side of this

inequality is the trade size in a market with no illiquidities where ϕt(∆X i) = ∆X i.
In both steps above, the loss in wealth is larger than in the economy with liquidity

costs.
(Step 3)
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The change is wealth is computed by recognizing that the constraint is satisfied
both before and after the trades.

This corollary (18) can be explained as follows. After a price shock, a sale/purchase
is needed to satisfy the trading constraints. If such a sale/purchase exists that is
feasible and an equilibrium still exists, then the size of the sale/purchase exceeds that
which would occur in a market with no illiquidities. This is intuitive because if there
are liquidity costs to trading, then these liquidity costs must be subtracted from the
proceeds, and the size of the trade must be larger to account for these costs. As such,
this implies that the aggregate trades (aggregated by the percentage of agents that
trade) will affect equilibrium prices more in an economy with liquidity costs than in an
economy without liquidity costs. This increased trading will result in a secondary price
change (of the same sign) that augments the original price shock of ∆S. This in turn
will lead to another necessary sale/purchase to satisfy the binding trading constraints,
leading to another subsequent price change to the second price shock, and so forth
until the sequence either converges to a stable and feasible price change or default and
market failure occurs. Consequently, the loss of wealth is larger in an economy with
liquidity costs. This is the accelerator effect of funding illiquidity due to an exogenous
price shock in the economy. This accelerator effect is analogous to that in Brunnermeier
and Pedersen (2008)[14] and Brunnermeier and Sannikov (2014)[17].

We can quantify the probability of massive agent defaults and market failure, or
systemic risk, in our economy due to an exogenous price shock of size ∆S.

Definition 19. (Systemic Risk)
The probability of market failure at time t for a random shock of size ∆S is

Pfail = P {ω ∈ Ω : ∃ i where
(
βit < 0, Y i

t+1 = −γStX i
t+1 < 0,∆X i < 0, ϕt(∆X i) > γ∆X i

)
or

(
βit > 0, Y i

t+1 = − (1 + γ)StX i
t+1 > 0,∆X i > 0, ϕt(∆X i) > (1 + γ)∆X i

)}
(11)

where ∆X i is the solution to
ϕt(∆X i)− γ∆X i = γ ∆S

St+∆SX
i
t+1 for ∆S<0 and

ϕt(∆X i)− (1 + γ) ∆X i = (1 + γ) ∆S
St+∆SX

i
t+1 for ∆S>0.

Note that this definition implicitly takes into account the probability of wealth
loss as disequilibrium necessarily entails some agents’ inability to satisfy the trading
constraint, resulting in default and a loss of wealth (see Theorem 16). Thus, this
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definition is seen to be equivalent to the probability of a significant loss of wealth in
the economy due to massive agent defaults and consequent market failure. By direct
inspection of expression (11), the following theorem follows.

Theorem 20. (Bubbles, Liquidity, Constraints, and Systemic Risk)
(i) As I+

βt
or I−βt

increase, all else constant, Pfail increases.
(ii) As the market becomes more illiquid, all else constant, Pfail increases.
(iii) As the constraints become more restrictive, all else constant, Pfail decreases.

Proof. By expression (11), we have three cases.
(i) As Iβt increases, |βit| is increasing, which makes βit < 0 more likely for ∆X i < 0

and it makes βit > 0 more likely for ∆X i > 0. This gives the result.
(ii) As markets become more illiquid, ϕt(∆X i) increases for all ∆X i 6= 0. See

Lemma (9). This makes ϕt(∆X i) > γ∆X i more likely for ∆X i < 0 and it makes
ϕt(∆X i) > (1 + γ)∆X i more likely for ∆X i > 0, due to monotonicity of probability
measure. This gives the desired result.

(iii) As the constraints become more binding, this means that γ decreases for X i
t+1 >

0 and that 1 + γ increases for X i
t+1 < 0. This makes 0 > ϕt(∆X i) > γ∆X i less likely

for ∆X i < 0 and it makes ϕt(∆X i) > (1 + γ)∆X i > 0 less likely for ∆X i > 0, due to
monotonicity of probability measure. This gives the desired result.

This theorem shows the effects that changing fundamentals have on systemic risk.
It states that if the percentage of agents that believe bubbles exist increases or if the
market becomes more illiquid or if trading constraints are relaxed, then systemic risk
increases. We note that using Corollary (13), a secondary effect of making the trading
constraints more restrictive is that for any agent, the absolute value of a bubble’s
magnitude increases, i.e. |βit| increases. This means that the percentage of agents
seeing bubbles, I+

βt
and I−βt

, increases as well. Then, by implication (i) above, Pfail
increases. This secondary effect, which involves staying in equilibrium, may or may
not dominate the primary implication in (iii) above, generated under the market failure
condition described in Theorem (16) where equilibrium does not exist, assuming all else
constant, including the size of the asset price bubble.

All of these implications are intuitive and consistent with recent market experience
during the financial crisis of 2007-09. U.S. households were highly levered during the
pre-crisis periods and entered the crisis with huge amounts of debt. Indeed, U.S. house-
hold gross debt as a percent of personal income was 96% in 2000 and 128% in 2008.
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Then the shock emanating from the financial sector eventually lead to the collapse of
housing bubbles, stock market crash and consequently reduced borrowing limits in the
economy drastically. It further lead to massive and rapid de-leveraging in the economy
accompanied by a significant loss of wealth, see Eggertsson and Krugman (2012) [28] for
further discussion on this debt and deleveraging mechanism. In our analysis of systemic
risk, we have shown multiple effects of similar deleveraging mechanisms in a much more
general set up through market failure and accelerator effects due to borrowing and short
sale constraints.

5 Conclusion

This paper provides an equilibrium model with heterogeneous agents and trading con-
straints to study asset price bubbles, market illiquidities, and systemic risk. Systemic
risk is defined as the risk of market failure due to an exogenous shock to the economy.
This results in funding illiquidity, which is the conjunction of market illiquidity (i.e.
liquidity risk) and binding trading constraints. To do this, we introduce a different
framework for analyzing asset price bubbles and how they affect the macroeconomy. In
our framework, asset price bubbles arise endogenously in a rational equilibrium due to
the heterogeneous beliefs, heterogeneous preferences, and binding trading constraints.
We show that: (i) positive price bubbles are larger in more illiquid markets, (ii) the per-
centage of agents in the economy who believe a positive price bubble exists decreases
as a market becomes more liquid, (iii) a bubble’s magnitude increases when trading
constraints are more restrictive, and (iv) systemic risk increases as the percentage of
agents seeing bubbles increases or as the market becomes more illiquid. The realization
of systemic risk results in a large fraction of agents violating their trading constraints
thereby defaulting, the non-existence of an equilibrium, and a large loss of wealth in
the economy.

Our results also have policy implications because market liquidity, trading con-
straints and asset price bubbles affect systemic risk. We show that improved market
liquidity decreases systemic risk, and it is well known that monetary and other reg-
ulatory policies can affect market liquidity. We also show that as the percentage of
agents viewing price bubbles increase, systemic risk increases. Regulators can directly
influence agents’ beliefs with appropriate policy actions. To influence the impact of
bubbles on systemic risk, policy makers should focus on determining the percentage of
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agents that see bubbles, and not whether a uniform price bubble exists, which is a dif-
ficult if not an impossible task. Alternatively stated, the percentage of agents that see
price bubbles matters because this is the most relevant channel through which policy
with respect to bubbles works, and not via the overall level of market prices. This is
important because the realization of systemic risk results in a significant fraction of
agents defaulting with a corresponding loss of wealth in the economy. Lastly, we show
that as trading constraints become more binding, systemic risk declines. Regulators
can certainly modify trading constraints. More work still needs to be done to fully
understanding how asset price bubbles, trading constraints, and market liquidities are
influenced by regulatory policies. In particular, it would be useful to introduce mone-
tary policy directly into the model and explore its equilibrium implications. This is an
open and fruitful future research area.
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