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Abstract
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1 Introduction

Given extreme events, such as the global financial crisis in 2008/09, tail risk hedging strategies to

protect investment portfolios against extreme negative market moves are of vital interest to many

market participants. An obvious way of protection is the purchase of a put option. This protective put

strategy ensures that the portfolio value will not fall below a pre-specified protection level at expiry.

However, such a strategy can be expensive, since the option premium is payable each investment

period, although the protection could prove unnecessary in the majority of periods. Moreover, it

may be difficult to find option contracts that fit the needs of the given portfolio—particularly when

it comes to complex investment vehicles (Figlewski, Chidambaran, and Kaplan, 1993). Given the

shortcomings of option-based tail risk protection, a possible alternative might be to resort to dynamic

asset allocation strategies. These strategies primarily aim to improve the downside risk profile of

an investment strategy without jeopardizing its long-term return potential by dynamically shifting

between a risky asset (or asset portfolio) and a risk-free asset. Of these, risk targeting strategies1 are

one possibility (Hocquard, Ng, and Papageorgiou, 2013; Perchet, de Carvalho, Heckel, and Moulin,

2015; Bollerslev, Hood, Huss, and Pedersen, 2017). A risk targeting strategy controls portfolio risk

over time by taking advantage of the negative relationship between risk and return. Specifically, the

investment exposure of the portfolio is adjusted according to updated risk forecasts in order to keep

the ex-ante risk at a constant target level. A stricter way to limit downside risk is to apply portfolio

insurance strategies, such as the constant proportion portfolio insurance (CPPI) strategy (Perold,

1986; Black and Jones, 1987, 1988; Perold and Sharpe, 1988). Herein, the investor defines a minimum

capital level that should be preserved at the end of the investment period. Key element to determine

the investment exposure to the risky asset is the so-called multiplier. It represents the inverse of the

maximum sudden loss of the risky asset, so that a given risk capital (i.e. the spread between portfolio

value and protection level) is not fully consumed and the portfolio value does not fall below the

protection level. Initially, the multiplier was assumed to be static and unconditional (e.g. Bertrand

and Prigent, 2002; Balder, Brandl, and Mahayni, 2009; Cont and Tankov, 2009). However, given the

empirical characteristics of financial assets, such as time-varying volatility or volatility clustering

(cf. Longin and Solnik, 1995; Andersen, Bollerslev, Christoffersen, and Diebold, 2006), various other

studies (e.g. Hamidi, Maillet, and Prigent, 2014) propose to model the multiplier as time-varying

and conditional. The corresponding strategy is known as dynamic proportion portfolio insurance

(DPPI).2

The success of both tail risk protection strategies strongly depends on the success in forecasting

1Risk targeting strategies are also known as constant risk, target risk or inverse risk weighting strategies.
2For a comprehensive literature review on portfolio insurance and CPPI/DPPI multipliers, see Benninga (1990);

Black and Perold (1992); Basak (2002); Dichtl and Drobetz (2011); Hamidi, Maillet, and Prigent (2014), among others.
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tail risk (Perchet, de Carvalho, Heckel, and Moulin, 2015). Given the vast amount of available risk

models, the question is to determine which forecasting approach is appropriate to protect a portfolio

against downside risk. In this vein, we contribute to the existing literature on tail risk protection

strategies by investigating suitable risk models for timely managing the investment exposure in

dynamic tail risk protection strategies. At the same time, we contribute to the literature on risk

model evaluation by not only assessing the statistical performance but also its economical relevance

when testing the risk forecasts in a thorough portfolio application.

The risk targeting strategy, in particular the volatility targeting strategy, is extensively backtested

using historical data, and is known to show superior performance compared to a simple buy-and-hold

strategy (Cooper, 2010; Kirby and Ostdiek, 2012; Ilmanen and Kizer, 2012; Giese, 2012). Hallerbach

(2012, 2013) demonstrates that the Sharpe ratio increases, even if the portfolio mean return is

constant over time. Hocquard, Ng, and Papageorgiou (2013) show that not only do constant volatility

portfolios deliver higher Sharpe ratios than their passive counterpart but also that drawdowns are

reduced. Thus, they provide evidence that targeting constant volatility helps to reduce tail risk.

Closely related to the risk targeting strategy that we apply is the dynamic VaR portfolio insurance

strategy of Jiang, Ma, and An (2009) that also aims at controlling the exposure of a risky asset

such that a specified Value at Risk is not violated. However, their strategy can only be applied to

parametric location-scale models, while the one we apply is more flexible and allows use of any type

of risk model. Similar to us, Bollerslev, Hood, Huss, and Pedersen (2017) use a risk targeting strategy

to compare realized volatility models to more conventional procedures that do not incorporate the

information in high-frequency intraday data.

In the literature on dynamic proportion portfolio insurance, there are various ways to model the

conditional time-varying multiplier. While Ameur and Prigent (2006, 2014) employ GARCH-type

models, Hamidi, Jurczenko, and Maillet (2009) and Hamidi, Maillet, and Prigent (2008) define the

multiplier as a function of a dynamic autoregressive quantile model of the Value at Risk according to

Engle and Manganelli (2004). In contrast, Chen, Chang, Hou, and Lin (2008) propose a multiplier

framework based on genetic programming. More recently, Hamidi, Maillet, and Prigent (2014)

employ a dynamic autoregressive expectile (DARE) model to estimate the conditional multiplier.

In this framework, the multiplier is modelled as a function of the expected shortfall determined

by a combination of quantile functions in order to reduce the potential model error. Specifically,

they combine the historical simulation approach, three methods based on distributional assumptions

and four methods based on expectiles and conditional autoregressive specifications into the DARE

approach. All these papers provide evidence that the DPPI strategy, with a multiplier based on a

time-varying conditional risk estimate, outperforms the traditional CPPI strategy.

We are particularly interested in comparing different ways to determine the risky investment

exposure—by assessing various models to estimate portfolio risk. While the academic literature

suggests a myriad of risk models—Andersen, Bollerslev, Christoffersen, and Diebold (2006, 2013),
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Kuester, Mittnik, and Paolella (2006), and Righi and Ceretta (2015) provide thorough summaries

on risk modelling—practitioners still only use a limited number of them. There may be various

reasons for this discrepancy such as complexity, (computational) efficiency or the perception that

the additional benefit of implementing a highly sophisticated model could be minor. We therefore

examine simple methods that are common among practitioners and more flexible methods to estimate

portfolio risk. In particular, we perform an empirical study using a global multi-asset data set

consisting of stock, bond, commodity and currency indices.

When using international daily return data, the problem of different market closing times arises.

Ignoring this fact would lead to distorted portfolio risk estimates given that the degree of co-movement

is considerably underestimated (see Scholes and Williams, 1977; Lo and MacKinlay, 1990; Burns,

Engle, and Mezrich, 1998; Audrino and Bühlmann, 2004; Scherer, 2013). Hence, we first synchronize

daily returns by extrapolating asset prices of closed markets based on information from markets that

close later. Following Audrino and Bühlmann (2004), we thus employ a synchronization approach

based on a VAR(1) model. Second, we estimate portfolio risk using the following models: historical

simulation, RiskMetrics, Cornish-Fisher Approximation, quantile and expectile regression, extreme

value theory and Copula-GARCH. To quantify risk, we resort to the classic downside risk measures

Value at Risk (VaR) and Expected Shortfall (ES). Third, we employ the ensuing risk forecasts in

dynamic tail risk protection strategies.

Our empirical findings indicate a superiority of sophisticated risk forecasts over simple approaches

in terms of historical accuracy and statistical fit. Using the most prominent VaR and ES tests

(Kupiec, 1995; Christoffersen, 1998; McNeil and Frey, 2000; Christoffersen and Pelletier, 2004), we

document the RiskMetrics, quantile/expectile regression and the Copula-GARCH approach to be

the most suitable methods. When feeding the risk forecasts in the tail risk protection framework,

our findings are twofold. For the risk targeting strategy, we observe a clear outperformance of the

more flexible methods, confirming the results from the statistical analysis. For the DPPI strategy,

we likewise evidence that the use of more sophisticated risk models helps to protect investors from

downside risk. Yet, more naive approaches do not fall short of providing downside protection. Given

that the portfolio insurance strategy automatically reduces investment exposure when approaching

the protection level, the less sophisticated methods’ weaknesses seem to be compensated by this

second line of defense.

The remainder of the paper is structured as follows: Section 2 discusses the employed tail

risk protection strategies. Section 3 briefly presents the different models to estimate portfolio risk.

In Section 4, we perform the empirical study using a global multi-asset data set to compare the

performance of dynamic tail risk protection strategies based on the different risk models. Section 5

concludes.
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2 Tail Risk Protection Strategies

We consider a risk-averse investor who primarily aims to limit the downside risk of his investment

over an investment horizon of H time steps. Further, let t = 1, 2, ..., T be the time index of portfolio

rebalancing and I(t) = t −
(
d tH e − 1

)
H a subindex for each investment period d tH e, so that the

latter runs from 1 to H in each investment period. At the beginning of each investment period d tH e,
i.e. at I(t) = 1, the investor determines a risk target that should be achieved at the end of the

period, i.e. at I(t) = H. The management of the protected portfolio follows a dynamic portfolio

allocation. In particular, the value of the protected portfolio, denoted by Vt, is invested in a risky

asset (or portfolio) and a non-risky asset in such a way that the given risk target will not be violated.

Prices and returns are denoted by Pt and rt for the risky asset and Bt and rf,t for the non-risky

asset, respectively. To explicitly determine the exposure to the risky asset et, we need to forecast the

downside risk of the risky asset, quantified by a risk measure ρ(·).

2.1 Risk Targeting Strategies

A risk targeting strategy’s underlying principle is to systematically adjust exposure to a given asset

(or portfolio) conditional to its current risk (forecast) in order to maintain a pre-specified target

risk level. For example, if we target a 1% Value at Risk for a given asset portfolio and the asset

portfolio’s current Value at Risk is 1.5%, we would lower our investment exposure by shifting towards

the risk-free asset, and vice versa if the current risk is lower than our target. The rationale for

maintaining a constant risk level can be found in the negative relationship between risk and return

(see French, Schwert, and Stambaugh, 1987). Empirical evidence suggests that asset returns tend to

be greater during periods of low risk. Consequently, investors should maximize asset exposure during

these periods, taking advantage of a favorable risk–reward tradeoff. As risk increases, they should,

however, decrease asset exposure to maintain the desired risk level.

Given the level of ex-ante risk of the underlying risky asset ρt(rt+1) and the predefined target

risk ρ, the allocation to the risky asset et is simply ρ/ρt(rt+1). As ρt(rt+1) is unknown, we employ a

forecast based on the information available at time t, Ft:

et ≡
ρ

ρ̂t(rt+1|Ft)
(1)

Correspondingly, the weight of the risk-free asset, 1− et, can be positive or negative, depending on

whether the risky asset must be de-levered or levered to attain the constant target risk.

2.2 Constant and Dynamic Proportion Portfolio Insurance

The basic idea of the constant proportion portfolio insurance (CPPI) strategy (see Perold, 1986;

Black and Jones, 1987, 1988; Perold and Sharpe, 1988) is a portfolio that dynamically shifts between

the risky and non-risky asset to guarantee the investor to recover a given proportion of its initial
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capital. At the beginning of each investment period d tH e, i.e. at I(t) = 1, the investor determines this

minimum portfolio value, the so-called floor Fd t
H
e, that should be preserved at the end of the period,

i.e. at I(t) = H. The corresponding risk capital, called the cushion, is derived as the difference of

(the investment in) portfolio value, Vt, and discounted floor, i.e. the net present value, NPV(·), of
the floor:

Ct = Vt −NPVt(Fd t
H
e). (2)

The cushion represents a certain amount of the portfolio value that allows potential market shocks

to be absorbed before the manager can rebalance the portfolio. In order to avoid a breach of the

discounted floor, the investment exposure to the risky asset, defined as Et = etVt, should be set such

that the cushion at t is at least as high as the maximum sudden drop in the portfolio value between

the rebalancing dates t and t+ 1, i.e.

Ct ≥ Vt
∣∣∣∣inf

(
Vt+1 − Vt

Vt

)∣∣∣∣ . (3)

As the portfolio consists of the risky and the non-risky asset, (3) can be simplified to

Ct ≥ etVt
∣∣∣∣inf

(
St+1 − St

St

)∣∣∣∣ . (4)

Rearranging (4) then yields the (total) exposure to the risky asset as

Et ≤ Ct|inf(rt+1)|−1= Ctm, (5)

where rt+1 = St+1−St
St

and m ≡ |inf(rt+1)|−1 is called the multiplier.3 The latter indicates how often

a given cushion can be invested in the risky asset without breaching the floor. Thus, it reflects the

investor’s risk tolerance. The higher the multiplier, the more the investor will participate in upward

market movements of the underlying. But the higher the multiplier, the faster the portfolio will

reach the floor when there is a sustained decrease in the underlying’s price. In order to allow for the

highest possible participation in the underlying risky asset, it is common to set Et such that equality

holds in (5). The remainder of the investor’s wealth is invested in the risk-free asset.

If rebalancing were continuous and price movements sufficiently smooth, the CPPI allocation

rule would ensure that the portfolio does not fall below the floor (Cont and Tankov, 2009; Balder,

Brandl, and Mahayni, 2009; Hamidi, Hurlin, Kouontchou, and Maillet, 2014; Ardia, Boudt, and

Wauters, 2016). However, with discrete rebalancing and jumps in prices, there is a non-negligible

probability that the floor will be breached. This risk of losing more than the cushion between two

3We follow Benninga (1990) and restrict the participation ratio to vary between 0% and 100% of the risky
asset in order to rule out short positions. This approach leads to a slightly different exposure definition: Et =
max[min(mCt, Vt), 0].
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rebalancing dates and thus failing to ensure the protection at the end of the investment period

is called gap risk. A common way to minimize the gap risk is to employ the minimum return of

the risky asset over the whole sample history, i.e. inf(rt+1) = min(r1, ..., rT ). Then, the CPPI

strategy is based on a static unconditional multiplier—often reflecting a constant worst-case scenario.

Although such a conservative stance would have meaningfully addressed catastrophic drawdowns

during extreme market turmoil, it would also have capped upside potential over the long term.

Dynamic proportion portfolio insurance (DPPI) is designed to introduce more flexibility. Instead of

using a static multiplier, the risk budget adapts dynamically to changes in a risk forecast, measured

by ρ̂(·). Thus, the exposure changes to

Et = Ct|ρ̂t(rt+1|Ft)|−1= Ctmt, (6)

where the risk forecast ρ̂t+1 is based on information Ft and measures the risk when the risky asset

price S evolves from t to t+ 1. The dynamic multiplier is therefore given by

mt = |ρ̂t(rt+1|Ft)|−1. (7)

In this way, the portfolio’s exposure to the risky asset reacts to changes in the risk forecast—ensuring

that it does not remain artificially low as a result of a constant conservative risk assumption. For

this to work in practice, the risk model must be capable of quickly homing in on volatility spikes,

and just as quickly readjusting to a normalization of market volatility.

The advantage of the CPPI and DPPI strategy, respectively, is the simple practical implementation

that does not call for forecasting the returns of the risky asset. Major drawbacks are the strategies’

path dependencies as well as the lock-in effect. Depending on the underlying portfolio return path,

the CPPI/DPPI strategy can deliver considerably different results. In general, the more volatile the

risky asset, the lower the average participation ratio. While the CPPI strategy is fully exposed to the

problem of path dependency, the DPPI strategy can mitigate this problem at least to some extent by

quickly reacting to market changes. The lock-in effect occurs when the cushion is entirely consumed

by losses. The CPPI/DPPI strategy is then fully invested in the risk-free asset until the end of the

investment period and no participation in subsequent upward movements is possible.

The success of both described tail risk protection techniques strongly depends on the success in

forecasting tail risk. For both academics and practitioners it is therefore of crucial interest to identify

suitable risk models to model a portfolio’s downside risk adequately.

3 Estimating Portfolio Risk

Given the vast amount of available risk models (see, e.g. Kuester, Mittnik, and Paolella, 2006;

Nadarajah, Zhang, and Chan, 2014), we focus on a few yet distinct approaches, ranging from rather
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simple approaches that are widely used among practitioners to more flexible models that are standard

in the academic literature. We consider both portfolio-level (aggregated, “top-down”) and asset-level

(disaggregated, “bottom-up”) risk modelling. Following the description on how we measure downside

risk, we briefly summarize these methods in this section.4

3.1 Conditional Risk Measurement

The literature suggests various ways to quantify market risk of financial assets. As we are particularly

interested in protecting risky portfolios against extreme market losses, we resort to the most common

downside risk measures, Value at Risk (VaR) and Expected Shortfall (ES). VaR measures the

maximum potential loss of a given asset (portfolio) at a given confidence level.5 Therefore, VaR is

simply the negative p-quantile of the conditional return distribution, that is,

VaRpt+1|t = −Qp(rt+1|Ft) = −inf
x
{x ∈ R : P (rt+1 ≤ x|Ft) ≥ p}, (8)

where Qp(·) denotes the quantile function, rt reflects the return of the asset (portfolio) in period t

and Ft represents the information available at time t.

Although VaR is still the risk measure of choice in the financial industry, it has been criticized

for disregarding outcomes beyond the specified VaR-quantile. Moreover, VaR is not a subadditive

risk measure. This property posits that the total portfolio risk should not be greater than the sum

of the risks of its constituents (see Artzner, Delbaen, Eber, and Heath, 1999; Acerbi and Tasche,

2002; Taylor, 2008). Expected shortfall, also known as conditional VaR or expected tail loss, is a risk

measure that overcomes these weaknesses by aggregating information about the tail of the portfolio

return distribution. It is defined as the conditional expectation of the return given that VaR is

exceeded (see Yamai, Yoshiba, et al., 2002), specifically

ESpt+1|t = −Et
[
rt+1|rt+1 < −VaRpt+1|t,Ft

]
= −p−1

∫ p

0
VaRst+1|tds. (9)

3.2 Conditional Portfolio-Level Risk Models

Generally, there are two ways of risk modelling classes, depending on the aggregation level. Portfolio-

level analysis, as discussed in this section, requires only a univariate model based on aggregated port-

folio returns. The latter can be easily constructed using portfolio holdings wt = (w1,t, w2,t, ..., wN,t)

4For a rigorous discussion of the analyzed risk models, see Kuester, Mittnik, and Paolella (2006), Andersen,
Bollerslev, Christoffersen, and Diebold (2013) and Righi and Ceretta (2015).

5As more common in the academic literature, we refer to VaR and ES as positive numbers using low-probability
terminology (e.g. a Var of 1%).
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and the individual asset returns rt = (r1,t, r2,t, ..., rN,t):

rPF,t =
N∑
i=1

wi,tri,t = w′trt, t = 1, 2, ..., T. (10)

While aggregation generally comes with the loss of information, Andersen, Bollerslev, Christoffersen,

and Diebold (2013) argue that there is no reason why a parsimonious dynamic model should not

be estimated for portfolio-level returns. If the distribution of portfolio returns is of interest, then

this distribution can be modelled directly rather than via aggregation based on a larger, and almost

inevitably less well-specified, multivariate model.

3.2.1 Historical Simulation

The simplest way to estimate VaR and ES is to use the sample quantile function based on historic

return data, which is referred to as historical simulation (HS). Let rPF,(1) ≤ rPF,(2) ≤ ... ≤ rPF,(t)

denote the order statistics in ascending order corresponding to the original historical pseudo portfolio

returns rPF,1, rPF,2, ..., rPF,t. Then, the HS-VaR for t+ 1 is simply the empirical 100p-th quantile or

the tp-th order statistic, i.e.

VaRpt+1|t = −rPF,(dtpe). (11)

Correspondingly, the ES estimate for t+ 1 can be computed as

ESpt+1|t = −

 t∑
i=dtpe

rPF,(i)

 (t− dtpe)−1 . (12)

The main advantage of the HS approach is its computational simplicity and non-parametric dimension,

i.e. VaR and ES do not rely on any distributional assumptions. In contrast, the most pertinent

disadvantage6 is its inability to properly incorporate conditionality (see Andersen, Bollerslev, Christof-

fersen, and Diebold, 2006). This deficiency of the conventional HS approach is forcefully highlighted

by the clustering of the corresponding VaR violation in time, reflecting a failure to properly account

for persistent changes in market volatility. The only source of dynamics in the HS risk estimates is

the evolving window used to construct historical pseudo portfolio returns. Nevertheless, the choice

of the window size is crucial: too few observations will lead to sampling error, whereas too many

observations will slow down estimates when reacting to changes in the true distribution of financial

returns. Moreover, the risk estimates can exhibit jumps when large negative returns either enter or

exit the estimation window.

6For a rigorous discussion of several serious issues of the HS approach, see Pritsker (2006).
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3.2.2 Cornish-Fisher Approximation

Another simple approach is the Cornish-Fisher Approximation (CFA) method (Zangari, 1996), where

the VaR is modelled as a Taylor-series type expansion (cf. Cornish and Fisher, 1938) around the VaR

of a normal distribution. Specifically, the CFA-VaR is an extension of the normal quantile function

by accounting for skewness γ and kurtosis δ, and is calculated as

VaRpt+1|t = −µt − σtF−1CF (p), (13)

where

F−1CF (p) ≡ Φ−1p +
(
[Φ−1p ]2 − 1

) γ
6

+
(
[Φ−1p ]3 − 3Φ−1p

) δ − 3

24
−
(
2[Φ−1p ]3 − 5Φ−1p

) γ2
36

and Φ(·) is the standard normal cdf. Moreover, µt and σt are computed by the sample mean and

sample standard deviation, respectively.

Boudt, Peterson, and Croux (2008) show how the Edgeworth and Cornish-Fisher expansions of

the density and quantile functions can be used to obtain an estimator for ES that delivers accurate

downside risk estimates even in the presence of non-normal returns. The modified or Cornish-Fisher

ES is thus computed as

ESpt+1|t = −µt − σtEFCF
[
z|z ≤ F−1CF (p)

]
(14)

where

EFCF
[
z|z ≤ F−1CF (p)

]
= −1

p

(
φ(F−1CF (p)) +

δ

24

[
I4 − 6I2 + 3φ(F−1CF (p))

]
+
γ

6

[
I3 − 3I1

]
+
γ2

72

[
I6 − 15I4 + 45I2 − 15φ(F−1CF (p))

] )
with

Iq =



q/2∑
i=1

(∏q/2
j=1 2j∏i
j=1 2j

)
g2ip φ(gp) +

q/2∏
j=1

2j

φ(gp) for q even

q∗∑
i=0

(∏q∗

j=0(2j + 1)∏i
j=0(2j + 1)

)
g2i+1
p φ(gp)−

 q∗∏
j=0

2(j + 1)

φ(gp) for q odd

and q∗ = (q − 1)/2, gp = F−1CF (p). φ(·) denotes the standard normal pdf.

The main advantage of the CFA method is its ability to account for fat tails. However, an issue is

that the CFA-VaR is not necessarily monotone, i.e. the 1% VaR might be smaller than the 5% VaR.

Martin and Arora (2017) also document that the CFA-VaR and CFA-ES suffer in terms of statistical

efficiency.
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3.2.3 Quantile/Expectile Regression

As VaR and ES are directly linked to quantiles and expectiles, a natural approach to risk modelling

employs the concepts of quantile and expectile regressions. The basic idea of quantile regression is

to directly model the conditional quantile rather than the whole distribution of portfolio returns.

More precisely, the conditional p-quantile, Qp(rPF,t|Ft−1) = −VaRt|t−1, is modelled as a parametric

function of the information Ft−1:

VaRpt|t−1 ≡ −gp (Ft−1;βp) , (15)

where g(·, ·) and the parameter vector β explicitly depend on p. Following Koenker and Bassett

(1978), the conditional sample p-quantile can be found as the solution to

min
βp


∑

rPF,t≥VaRp
t|t−1

p|rPF,t + VaRpt|t−1|+
∑

rPF,t<−VaRp
t|t−1

(1− p)|rPF,t + VaRpt|t−1|

 , (16)

where we determine VaRpt by the conditional autoregressive Value at Risk (CAViaR) specification of

Engle and Manganelli (2004). In particular, we adopt their asymmetric slope CAViaR model7 that is

given by

VaRpt|t−1 = β0 + β1VaR
p
t−1|t−2 + β2 max [rPF,t−1, 0] + β3max [−rPF,t−1, 0] . (17)

In a similar fashion, we can use expectile regression to estimate ES. In particular, we employ the condi-

tional autoregressive expectile (CARE) model of Taylor (2008). First, we consider that the population

τp expectile of rPF,t is the parameter µτp that minimizes the function E
[
|τp − 1(rPF,t − µτp)|(rPF,t − µτp)2

]
.

Hence, we can represent the conditional expectile as a parametric function of past information, i.e.

µτp(rPF,t) ≡ hτp
(
Ft−1; γτp

)
. The parameters γτp can be estimated using asymmetric least squares

(cf. Newey and Powell, 1987), i.e.

min
γτp

∑
rPF,t

|τp − 1(rPF,t < hτp
(
Ft−1; γτp

)
)|
(
rPF,t − hτp

(
Ft−1; γτp

))2 , (18)

where 1(·) denotes the indicator function. Similar to the asymmetric slope CAViaR model, we assume

the conditional expectile to have an asymmetric slope specification. The ES can then be computed

7For the sake of simplicity, we focus on one CAViaR model. Particularly, we choose the asymmetric slope specification
because of its ability to accommodate the leverage effect.
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as the product of a correction term and the conditional expectile, i.e.

ESpt|t−1 =

(
1 +

τp
(1− 2τp) p

)(
γ0 + γ1µτp(rPF,t−1) + γ2max [rPF,t−1, 0] + β3max [−rPF,t−1, 0]

)
.

(19)

The attractiveness of the quantile and expectile regression approach is that no explicit distributional

assumption for the time series behaviour of returns is needed, thus reducing the risk of model

misspecification. The main drawback of the CAViaR modelling strategy is that it might generate out-

of-order quantiles similar to the CFA method. Also, estimation of model parameters is challenging.8

3.2.4 Extreme Value Theory

As we are primarily interested in the tails of the portfolio distribution, a natural way is to resort

to extreme value theory (EVT) which makes it possible to meaningfully estimate the tails based

on extrapolating from available observations. McNeil and Frey (2000) propose a semi-parametric

framework based on extreme value theory to describe the tail of the conditional distribution. In

a first step, the authors employ pseudo-maximum-likelihood fitting of AR(1)-GARCH(1,1) models

to estimate conditional volatility forecasts σ̂t+1 and conditional mean forecasts µ̂t+1. In a second

step, they resort to EVT for estimating the tail of the innovation distribution of the AR(1)-

GARCH(1,1) model. In particular, they use the peak-over-threshold method where a Generalized

Pareto Distribution (GPD) is fitted to the negative portfolio returns over a specified threshold.9 The

quantile ẑp can then be estimated as

ẑp = u+
β̂

ξ̂

[(
1− q
nu/n

)−ξ̂
− 1

]
, (20)

where β̂ and ξ̂ are the GPD estimates and nu is the number of observations above threshold u.

Consequently, the VaR and ES forecasts can be computed as

VaRpt+1|t = − (µ̂t+1 + σ̂t+1ẑp) , (21)

ESpt+1|t = −

(
µ̂t+1 + σ̂t+1ẑp

(
1

1− ξ̂
+

β̂ − ξ̂u
(1− ξ̂)ẑp

))
. (22)

The ARMA-GARCH fitting in the first step makes it possible to capture certain stylized facts such

as time-varying volatility, fat tails and volatility clustering. Then, EVT is particularly suitable to

estimate the tails of the distribution. The crucial assumption of EVT is, however, that one is in the

tails of the distribution. Hence, the difficulty is the determination of the threshold. If the threshold

8We thank James Taylor for providing the Gauss code for his CARE models.
9We follow McNeil and Frey (2000) when determining the thresholds. See their paper for details.
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is too low, then the approximation can hardly be justified and the associated risk estimates may be

biased. Vice versa, if the threshold is too high, there are too few observations over the threshold

resulting in highly volatile estimates.

3.3 Conditional Asset-Level Risk Models

The models discussed so far have focused on dynamic risk modelling for univariate returns. In

contrast, conditional asset-level risk analysis is based on a multivariate model that additionally makes

it possible to account for the dependence structure among the portfolios’ assets.

3.3.1 The RiskMetrics Approach

The RiskMetrics (RM) model is arguable the most simple and commonly applied approach among

finance practitioners for estimating time-varying covariance matrices. It utilizes an exponentially

weighted moving average filter that implicitly assumes a very tight parametric specification by

incorporating conditionality via the exponential smoothing of individual squared returns and cross

products. The estimate for the N ×N covariance matrix at time t+ 1, Σ̂t+1, is then defined by

Σ̂t+1 = λΣ̂t + (1− λ)rtr
′
t, (23)

where λ < 1 is known as the decay factor.10 The VaR and ES are then simply obtained as

VaRpt+1|t = −
(
w
′
tΣ̂t+1wt

)−1/2
Φ−1p , (24)

ESpt+1|t = −
(
w
′
tΣ̂t+1wt

)−1/2 φ (Φ−1p )
p

. (25)

The RM model is appealing because no parameters need to be estimated—which is due to the implicit

assumption of zero mean returns, a fixed smoothing parameter and conditional normality. At the

same time, however, the RM approach is very restrictive, imposing the same degree of smoothness

on all elements of the covariance matrix. Moreover, the RM model tends to underestimate VaR and

ES under the normality assumption. We therefore employ a t-distribution instead.

3.3.2 The Copula-GARCH Approach

The Copula-GARCH (CG) approach proposed by Jondeau and Rockinger (2006) and Patton (2006) is

based on the concept of inference from margins, i.e. dependencies between the marginal distributions

are captured by a copula.

In the first step, univariate GARCH(1,1)-models are fitted to the underlying return series.

10In practice, λ is typically fixed at a preset value of 0.94 when using daily returns.

13



Assuming a return process (ri,t)i∈N,t∈Z, the mean and variance equations are given by

ri,t = µi + εi,t, (26)

εi,t = zi,t

√
σ2i,t, (27)

zi,t ∼ Di(0, 1, ξi, νi), (28)

σ2i,t = ωi + αiε
2
i,t−1 + βiσ

2
i,t−1, (29)

where ωi > 0, αi ≥ 0 and βi ≥ 0, i = 1, ..., N . Moreover, ri are the returns of the i-th portfolio

asset, and Di reflects the skewed standardized-t distribution with skewness parameter ξi and shape

parameter νi.

In the second step, we use a time-varying copula to estimate the marginal distributions of the

asset returns together with the dependence structure. In particular, the joint distribution of the N

GARCH return processes can be expressed depending on an N -dimensional copula C:

Ft (rt|µµµt,σσσt) = Ct (F1,t(r1,t|µ1,t, σ1,t), ..., FN,t(rN,t|µN,t, σN,t)|Ft−1) , (30)

where F1(·), ..., FN (·) are the conditional marginal distributions of the return processes. The depen-

dence structure of the margins is assumed to follow a Student-t copula with conditional correlation

Rt and constant shape parameter η. We opt for the Student-t copula for modelling the dependence of

financial assets since the normal copula cannot account for tail dependence. The conditional density

of the Student-t copula at time t is given by:

ct (ui,t, ..., uN,t|Rt, η) =
ft

(
F−1i,t (ui,t|η), ..., F−1i,t (uN,t|η)|Rt, η

)
n∏
i=1

fi

(
F−1i,t (ui,t|η)|η

) , (31)

where ui,t = Fi,t(ri,t|µi,t, σi,t, ξi, νi) is the probability integral transformation of each series by its

conditional distribution Fi,t estimated via the first stage GARCH process, F−1i,t (ui,t|η) represents

the quantile transformation of the uniform margins subject to the common shape parameter of

the multivariate density, ft(·|Rt, η) is the multivariate density of the Student-t distribution with

conditional correlation Rt and shape parameter η and fi(·|η) is the univariate margins of the

multivariate Student-t distribution with common shape parameter η. Furthermore, we allow the

parameters of the conditional copula to vary through time in a manner analogous to a GARCH

model for conditional variance (e.g. Patton, 2006). Specifically, we assume the dynamics of Rt to

follow an Asymmetric Generalized Dynamic Conditional Correlation (AGDCC) model according to

Cappiello, Engle, and Sheppard (2006).

Based on the copula estimates, we then generate N sets of random pseudo-uniform variables and

transform these into corresponding realizations of the error processes by using the quantile function

of the margins. These simulated numbers are then used together with the conditional volatility
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forecast of the GARCH models to derive a Monte Carlo set of returns for each asset. By means of

the portfolio’s weight vector we can then compute a distribution of portfolio returns for t+ 1 which

allows us to calculate VaR and ES forecasts.

The Copula-GARCH model has several advantages over more simplistic approaches. The GARCH

models with skewed standardized-t distribution applied in the first stage make it possible to capture

the main empirical characteristics of financial asset returns. Moreover, as correlation coefficients can

capture the dependency between random variables correctly only for elliptical distributions, and asset

returns hardly follow elliptic distributions, dependencies between the portfolios’ assets cannot be

measured correctly in most cases. Using the concept of copulas enables us to separate the marginal

distributions and the dependence structure so that dependencies between the portfolios’ assets can

be incorporated in the VaR estimation. Given the associated computational effort and complexity,

however, most practitioners prefer to resort to simpler methods.

4 Empirically Validating Risk Models for Tail Risk Protection

In this section, we describe the design and the results of the empirical study that compares the various

methods for portfolio risk modelling using tail risk protection strategies. For this, we use a global

multi-asset data set consisting of the four main factors of market risk: (i) equity, (ii) fixed income,

(iii) commodities and (iv) exchange rates. In particular, we utilize the following representative assets:

the equity futures for Nikkei 225, EURO STOXX 50, FTSE 100, S&P 500, MSCI EM, the bond

futures for JGB 10Y, Euro Bund, UK Gilt, US 10Y, the total return indices for the commodities Oil,

Gold, Copper and the spot market foreign exchange rates JPY/USD, EUR/USD, GBP/USD. The

money market investment is based on the 3-month U.S. Treasury Bill. We retrieve all data from

Bloomberg. All asset prices are in local currency. Portfolio returns (and associated portfolio risk

figures) are computed from the perspective of a U.S. investor who is hedging any currency exposure.

The sample spans from 2/1/1991 to 31/3/2017, giving rise to 6,847 daily return observations for each

series.

To calculate the portfolio risk figures, we assume a given static strategic allocation of portfolio

weights. Alternatively, we could consider a dynamic weight structure driven by a tactical asset

allocation component. However, then it would not be possible to determine whether an increase in

performance is due to superior risk forecasts or due to predictability of the tactical component.

Although the static weights of the multi-asset portfolio are chosen reasonably from a practitioners’

point of view, they are still to some extent arbitrary. Therefore, we also investigate four other

allocations: a pure equity portfolio, a pure bond portfolio, a 30/70 equity/bond portfolio and 60/40

equity/bond portfolio. Table 1 reports the corresponding allocation of portfolio weights as well as

the descriptive statistics of the log returns of each asset and portfolio: all time series exhibit the

typical features of financial assets such as fat tails and non-normality.
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[Table 1 about here]

The empirical study considers one day-ahead estimation of the 1% and 5% conditional VaR and

ES. We choose these quantiles since they are appropriate for modelling tail risk. Our focus on one

day-ahead estimation is consistent with the portfolio rebalancing frequency of the considered tail risk

protection strategies. Like Kuester, Mittnik, and Paolella (2006) and Taylor (2008), we use a moving

window of 1,000 observations to re-estimate parameters for the various methods repeatedly. Thus,

we get an out-of-sample estimation period from 3/11/1994 to 31/3/2017 consisting of 5,846 daily

VaR and ES forecasts for each method and portfolio. We use these out-of-sample predictions as the

basis of our comparison of methods.

As common in financial applications, we implement the tail risk protection strategies without

short sales or leverage and assume round-trip transaction costs of 10 basis points. In addition, to

avoid portfolio shifts triggered by rather small market movements, we apply a trading filter of 2%,

i.e. we only act on exposure changes in excess of 2% (cf. Dichtl, Drobetz, and Wambach, 2017).

4.1 Synchronizing Returns

When modelling risk using international daily return data, one has to properly account for the

fact that markets have different closing times.11 Even worse, for some markets trading times do

not overlap at all, as is the case for the U.S. and Japan. Obviously, these differences will make

equity markets appear less (cor)related than they actually are. As a result, portfolio risk estimates

will overstate the diversification benefit attached to investing across these assets (see Scholes and

Williams, 1977; Lo and MacKinlay, 1990; Burns, Engle, and Mezrich, 1998). Ideally, daily returns

can be computed for all series using the same time stamp. This approach, however, is hardly feasible,

even when using high-frequency data. Instead, the academic literature suggests synchronizing daily

returns by extrapolating asset prices for those markets that close earlier, based on information from

markets that close latest. While Burns, Engle, and Mezrich (1998) use a first-order vector moving

average model with a multivariate GARCH covariance matrix to estimate synchronized returns,

Audrino and Bühlmann (2004) employ a simple first-order vector autoregressive model (see Appendix

A for details on the return synchronization methodology). We follow the latter approach due to its

computational efficiency and performance advantages.

Based on our sample, we compare the synchronized daily returns to the original ones. Table

2 shows the descriptive statistics of the original and synchronized daily returns. We observe that

differences in the mean are only marginal, whereas volatilities are slightly higher when synchronizing.

Thus, the return characteristics of the original data are maintained.

11The opening times of the markets in our sample are as follows: Japanese markets are open from 19:00(-1) to 1:00
ET, EU/UK markets from 3:00 to 11:30 ET, and U.S. markets open from 09:30 to 16:15 ET.
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[Table 2 about here]

To check the effectiveness of synchronization, Figure 1 shows the correlation matrices of both return

types. For the synchronized daily returns, the chosen VAR(1) model is successfully re-correlating the

within-asset class correlations. While equity correlations are no longer underestimated, equity-bond

correlations tend to be more negative when using synchronized returns. Hence, the improved equity-

bond diversification could mitigate the equity risk pick-up. However, we learn that the latter effect

dominates and unreported results evidence an increase of portfolio risk figures that average to 15%

for the conservative multi-asset portfolio. These findings are in line with Scholes and Williams (1977)

and Lo and MacKinlay (1990).

[Figure 1 about here]

4.2 Statistical Validity of Risk Forecasts

To test the statistical validity of the risk forecasts, we perform various backtests for VaR and ES.

The objective of this backtest is to consider the ex ante portfolio risk forecasts from a specific model

and compare them with the ex post realized portfolio returns.

In principle, backtesting VaR forecasts boils down to evaluating the distribution of VaR violations.

That is, counting the number of realized returns that fall below the predicted VaR-level for a given

estimation period. Hence, for example, in a set of 252 forecasts of daily 1% VaRs per year, there

should be 2.52 violations in theory. The test for unconditional coverage of Kupiec (1995) assesses

whether the frequency of violations is consistent with the quantile of loss a VaR measure is intended

to reflect. However, this test does not account for serial independence of the number of violations.

The conditional coverage test of Christoffersen (1998) offers a remedy by jointly testing the frequency

as well as the independence of violations, assuming that VaR violations are modelled with a first

order Markov chain. This test is therefore able to reject a VaR model that generates too many

clustered violations. An alternative way to account for clustering of extremes is the duration test of

Christoffersen and Pelletier (2004), which examines the duration between violations by testing the

null hypothesis that the duration between violations is exponentially distributed against a Weibull

alternative.

Backtesting ES is more complicated. Hence, we resort to the most established test in the literature,

the zero mean test of McNeil and Frey (2000). It is based on the excess conditional shortfalls, i.e.

(rt − ESt)rt<−VaRt . Standardized by the conditional volatility, these should be i.i.d. and have zero

mean under the null hypothesis of a correctly specified risk model.

Figure 2 presents the predicted 1% VaR and ES figures of the Historical Simulation approach

(HS), RiskMetrics (RM), Cornish-Fisher Approximation (CFA), Quantile Regression (QR)/Expectile

Regression (ER), Extreme Value Theory (EVT) and Copula-GARCH (CG) model for the multi-asset
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portfolio over the whole out-of-sample period. Panel (a) shows the HS forecasts. As expected,

the majority of realized returns were higher than the predicted VaRs. In the sample period from

November 1994 to March 2017, there are only 60 violations (red dots)—which is very close to the

number of expected violations (=1% of 5,846). An analysis of VaR violations throughout time,

however, calls into doubt the validity of the HS-VaR—given a latent underestimation of risk with

most violations occuring during the 2008 Financial Market Crisis. Subsequently, the HS forecasts

were overly conservative, and there were no violations in the following five years. Thus, it seems that

a related portfolio insurance strategy would have too small investment exposure over time. This

conjecture is confirmed by rigorous statistical testing (cf. Table 3). Using the unconditional coverage

test, the HS-VaR does indeed deliver a conclusive number of violations over the entire period. But,

based on the test for correct coverage and independence and the duration test, it is clear that the

violations are not occurring independently, but rather appear in clusters. As a correctly specified

VaR model is the basis of estimating ES, the positive results of the ES test of McNeil and Frey are

practically useless.

Regarding the Cornish-Fisher Approximation approach in Panel (c) we can draw similar con-

clusions. Although it accounts for fat tails by incorporating skewness and kurtosis, it still remains

sluggish over time. Like the HS-VaR, the CFA-VaR passes the test for unconditional coverage but

fails when accounting for clustering of returns again invalidating the subsequent ES test.

[Figure 2 about here]

The remaining risk models are more sensitive and quicker to react to the prevailing risk environment

(see Panels (b), (d), (e) and (f)). Moreover, the occurrence of violations is markedly less clustered—as

confirmed by the statistical tests. All four risk methods pass the conditional coverage and duration

test. The EVT-VaR, however, fails the unconditional coverage test which is mostly due to the high

deviation of the realized to the expected number of violations (77 vs. 58). The same observation

holds true for the ES test. In contrast, the RM, the QR/ER and the CG model pass all tests for

VaR and ES. In a nutshell, more sophisticated risk modelling techniques are found to dominate more

naive ones in terms of statistically fitting the left tail of the portfolio return distribution.

[Table 3 about here]

4.3 The Economic Relevance of Risk Forecasting for Tail Risk Protection

We consider two steps when evaluating the various risk models in our tail risk protection framework.

First, we analyze the historical path of each strategy. That is, assessing how each strategy would

have performed when implemented over the whole out-of-sample period. For this, we assume an

investment horizon of one calendar year—a typical choice of institutional and private investors alike
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(see Benartzi and Thaler, 1995). For the DPPI strategy, the floor is then adjusted to the current

portfolio value at the start of each year to initialize the cushion. This procedure helps to mitigate

the lock-in effect.

Due to the problem of path dependency that arises when analyzing the historical path, we addi-

tionally conduct a block-bootstrap approach12 in the second step. Following Annaert, Van Osselaer,

and Verstraete (2009); Bertrand and Prigent (2011); Dichtl and Drobetz (2011); Dichtl, Drobetz, and

Wambach (2017), we draw blocks of 250 subsequent daily portfolio and risk-free returns on a rolling

window basis and implement the tail risk protection strategies in each draw. Thus, we obtain 5,597

overlapping yearly returns as basis for the comparison of our methods. Intuitively, this approach

enables us to assess a strategy’s robustness with respect to alternative entry dates. Moreover, it

enables the available data to be used in the most efficient way while preserving all dependency effects

in the series, such as autocorrelation and conditional heteroskedasticity (see Dichtl and Drobetz,

2011).

As the objective of tail risk protection strategies is twofold—providing downside protection

while still enjoying the upside potential of the risky portfolio—the performance should be evaluated

accordingly. Alongside standard measures like the Sharpe Ratio and maximum drawdown we therefore

employ specific downside risk measures commonly used in the literature of portfolio insurance such

as the Calmar, Sortino or Omega ratios (see Bertrand and Prigent, 2011).13

4.3.1 Tail Risk Protection via Risk Targeting

Figure 3 illustrates the performance of the ES targeting strategy for the historical path and the

block-bootstrap. Exposure is calculated based on the Copula-GARCH 1%-ES. The underlying is the

synchronized multi-asset portfolio and we target an ES level of 1.5%, which is a reasonable assumption

given the conservative underlying. Panel (a) shows the evolution of the protected portfolio, the

underlying multi-asset strategy and a money market investment over the out-of-sample period from

1994 to 2017. We notably observe a decrease in exposure of the ES targeting strategy during the

financial market crisis in 2008, at least avoiding the huge drawdowns of the underlying but reducing

returns at the end of the sample period.

[Figure 3 about here]

12This method is sometimes referred to as historical simulation, see Dichtl and Drobetz (2011).
13While the Calmar ratio is defined as the ratio of annualized return over the absolute value of the maximum

drawdown, the Sortino ratio is the difference of mean return and minimum acceptable return (here: zero) divided by
downside deviation (that measures the variability of underperformance below a minimum target rate). The Omega
ratio is calculated by dividing the upper partial moment of degree one by the lower partial moment of degree one.
Lower (upper) partial moments indicate the return potential below (above) a predefined threshold return (here: zero).
See Bertrand and Prigent (2011) for details on these performance risk measures.
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Panel (b) shows the distribution of block-bootstrapped yearly returns of the protected portfolio

in comparison with a pure buy-and-hold portfolio investment strategy. We see that the distribution

of the ES targeting strategy is shifted to the right, thus reducing the mass in the left tail. However,

this reduction comes at the cost of some return potential in the upper right tail.

Table 4 complements the previous chart with the estimation results of the ES targeting strategy

based on all different 1%-ES forecasts for the historical path and block-bootstrap. Panel A reports

the results for the historical path. We find similar size of risk-adjusted returns (cf. Sharpe ratio),

but lower maximum drawdown and thus higher Calmar ratio for all risk methods compared to the

underlying. These figures confirm the ability of the ES targeting strategy to reduce downside risk.

Comparing across the risk methods, we obtain the best risk-adjusted performance of the extreme

value theory (EVT) and Copula-GARCH (CG) approach measured in Sharpe ratio. With regard to

downside risk measures like the Calmar ratio, both methods are joined by the RiskMetrics (RM) and

the expectile regression (ER) approach that perform equally well. Thus, our results indicate that the

ES targeting strategy is more profitable when using the more flexible methods RM, EVT, ER and

CG. This finding is confirmed by the finding of the block-bootstrap method shown in Panel B. We

reveal a higher Omega ratio for the EVT, ER and CG approach (5.63, 5.56 and 5.76) compared to

the one for the historical simulation (HS) method (4.87), for example. Also in terms of the Sharpe

and Sortino ratios, those three approaches outperform all other risk methods.

[Table 4 about here]

As the results of the ES targeting strategy may be sensitive to the static allocation of portfolio

weights and choice of the risk target, we also investigate the strategy using different underlying

portfolios—a pure equity, a pure bond, a 30/70 equity/bond and a 60/40 equity/bond portfolio in

addition to the multi-asset portfolio—and various ES target levels (1%, 1.25%, 1.5%, 1.75%, 2%).

Table 5 reports the corresponding results. Assuming a risk target level of 1.5%, we see that for all

portfolios the more flexible methods show a higher Calmar ratio (cf. Panel A1 and A2). The same

holds for the robustness to the risk target level (cf. Panel B1 and B2). For almost all levels (except

1%) and for both, historical path and block-bootstrap, we find superior performance of the EVT and

CG forecasting approach measured by the mean of the yearly Calmar ratios.

[Table 5 about here]

4.3.2 Tail Risk Protection via DPPI

We have seen that the ES targeting strategy is able to mitigate downside risk to some extent, but that

it fails to clearly reduce measures such as the maximum drawdown. A stricter way to limit downside

risk is the DPPI strategy. Panel (a) of Figure 4 illustrates how the mechanism of a DPPI strategy
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generally works. The chart shows the performance of the conservative multi-asset portfolio using the

DPPI strategy in relation to the floor over time. The investment exposure is mainly driven by two

components: the floor and the multiplier. If the portfolio value of the underlying approaches the floor

line, i.e. the cushion shrinks, the exposure is reduced and parts of the investment are shifted into the

risk-free asset. Similarly, the exposure is reduced if risk estimates predict too high (overnight) risk,

i.e. the multiplier decreases given that the distance to the floor is not excessive. In this example, the

conditional multiplier is based on the CG-ES at 1% confidence.14

[Figure 4 about here]

Examining the whole sample period, we learn that the DPPI strategy did indeed prevent

catastrophic drawdowns. With the onset of the global financial crisis, investment exposure drops to

zero, so that the portfolio value at the end of 2008 is equal to the floor. Then, even with the V-shaped

market evolution (sudden decline followed by a rapid recovery) in early 2009—a major impediment

for portfolio insurance—the DPPI portfolio does not end up in a “cash lock”. It participates in at

least part of the subsequent recovery. On the whole, the DPPI portfolio has an average investment

exposure of approximately 60% to 90%, depending on the chosen risk method, and delivers slightly

lower returns compared to the pure multi-asset portfolio (cf. Table 6). However, risk-adjusted the

results are clearly in favour of the DPPI portfolio. This relative advantage remains when considering

downside risk measures. The lower maximum drawdown of the DPPI portfolio evidences that

downside protection is effective—irrespective of the choice of the risk method. Comparing the

performance of the DPPI portfolio across risk models yields less clear-cut results. Panel A of Table

6 shows the corresponding results. Analyzing returns we find a 76bp-difference between the best

performing risk model, the CG model and the weakest model, the RM approach. However, when

risk adjusting returns, this spread diminishes so that we observe only marginal differences across the

different models. In particular, the Sharpe ratio ranges from 0.61 to 0.68. The same conclusions can

be drawn in terms of maximum drawdown. Evaluating the risk models on the basis of the Calmar,

Sortino and Omega ratios shows only marginal differences. The ranges from 0.38 to 0.46, around

0.10, and from 1.20 to 1.21 indicate that not only sophisticated but also more naive approaches

are able to provide downside protection in the context of DPPI. The best performing model is the

Copula-GARCH approach (Calmar ratio of 0.46). This finding can be rationalized as follows: in

general, few allocation changes are necessary to protect from downside risks if the DPPI strategy is

reasonably calibrated. In particular, the investment exposure will be decreased when approaching

the floor, irrespective of the underlying risk forecast. This embedded line of defense is most likely

14In order to reflect the preferences of risk-averse investors, we follow Soupé, Heckel, and de Carvalho (2014) and
scale the risk forecast by a term consisting of an investor’s risk aversion parameter and the expected Sharpe ratio
given a Constant Relative Risk Aversion (CRRA) utility function of the investor. Specifically, assuming a risk-averse
investor we set the risk aversion parameter to 0.15 and the expected Sharpe ratio to 0.6.
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preventing less accurate risk forecasts from inhibiting overall performance. As a result, any DPPI

strategy dominates the underlying risky portfolio when evaluating Calmar, Sortino and Omega ratios.

[Table 6 about here]

Similar to several studies (Bertrand and Prigent, 2002; Ameur and Prigent, 2006; Hamidi,

Jurczenko, and Maillet, 2009; Ameur and Prigent, 2014; Hamidi, Maillet, and Prigent, 2014), we

also benchmark the DPPI performance with multipliers based on the different risk models against

the CPPI performance based on a static unconditional multiplier (FM). In particular, the latter

is calculated as the maximum loss of the underlying over the whole sample period, resulting in a

multiplier of 8. In terms of downside measures, FM shows slightly better results than the competing

DPPI strategies owing to a more defensive investment exposure (approx. 60%). However, there is

a severe performance drag relative to the DPPI strategies: the static multiplier underperforms in

terms of returns (5.5% vs. approx. 6.5%).

The analysis of the block-bootstrap method confirms our findings. Panel (b) of Figure 4 shows

the distribution of the block-bootstrapped yearly returns of the DPPI strategy. For comparison,

we also include the return distribution of a pure buy-and-hold portfolio investment strategy. The

chart clearly highlights the effect of portfolio insurance. The left tail of the return distribution is

shifted towards the floor level such that downside risk is reduced—albeit at the expense of some

return potential in the right tail. Panel B in Table 6 reports the corresponding performance statistics.

Compared to the historical path, we obtain slightly different results. Concerning the performance of

the underlying, we learn that the Sortino and Omega ratios increase substantially for all strategies.

This finding can be explained by the fact that the massive drawdown year 2008 loses weight when

performing the block-bootstrap. In other words, the crisis year 2008 is “averaged out” to some extent.

Again, we find only marginal differences across risk methods. In essence, the results support the

conclusion drawn from the historical path analysis. Dynamic proportion portfolio insurance strategies

building on sophisticated risk models do a good job in protecting investors from downside risk. Given

that the mechanics of the portfolio insurance strategy automatically reduce investment exposure

when approaching the protection level, a less sophisticated risk forecast is mostly profiting from this

second line of defense.

Again, we provide robustness checks with respect to the allocation of portfolio weights and the

level of the floor. We use the same portfolios as in the robustness check of the ES targeting strategy

and employ the following floor levels: 93%, 94%, 95%, 96% and 97%. The corresponding results are

shown in Table 7. Assuming a floor level of 95% we find no significant differences across the risk

methods for all portfolios (cf. Panel A1 and A2). The same holds for the robustness to the floor

level (cf. Panel B1 and B2).

[Table 7 about here]
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5 Conclusion

Tail risk protection strategies are an effective way to limit downside risk of a given investment portfolio

while maintaing most of its upside return potential. Given the limitations of option-based hedging

strategies, dynamic asset allocations strategies such as the risk targeting and the dynamic proportion

portfolio insurance (DPPI) strategy are popular choices among practitioners. As the success of

both strategies strongly depends on the success in forecasting (tail) risk, this paper investigates

a number of forecasting models to generate portfolio risk estimates that are especially suitable in

timely managing the investment exposure of these strategies. To this end, we analyze risk models

both prominent in the academic literature and popular among practitioners—from simple historical

simulation, the RiskMetrics approach and the Cornish-Fisher Approximation, to quantile/expectile

regression, extreme value theory and the Copula-GARCH approach. Empirically, we build our

analysis on a global multi-asset return data set including stocks, bonds, commodities and foreign

exchange rates. To take account of different market closing times we apply a return synchronization

technique by extrapolating prices of closed markets, based on information from markets which close

later. It turns out that the risk forecasts of the more flexible methods, such as the quantile/expectile

regression approach or the Copula-GARCH method, dominate the more naive approaches in terms

of statistical fit. The same holds when feeding these risk forecasts into the risk targeting strategy.

For the DPPI strategy, however, we find less clear-cut results. We evidence that dynamic portfolio

insurance strategies building on sophisticated risk models are capable of protecting investors from

downside risk. However, more naive approaches are also able to provide downside protection. Given

that portfolio insurance only leads to few allocation changes, simple risk models might have simply

been lucky. Going forward a more accurate quantile/expectile regression or Copula-GARCH approach

appears to be more likely to help mitigate the next downturn.
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Appendix A Return Synchronization

In this section, we describe the return synchronization methodology that we apply to the global

multi-asset data set (see Audrino and Bühlmann, 2004).

Let Sti,i denote the continuous time price of asset i (i = 1, ..., N), where time ti is the closing time

of market i measured in local time of the base market, i.e. the market with which to synchronize to.

The corresponding synchronized price Sst,i is then defined as

log
(
Sst,i
)

= S [log (St,i) |Ft] = E [log (Sti+1,i) |Ft] , ti ≤ t ≤ ti + 1 (t ∈ N), (32)

where t = t1 and Ft is the complete information of all recorded prices up to time t. The logarithms

are used to be consistent with continuously compounded returns. Clearly, if the closing price S is

observed at time t ∈ N, its conditional expectation given Ft is the observed price. This is the case for

the assets from the base market. If the market closes before t, its past prices and all the other markets

may be useful in predicting S at time t. As a simplifying approximation, the authors therefore assume

that, given the information Ft, the best predicted log-prices at t and at the nearest succeeding closing

time ti + 1 remain the same, saying that future changes up to ti + 1 are unpredictable.

Then, we denote rt as the vector of log-returns in different markets using the multi index

t = (t1, t2, · · · , tN ) and define the synchronized returns rst as the change in the logarithms of the

synchronized prices:

rt =


log
(

St1,1
St1−1,1

)
...

log
(

StN ,N
StN−1,N

)
 , rst =


log

(
Sst,1
Sst−1,1

)
...

log

(
Sst,N
Sst−1,N

)


. (33)

In order to estimate the relationship between the individual asset markets, the authors employ a

simple “auxiliary” VAR(1) model:

rt = Art−1 + εt, (34)

where the innovations εt are i.i.d.∼ N (0,Σ), independent from {rs; s < t}, and A is the matrix of

VAR coefficients. We can then derive the synchronized returns as follows

rst = log (Sst )− log
(
Sst−1

)
= E [log (St+1) |Ft]− E [log (St) |Ft−1]

= E [log (St+1)− log (St) |Ft]− E [log (St)− log (St−1) |Ft−1] + log
(

St
St−1

)
= E [rt+1|Ft]− E [rt|Ft−1] + rt
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= Art −Art−1 + rt

= rt + A(rt − rt−1). (35)

That is, any synchronized return rst is still anchored in the actual realized return rt plus an anticipated

innovation according to the estimated VAR-relation as captured in matrix A. The “missing” dynamics

of markets closing early in the day are thus proxied according to the short-term relationship with

respect to those markets closing later that day.

Sorting markets according to their closing times makes it possible to readily formulate a restriction

matrix for the VAR model such that markets are explained only by those markets with a later closing

time. Given that U.S. markets are the last to close in our sample, we anchor our synchronization of

daily returns in U.S. markets. Thus, the U.S. time series remain unchanged but are still included in

the VAR model to serve as explanatory markets, i.e. the final set of synchronized daily returns does

not build on forecasted time series for the U.S. but uses their original daily returns. Non-U.S. data

is, however, forecasted to the closing time of the U.S. market by the VAR(1).
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Table 1

Descriptive Statistics and Test Portfolio Allocations

This table reports the descriptive statistics of the daily log-returns of the individual assets and test portfolios over the
period 2/1/1991 to 31/3/2017 (including 6,847 observations). The following statistics are reported: mean, median
(Med), minimum (Min), maximum (Max), standard deviation (Sd), skewness (Skew) and kurtosis (Kurt). All statistics
are given in percentage, except skewness and kurtosis. In addition, we provide the static weights of the test portfolio
allocations (Multi-Asset (MA), Equity (EQ), Bond (BO), 30/70 equity/bond (30-70), 60/40 equity/bond (60-40)) in
percentage in the last five columns.

Portfolio weights

Mean Med Min Max Sd Skew Kurt MA EQ BO 30-70 60-40

Individual assets

A. Stocks

Nikkei 225 -0.00 0.00 -14.0 18.82 1.51 -0.20 119.32 5 9.8 0 2.94 5.88
Euro STOXX 50 0.03 0.05 -9.44 11.38 1.39 -0.12 88.46 5 12.5 0 3.75 7.50
MSCI EM 0.02 0.08 -9.99 10.07 1.14 -0.52 108.25 5 15.2 0 4.56 9.12
FTSE 100 0.02 0.00 -9.70 9.58 1.13 -0.15 86.28 5 9.9 0 2.97 5.94
S&P 500 0.02 0.03 -10.4 13.20 1.13 -0.15 142.71 15 52.6 0 15.78 31.56

B. Bonds

JGB 10Y 0.01 0.00 -1.55 2.18 0.25 -0.28 82.85 10 0 10 7 4
Euro Bund 0.02 0.01 -1.73 1.96 0.33 -0.19 48.7 10 0 20 14 8
UK Gilt 0.01 0.00 -2.34 3.65 0.41 0.06 62.65 10 0 10 7 4
US 10Y 0.01 0.00 -2.63 3.53 0.37 -0.10 62.63 10 0 40 28 16

C. Commodities

Oil 0.00 0.00 -38.4 13.34 2.16 -0.95 206.1 5 0 0 0 0
Gold 0.02 0.00 -9.81 8.84 1.01 -0.17 112.25 5 0 0 0 0
Copper 0.02 0.00 -11.7 11.65 1.61 -0.19 76.55 5 0 0 0 0

D. Foreign exchange rates

EUR/USD -0.00 0.00 -3.38 3.93 0.62 0.04 52.18 15 0 20 14 8
GBP/USD -0.01 0.00 -7.94 5.24 0.60 -0.49 113.7 15 0 10 7 4
JPY/USD 0.00 0.00 -4.07 7.06 0.68 0.46 83.9 15 0 10 7 4

Asset portfolios

Multi-asset 0.02 0.03 -3.83 3.67 0.46 -0.27 93.07 - - - - -
Equity 0.02 0.06 -8.42 10.24 0.93 -0.32 130.9 - - - - -
Bond 0.02 0.02 -1.93 1.98 0.36 -0.12 47.99 - - - - -
30/70 0.02 0.03 -2.72 2.76 0.34 -0.15 79.18 - - - - -
60/40 0.02 0.04 -5.12 6.04 0.55 -0.24 124.77 - - - - -
3-M US T-Bill 0.01 0.01 -0.00 0.02 0.01 0.06 13.86 - - - - -
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Table 2

Synchronized vs. Original Daily Returns

This table reports daily return and daily volatility of the synchronized and original daily returns based on the

international multi-asset data set. All figures are given in percentage.

Nikkei 225 JGB10Y Euro Bund UK Gilt EURO

STOXX 50

FTSE 100

Mean original returns -0.0035 0.0136 0.0165 0.0149 0.0305 0.0178

Mean synchronized returns -0.0034 0.0136 0.0165 0.0149 0.0307 0.0179

Volatility original returns 1.5109 0.2486 0.3341 0.4098 1.3875 1.1306

Volatility synchronized returns 1.6338 0.2561 0.3581 0.4386 1.5829 1.2916
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Table 3

Results of VaR and ES Testing

This table shows the results of the unconditional coverage test, the conditional coverage test, the duration test, and

the ES test of McNeil and Frey to evaluate the risk forecasts of the different risk models—Historical Simulation

(HS), RiskMetrics (RM), Cornish-Fisher Approximation (CFA), Quantile Regression (QR)/Expectile Regression (ER),

Extreme Value Theory (EVT) and Copula-GARCH (CG). We report the number of realized VaR violations, the

p-value and the test decision using the synchronized multi-asset portfolio over the period 3/11/1994 to 31/3/2017. The

test decision is positive (X) if the p-value is greater than the confidence level of 5%, and is conversely negative (x), if
not. We calculate the VaR and ES at 1% confidence level and expect 58 violations over the whole out-of-sample period.

HS RM CFA QR/ER EVT CG

Realized violations 60 67 46 66 77 70

VaR tests

a) Test for unconditional coverage (H0: correct violations)

p-Value 0.84 0.27 0.09 0.33 0.02 0.14

Test decision X X X X x X

b) Test for conditional coverage (H0: correct & independent violations)

p-Value 0.00 0.08 0.00 0.30 0.07 0.33

Test decision x X x X X X

c) Duration test (H0: duration between violations have no memory)

p-Value 0.00 0.57 0.00 0.92 0.86 0.57

Test decision x X x X X X

ES tests

a) Test of McNeil and Frey (H0: zero mean of excess conditional shortfalls)

p-Value 0.22 0.99 0.06 0.84 0.03 0.61

Test decision X X X X x X
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Table 4

Risk Targeting for Multi-Asset Portfolio

This table shows the estimation results of the risk targeting strategy based on different 1%-ES forecasts for the historical

path (Panel A) and block-bootstrap (Panel B) over the sample period 1994 to 2017 using a synchronized international

multi-asset portfolio and a money market investment. The analyzed risk models are the Historical Simulation approach

(HS), RiskMetrics (RM), Cornish-Fisher Approximation (CFA), Expectile Regression (ER), Extreme Value Theory

(EVT) and Copula-GARCH (CG). For comparison, we include the performance of the underlying multi-asset portfolio

(PF) and the money market investment (Cash). We target an ES of 1.5% over the whole out-of-sample period. For

the historical path, all performance measures are calculated based on the daily returns resulting from the strategy.

For the block-bootstrap, the performance measures are based on the bootstrapped yearly returns, except for Mean

Participation and Mean Turnover. Those are based on the daily risky asset exposure of the corresponding draw and

show the yearly mean of the specific measure.

Risk targeting

PF Cash HS RM CFA ER EVT CG

Panel A: historical path

Return p.a. (in %) 7.04 2.57 6.13 5.36 6.24 6.33 6.57 6.48

Volatility p.a. (in %) 7.55 1.09 6.25 5.43 6.17 6.45 6.60 6.43

Sharpe ratio 0.59 0 0.57 0.51 0.59 0.58 0.61 0.61

Maximum drawdown (in %) -31.80 -0.00 -26.38 -17.64 -26.17 -21.41 -24.11 -21.48

Calmar ratio 0.22 - 0.23 0.30 0.24 0.30 0.27 0.30

Sortino ratio 0.09 - 0.09 0.09 0.09 0.09 0.09 0.09

Omega ratio 1.18 - 1.18 1.18 1.19 1.18 1.18 1.18

Participation (in %) 100 0 88.48 82.39 87.99 93.79 96.26 95.12

Turnover (in %) 0.04 0 0.04 1.29 0.07 2.48 0.64 0.98

1% Value at Risk (in %) 1.28 0.00 1.08 0.94 1.04 1.10 1.11 1.06

1% Expected shortfall (in %) 1.81 0.00 1.45 1.18 1.41 1.35 1.39 1.32

Panel B: block-bootstrap

Return p.a. (in %) 4.53 3.50 5.81 4.99 5.88 6.02 6.23 6.14

Volatility p.a. (in %) 8.97 3.27 8.81 7.97 8.60 8.38 8.39 8.18

Sharpe ratio 0.12 0 0.26 0.19 0.28 0.30 0.33 0.32

Mean calmar ratio 1.02 - 1.38 1.14 1.41 1.26 1.31 1.29

Sortino ratio 0.86 - 1.24 1.43 1.31 1.70 1.60 1.71

Omega ratio 3.45 - 4.87 4.74 5.18 5.56 5.63 5.76

Mean participation (in %) 100 0 89.50 81.72 87.47 93.75 96.11 94.92

Mean turnover (in %) 0 0 0.37 1.63 0.40 2.79 1.03 1.37

1% Value at Risk (in %) 26.07 -0.03 23.85 15.55 22.92 16.23 19.64 16.92

1% Expected shortfall (in %) 29.28 -0.02 25.66 16.25 24.58 19.01 21.58 18.73
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Table 5

Risk Targeting: Various Portfolios and Target Levels

This table shows the estimation results of the risk targeting strategy based on different risk forecasts for the historical

path and the block-bootstrap over the sample period 1994 to 2017 using various portfolios and various target levels. The

analyzed risk models are the Historical Simulation approach (HS), RiskMetrics (RM), Cornish-Fisher Approximation

(CFA), Expectile Regression (ER), Extreme Value Theory (EVT) and Copula-GARCH (CG). For comparison, we

include the performance of the underlying (PF). To benchmark the results of the ES targeting strategy based on the

multi-asset portfolio we estimate the ES targeting strategy also for four different test portfolio allocations. For this, we

choose a pure equity, a pure bond, a 30/70 equity/bond, and a 60/40 equity/bond portfolio as underlying for the ES

targeting strategy and an ES target level of 1.5%. The corresponding results are given in Panel A1 and A2. Moreover,

we check the robustness of the results of the ES targeting strategy based on the multi-asset portfolio with respect to

the chosen ES target level, here: 1%, 1.25%, 1.5%, 1.75% and 2%. The corresponding results are presented in Panel B1

and B2. We base our comparison on the Calmar ratio for the historical path and on the mean of the yearly Calmar

ratios for the block-bootstrap.

PF HS RM CFA ER EVT CG

Portfolios

Panel A1: historical path

Multi-asset 0.22 0.23 0.30 0.24 0.30 0.27 0.30

Equity 0.14 0.16 0.19 0.18 0.19 0.19 0.19

Bond 0.64 0.62 0.73 0.61 0.65 0.67 0.72

30-70 0.38 0.36 0.41 0.38 0.39 0.34 0.42

60-40 0.21 0.20 0.25 0.23 0.24 0.25 0.28

Panel A2: block-bootstrap

Multi-asset 1.02 1.38 1.14 1.41 1.26 1.31 1.29

Equity 1.06 1.50 1.23 1.53 1.39 1.16 1.20

Bond 1.03 1.69 1.69 1.69 1.60 1.69 1.68

30-70 1.39 2.08 1.99 2.07 1.90 2.05 2.01

60-40 1.31 1.76 1.56 1.79 1.53 1.57 1.58

Target levels

Panel B1: historical path

1% 0.22 0.28 0.36 0.29 0.32 0.30 0.34

1.25% 0.22 0.25 0.32 0.26 0.30 0.28 0.32

1.5% 0.22 0.23 0.30 0.24 0.30 0.27 0.30

1.75% 0.22 0.22 0.30 0.23 0.29 0.26 0.29

2% 0.22 0.21 0.30 0.23 0.29 0.24 0.28

Panel B2: block-bootstrap

1% 1.25 1.98 1.73 2.02 1.63 1.73 1.77

1.25% 1.25 1.87 1.71 1.90 1.67 1.74 1.74

1.5% 1.25 1.84 1.69 1.85 1.73 1.79 1.77

1.75% 1.25 1.83 1.70 1.84 1.79 1.81 1.80

2% 1.25 1.84 1.73 1.84 1.82 1.82 1.82
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Table 6

DPPI for Multi-Asset Portfolio

This table shows the estimation results of the DPPI strategy with conditional multipliers based on different 1%-ES

forecasts for the historical path (Panel A) and block-bootstrap (Panel B) over the sample period 1994 to 2017 using a

synchronized international multi-asset portfolio and a money market investment. The analyzed risk models are the

Historical Simulation approach (HS), RiskMetrics (RM), Cornish-Fisher Approximation (CFA), Expectile Regression

(ER), Extreme Value Theory (EVT) and Copula-GARCH (CG). For comparison, we include a static multiplier (FM)

based on the maximum loss of the portfolio returns (resulting in m = 8) as well as the performance of the underlying

multi-asset portfolio (PF) and the money market investment (Cash). In each calendar year, a floor of 95% of the initial

portfolio value is targeted. For the historical path, all performance measures are calculated based on the daily returns

resulting from the strategy. For the block-bootstrap, the performance measures are based on the bootstrapped yearly

returns, except for Mean Participation and Mean Turnover. Those are based on the daily risky asset exposure of the

corresponding draw and show the yearly mean of the specific measure.

CPPI DPPI

PF Cash FM HS RM CFA ER EVT CG

Panel A: historical path

Return p.a. (in %) 7.04 2.57 5.52 6.44 5.95 6.51 6.51 6.54 6.71

Volatility p.a. (in %) 7.55 1.09 4.33 5.83 5.56 5.83 6.10 6.16 6.14

Sharpe ratio 0.59 0 0.68 0.66 0.61 0.68 0.65 0.64 0.67

Maximum drawdown (in %) -31.80 -0.00 -9.94 -14.38 -13.90 -14.36 -16.91 -14.96 -14.65

Calmar ratio 0.22 - 0.55 0.45 0.43 0.45 0.38 0.44 0.46

Sortino ratio 0.09 - 0.12 0.10 0.10 0.10 0.10 0.10 0.10

Omega ratio 1.18 - 1.25 1.21 1.21 1.21 1.20 1.20 1.21

Participation (in %) 100 0 62.22 85.53 82.16 85.69 88.16 90.12 89.56

Turnover (in %) 0.91 0 0.91 0.86 1.07 0.88 1.69 0.68 0.86

1% Value at Risk (in %) 1.28 -0.00 0.73 0.98 0.95 0.98 1.04 1.05 1.05

1% Expected shortfall (in %) 1.81 0.00 0.93 1.26 1.24 1.26 1.32 1.34 1.33

Panel B: block-bootstrap

Return p.a. (in %) 4.53 3.50 5.75 6.40 5.88 6.40 6.35 6.38 6.38

Volatility p.a. (in %) 8.97 3.27 7.06 8.06 7.82 8.05 8.13 8.06 8.06

Sharpe ratio 0.12 0 0.32 0.36 0.30 0.36 0.35 0.36 0.36

Mean calmar ratio 1.25 1.64 1.74 1.67 1.74 1.73 1.74 1.74

Sortino ratio 0.86 - 3.10 2.41 2.31 2.44 2.36 2.34 2.39

Omega Ratio 3.45 - 8.89 6.38 6.05 6.43 6.09 6.16 6.23

Mean participation (in %) 100 0 74.49 90.33 86.73 89.99 90.61 91.11 90.82

Mean turnover (in %) 0.00 0 1.13 0.81 1.09 0.85 1.29 0.79 0.89

1% Value at Risk (in %) 26.07 -0.03 8.24 9.30 8.48 9.31 9.01 8.73 8.60

1% Expected shortfall (in %) 29.28 -0.02 8.44 9.61 8.67 9.56 9.21 9.01 8.84
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Table 7

DPPI: Various Portfolios and Floors

This table shows the estimation results of the DPPI strategy with conditional multipliers based on different risk forecasts

for the historical path and the block-bootstrap over the sample period 1994 to 2017 using various portfolios and various

floor levels. The analyzed risk models are the Historical Simulation approach (HS), RiskMetrics (RM), Cornish-Fisher

Approximation (CFA), Expectile Regression (ER), Extreme Value Theory (EVT) and Copula-GARCH (CG). For

comparison, we include the performance of the underlying (PF). To benchmark the results of the DPPI strategy based

on the multi-asset portfolio we also estimate the DPPI strategy for four different test portfolio allocations. To this

end, we choose a pure equity, a pure bond, a 30/70 equity/bond and a 60/40 equity/bond portfolio as underlying for

the DPPI strategy and a floor level of 95%. The corresponding results are given in Panel A1 and A2. Moreover, we

check the robustness of the results of the DPPI strategy based on the multi-asset portfolio with respect to the chosen

floor level, here: 93%, 94%, 95%, 96%, and 97%. The corresponding results are presented in Panel B1 and B2. We

base our comparison on the Calmar ratio for the historical path and on the mean of the yearly Calmar ratios for the

block-bootstrap.

PF HS RM CFA ER EVT CG

Portfolios

Panel A1: historical path

Multi-asset 0.22 0.45 0.43 0.45 0.38 0.44 0.46

Equity 0.14 0.37 0.39 0.37 0.34 0.43 0.41

Bond 0.64 0.56 0.61 0.54 0.52 0.61 0.64

30-70 0.38 0.58 0.67 0.60 0.56 0.52 0.59

60-40 0.21 0.34 0.32 0.36 0.36 0.34 0.36

Panel A2: block-bootstrap

Multi-asset 1.25 1.74 1.67 1.74 1.73 1.74 1.74

Equity 1.06 1.15 1.03 1.18 1.09 0.94 0.94

Bond 1.03 1.59 1.58 1.57 1.51 1.60 1.60

30-70 1.39 2.05 2.05 2.05 2.04 2.05 2.05

60-40 1.31 1.55 1.47 1.56 1.53 1.55 1.56

Floors

Panel B1: historical path

93% 0.22 0.40 0.39 0.40 0.40 0.39 0.41

94% 0.22 0.42 0.41 0.42 0.42 0.42 0.43

95% 0.22 0.45 0.43 0.45 0.38 0.44 0.46

96% 0.22 0.52 0.45 0.52 0.41 0.41 0.45

97% 0.22 0.62 0.50 0.61 0.43 0.42 0.52

Panel B2: block-bootstrap

93% 1.25 1.77 1.74 1.77 1.78 1.78 1.78

94% 1.25 1.76 1.71 1.76 1.76 1.76 1.76

95% 1.25 1.74 1.67 1.74 1.73 1.74 1.74

96% 1.25 1.71 1.63 1.71 1.70 1.70 1.70

97% 1.25 1.66 1.58 1.66 1.65 1.65 1.66
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Figure 1. The Effects of Return Synchronization

This figure shows the correlation matrices of the original and synchronized returns based on the international multi-asset

data set including stocks, bonds, commodities and foreign exchange rates. Blue shade indicates positive correlations,

red shade negative correlations. The more straight the circles, the higher the correlation.
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Figure 2. VaR and ES Forecasts over Time

This figure shows the (negative) daily 1% VaR forecasts (in black) and associated ES forecasts (in blue) of the different

risk models and the realized returns of the multi-asset portfolio (grey dots) over the period 3/11/1994 to 31/3/2017.

VaR violations are marked in red. At a confidence level of 1%, a total of 58 violations are expected over the model

period.
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Figure 3. Historical Path and Block-Bootstrap of Risk Targeting

This chart illustrates the performance of the multi-asset portfolio (35% equities, 40% fixed income, 15% commodities,

45% currencies) using the ES targeting strategy. Panel (a) shows the historical path of the protected portfolio (red line)

over the sample period 1994 to 2017. Exposure is calculated based on the Copula-GARCH 1%-ES. For comparison, we

include the performance of the underlying multi-asset strategy (blue line) and a money market investment (black line).

Panel (b) shows the distribution of block-bootstrapped yearly returns of the protected portfolio (red shade) and a pure

buy-and-hold portfolio investment strategy (blue shade). For both approaches we target a 1.5% ES.
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Figure 4. Historical Path and Block-Bootstrap of DPPI

This chart illustrates the performance of the multi-asset portfolio (35% equities, 40% fixed income, 15% commodities,

45% currencies) using the DPPI strategy based. Panel (a) shows the historical path of the protected portfolio (red

line) in relation to the floor (green line) over the sample period from 1994 to 2017. Exposure is calculated based

on the Copula-GARCH 1%-ES. We assume a floor level of 95%. For comparison, we include the performance of

the underlying multi-asset strategy (blue line) and a money market investment (black line). Panel (b) shows the

distribution of block-bootstrapped yearly returns of the protected portfolio (red shade) and the pure buy-and-hold

portfolio investment strategy (blue shade). The black dashed line indicates the floor level.
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