
Estimating the Physical Probability for Successful Stock Swap

Mergers: An Application of MCMC Methods∗

By Giuseppe Corvasce†

Abstract

The paper proposes a Bayesian logistic regression, based on MCMC methods with a Gibbs sampling
algorithm, with the aim to estimate the probability of a deal completion, for U.S. stock swap mergers
and acquisitions (M&As). The estimated unknown parameters rely on several informative priors, able to
consider the mean and the dispersion of the prior distributions. The Relative Operating Characteristics
(ROC) curves compare in sample and pseudo out-of-sample results, among maximum likelihood and
Bayesian estimates, based on 50% and 70% of the analyzed M&As. The empirical analysis also reports
the diagnostic tests and the metrics of accuracy for evaluating the equality of the mean and variance
between chains, for estimating the unknown parameters, across speci�cations of the prior distributions.

∗The author would like to thank several participants of the conferences and seminars organized by GARP New York and
Chicago Chapters, New York University, the University of Alberta, The Wharton School at the University of Pennsylvania,
Luxembourg School of Finance, the Allied Social Science Association, The Paris EUROPLACE International Financial Forum,
the O�ce of Financial Research (OFR), the Center for Financial Statistics and Risk Management at Rutgers University, its
advisors and the sta� members. The author also thanks several consultants, advisors, hedge/private equity and family funds as
well as banks located in Chicago, New York, Washington, Philadelphia, London and Hong Kong areas for comments received.
†Rutgers University - The State University of New Jersey; Address: 57 U.S. Highway, 1 New Brunswick, NJ 08901-8554;

Society for Financial Studies; Email: giuseppecorvasce@gmail.com

1



1. Introduction

The announcement of a merger process generally causes the target stock's price to rise, usually trading below

the o�er price, thereby, producing an operation able to create a risky opportunity for speculating, based on

the deal risk. In merger attempts involving stock payments, risk arbitrageurs generally perform a trading

strategy, o�setting a long position in the target �rm's stock with a short position in the acquiring �rm's

stock. These trading positions are designed to capture the di�erence between the target stock's market price

and the o�ered price that depends on the exchange ratio and the bidder stock's market price. This di�erence,

de�ned as the �risk arbitrage� spread, represents the expected gain for arbitrageurs if a deal succeeds and

plays an important role for the �risk arbitrage� process. If the merger is successfully consummated, risk

arbitrageurs pocket this spread. However, when a merger fails, the spread will generally widen instead of

converging to zero, causing risk arbitrageurs to incur huge losses. The �risk arbitrage� spread also depends

on the probability of a deal completion that represents a crucial component able to characterize the expected

gain pocket by speculators of a merger transaction.

The paper proposes a Bayesian logistic regression, based on MCMC methods with a Gibbs sampling

algorithm, with the aim to estimate the probability of a deal completion, for a sample of 1090 U.S. stock

swap mergers and acquisitions (M&As). The estimated unknown parameters, that allow the determination

of the physical probability of a deal process, rely on several informative prior distributions (priors), able

to incorporate the information regarding the mean and the dispersion of the priors. The Relative Operat-

ing Characteristics (ROC) curves compare in sample and pseudo out-of-sample results, among maximum

likelihood and Bayesian estimates, based on 50% and 70% of the analyzed M&As.

In line with the literature (Gelman and Rubin 1992, Geweke 1992, Brooks and Gelman 1997) and the

remarks pointed out by Cowles and Carlin (1996), the empirical analysis also reports some diagnostic tests,

with the aim to evaluate the equality of the mean and variance between chains involved with the Bayesian

estimation and across speci�cations of the priors and proposes the Monte Carlo error, the Root Mean Square

Divergence (RMSD) and the Mean Absolute Percentage Divergence (MAPD), as metrics for evaluating the

accuracy of the estimated unknown parameters.

The rest of the paper is organized as follows: section 2 provides an overview of the literature; section 3

provides a summary of the data and some descriptive statistics. Section 4 derives the model and the esti-

mation procedure. Section 5 is devoted to the description of the diagnostic tests, with the aim to evaluate

the convergence of the chains. Section 6 discusses the empirical results and the convergence of the chains.

Section 7 provides the concluding remarks.
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2. Overview of the literature

The literature on the topic of merger arbitrage proposes several frameworks for estimating the probability

of a deal completion. Walkling (1985) uses a logit probability model with the aim to predict the success

of a tender o�er. Samuelson and Rosenthal (1986) show how stock price variations for the target company

are informative for estimating the success probability of a tender o�er that monotonically improves over

time. Brown and Raymond (1986) estimate the physical probability of a deal, assuming the hypothesis of

the convergence, between the target stock price and the bid o�er, in case of resolution, using a sample of 35

failed mergers, for the period from January 1980 to December 1984.

De Bodt et al. (2014) propose an empirical evidence for testing the hubris hypothesis (Roll 1986). The

�rst test involves the �rst order condition (FOC) of a bidder expected pro�t maximization, where, the

probability of a deal completion is related to the bid premium, while, pro�ts conditional on the completion

of a transaction are decreasing on it; whereas, the second relation is between the probability of success

and bidder returns, with a probability for a deal completion that is computed with a probit framework or

roughly estimated as the di�erence between the bid premium and the observed price reaction, around the

announcement.

Betton et al. (2014) propose a theoretical framework able to justify and empirically test the relation

between the informativeness of a takeover signal, the target run-ups and the probability of a deal completion.

The framework is tested on a sample of 6000 initial takeover bids for U.S. public targets from 1980 to 2008

and recognizes the role of the takeover probability and the conditional deal synergies, for estimating the

run-up for the target stock prices (Schwert 1996).

Subramanian (2004) develops a jump di�usion model with the aim to reduce the risk for a merger

arbitrage portfolio. The author infers the implied probability that the market assigns to the resolution of a

deal, from the implied parameters of the proposed framework. Bester, Martinez and Rosu (2007) propose a

framework able to compute the probability of a deal completion, the fallback price and estimate the synergies

from the option prices.

Another part of the literature studies the relation between risk and return as well as the e�ects of the

stock market and the business conditions on risk arbitrage activities are discussed in several academic studies,

where, the Capital Asset Pricing Model (Sharpe 1964, Lintner 1965 and Mossin 1966) and the three factors

Fama-French model (Fama and French 1993) have the aim to study the pro�tability of the merger processes.

Larker and Lys (1987) suggest that arbitrageurs are passive, with a superior ability for predicting the

completion of a deal. According to this study, the average excess return is estimated around 3.75%, during a

merger period. Theoretical models, proposed by Cornelli and Li (2002) and Gomes (2001), suggest the active
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role of arbitrageurs. Cornelli and Li (2002) document the role of arbitrageurs able to a�ect the value of the

target shares and the procedure that allows to determine the number of arbitrageurs and the paid price,

pointing out several empirical implications concerned about the trading volume and the takeover premium.

Dukes et al. (1992) examine a sample of 761 cash tender o�ers that realized an abnormal return of 171%.

Jindra and Walkling (1999) point out several aspects regarding the pro�tability of risk arbitrage. According

to this paper, an arbitrageur earns an annualized return greater than 100%. Further, the authors document

a positive relation with the duration of the o�er, the size of the bid premium and a negative relation with

the target size and the revision of the o�er. Karolyi and Shannon (1999) �nd an annualized return in excess

of the TSE 300 for about 26%.

Baker and Savasoglu (2000, 2002) point out that merger arbitrage strategies do not earn a return on a

continual basis; as such, the Capital Asset Pricing Model (CAPM) and the Fama-French (F&F) three factors

model are not adequate for computing the annualized returns. Mitchell and Pulvino (2001) and Mitchell et

al. (2002) propose a non linear pricing model able to study the relation between merger arbitrage portfolio

returns and market returns.

The authors construct a setting able to consider the transaction costs and the real-world constraints,

showing an annualized excess return for about 4%. The performance re�ects a risk premium for arbitrageurs

that provide liquidity during a merger process. During negative market periods, merger arbitrage portfolios

su�er huge losses with a beta of roughly 0.50%; whereas, in �at and appreciating periods, the merger arbitrage

strategy yields a positive return with a zero beta.

3. Data and descriptive statistics

The data-set relies on a sample of 1090 U.S. stock swap mergers and acquisitions (M&As), where, both

the target and the bidder are publicly U.S. traded companies. The list of M&As is from Securities Data

Company (SDC) Platinum that provides information on bond and equity new issues, �nancial securities,

syndicated loans, project �nance as well as mergers and acquisitions (M&As). The empirical analysis relies

on the following screening criteria:

1. The announcement date and the resolution date for a merger or an acquisition are between January

1st, 1992 and December 31st, 2008;

2. The percentage of shares acquired by the bidder is greater than 50%;

3. The value of the transaction is greater than $ 1 million USD;
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4. The accounting information and the stock prices for the target and the bidder are available on the

joint database CRSP/COMPUSTAT;

5. The attitude of a merger or an acquisition can be friendly or hostile;

6. The bidder and the target �rms do not belong to the same parent groups and are listed on NYSE,

AMEX and NASDAQ;

7. SDC Platinum provides the values for the exchange ratio, concerned about each stock swap merger

transaction.

The Dow Jones News Services, The Barron's and The Wall Street Journal allow to validate some critical

information, concerned about the announcement date, the resolution date, the exchange ratio as well as the

date for the revision of the o�er, from a new bidder (multiple o�er bids).

[Please Insert Table 1 around here]

Table 1 provides a summary of Mergers and Acquisitions (M&As) and some descriptive statistics regarding

the number of announced deals, the average and the median market values for the target and the bidder, the

ratio between the average market value for the target and the average market value for the bidder as well

as the average amount of the transaction value. The number of announced deals change over the time, from

1992 to 2008, achieving the maximum number around the years 1997-2000, when 499 M&As were announced.

For each period, the average market value for the bidder is greater than the average market value for the

target. From a modest average transaction value of $ 196.74 million USD (in 1992), the average transaction

value of M&As respectively marched steadily upward to $ 4060.85 million USD (in 1998) and $ 3926.39

million USD (in 2000). Most of the 1990s deals were strategically negotiated and a major part were settled

via stock, with the largest transactions in the period from 1998 to 2000. The worldwide volume of M&As

reached a level above $ 3.3 trillion USD in 2000, when, the year started with the announcement of the record,

setting a merger of $ 165 billion USD for Time Warner and AOL.

After a �ve years of telecommunication, media and technology (TMT) mergers, there was a general

decline of the stocks in the TMT sector, followed by the earnings and �nancial problems that lead to a

decrease in volume of the TMT mergers. The era of the mega deals ended with great scandals, like Enron,

where, the shareholders �led a $ 40 billion USD lawsuit and the company reported a dramatic reduction of

the stock price, from $ 90.75 USD (in the middle of 2000) to $ 1 USD (by the end of November 2001).
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During the period from January 2002 to December 2006, the average transaction value for the U.S. stock

swap mergers experienced a reduction, with respect to the previous wave of M&As, due to an increase of the

U.S. cross-borders transactions, the rise in commodity prices, the availability of low interest �nancing and

the role of private equity funds, linked to an increase of buyouts.

4. The methodology

This section is devoted to the discussion of the empirical framework able to provide a speci�cation, with

the aim to estimate the probability of a deal completion. It assumes that a stock swap merger is announced

at a certain time τ = 0 and that each deal i is expected to be completed, at the horizon time T . The

framework considers the latent variable MTi that represents the merger time, measured from time τ = 0,

for each transaction i.

[Please insert Appendix A around here]

The di�erence between the resolution and the failure of a merger depends upon the covariates (FI-

NANCIAL DUMMY, DIVERS, FRIENDLY, RET_TARGET_PRE, RET_ACQUIRER_PRE, RELSIZE,

LEVE_FIN, LEVE_NO_FIN) able to provide the information regarding the bidder and the target as well

as the merger process. As such, the physical probability p of a deal completion i, computed at time τ , can

be de�ned in the following way:

pi,τ = P [MTi < T |MTi > τ ] . (1)

Appendix A describes the list of the independent covariates considered in a binary choice model able to

explain the dependent variable SUCCESS, for each deal i, that takes a value equals to 1 if the merger time

is below the horizon time T and the value 0 otherwise. As such:

SUCCESSi =


1 if MTi < T

0 otherwise

. (2)

For simplicity of the notation, the framework denotes with y, the realization of a merger process at time

T. As such, the de�nition of the likelihood function depends on the probability mass function that is based

on the number of failed and completed merger processes. In general, the likelihood contributions for the

deal i that is completed, i.e. yi = 1, and the one that is failed, i.e. yi = 0, are respectively de�ned in the
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following way: (P {yi = 1|xi,τ , βτ}) and (P {yi = 0|xi,τ , βτ}). The quantities are a function of the vector

of covariates (x) and the vector of unknown parameters β, observed at time τ .

Therefore, the conditional likelihood function L(yi |xi,τ ; βτ ), for the entire sample of merger processes

(N) , can be de�ned in terms of the probability mass function and computed in the following way:

L(yi |xi,τ ; βτ ) =
N∏
i=1

P {yi = 1 |xi,τ ; βτ}yi · P {yi = 0 |xi,τ ; βτ}1−yi , (3)

where, the quantities P {yi = 1 |xi,τ ; βτ} and P {yi = 0 |xi,τ ; βτ} are respectively de�ned as follows:

P {yi = 1 |xi,τ ; βτ} =

 exp

(
β
′
τ ·xi,τ

)
1 + exp(β

′
τ ·xi,τ )

 (4)

whereas,

P {yi = 0 |xi,τ ; βτ} =

1− exp

(
β
′
τ ·xi,τ

)
1 + exp(β

′
τ ·xi,τ )

 . (5)

For simplicity of the speci�cation, the methodology discusses the case in which each unknown parameter

βj from j = 0, ..., p, computed at time τ , where, p is the number of the covariates, has a normal prior

distribution with a mean equals to µj and a variance equals to σ2
j as well as random e�ects for the error

components. Therefore,

βj,τ ∼ N
(
µj,τ ; σ

2
j,τ

)
. (6)

The application of Bayes' theorem implies that the derivation of the posterior distribution is a function

of the prior distribution for each unknown parameter and the conditional distribution for each merger

transaction. As such, the corresponding likelihood function associated to the conjugate posterior distribution

L (βτ | yi, xi,τ ) is equal to the likelihood function for the informative prior distribution over all parameters,

times the conditional likelihood function L(yi |xi,τ ; βτ ).

As such, the associated likelihood is derived in the following way:

L (βτ | yi, xi,τ ) =
N∏
i=1

 exp

(
β
′
τ ·xi,τ

)

1 + exp

(
β
′
τ ·xi,τ

)

yi

·

1−
exp

(
β
′
τ ·xi,τ

)

1 + exp

(
β
′
τ ·xi,τ

)


1−yi

·

 p∏
j=0

1
√
2 · π · σj,τ

· exp
{
−

1

2

(
βj,τ − µj,τ

σj,τ

)2} . (7)

The estimation procedure for determining the unknown parameters implies the derivation of the log

likelihood and the minimization of it. The unknown parameters are based on a MCMC methodology with a

Gibbs sampling algorithm (Gelman and Gelman 1984, Gelfand et al. 1990). It allows to generate posterior

distributions, starting from initial values that can be randomly determined or derived with some expectation-

7



maximization algorithms and sampled from prior conditional distributions. The sampling procedure allows

to approximate the joint distribution for all covariates and the expected value of any covariate can be

approximated by averaging the values, over all simulated samples.

5. Diagnostic tests for evaluating the convergence of the chains

The section is devoted to the description of the diagnostic tests able to evaluate the convergence in terms

of bias and variance of the chains, with the aim to depict the quality of the estimated unknown parameters.

The tests proposed in the literature (Geweke 1992; Gelman and Rubin 1992a, 1992b; Liu, Liu and Rubin

1992; Roberts 1992, 1994; Garren and Smith 1993; Johnson 1994) and the concluding remarks (Cowles and

Carlin 1996) call for caution since a detailed analysis, with the aim to evaluate the speed and the time for

the convergence of the chains, based on reparameterization procedures (Hills and Smith 1992, Gelfand et al.

1995a,b), auxiliary variables (Besag and Green 1993, Swendsen and Wang 1987), resampling and adaptive

switching of the transition kernel (Gelfand and Sahu 1994) and multi-chain annealing or �tempering� (Geyer

and Thompson 1995) might de�nitely improve the diagnostic of the convergence between chains involved in

the estimation procedure.

The speci�cation of the methodology, the Gibbs-sampling algorithm, the burn-in procedure and the

number of iterates are also crucial points able to provide a discussion around the Monte Carlo (MC) error

regarding the mean, median and variance for the estimates of the unknown parameters. The limitations

of the diagnostic tests for Gibbs samplers and other MCMC algorithms (Cowles and Carlin 1996) might

consider further tests for the equality of the mean (t-test, Anova-F test, Satterwhaite-Welch test and Welch

test) and variance (Anova-F test, Siegel-Tukey test, Bartlett test, Brown-Forsythe test), between chains

involved1, with the aim to estimate the unknown parameters2. The tests require the following steps:

1. Running m multiple parallel chains, started from dispersed initial values, relying on the Gibbs sampler

algorithm;

2. Dividing the number of iterates in quartiles, with the aim to generate m posterior distributions for the

multiple parallel chains, with a mean and a variance;

1Further tests, such as Wilcoxon-Mann-Whitney (1947), Median Chi-Square (Conover 1999), Kruskal-Wallis (1957), Van
der Waerden (1952), evaluate the equality of the median between chains and consider the outliers that might jeopardize the
stability and decrease the speed for the convergence of the chains.

2The tests for evaluating the convergence among the chains can be developed for deciles and percentiles, with the aim to
study the evolution of the probability values over the subgroups, in which the number of the iterates are subdivided.
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3. Performing the tests for the equality of the mean among m multiple parallel chains, for each quartile,

with the aim to assess the distance of the estimates from the true values, concerned about the quantities

of interest obtained on a particular iteration, under the target distribution and evaluate the dependence

of the estimated unknown parameters;

4. Performing the tests for the equality of the variance amongmmultiple parallel chains, for each quartile,

in order to assess the variance and the convergence rate, in terms of MC error, for the estimated

unknown parameters and so assess the quality of the estimates;

5. Valuating the statistical signi�cance of the tests, for each quartile, concerned about the number of

iterates;

6. Providing conclusions, with the aim to evaluate the convergence for m multiple parallel chains, across

the quartiles, considering that:

(a) the �rst quartile of the iterates takes into account auto-correlated and cross-correlated m multiple

parallel chains that might decrease the speed, the time to the convergence for the chains and the

probability value of the statistical tests, implying the rejection of the null hypothesis;

(b) the statistical signi�cance of the tests does not necessarily imply that the �rst and the second

moments of the distributions are equal;

(c) the statistical signi�cance of the tests might depend on the number of the subgroups for dividing

the iterates, generated with the Gibbs sampling algorithm;

(d) the higher moments for the distributions of the chains might create bias conclusions, around the

diagnostic tests for studying the convergence.

Following Zellner and Min (1995), the proposed tests allow to assess not only whether the Gibbs sampler

converges in distribution, but if it also converges to the correct posterior distribution. Further, the tests

allow to graphically evaluate and test the monotonic convergence of the estimated unknown parameters.

The statistical procedure relies on a Bayesian data analysis package based on S-Plus and R routines called

CODA (Best et al. 1995), accompanied with the BUGS software and developed for Bayesian analysis Using

Gibbs Sampling (Spiegelhalter, Thomas and Best 1994, 1995; Thomas, Spiegelhalther and Best 1992, 2009).

It allowed the origination of the software OpenBUGS (Thomas 2005) and its updates. These software for
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Bayesian data analysis are freely available from the MRC Biostatistic Unit, at the University of Cambridge

and Imperial College.

6. Empirical Results

The section is devoted to the discussion of the empirical results that rely on the methodology developed in

section 4. The framework accommodates several speci�cations able to consider prior distributions (or simply

called the priors) for the unknown parameters that would express the beliefs of the investors about these

quantities, before some empirical evidences are considered. For example, the priors could be the probability

distributions able to represent the density functions of the unknown parameters based on similar experiments

that, relying on initial values, allow the de�nition of the posterior distributions for the parameters.

For the purpose of the analysis, the empirical results rely on normal as well as truncated normal dis-

tributions and the level of the informativeness for the priors is also based on the values for the �rst and

the second moments of the distributions. These two quantities de�ne the average value and the dispersion

that represents the error for the prior distributions. The initial values allow to set the Gibbs sampling algo-

rithm and rely on the maximum likelihood estimates, based on the Berndt-Hall-Hall-Hausman (B-H-H-H)

algorithm (Berndt et al. 1974), that is similar in spirit to the Gauss-Newton algorithm.

In particular, the empirical results discuss nine sets of alternative (informative) priors, divided in two

groups. The �rst group of priors respectively considers normal distributions centered around 0 and levels

of dispersion that are respectively equal to 1.0E-3 (Bayesian with Priors 1) and 1.0E-6 (Bayesian with

Priors 2), for the prior distributions concerned about the covariates DIVERS, FRIENDLY, RELSIZE,

LEVE_FIN and LEVE_NO_FIN as well as centered around the value of 0.5 for the regressors DIVERS

and FRIENDLY and -0.5 for the regressors RELSIZE, LEVE_FIN and LEVE_NO_FIN (Bayesian with

Priors 3).

The set of priors n. 4 (Bayesian with Priors 4) considers normal distributions that are centered

around the value of 1, for the covariates DIVERS and FRIENDLY and the value of -1, for the covariates

RELSIZE, LEVE_FIN and LEVE_NO_FIN, with levels of dispersion equal to 1.0E-3. The set of priors

n. 5 (Bayesian with Priors 5) considers normal distributions with levels of dispersion equal to 1.0E-

1, for the prior distributions related to the covariates DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and

LEVE_NO_FIN centered around the level of 0.5 (Bayesian with Priors 5) and the level of 1 (Bayesian

with Priors 6) as well as around -0.5 and -1 for the distributions of the covariates RELSIZE, LEVE_FIN
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and LEVE_NO_FIN.

The second group of priors considers the truncation of the prior normal distributions that enriches the

level of the informativeness. In particular, the empirical results discuss the estimates of the methodology,

based on the prior distributions, with a level of dispersion equals to 1.0E-1 and respectively centered around

0 and truncated on the left side for the covariates DIVERS and FRIENDLY and on the right side for the

covariates RELSIZE, LEVE_FIN and LEVE_NO_FIN (Bayesian with priors 7). The sets of priors n.

8 (Bayesian with priors 8) and n. 9 (Bayesian with priors 9) allow the estimation of the unknown

parameters, based on the prior normal distributions centered around 0.5 and 1, truncated on the left side for

the covariates DIVERS and FRIENDLY; whereas, the prior normal distributions for the covariates RELSIZE,

LEVE_FIN and LEVE_NO_FIN are truncated on the right side and centered around -0.5 and -1.

The Bayesian estimates of the unknown parameters are based on the Gibbs sampling algorithm and able

to generate two Markov Chains (Chain 1 and Chain 2), with n. 100000 sampled iterates. The descriptive

statistics, regarding the �rst and the second moments of the posterior distributions, consider a � burn-in�

procedure, able to discard 10% of the initial iterates. The � burn-in� procedure allows to ignore some numbers

of Markov Chain samples at the beginning of the Gibbs sampling algorithm and then only considers the n-th

Markov Chain of samples, when, averaging the values to compute the descriptive statistics.

The estimates of the unknown parameters also consider the ordered over-relaxation (Neal 1995) procedure,

based on the heatbath algorithm, that allows to reduce the � random walk � behavior in the early part of the

sampling processes, with the aim to consider the auto-correlation between Markov Chain samples, increasing

the speed to the convergence for the Markov Chains and reducing the time for reaching it.

[Please Insert Table 2 around here]

The estimates of the unknown parameters, reported on Table 2, show a Monte Carlo error that is below

2.5%, across the sets of priors. This metrics of accuracy allows to compare the di�erences between the

mean (median) of the Markov Chain sampled values, with the true posterior mean (median). In particular,

there is a lower level of the precision and so a higher level of the standard deviation for the covariates

RET_ACQUIRER_PRE and FRIENDLY, across the sets of priors. The unknown parameters, estimated

via the maximum likelihood procedure (Table 3), for the covariates FINANCIAL DUMMY, FRIENDLY,

RET_TARGET_PRE, LEVE_FIN, report a z-statistics that is signi�cant at 1% level.

[Please Insert Table 3 around here]
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The Relative Operating Characteristics (ROC) curves show in-sample results concerned about the per-

centage of correctly classi�ed Mergers and Acquisitions (M&As), as a function of the probability space

discretized from 0 to 1, across the sets of informative priors. In particular, Figure 1.1 reports the percentage

of correctly classi�ed successful M&As; whereas, Figure 1.2 shows the evolution for the correctly classi�ed

withdrawn M&As.

[Please Insert Figure 1 around here]

The set of priors n. 9 (Bayesian with Priors 9) allows a higher number of correctly classi�ed successful

M&As; whereas, the Maximum Likelihood Estimation (MLE) of the unknown parameters allows a higher

percentage of correctly classi�ed withdrawn M&As. The intersection of the ROC curves allows to determine

the optimal numbers of withdrawn and successful M&As and the related level of probability (Figure 1), and

so evaluate the type I and type II errors.

[Please Insert Figure 2 and Figure 3 around here]

The pseudo out-of-sample results, based on 50% and 70% of the training sample of M&As, are respec-

tively reported on Figure 2 and Figure 3, that show the general superiority of the MLE technique for the

classi�cation of withdrawn M&As; whereas, for the classi�cation of successful M&As, the Bayesian esti-

mates of the unknown parameters allow to outperform the pseudo out-of-sample results, based on the MLE

technique.

In particular, the superiority of the maximum likelihood estimates, for correctly classifying 50% of the

sample concerned about the withdrawn M&As, is reported in Figure 2.2, with the cuto� of the probability

that is below 0.84. A threshold of the probability, between 0.84 and 0.90, guarantees the out-performance of

the Bayesian estimates with respect to the maximum likelihood estimates for correctly classifying the with-

drawn M&As and the out-performance of the maximum likelihood estimates with respect to the Bayesian

estimates, for correctly classifying the successful M&As. A level of the probability that is greater than

0.90 allows the out-performance of the maximum likelihood estimates, for correctly classifying the with-

drawn M&As and the under-performance of the maximum likelihood estimates with respect to the Bayesian

estimates, for correctly classifying the successful M&As.
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6.1 Evaluating the convergence of the chains

The discussion for evaluating the convergence of the chains is elaborated in this section. It shows the

reliability of the tests for the equality of the mean and variance, with the aim to measure the reliability of

the Bayesian estimates, regarding the unknown parameters. For the purpose of the section, the empirical

results discuss the tests for the Bayesian estimates, concerned about the sets of priors n. 1 and n. 7 and

subdivide the number of the iterates in quartiles.

[Please Insert Table 4 around here]

Table 4 reports the t-test and the Anova F-test able to depict the coe�cients and the levels of probability

that allow to reject the null hypothesis, regarding the equality of the mean, between the generated Markov

Chains. A high probability value implies that the null hypothesis is not rejected; whereas, a probability

value smaller than 0.05 guarantees the rejection of the null hypothesis concerned about the equality of the

mean, between the Chain 1 and the Chain 2 and a high statistical signi�cance.

[Please Insert Appendix B around here]

The Bayesian estimates, generated with the Gibbs sampling algorithm, might improve with the increase of

the sampled iterates. Appendix B reports some metrics of accuracy for the Bayesian estimates of the unknown

parameters and based on the computation of the convergence rates, derived as a ratio between the MC error

and the standard deviation of the posterior distributions, the Root Mean Square Divergence (RMSD) and

the Mean Absolute Percentage Divergence (MAPD) ratios, computed with n. 1000000 sampled iterates. The

convergence rates, for the Bayesian estimates of the unknown parameters, are below 0.01, implying a lower

level of dispersion concerned about the estimated values. Although the increase of the sampled iterates,

the di�erence of the estimated values, between the Bayesian approach and the maximum likelihood, is still

evident.

The probability values, concerned about the �rst quartile, show how the t-test and the Anova F-test for

evaluating the equality of the mean, between the Chain 1 and the Chain 2, computed for each unknown

parameter, are in general not statistically signi�cant, across the sets of priors n. 1 and n. 7, although, the

mean of the sampled values turns out to be equal for the Chain 1 and the Chain 2. The results might change

if the tests are performed for the �rst decile of the iterates, because of the higher order auto-regressive
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components concerned about the generated Markov Chains that might impact this decile and the reliability

of the tests.

Further diagnostic tests, for evaluating the convergence of the chains, involve the reliability of the

Satterthwaite-Welch test and the Welch test able to consider the quartile heterogeneity of the variances

and derive some conclusions concerned about the speed to the convergence, among the chains involved with

the Gibbs sampling estimation procedure.

[Please Insert Appendix C around here]

Appendix C reports the statistical values for the estimated unknown parameters. In particular, the

�rst and the last quartiles, in which the tests are performed, report high probability values, implying the

statistical non rejection of the null hypothesis, concerned about the equality of the mean. The speed to the

convergence is evident for the second and the third quartiles, in which the number of the iterates for the

Markov Chains are divided, where the performed tests are also statistically signi�cant.

[Please Insert Table 5 around here]

In particular, the over-relaxation procedure guarantees an increase of the speed and so reduces the

auto-regressive component for the Markov Chains. The coe�cients of these tests drastically decrease, cor-

roborating the statistical �ndings also based on the F-test, the Siegel-Tukey test, the Bartlett test and the

Brown-Forsythe test. These tests are performed for the quartiles, in which the sampled iterates are divided

and allow to evaluate the equality of the variance for each quartile, between the generated Markov Chains.

The �rst and the last quartiles show high probability values that allow to not reject the null hypothesis

regarding the equality of the variance.

7. Conclusion

The Gibbs sampling algorithm represents an alternative estimation procedure for evaluating and testing

the physical probability of a deal completion for U.S. stock swap mergers and acquisitions (M&As), that

represents a crucial component able to characterize the expected gain pocket by �risk arbitrageurs� of a merger

transaction. The framework relies on a Bayesian logistic regression and compares the results derived via the

Gibbs sampling algorithm with the ones generated via the MLE procedure, based on the algorithm developed

14



by Berndt et al. (1974), where, the estimated unknown parameters rely on several sets of informative prior

distributions (priors), able to consider the mean and the dispersion. The empirical results are corroborated

with the Relative Operating Characteristics (ROC) curves that have the aim to compare in sample and

pseudo out-of-sample results, among maximum likelihood and Bayesian estimates, based on 50% and 70%

of the training sets, concerned about the analyzed M&As.

The concluding remarks show the superiority of the maximum likelihood estimates, for correctly clas-

sifying 50% of the sample, concerned about the withdrawn M&As, with a cuto� of the probability that is

below 0.84; whereas, a threshold of the probability, between 0.84 and 0.90, guarantees the out-performance

of the Bayesian estimates, with respect to the maximum likelihood estimates, for correctly classifying the

withdrawn M&As and the out-performance of the maximum likelihood estimates with respect to the Bayesian

estimates, for correctly classifying the successful M&As.

A level of the probability that is greater than 0.90 allows the superiority of the maximum likelihood esti-

mates, for correctly classifying the withdrawn M&As and the under-performance of the maximum likelihood

estimates with respect to the Bayesian estimates, for correctly classifying the successful M&As.

Following the remarks pointed out by Cowles and Carlin (1996), the tests for assessing the equality

of the mean (t-test, Anova F-test, Satterwhaite-Welch test and Welch test) and variance (Anova F-test,

Siegel-Tukey test, Bartlett test, Brown-Forsythe test), between chains involved with the Bayesian estimation

procedure, allow to depict the quality of the estimated unknown parameters and provide some insights

regarding the convergence to the posterior distributions.
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Table 1.  

Summary of Mergers & Acquisitions (M&As) from 1992 to 2008 

The dataset includes 1090 stock swap mergers and acquisitions (M&As), where both the target and the bidder are publicly traded firms in the U.S. stock 

exchanges. The list of M&As is from the Securities Data Company's (SDC) U.S. Mergers and Acquisitions database. The criteria for screening the sample 

are the following: the initial announcement and the resolution date are between January 1st, 1992 and December 31st, 2008; the percentage of shares 

acquired by the bidder is greater than 50%; the deal value is greater than $ 1 million USD; the target and the bidder firms have data available on 

CRSP/Compustat database; the merger attitude can be friendly or hostile; the bidder and the target firms do not belong to the same group; SDC Platinum 

provides the exchange ratio for each stock swap merger. The table shows: (i) the number of announced deals for each year; (ii) the average and the median 

market value for the bidder, in $ million. USD (AMKV); (iii) the average and the median market value for the target company, in $ million. USD (TMKV); (iv) 

the ratio between the average market value for the target and the average market value for the bidder (RELSIZE); (v) the average amount of the transaction 

value (TRANSACTION VALUE), in $ million. USD. 

 

YEAR 

 

NUMBER OF  
ANNOUNCED DEALS 

 

AMKV 

 

TMKV 

 

RELSIZE 
(TMKV/AMKV) 

 

TRANSACTION 
VALUE (avg. $ Mil.) (avg. $ Mil.) (median $ Mil.) (avg. $ Mil.) (median $ Mil.) 

1992 33 1710.50 663.41 137.59 76.78 0.08 196.74 
1993 38 2522.80 565.66 392.74 76.21 0.16 404.98 
1994 41 1386.78 838.69 337.78 79.07 0.24 379.64 
1995 112 2440.35 653.62 670.15 124.01 0.27 852.47 
1996 85 3841.56 1388.85 822.12 159.08 0.21 1042.40 
1997 125 4099.71 1184.09 862.05 148.86 0.21 1145.06 
1998 142 8992.65 967.01 3246.54 174.87 0.36 4060.85 
1999 127 16855.99 1414.19 1415.99 133.86 0.08 2021.32 
2000 105 16748.86 1208.22 2262.13 165.55 0.13 3926.39 
2001 62 8292.15 815.10 683.94 88.82 0.08 795.01 

2002 29 10171.58 720.28 2377.33 76.63 0.23 2721.31 
2003 40 7520.87 630.19 1714.37 107.37 0.23 2247.82 
2004 41 7448.83 486.86 2613.99 154.77 0.35 3255.09 
2005 29 10649.74 709.34 2198.16 134.06 0.20 2681.73 
2006 27 8320.27 1618.49 2166.50 313.44 0.26 2557.89 
2007 32 10466.95 668.97 673.45 234.28 0.06 831.81 
2008 22 19466.89 675.08 2166.02 126.61 0.11 1791.86 

        

 
Total 

Average Value 

 
1090 

 
8290.38 

 
894.59 

 
1455.34 

 
139.66 

 
0.19 

 
1818.37 

 
 

 

 

 

 

 

 

 



Table 2.  

The estimation results – Bayesian technique (MCMC with a Gibbs Sampler) 

The table shows the estimation results for a logistic model, based on MCMC methods with a Gibbs sampler. The computations are performed with the software OpenBUGS 

with the version 3.2.3 and rely on different specifications, based on (informative) priors for the parameters. (1) Bayesian with Priors 1: The prior distributions for the 

parameters are normals, centered around 0. There is a greater level of dispersion (1.0E-3) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN; (2) Bayesian with 

Priors 2: The prior distributions for the parameters are normals, centered around 0 and with a level of dispersion that is equal to 1.0E-6. (3) Bayesian with Priors 3: The prior 

distributions for the parameters are normals. There is a greater level of dispersion (1.0E-3) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the 

distributions are centered around 0.5 for DIVERS and FRIENDLY and -0.5 for RELSIZE, LEVE_FIN and LEVE_NO_FIN; (4) Bayesian with Priors 4: The prior distributions for 

the parameters are normals. There is a greater level of dispersion (1.0E-3) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered 

around 1 for DIVERS and FRIENDLY and -1 for RELSIZE, LEVE_FIN and LEVE_NO_FIN; (5) Bayesian with Priors 5: The prior distributions for the parameters are normals. 

There is a greater level of dispersion (1.0E-1) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered around 0.5 for DIVERS and 

FRIENDLY and -0.5 for RELSIZE, LEVE_FIN and LEVE_NO_FIN; (6) Bayesian with Priors 6: The prior distributions for the parameters are normals. There is a greater level of 

dispersion (1.0E-1) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered around 1 for DIVERS and FRIENDLY and -1 for 

RELSIZE, LEVE_FIN and LEVE_NO_FIN; (7) Bayesian with Priors 7: The prior distributions for the parameters are normals. There is a greater level of dispersion (1.0E-1) for 

DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered around 0 and truncated on the left side for DIVERS and FRIENDLY and on the 

right side for RELSIZE, LEVE_FIN and LEVE_NO_FIN; (8) Bayesian with Priors 8: The prior distributions for the parameters are normals. There is a greater level of dispersion 

(1.0E-1) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered around 0.5 and truncated on the left side for DIVERS and 

FRIENDLY and centered around -0.5 and truncated on the right side for RELSIZE, LEVE_FIN and LEVE_NO_FIN; (9) Bayesian with Priors 9: The prior distributions for the 

parameters are normals. There is a greater level of dispersion (1.0E-1) for DIVERS, FRIENDLY, RELSIZE, LEVE_FIN and LEVE_NO_FIN and the distributions are centered 

around 1 and truncated on the left side for DIVERS and FRIENDLY as well as centered around -1 and truncated on the right side for RELSIZE, LEVE_FIN and LEVE_NO_FIN. 

The table reports the estimated mean (mean) and median (median) values of the parameters 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , for the following covariates: FINANCIAL 

DUMMY, DIVERS, FRIENDLY, RET_ACQUIROR_PRE, RET_TARGET_PRE, RELSIZE, LEVE_FIN, LEVE_NO_FIN; the standard deviations (sd) of the densities for each parameter; 

the Monte Carlo error (MC error) related to the parameters; the values of the densities for the parameters computed at the following levels: 5%, 10%, 90% and 95%. 

 

 

Bayesian with Priors 1 

 

 

Parameters 
 

Covariates 

 
 Mean 

 
 sd 

 
 MC error 

 
5.00% 

 
10.00% 

 
Median 

 
90.00% 

 
95.00% 

 

0   

 

 

-1.1380 0.6897 0.0245 -2.3340 -2.0400 -1.1140 -0.3025 -0.0623 

1  FINANCIAL DUMMY 2.4490 0.5824 0.0058 1.5460 1.7380 2.4240 3.1990 3.4500 

2  DIVERS 0.4613 0.2035 0.0016 0.1236 0.2014 0.4624 0.7215 0.7922 

3  FRIENDLY 2.6830 0.6680 0.0237 1.6350 1.8720 2.6580 3.5500 3.8190 

4  RET_ACQUIRER_PRE 2.4760 0.8186 0.0033 1.1430 1.4300 2.4680 3.5280 3.8160 

5  RET_TARGET_PRE 0.1053 0.4562 0.0023 -0.6254 -0.4712 0.0965 0.6912 0.8696 

6  RELSIZE -0.4583 0.1319 0.0008 -0.6783 -0.6283 -0.4552 -0.2924 -0.2456 

7  LEVE_FIN -0.0815 0.0358 0.0004 -0.1423 -0.1276 -0.0799 -0.0380 -0.0260 

8  LEVE_NO_FIN 0.0482 0.0367 0.0002 -0.0087 0.0028 0.0462 0.0966 0.1121 

 

 

 

 

 

 



Bayesian with Priors 2 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

 

-1.1400 0.7076 0.0247 -2.3610 -2.0630 -1.1150 -0.2767 -0.0365 

1  FINANCIAL DUMMY 2.4510 0.5876 0.0058 1.5380 1.7370 2.4210 3.2140 3.4610 

2  DIVERS 0.4616 0.2031 0.0017 0.1241 0.2015 0.4622 0.7213 0.7924 

3  FRIENDLY 2.6850 0.6848 0.0240 1.6170 1.8530 2.6600 3.5710 3.8560 

4  RET_ACQUIRER_PRE 2.4760 0.8195 0.0034 1.1410 1.4300 2.4640 3.5350 3.8330 

5  RET_TARGET_PRE 0.1053 0.4547 0.0024 -0.6262 -0.4690 0.0985 0.6887 0.8639 

6  RELSIZE -0.4581 0.1322 0.0009 -0.6783 -0.6285 -0.4553 -0.2909 -0.2436 

7  LEVE_FIN -0.0817 0.0361 0.0004 -0.1438 -0.1285 -0.0798 -0.0380 -0.0258 

8  LEVE_NO_FIN 0.0481 0.0367 0.0002 -0.0087 0.0026 0.0461 0.0966 0.1118 

 

 

Bayesian with Priors 3 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

 

-1.1420 0.7010 0.0246 -2.3560 -2.0520 -1.1210 -0.2870 -0.0483 

1  FINANCIAL DUMMY 2.4470 0.5872 0.0055 1.5380 1.7330 2.4190 3.2050 3.4590 

2  DIVERS 0.4618 0.2029 0.0017 0.1268 0.2027 0.4623 0.7210 0.7937 

3  FRIENDLY 2.6850 0.6779 0.0238 1.6260 1.8650 2.6620 3.5600 3.8420 

4  RET_ACQUIRER_PRE 2.4740 0.8201 0.0034 1.1340 1.4210 2.4680 3.5270 3.8160 

5  RET_TARGET_PRE 0.1067 0.4557 0.0025 -0.6256 -0.4688 0.0985 0.6917 0.8664 

6  RELSIZE -0.4580 0.1322 0.0009 -0.6782 -0.6282 -0.4552 -0.2909 -0.2434 

7  LEVE_FIN -0.0814 0.0360 0.0003 -0.1432 -0.1283 -0.0795 -0.0378 -0.0257 

8  LEVE_NO_FIN 0.0482 0.0367 0.0002 -0.0085 0.0030 0.0462 0.0966 0.1116 

 

Bayesian with Priors 4 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

 

-1.1420 0.7010 0.0246 -2.3570 -2.0520 -1.1210 -0.2872 -0.0485 

1  FINANCIAL DUMMY 2.4470 0.5872 0.0055 1.5380 1.7330 2.4190 3.2050 3.4590 

2  DIVERS 0.4619 0.2029 0.0017 0.1268 0.2027 0.4623 0.7210 0.7937 

3  FRIENDLY 2.6860 0.6779 0.0238 1.6260 1.8650 2.6620 3.5600 3.8430 

4  RET_ACQUIRER_PRE 2.4740 0.8201 0.0034 1.1340 1.4210 2.4680 3.5280 3.8160 

5  RET_TARGET_PRE 0.1067 0.4557 0.0025 -0.6256 -0.4688 0.0985 0.6917 0.8664 

6  RELSIZE -0.4580 0.1322 0.0009 -0.6782 -0.6282 -0.4552 -0.2909 -0.2434 

7  LEVE_FIN -0.0814 0.0360 0.0003 -0.1432 -0.1283 -0.0795 -0.0378 -0.0257 

8  LEVE_NO_FIN 0.0482 0.0367 0.0002 -0.0085 0.0030 0.0462 0.0966 0.1116 

 

 



Bayesian with Priors 5 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

-1.0250 0.6664 0.0217 -2.1670 -1.8960 -0.9881 -0.2159 0.0045 

1  FINANCIAL DUMMY 2.4490 0.5720 0.0066 1.5580 1.7350 2.4270 3.1970 3.4240 

2  DIVERS 0.4601 0.2024 0.0017 0.1260 0.2038 0.4580 0.7184 0.7942 

3  FRIENDLY 2.5680 0.6430 0.0206 1.5660 1.7810 2.5350 3.4020 3.6650 

4  RET_ACQUIRER_PRE 2.4720 0.8151 0.0035 1.1450 1.4370 2.4700 3.5210 3.8210 

5  RET_TARGET_PRE 0.1077 0.4556 0.0027 -0.6260 -0.4626 0.0988 0.6919 0.8689 

6  RELSIZE -0.4586 0.1314 0.0009 -0.6753 -0.6263 -0.4571 -0.2923 -0.2452 

7  LEVE_FIN -0.0816 0.0352 0.0004 -0.1413 -0.1271 -0.0801 -0.0385 -0.0266 

8  LEVE_NO_FIN 0.0480 0.0363 0.0002 -0.0082 0.0037 0.0462 0.0955 0.1110 

 

 

Bayesian with Priors 6 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

 
 

        
0   

 

 

-1.0690 0.7033 0.0229 -2.2600 -1.9730 -1.0510 -0.1846 0.0605 

1  FINANCIAL DUMMY 2.4430 0.5790 0.0068 1.5210 1.7180 2.4270 3.1910 3.4230 

2  DIVERS 0.4616 0.2032 0.0017 0.1268 0.2025 0.4615 0.7209 0.7971 

3  FRIENDLY 2.6140 0.6790 0.0219 1.5200 1.7580 2.6020 3.4860 3.7700 

4  RET_ACQUIRER_PRE 2.4730 0.8151 0.0033 1.1450 1.4300 2.4720 3.5170 3.8210 

5  RET_TARGET_PRE 0.1074 0.4567 0.0027 -0.6296 -0.4687 0.0966 0.6895 0.8688 

6  RELSIZE -0.4596 0.1329 0.0009 -0.6799 -0.6293 -0.4594 -0.2907 -0.2445 

7  LEVE_FIN -0.0812 0.0355 0.0004 -0.1404 -0.1265 -0.0801 -0.0380 -0.0254 

8  LEVE_NO_FIN 0.0480 0.0366 0.0002 -0.0086 0.0029 0.0460 0.0957 0.1114 

 

 

Bayesian with Priors 7 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

 

 

        
0   

 

 

-1.0550 0.6793 0.0191 -2.2030 -1.9120 -1.0380 -0.2069 0.0262 

1  FINANCIAL DUMMY 2.4440 0.5795 0.0058 1.5280 1.7190 2.4210 3.2050 3.4350 

2  DIVERS 0.4579 0.2057 0.0015 0.1212 0.1933 0.4605 0.7199 0.7956 

3  FRIENDLY 2.5980 0.6548 0.0181 1.5590 1.7760 2.5860 3.4190 3.7110 

4  RET_ACQUIRER_PRE 2.4680 0.8172 0.0033 1.1270 1.4280 2.4690 3.5180 3.8160 

5  RET_TARGET_PRE 0.1118 0.4544 0.0024 -0.6172 -0.4626 0.0988 0.7074 0.8788 

6  RELSIZE -0.4580 0.1330 0.0006 -0.6795 -0.6309 -0.4555 -0.2911 -0.2445 

7  LEVE_FIN -0.0811 0.0356 0.0004 -0.1429 -0.1267 -0.0798 -0.0374 -0.0253 

8  LEVE_NO_FIN 0.0483 0.0367 0.0002 -0.0086 0.0030 0.0463 0.0964 0.1112 



Bayesian with Priors 8 

 

Parameters Covariates mean sd MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

-1.0510 0.6745 0.0186 -2.1950 -1.9270 -1.0330 -0.2115 0.0120 

1  FINANCIAL DUMMY 2.4350 0.5776 0.0058 1.5200 1.7150 2.4170 3.1820 3.4240 

2  DIVERS 0.4597 0.2038 0.0014 0.1219 0.1981 0.4604 0.7196 0.7969 

3  FRIENDLY 2.5960 0.6514 0.0175 1.5590 1.7780 2.5820 3.4360 3.7010 

4  RET_ACQUIRER_PRE 2.4760 0.8206 0.0034 1.1300 1.4280 2.4750 3.5270 3.8180 

5  RET_TARGET_PRE 0.1075 0.4573 0.0022 -0.6301 -0.4757 0.0983 0.7049 0.8702 

6  RELSIZE -0.4595 0.1319 0.0006 -0.6813 -0.6298 -0.4574 -0.2918 -0.2453 

7  LEVE_FIN -0.0807 0.0354 0.0003 -0.1415 -0.1263 -0.0790 -0.0369 -0.0248 

8  LEVE_NO_FIN 0.0482 0.0367 0.0002 -0.0080 0.0030 0.0461 0.0957 0.1111 

 

 

 Bayesian with Priors 9 

 

Parameters Covariates  mean  sd  MC error 5.00% 10.00% Median 90.00% 95.00% 

  
 

       
0   

 

-1.0960 0.7132 0.0232 -2.3090 -2.0010 -1.0660 -0.2145 0.0369 

1  FINANCIAL DUMMY 2.4520 0.5779 0.0063 1.5310 1.7320 2.4320 3.2020 3.4300 

2  DIVERS 0.4622 0.2026 0.0016 0.1311 0.2016 0.4612 0.7225 0.7940 

3  FRIENDLY 2.6380 0.6883 0.0220 1.5500 1.7930 2.6160 3.5260 3.8120 

4  RET_ACQUIRER_PRE 2.4700 0.8190 0.0037 1.1260 1.4360 2.4700 3.5230 3.8260 

5  RET_TARGET_PRE 0.1080 0.4558 0.0025 -0.6206 -0.4672 0.1024 0.6939 0.8714 

6  RELSIZE -0.4597 0.1324 0.0006 -0.6804 -0.6301 -0.4565 -0.2939 -0.2438 

7  LEVE_FIN -0.0816 0.0356 0.0004 -0.1417 -0.1275 -0.0802 -0.0381 -0.0257 

8  LEVE_NO_FIN 0.0484 0.0366 0.0002 -0.0086 0.0029 0.0466 0.0961 0.1123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. 

The estimation results – Maximum Likelihood technique 

The table reports in sample results for a logistic regression. The dependent variable is the probability of resolution for a Merger or Acquisition. It reports the 

estimated values of the parameters 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , for the following covariates: FINANCIAL DUMMY, DIVERS, FRIENDLY, 

RET_ACQUIRER_PRE, RET_TARGET_PRE, RELSIZE, LEVE_FIN, LEVE_NO_FIN. The Table reports the values of the coefficients, the standard error, the z-

statistic and the probability value (p-value). The sample contains 1090 U.S. Mergers and Acquisitions (M&As). 

 

 

Parameters Covariates Coefficient Standard Error z-statistic p-value 

 
  

   
0   

 

 

 

-1.0626 0.6835 -1.5546 0.1200 

1  FINANCIAL DUMMY 2.3284 0.5301 4.3926 0.0000 

2  DIVERS 0.4604 0.2034 2.2635 0.0236 

3  FRIENDLY 2.6080 0.6603 3.9498 0.0001 

4  RET_ACQUIRER_PRE 2.4834 0.8083 3.0722 0.0021 

5  RET_TARGET_PRE 0.0758 0.4521 0.1676 0.8669 

6  RELSIZE -0.4496 0.1291 -3.4823 0.0005 

7  LEVE_FIN -0.0758 0.0314 -2.4107 0.0159 

8  LEVE_NO_FIN 0.0418 0.0355 1.1803 0.2379 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Table 4. 
The convergence of the chains - Diagnostics tests for the equality of the MEAN  

 
Table 4 reports the tests for the equality of the mean between the Chain 1 and the Chain 2, with the aim to test the convergence of the chains. The tests 
for the equality of the mean are the following: t-test, Anova F-test. The brackets report the levels of the probability that allow to reject the null hypothesis. 

 
Panel 4.1: t-test for evaluating the equality of the MEAN, between the Chain 1 and the Chain 2 

 
 

 

 
MEAN 

 

Parameters 
 

t 
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

-1.607 
(0.108) 

0.904 
(0.366) 

-4.692 
(0.000) 

2.750 
(0.006) 

-2.217 
(0.027) 

5.120 
(0.000) 

2.960 
(0.003) 

5.056 
(0.000) 

-5.519 
(0.000) 

7.742 
(0.000) 

 

1  

 

-0.924 
(0.356) 

-1.590 
(0.112) 

-3.849 
(0.000) 

0.163 
(0.871) 

3.396 
(0.001) 

4.514 
(0.000) 

0.826 
(0.409) 

1.591 
(0.112) 

5.034 
(0.000) 

1.566 
(0.117) 

 

2  

 

0.114 
(0.909) 

-1.465 
(0.143) 

0.504 
(0.615) 

2.643 
(0.008) 

-1.455 
(0.146) 

-1.830 
(0.067) 

-0.897 
(0.370) 

-1.012 
(0.312) 

0.949 
(0.342) 

-2.705 
(0.007) 

 

3  

 

1.858 
(0.063) 

-1.107 
(0.268) 

4.462 
(0.000) 

-2.745 
(0.006) 

3.143 
(0.002) 

-4.936 
(0.000) 

-3.024 
(0.003) 

-5.074 
(0.000) 

5.375 
(0.000) 

-7.154 
(0.000) 

 

4  

 

0.618 
(0.536) 

-0.517 
(0.605) 

-0.409 
(0.682) 

1.162 
(0.245) 

1.001 
(0.317) 

-1.292 
(0.196) 

-2.371 
(0.018) 

0.797 
(0.425) 

-0.707 
(0.480) 

-0.301 
(0.763) 

 

5  

 

0.587 
(0.557) 

1.529 
(0.126) 

2.586 
(0.010) 

-1.881 
(0.060) 

-1.049 
(0.294) 

-0.217 
(0.828) 

1.400 
(0.162) 

-0.755 
(0.450) 

-0.445 
(0.656) 

-0.639 
(0.523) 

 

6  

 

-0.904 
(0.366) 

0.423 
(0.672) 

0.882 
(0.378) 

-0.897 
(0.370) 

-2.221 
(0.026) 

-1.357 
(0.175) 

-0.234 
(0.815) 

-1.166 
(0.244) 

-0.364 
(0.716) 

-0.949 
(0.343) 

 

7  

 

1.680 

(0.093) 

2.856 

(0.004) 

4.360 

(0.000) 

-0.654 

(0.513) 

-3.174 

(0.002) 

-4.335 

(0.000) 

-0.937 

(0.349) 

-1.349 

(0.177) 

-4.695 

(0.000) 

-1.680 

(0.093) 

 

8  

 

0.004 
(0.997) 

0.551 
(0.581) 

0.798 
(0.425) 

-0.885 
(0.376) 

-0.461 
(0.645) 

-0.179 
(0.858) 

-0.678 
(0.498) 

0.705 
(0.481) 

1.086 
(0.278) 

-1.467 
(0.142) 

 
 
 
 
 



Panel 4.2: Anova-F test for evaluating the equality of the MEAN, between the Chain 1 and the Chain 2 
 

 

 
MEAN 

 

Parameters 
 

Anova-F 
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

2.581 

(0.108) 

0.817 

(0.366) 

22.014 

(0.000) 

7.564 

(0.006) 

4.915 

(0.027) 

26.211 

(0.000) 

8.762 

(0.003) 

25.560 

(0.000) 

30.455 

(0.000) 

59.934 

(0.000) 

 

1  

 

0.854 
(0.356) 

2.527 
(0.112) 

14.816 
(0.000) 

0.027 
(0.871) 

11.529 
(0.001) 

20.373 
(0.000) 

0.682 
(0.409) 

2.531 
(0.112) 

25.345 
(0.000) 

2.453 
(0.117) 

 

2  

 

0.013 
(0.909) 

2.145 
(0.143) 

0.254 
(0.615) 

6.984 
(0.008) 

2.116 
(0.146) 

3.348 
(0.067) 

0.804 
(0.370) 

1.023 
(0.312) 

0.901 
(0.342) 

7.315 
(0.007) 

 

3  

 

3.453 
(0.063) 

1.226 
(0.268) 

19.909 
(0.000) 

7.535 
(0.006) 

9.880 
(0.002) 

24.364 
(0.000) 

9.142 
(0.003) 

25.747 
(0.000) 

28.889 
(0.000) 

51.183 
(0.000) 

 

4  

 

0.383 
(0.536) 

0.267 
(0.605) 

0.168 
(0.682) 

1.350 
(0.245) 

1.003 
(0.317) 

1.669 
(0.196) 

5.621 
(0.018) 

0.636 
(0.425) 

0.499 
(0.480) 

0.091 
(0.763) 

 

5  

 

0.345 
(0.557) 

2.339 
(0.126) 

6.690 
(0.010) 

3.538 
(0.060) 

1.101 
(0.294) 

0.047 
(0.828) 

1.961 
(0.162) 

0.571 
(0.450) 

0.198 
(0.656) 

0.408 
(0.523) 

 

6  

 

0.818 
(0.366) 

0.179 
(0.672) 

0.777 
(0.378) 

0.804 
(0.370) 

4.934 
(0.026) 

1.840 
(0.175) 

0.055 
(0.815) 

1.360 
(0.244) 

0.133 
(0.716) 

0.901 
(0.343) 

 

7  

 

2.824 
(0.093) 

8.160 
(0.004) 

19.007 
(0.000) 

0.427 
(0.513) 

10.071 
(0.002) 

18.796 
(0.000) 

0.877 
(0.349) 

1.821 
(0.177) 

22.038 
(0.000) 

2.823 
(0.093) 

 

8  

 

0.000 
(0.997) 

0.304 
(0.581) 

0.636 
(0.425) 

0.784 
(0.376) 

0.212 
(0.645) 

0.032 
(0.858) 

0.460 
(0.498) 

0.496 
(0.481) 

1.178 
(0.278) 

2.153 
(0.142) 

 
 
 

 
 

 
 
 
 
 
 
 



Table 5. 
The convergence of the chains - Diagnostics tests for the equality of the VARIANCE 

Table 5 reports the tests for the equality of the variance between the Chain 1 and the Chain 2, with the aim to evaluate the convergence of the chains. The 
tests for the variance are the following: F-test, Siegel-Tukey (S-T) test, Bartlett test and Brown-Forsythe test (B-F). The brackets report the levels of the 
probability that allow to reject the null hypothesis. 

 
Panel 5.1: F test for evaluating the equality of the VARIANCE, between the Chain 1 and the Chain 2 

 

 

 
VARIANCE 

 

Parameters 
 

F 
 

 

Bayesian 1 

 

Bayesian 7  

 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

1.008 
(0.000) 

1.001 
(0.851) 

1.018 
(0.000) 

1.015 
(0.000) 

1.031 
(0.000) 

1.029 
(0.000) 

1.072 
(0.000) 

1.012 
(0.002) 

1.052 
(0.000) 

1.008 
(0.039) 

 

1  

 

1.007 
(0.001) 

1.009 
(0.029) 

1.030 
(0.000) 

1.003 
(0.424) 

1.014 
(0.000) 

1.001 
(0.731) 

1.003 
(0.400) 

1.003 
(0.504) 

1.005 
(0.189) 

1.007 
(0.067) 

 

2  

 

1.007 

(0.000) 

1.002 

(0.661) 

1.012 

(0.003) 

1.001 

(0.784) 

1.021 

(0.000) 

1.005 

(0.015) 

1.002 

(0.550) 

1.001 

(0.817) 

1.007 

(0.069) 

1.009 

(0.028) 

 

3  

 

1.007 
(0.001) 

1.004 
(0.300) 

1.014 
(0.001) 

1.012 
(0.002) 

1.031 
(0.000) 

1.028 
(0.000) 

1.069 
(0.000) 

1.013 
(0.001) 

1.050 
(0.000) 

1.008 
(0.043) 

 

4  

 

1.001 
(0.666) 

1.000 
(0.944) 

1.003 
(0.463) 

1.007 
(0.097) 

1.001 
(0.894) 

1.004 
(0.029) 

1.003 
(0.407) 

1.005 
(0.252) 

1.007 
(0.073) 

1.002 
(0.056) 

 

5  

 

1.004 
(0.028) 

1.001 
(0.722) 

1.018 
(0.000) 

1.005 
(0.253) 

1.006 
(0.141) 

1.003 
(0.103) 

1.007 
(0.095) 

1.005 
(0.190) 

1.005 
(0.193) 

1.009 
(0.020) 

 

6  

 

1.003 

(0.127) 

1.004 

(0.298) 

1.001 

(0.862) 

1.013 

(0.002) 

1.005 

(0.253) 

1.001 

(0.616) 

1.004 

(0.344) 

1.002 

(0.562) 

1.001 

(0.863) 

1.009 

(0.019) 

 

7  

 

1.006 
(0.004) 

1.009 
(0.031) 

1.017 
(0.000) 

1.010 
(0.012) 

1.012 
(0.004) 

1.001 
(0.564) 

1.003 
(0.530) 

1.001 
(0.780) 

1.003 
(0.531) 

1.006 
(0.158) 

 

8  

 

1.004 
(0.084) 

1.002 
(0.694) 

1.005 
(0.205) 

1.009 
(0.021) 

1.001 
(0.777) 

1.003 
(0.167) 

1.003 
(0.417) 

1.000 
(0.949) 

1.004 
(0.300) 

1.003 
(0.397) 

 
 
 
 
 
 



Panel 5.2: SIEGEL-TUKEY test for evaluating the equality of the VARIANCE, between the Chain 1 and the Chain 2  
 

 

 
VARIANCE 

 

Parameters 
 

 
SIEGEL-TUKEY 

 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

1.003 
(0.316) 

0.169 
(0.866) 

0.663 
(0.508) 

3.082 
(0.002) 

0.591 
(0.554) 

15.971 
(0.000) 

11.963 
(0.000) 

2.992 
(0.003) 

11.690 
(0.000) 

5.447 
(0.000) 

 

1  

 

1.785 
(0.074) 

1.855 
(0.064) 

1.815 
(0.070) 

0.182 
(0.856) 

0.053 
(0.958) 

0.978 
(0.328) 

0.496 
(0.620) 

1.878 
(0.060) 

1.666 
(0.096) 

1.227 
(0.220) 

 

2  

 

1.483 
(0.138) 

0.755 
(0.451) 

0.114 
(0.909) 

0.024 
(0.981) 

3.574 
(0.000) 

1.613 
(0.107) 

1.241 
(0.215) 

0.013 
(0.989) 

0.128 
(0.898) 

2.099 
(0.036) 

 

3  

 

0.761 
(0.447) 

0.188 
(0.851) 

0.092 
(0.927) 

3.267 
(0.001) 

2.029 
(0.042) 

14.862 
(0.000) 

11.238 
(0.000) 

2.569 
(0.010) 

10.713 
(0.000) 

5.292 
(0.000) 

 

4  

 

0.429 
(0.668) 

0.011 
(0.991) 

1.542 
(0.123) 

1.731 
(0.083) 

2.427 
(0.015) 

0.077 
(0.939) 

0.245 
(0.806) 

0.281 
(0.779) 

0.853 
(0.394) 

0.963 
(0.336) 

 

5  

 

0.235 
(0.815) 

3.277 
(0.001) 

1.708 
(0.088) 

1.644 
(0.100) 

0.546 
(0.585) 

0.391 
(0.696) 

0.624 
(0.533) 

0.538 
(0.591) 

0.490 
(0.624) 

0.109 
(0.913) 

 

6  

 

0.120 
(0.904) 

0.110 
(0.912) 

0.109 
(0.913) 

0.905 
(0.366) 

0.674 
(0.500) 

0.511 
(0.609) 

0.450 
(0.652) 

0.050 
(0.960) 

0.039 
(0.969) 

1.466 
(0.143) 

 

7  

 

2.563 
(0.010) 

0.842 
(0.400) 

3.495 
(0.001) 

1.711 
(0.087) 

0.938 
(0.349) 

0.810 
(0.418) 

0.276 
(0.783) 

2.237 
(0.025) 

0.816 
(0.415) 

0.480 
(0.632) 

 

8  

 

1.678 
(0.093) 

0.777 
(0.437) 

3.014 
(0.003) 

1.902 
(0.057) 

0.782 
(0.435) 

1.476 
(0.140) 

1.428 
(0.153) 

0.992 
(0.321) 

0.187 
(0.851) 

0.714 
(0.475) 

 
 

 

 
 
 
 
 
 
 
 



Panel 5.3: BARTLETT test for evaluating the equality of the VARIANCE, between the Chain 1 and the Chain 2   
 

 

 

VARIANCE 
 

Parameters 
 

BARTLETT  
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

16.791 

(0.000) 

0.035 

(0.851) 

20.276 

(0.000) 

14.063 

(0.000) 

59.849 

(0.000) 

205.442 

(0.000) 

300.824 

(0.000) 

9.554 

(0.002) 

158.608 

(0.000) 

4.254 

(0.039) 

 

1  

 

11.114 
(0.001) 

4.746 
(0.029) 

54.505 
(0.000) 

0.639 
(0.424) 

12.895 
(0.000) 

0.118 
(0.731) 

0.710 
(0.400) 

0.448 
(0.504) 

1.725 
(0.189) 

3.346 
(0.067) 

 

2  

 

13.306 
(0.000) 

0.193 
(0.661) 

8.724 
(0.003) 

0.075 
(0.784) 

25.838 
(0.000) 

5.894 
(0.015) 

0.357 
(0.550) 

0.053 
(0.817) 

3.320 
(0.068) 

4.825 
(0.028) 

 

3  

 

11.783 
(0.001) 

1.073 
(0.300) 

11.601 
(0.001) 

9.637 
(0.002) 

58.972 
(0.000) 

189.236 
(0.000) 

280.240 
(0.000) 

10.416 
(0.001) 

148.774 
(0.000) 

4.100 
(0.043) 

 

4  

 

0.187 
(0.666) 

0.005 
(0.944) 

0.540 
(0.463) 

2.763 
(0.097) 

0.018 
(0.894) 

4.749 
(0.029) 

0.689 
(0.407) 

1.313 
(0.252) 

3.208 
(0.073) 

0.347 
(0.556) 

 

5  

 

4.848 
(0.028) 

0.127 
(0.722) 

19.142 
(0.000) 

1.309 
(0.253) 

2.167 
(0.141) 

2.661 
(0.103) 

2.791 
(0.095) 

1.720 
(0.190) 

1.696 
(0.193) 

5.433 
(0.020) 

 

6  

 

2.328 
(0.127) 

1.084 
(0.298) 

0.030 
(0.862) 

9.740 
(0.002) 

1.308 
(0.253) 

0.251 
(0.616) 

0.894 
(0.344) 

0.336 
(0.562) 

0.030 
(0.863) 

5.520 
(0.019) 

 

7  

 

8.446 
(0.004) 

4.643 
(0.031) 

16.559 
(0.000) 

6.312 
(0.012) 

8.201 
(0.004) 

0.333 
(0.564) 

0.395 
(0.530) 

0.066 
(0.798) 

0.393 
(0.531) 

1.997 
(0.158) 

 

8  

 

2.985 
(0.084) 

0.154 
(0.694) 

1.608 
(0.205) 

5.358 
(0.021) 

0.080 
(0.777) 

1.906 
(0.167) 

0.660 
(0.417) 

0.004 
(0.949) 

1.077 
(0.300) 

0.718 
(0.397) 

 
 
 

 
 
 
 
 
 
 
 
 



Panel 5.4: BROWN-FORSYTHE test on the equality of the VARIANCE, between the Chain 1 and the Chain 2 
 

 

 
VARIANCE 

 

Parameters 
 

BROWN-FORSYTHE 
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

ALL 
 

[0, 0.25) 
 

[0.25, 0.50) 
 

[0.50, 0.75) 
 

[0.75, 1.00] 
 

 

0  

 

1.507 

(0.220) 

0.002 

(0.962) 

6.190 

(0.013) 

14.219 

(0.000) 

14.836 

(0.000) 

256.825 

(0.000) 

226.184 

(0.000) 

0.084 

(0.771) 

169.760 

(0.000) 

14.445 

(0.000) 

 

1  

 

8.029 
(0.005) 

5.213 
(0.022) 

22.421 
(0.000) 

0.090 
(0.764) 

2.686 
(0.101) 

0.422 
(0.516) 

0.858 
(0.354) 

0.527 
(0.468) 

3.363 
(0.067) 

2.161 
(0.142) 

 

2  

 

7.350 
(0.007) 

0.349 
(0.555) 

2.431 
(0.119) 

0.016 
(0.898) 

21.147 
(0.000) 

4.572 
(0.033) 

1.082 
(0.298) 

0.017 
(0.895) 

0.650 
(0.420) 

5.276 
(0.022) 

 

3  

 

1.001 
(0.317) 

0.160 
(0.689) 

2.474 
(0.116) 

13.275 
(0.000) 

20.659 
(0.000) 

227.414 
(0.000) 

203.402 
(0.000) 

0.000 
(0.998) 

150.092 
(0.000) 

13.851 
(0.000) 

 

4  

 

0.159 
(0.690) 

0.000 
(0.991) 

0.232 
(0.630) 

3.384 
(0.066) 

2.361 
(0.124) 

1.096 
(0.295) 

0.391 
(0.532) 

0.173 
(0.678) 

1.752 
(0.186) 

0.073 
(0.788) 

 

5  

 

0.834 
(0.361) 

2.703 
(0.100) 

9.931 
(0.002) 

2.019 
(0.155) 

1.212 
(0.271) 

0.304 
(0.582) 

1.403 
(0.236) 

0.089 
(0.766) 

0.855 
(0.355) 

1.135 
(0.287) 

 

6  

 

0.607 
(0.436) 

0.241 
(0.623) 

0.013 
(0.908) 

3.978 
(0.046) 

0.025 
(0.875) 

0.365 
(0.546) 

0.445 
(0.505) 

0.041 
(0.840) 

0.007 
(0.935) 

3.977 
(0.046) 

 

7  

 

8.475 
(0.004) 

3.107 
(0.078) 

17.122 
(0.000) 

4.042 
(0.044) 

4.195 
(0.041) 

0.352 
(0.579) 

0.096 
(0.757) 

1.224 
(0.269) 

1.096 
(0.295) 

0.673 
(0.412) 

 

8  

 

3.702 
(0.054) 

0.224 
(0.636) 

5.664 
(0.017) 

5.033 
(0.025) 

0.079 
(0.778) 

2.068 
(0.151) 

1.200 
(0.273) 

0.480 
(0.488) 

0.206 
(0.650) 

0.400 
(0.527) 

 
 
 

 

 

 

 

 

 



Figure 1.  
Estimated Probability of Resolution for Mergers and Acquisitions (M&As) 

 
The figure shows two Relative Operating Characteristic (ROC) curves: (i) Figure 1.1 shows the percentage of correctly classified successful Mergers and 
Acquisitions (M&As), as a function of the probability from 0 to 1. (ii) Figure 1.2 shows the percentage of correctly classified withdrawn Mergers and 
Acquisitions (M&As), as a function of the probability from 0 to 1. The figures show in-sample results, based on a sample of 1090 U.S. stock swap M&As. 

Figure 1.1:  
Successful Mergers and Acquisitions (M&As) 

 
 
 



Figure 1.2:  
Withdrawn Mergers and Acquisitions (M&As) 

 



Figure 2.  
Pseudo Out-of-Sample validation for Mergers and Acquisitions (M&As), based on 50% of the sample 

 
The figure shows two Relative Operating Characteristic (ROC) curves: (i) Figure 2.1 shows the percentage of correctly classified successful Mergers and 
Acquisitions (M&As), as a function of the probability from 0 to 1. (ii) Figure 2.2 shows the percentage of correctly classified withdrawn Mergers and Acquisitions 
(M&As), as a function of the probability from 0 to 1. The Figures show the pseudo out-of-sample results, based on 50% of M&As. 

Figure 2.1:  
ROC - Pseudo out-of-sample validation for successful M&As (50% of M&As) 

 



Figure 2.2:  
ROC - Pseudo out-of-sample validation for withdrawn M&As (50% of M&As) 

 
 
 
 



Figure 3.  
Pseudo Out-of-Sample validation for Mergers and Acquisitions (M&As), based on 30% of the sample 

 
The figure shows two Relative Operating Characteristic (ROC) curves: (i) Figure 3.1 shows the percentage of correctly classified successful Mergers and 
Acquisitions (M&As), as a function of the probability from 0 to 1. (ii) Figure 3.2 shows the percentage of correctly classified withdrawn Mergers and Acquisitions 
(M&As), as a function of the probability from 0 to 1. The Figures show the pseudo out-of-sample results, based on 30% of M&As. 

Figure 3.1:  
ROC - Pseudo out-of-sample validation for successful M&As (30% of M&As) 

 



Figure 3.2: 
ROC - Pseudo out-of-sample validation for withdrawn M&As (30% of M&As) 

 
 
 



Appendix A. 

The list of covariates  

Appendix A reports the list of dependent (SUCCESS) and independent (FINANCIAL DUMMY, DIVERS, FRIENDLY, RET_TARGET_PRE, RET_ACQUIRER_PRE, 

RELSIZE, LEVE_FIN, LEVE_NO_FIN) variables, with the aim to estimate the probability of a deal completion.  

Variables 

 

Definition 

 

 

SUCCESS 

 

 

 

 

FINANCIAL DUMY 

 

DIVERS 

 

FRIENDLY 

 

RET_TARGET_PRE 

 

RET_ACQUIRER_PRE 

 

RELSIZE 

 

LEVE_FIN 

 

LEVE_NO_FIN 

 

 

Dependent Variable 

Dummy variable that takes a value equals to 1, in case of a deal completion and 0 otherwise 

 

Independent Variables  

 

Dummy variable that takes a value equals to 1, if the target company is a financial institution 

 

Dummy variable that takes a value equals to 1, if the target and the bidder companies belong to the same primary business 

 

Dummy variable that takes a value equals to 1, if the deal is friendly and a value equals to 0, if it is hostile 

 

Percentage variation of the target stock price, 1 week before the announcement date (TARGET RUN-UP) 

 

Percentage variation of the acquirer stock price, 1 week before the announcement date (ACQUIRER RUN-UP) 

 

Ratio between the target market value and the acquirer market value 

 

Leverage computed as the ratio between the total amount of assets and the total amount of equity, for target financial companies  

 

Leverage computed as the ratio between the total amount of assets and the total amount of equity, for target non-financial companies  

 

 

 

 

 

 

 

 

 

 



Appendix B. 

Diagnostics for the convergence of the chains 
Appendix B reports the convergence rates for the estimated parameters of the logistic model, based on a different set of (informative) priors. The estimation 
procedure relies on the MCMC simulations with a Gibbs sampler. Appendix B shows the convergence rate, computed as a ratio between the MC error and the 
standard deviation of the posterior distribution, the root median square deviation (RMSD) and the median absolute percentage deviation (MAPD), between the 
chains for each parameter. The number of iterations is equal to 1000000 and the procedure relies on 2 chains. The “burn-in” procedure for computing the 
descriptive statistics for each posterior distribution is equal to 10% of the observations. The results are provided for the Bayesian estimation procedure, based on 
the first and the seventh set of priors. 
 
 

Bayesian with Priors 1 
 

Parameters 
 

Covariates 

 
 Convergence Rate (x100) 

 
 RMSD 

 
 MAPD 

 

0   

 

 

0.2034 0.674 0.581 

1  FINANCIAL DUMMY 0.1622 0.547 0.224 

2  DIVERS 0.1389 0.195 0.418 

3  FRIENDLY 0.2050 0.651 0.242 

4  RET_ACQUIRER_PRE 0.1197 0.777 0.312 

5  RET_TARGET_PRE 0.1264 0.434 1.380 

6  RELSIZE 0.1227 0.126 0.274 

7  LEVE_FIN 0.1528 0.033 0.408 

8  LEVE_NO_FIN 0.1557 0.035 0.713 
 
 
 

Bayesian with Priors 7 
 
 

Parameters 
 

Covariates 

 
 Convergence Rate (x100) 

 
 RMSD 

 
 MAPD 

 

0   

 

 

0.6710 0.656 0.628 

1  FINANCIAL DUMMY 0.2308 0.546 0.224 

2  DIVERS 0.1495 0.195 0.419 

3  FRIENDLY 0.6532 0.632 0.245 

4  RET_ACQUIRER_PRE 0.0911 0.780 0.314 

5  RET_TARGET_PRE 0.1041 0.434 1.381 

6  RELSIZE 0.0819 0.126 0.274 

7  LEVE_FIN 0.2082 0.033 0.408 

8  LEVE_NO_FIN 0.0986 0.035 0.715 

 



Appendix C. 

Diagnostics tests, based on the equality of the MEAN, for evaluating the convergence of the chains  
 
Appendix C reports alternative tests for the equality of the mean between the Chain 1 and the Chain 2, with the aim to test the convergence of the chains. The 
alternative tests on the mean are the following: Satterwhaite-Welch test, Welch test. The brackets report the levels of the probability that allow to reject the null 
hypothesis. 
 

 
Appendix C.1: Satterwhaite-Welch test for the equality of the MEAN, between the Chain 1 and the Chain 2 

 

 

 
MEAN 

 
 

Parameters 
 

Satterwhaite-Welch 
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 

 

[0, 0.25) 

 

[0.25, 0.50) 

 

[0.50, 0.75) 

 

[0.75, 1.00] 

 

ALL 

 

[0, 0.25) 

 

[0.25, 0.50) 

 

[0.50, 0.75) 

 

[0.75, 1.00] 

 

 

0  

 

-1.607 
(0.108) 

0.904 
(0.366) 

-4.692 
(0.000) 

2.750 
(0.006) 

-2.217 
(0.027) 

5.120 
(0.000) 

2.960 
(0.003) 

5.056 
(0.000) 

-5.519 
(0.000) 

7.742 
(0.000) 

 

1  

 

-0.924 
(0.356) 

-1.590 
(0.112) 

-3.849 
(0.000) 

0.163 
(0.871) 

3.396 
(0.001) 

4.514 
(0.000) 

0.826 
(0.409) 

1.591 
(0.112) 

5.034 
(0.000) 

1.566 
(0.117) 

 

2  

 

0.114 
(0.909) 

-1.465 
(0.143) 

0.504 
(0.615) 

2.643 
(0.008) 

-1.455 
(0.146) 

-1.830 
(0.067) 

-0.897 
(0.370) 

-1.012 
(0.312) 

0.949 
(0.342) 

-2.705 
(0.007) 

 

3  

 

1.858 

(0.063) 

-1.107 

(0.268) 

4.462 

(0.000) 

-2.745 

(0.006) 

3.143 

(0.002) 

-4.936 

(0.000) 

-3.024 

(0.003) 

-5.074 

(0.000) 

5.375 

(0.000) 

-7.154 

(0.000) 
 

4  

 

0.618 
(0.536) 

-0.517 
(0.605) 

-0.409 
(0.682) 

1.162 
(0.245) 

1.001 
(0.317) 

-1.292 
(0.196) 

-2.371 
(0.018) 

0.797 
(0.425) 

-0.707 
(0.480) 

-0.301 
(0.763) 

 

5  

 

0.587 

(0.557) 

1.529 

(0.126) 

2.587 

(0.010) 

-1.881 

(0.060) 

-1.049 

(0.294) 

-0.217 

(0.828) 

1.400 

(0.162) 

-0.755 

(0.450) 

-0.445 

(0.656) 

-0.639 

(0.523) 
 

6  

 

-0.904 
(0.366) 

0.423 
(0.672) 

0.882 
(0.378) 

-0.897 
(0.370) 

-2.221 
(0.026) 

-1.357 
(0.175) 

-0.234 
(0.815) 

-1.166 
(0.244) 

0.133 
(0.716) 

-0.949 
(0.343) 

 

7  

 

1.680 

(0.093) 

2.856 

(0.004) 

4.360 

(0.000) 

-0.654 

(0.513) 

-3.173 

(0.002) 

-4.335 

(0.000) 

-0.937 

(0.349) 

-1.349 

(0.177) 

-4.695 

(0.000) 

-1.680 

(0.093) 
 

8  

 

0.004 
(0.997) 

0.551 
(0.581) 

0.798 
(0.425) 

-0.885 
(0.376) 

-0.461 
(0.645) 

-0.179 
(0.858) 

-0.678 
(0.498) 

0.705 
(0.481) 

1.086 
(0.278) 

-1.467 
(0.142) 



Appendix C.2: Welch test for the equality of the MEAN, between the Chain 1 and the Chain 2 

 

 

 
MEAN 

 
 

Parameters 
 

Welch  
 

 

Bayesian 1 
 

Bayesian 7  
 

ALL 

 

[0, 0.25) 

 

[0.25, 0.50) 

 

[0.50, 0.75) 

 

[0.75, 1.00] 

 

ALL 

 

[0, 0.25) 

 

[0.25, 0.50) 

 

[0.50, 0.75) 

 

[0.75, 1.00] 

 

 

0  

 

2.581 
(0.108) 

0.817 
(0.366) 

22.014 
(0.000) 

7.564 
(0.006) 

4.915 
(0.027) 

26.211 
(0.000) 

8.762 
(0.003) 

25.560 
(0.000) 

30.455 
(0.000) 

59.934 
(0.000) 

 

1  

 

0.854 
(0.356) 

2.527 
(0.112) 

14.816 
(0.000) 

0.027 
(0.871) 

11.529 
(0.001) 

20.373 
(0.000) 

0.682 
(0.409) 

2.531 
(0.112) 

25.345 
(0.000) 

2.453 
(0.117) 

 

2  

 

0.013 
(0.909) 

2.145 
(0.143) 

0.254 
(0.615) 

6.984 
(0.008) 

2.116 
(0.146) 

3.348 
(0.067) 

0.804 
(0.370) 

1.023 
(0.312) 

0.901 
(0.342) 

7.315 
(0.007) 

 

3  

 

3.453 
(0.063) 

1.226 
(0.268) 

19.909 
(0.000) 

7.535 
(0.006) 

9.880 
(0.002) 

24.364 
(0.000) 

9.142 
(0.003) 

25.747 
(0.000) 

28.889 
(0.000) 

51.183 
(0.000) 

 

4  

 

0.383 
(0.536) 

0.267 
(0.605) 

0.168 
(0.682) 

1.350 
(0.245) 

1.003 
(0.317) 

1.669 
(0.196) 

5.621 
(0.018) 

0.636 
(0.425) 

0.499 
(0.480) 

0.091 
(0.763) 

 

5  

 

0.345 
(0.557) 

2.339 
(0.126) 

6.690 
(0.010) 

3.538 
(0.060) 

1.001 
(0.294) 

0.047 
(0.828) 

1.961 
(0.162) 

0.571 
(0.450) 

0.198 
(0.656) 

0.408 
(0.523) 

 

6  

 

0.818 
(0.366) 

0.179 
(0.672) 

0.777 
(0.378) 

0.804 
(0.370) 

4.934 
(0.026) 

1.840 
(0.175) 

0.055 
(0.815) 

1.360 
(0.244) 

0.133 
(0.716) 

0.901 
(0.343) 

 

7  

 

2.824 
(0.093) 

8.160 
(0.004) 

19.007 
(0.000) 

0.427 
(0.513) 

10.072 
(0.002) 

18.796 
(0.000) 

0.877 
(0.349) 

1.821 
(0.177) 

22.038 
(0.000) 

2.823 
(0.093) 

 

8  

 

0.000 

(0.997) 

0.304 

(0.581) 

0.636 

(0.425) 

0.784 

(0.376) 

0.212 

(0.645) 

0.032 

(0.858) 

0.460 

(0.498) 

0.496 

(0.481) 

1.178 

(0.278) 

2.153 

(0.142) 
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