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Abstract 

 

This paper analyses the accuracy and reliability of standard techniques for risk analysis used 

by the financial industry as well as in regulations. We focus on the difference between value–

at–risk and expected shortfall, the small sample properties of these risk measures and the 

impact of using an overlapping approach to construct data for longer holding periods. Overall, 

we find that risk forecasts are extremely uncertain at low sample sizes. By comparing the 

estimation uncertainty, we find that value–at–risk is superior to expected shortfall and the 

time-scaling approach for risk forecasts with longer holding periods is preferable to using 

overlapping data. 
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1 Introduction

Financial risk is usually forecasted with sophisticated statistical methods.

However, in spite of their prevalence in industry applications and financial

regulations, the performance of such methods is poorly understood. This

is a concern since minor variations in model assumptions can lead to vastly

different risk forecasts for the same portfolio, forecasts that are all equally

plausible ex–ante. These results have problematic implications for many

practical applications, especially where the cost of type I and type II error is

not trivial.

Our aim in this paper is to analyze the most common practices in market

risk modeling, identify under what conditions they deliver reliable answers,

when and how they fail to live up to expectations and ultimately make recom-

mendations to practitioners and regulators on their proper use. In particular,

we focus on the three main challenges arise in the forecasting of financial risk:

the choice of risk measure, data sample and statistical method.

A large number of statistical methods for forecasting risk have been pro-

posed, but as a practical matter, only a handful have found significant trac-

tion, as discussed in Danielsson et al. (2015). Of these, all but one depend

on some parametric model, while one, historical simulation (HS), is model

independent. Our objective in this paper is not to compare and contrast

the various risk forecast methods: after all, a large number of high–quality

papers exist on this very topic. Instead, we want to see how a representa-

tive risk forecast method performs, identifying results that are related to the
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technical choice on the other two key issues: risk measure and data.

Given our objectives, it is appropriate to focus on HS, not only is it a com-

monly used method, for example, 60% of the US banks considered O’Brien

and Szerszen (2014) use HS. More fundamentally, the good performance of

a specific parametric model is usually driven by the fact that the model is

close to the data generating process (DGP) and it is not possible to find a

parametric model that performs consistently well across all DGPs. Although

HS is the simplest estimation method, it has the advantage of not being de-

pendent on a particular parametric DGP, and any other method would be

biased towards its DGP, creating an unlevel playing field.

While our first contribution is the practical comparison of Value–at–Risk

(VaR) to expected shortfall (ES).1 A common view holds that VaR is inher-

ently inferior to ES, a view supported by three convincing arguments. First,

VaR is not a coherent measure unlike ES, as noted by Artzner et al. (1999).

Second, as a quantile, VaR is unable to capture the risk in the tails beyond

the specific probability, while ES accounts for all tail events. Finally, it is

easier for financial institutions to manipulate VaR than ES. Perhaps swayed

the theoretical advantages, ES appears increasingly preferred both by prac-

titioners and regulators, most significantly expressed in Basel III. While the

Proposal is light on motivation, the little that is stated only refers to theo-

retic tail advantages. The practical properties of both ES and VaR, such as

1Ever since its introduction by RiskMetrics Group (1993) and especially the incorpora-
tion into financial regulations by the Basel Committee (1996), VaR is the most commonly
used market risk measure. While it has come under considerable criticism, it has generally
been preferred to other measures such as Artzner’s et al. (1999) ES, partly because of the
work of Yamai and Yoshiba (2002, 2005).
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their estimation uncertainties, are less understood, especially since empiri-

cally there is no reason to believe that the preference ordering is as clear-cut.

After all, implementation introduces additional considerations, some that

work in opposite directions. The estimation of ES requires more steps and

more assumptions than the estimation of VaR, giving rise to more estimation

uncertainty. However, ES smooths out the tails and therefore might perform

better in practice.

Our second contribution is to investigate how best to use data. Many

applications require the estimation of risk over multiple day holding horizons.

There are three ways one can calculate such risk, use non–overlapping data,

use overlapping data, or timescale daily risk forecasts. While the first is

generally preferred, it may not be possible because the lack of data.

In our third and final contribution we study whether the estimation of

risk measures is robust when considering small — and typical in practical use

— sample sizes. Although the asymptotic properties of risk measures can be

established using statistical theories, known asymptotic properties of the risk

forecast estimators might be very different in typical sample sizes. Estimation

uncertainty based on asymptotic theory can therefore be misleading for small

sample size analysis.

We address each of these three questions from both theoretic and empiri-

cal points of view. Ideally, one would evaluate the robustness of risk analysis

with real data, but that is challenging because we do not know the true DGP

of the observed data and neither do we have any assurance that data across

time and assets maintains consistent statistical properties. We therefore start
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with theoretic and simulation analysis, which allows us to study properties

of the risk measures when we know the DGP. We then augment the analysis

by results from the Center for Research in Security Prices (CRSP) universe

of stock returns.

While the theoretic analysis directly relates to the vast extant literature

on risk measures, we found practically no work on the finite sample analysis

of the practical properties of risk measures exist. We surmise that an im-

portant reason relates to computational difficulties, especially the very large

simulation size needed. We are estimating not only the risk measures but also

the uncertainty of those estimates, where for example, we need to capture

the “quantiles of the quantiles”. To achieve robust results, in the sense that

they are accurate up to three significant digits, one needs to do ten million

Monte Carlo replications, each of various sizes.

We obtain four sets of results.

First, VaR and ES are in most cases related by a small constant implying

that they are equally informative. In the special case of Basel III, the 97.5%

ES is essentially the same as the 99% VaR. This suggests that even if ES is

theoretically better at capturing the tails, in practice one might just multiply

VaR by a small constant to get ES.

Second, ES is estimated with more uncertainty than VaR, both when

estimated each at the same probability levels and also when using the Basel

III combination, ES(97.5%) and VaR(99%).

Third, as the sample size gets smaller, the estimation uncertainty of both
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VaR and ES becomes extremely large. At the smallest samples, often the

most commonly used in practice, the uncertainty is so large that the risk

forecast is essentially indistinguishable from random noise. It takes a sam-

ple of half a century of daily observations for the numerical estimators to

achieve their asymptotic properties. The confidence interval around the risk

forecasts is very far from being symmetric, the upper 99% confidence bound

is a multiple of the forecast, which obviously cannot be the case for the

lower confidence bound. This means that if one uses the standard error as a

measure of uncertainty, it will be strongly biased downwards.

In our final result, we compare the square–root–of–time approach to the

overlapping approach and find that the overlapping approach results in more

estimation uncertainty.

Taken together, these results suggest that common practices and trends

in risk management are misguided. Unless there is a specific reason to do

so, VaR is preferred to ES, and the overlapping approach should be avoided.

Most importantly, risk forecasts at commonly used sample sizes are virtually

indistinguishable from random noise. To us, it is a concern that vast amounts

of resources are allocated based on such flimsy evidence. This is especially

problematic in the calculation of banks’ capital requirement for market risk.

A financial institution has the flexibility internally to tailor the risk analysis

exploiting the problems outlined here.

The structure of the paper is as follows. We discuss the theoretic proper-

ties of the risk measures in Section 2 and the Monte Carlo results in Section

3. Empirical results using stock returns in the CRSP database are presented
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in Section 4. The conclusion and implications of our analysis are discussed

in Section 5. Mathematical proofs are relegated to the Appendix.

2 Estimation uncertainty

Many authors have considered the various theoretical properties of risk mea-

sures and corresponding estimation methods. Here we are interested in three

aspects of risk analysis that see little coverage in the extant literature: The

relationship between ES and VaR, the impact of using the overlapping ap-

proach and the small sample properties of the risk measures. We consider

both the case where the probability for VaR and ES is the same, and also the

Basel III case where the comparison is between ES(97.5%) and VaR(99%).

Denote the profit and loss of a trading portfolio as PL and let X ≡

−PL, so we can indicate a loss by a positive number. Suppose that X

follows a distribution function F and we obtain a sample of size N from that

distribution. With denoting the probability level by p, we refer to VaR and

ES by qF := qF (p) and eF := eF (p), respectively. We estimate the two risk

measures by HS as follows. Rank the N observations as XN,1 ≤ XN,2 ≤ · · · ≤

XN,N . Then

q̂F = XN,[pN ],

êF =
1

(1− p)N

(1−p)N
∑

j=1

XN,N−j+1.
(1)

Asymptotically, these estimators are unbiased. But a well–known result,
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dating at least back to Blom (1958), finds that quantile estimators using HS

are biased with finite sample sizes: the probability of exceeding the quantile

XN,[pN ] is slightly lower than p. It is straightforward to adjust for this bias,

using for example the methods proposed by Hyndman and Fan (1996).

2.1 VaR and ES

2.1.1 The levels of VaR and ES

Consider the ratio of ES to VaR, eF/qF , for a range of distribution functions

F . Starting with the Gaussian, with mean zero and standard deviation σ,

then qF = σqN(0,1) and eF = σeN(0,1), where N(0, 1) denotes the standard

normal distribution. It is obvious that for the same p levels, eF (p)/qF (p) > 1

and it is straightforward to verify that:

lim
p→1

eF (p)

qF (p)
= 1.

In other words, as probabilities become more extreme, the relative difference

between ES and VaR diminishes. At a finite level, such a ratio can be ex-

plicitly calculated, for example, eF (0.99)/qF (0.99) = 1.146. When considering

different p levels for the two risk measures, such as in comparing the Basel

III proposal, we get eF (0.975)/qF (0.99) = 1.005. Hence the two risk measures are

roughly identical under normality.

Since financial returns exhibit heavy tails, a more realistic analysis uses

some heavy tailed distribution, such as the Student-t distribution. Similar to

the normal case, it is straightforward to calculate the ratio of ES to VaR for
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the Student–t distribution with any particular degrees of freedom, and prob-

ability levels. For example, consider the Student–t with degrees of freedom

three. Then eF (0.99)/qF (0.99) = 1.54 and eF (0.975)/qF (0.99) = 1.11.

However, we are more interested in a general expression of the relationship

between VaR and ES, one that applies to all heavy–tailed distributions. To

this end, we make use of Extreme Value Theory (EVT), in which a heavy–

tailed distribution is defined by regular variation. That is,

lim
t→∞

1− F (tx)

1− F (t)
= x−α,

for some α > 0, known as the tail index. For the Student–t distribution, the

tail index equals the degrees of freedom. Note that the assumption of regular

variation only applies to the right tail of F , and thus does not impose any

restriction on the rest of the distribution, allowing this approach to capture a

large range of models. Indeed, an assumption of regular variation is sufficient

for inference on tail risk measures.

The following proposition gives the theoretical foundation for comparing

the levels of VaR and ES at high probability levels. The proof is postponed

to the Appendix.

Proposition 1 Suppose F is a heavy–tailed distribution with tail index α.

Given any constant c > 0, we have that

lim
s→0

eF (1− cs)

qF (1− s)
=

α

α− 1
c−1/α.
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To compare the VaR and ES with the same probability level, one can take

c = 1 and s = 1− p in Proposition 1, and get that

lim
p→1

eF (p)

qF (p)
=

α

α− 1
.

That is, when the probability is the same for both risk measures, the ES is

equivalent to the VaR times the multiplier α/(α−1). This ratio is higher than

one, which gives the essential difference between heavy–tailed distributions

and thin–tailed distributions such as the normal distribution. Since the mul-

tiplier is decreasing in α, the more heavy–tailed the distribution of F , the

larger the difference between ES and VaR.

To compare the VaR(99%) with ES(97.5%), set c and s in Proposition 1

such that s = 1% and cs = 2.5%. Then;

eF (p2)

qF (p1)
≈ α

α− 1
(2.5)−1/α := f(α).

That is, when comparing ES(97.5%) to VaR(99%), the ratio is given by

the function f(α). We plot this function in Figure 1 for α ranging from 2

to 5, which is more than wide enough to cover tail thicknesses commonly

observed. Note the ratio is decreasing in α, ranging between 1.105 and 1.041

for α ranging from 3 to 5.

2.1.2 The estimation uncertainty of VaR and ES

In what follows, we focus our attention on the best case scenario where the

data is i.i.d. and we know it is i.i.d. If we also had to estimate the dynamic
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structure, the estimation uncertainty would be further increased. We focus

our attention on the case where F is heavy–tailed with a tail index α, with

the Gaussian as the special case where α = +∞.

We only consider the HS method, and derive the asymptotic properties

of two estimators, q̂F and êF , as given in (1). In HS estimation, only the top

(1− p)N order statistics are used.

Denote the number of observations used in estimators (1) as kq := kq(N)

and ke := ke(N), such that kq, ke → ∞, kq/N → 0, ke/N → 0 as N → ∞.

We can then generalize (1) by defining the ES and VaR as:

q̂F (1− kq/N) = XN,N−kq ,

êF (1− ke/N) =
1

ke

ke
∑

j=1

XN,N−j+1.

The following proposition gives the asymptotic properties of these estimators

for a general k sequence. The proof is postponed to the Appendix.

Proposition 2 Suppose that X1, · · · , XN are i.i.d. and drawn from a heavy

tailed distribution function F with α > 2. Denote U = (1/(1−F ))← as the

quantile function. Assume the usual second order condition holds:

lim
t→∞

U(tx)
U(t)

− x1/α

A(t)
= x1/αx

ρ − 1

ρ
,

for a constant ρ ≤ 0 and a function A(t) such that limt→∞A(t) = 0. Suppose

k := k(N) is an intermediate sequence such that as N → ∞, k → ∞,

k/N → 0 and
√
kA(N/k) → λ with a constant λ. Then, we have that as
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N → ∞,

√
k

(

q̂F (1− k/N)

qF (1− k/N)
− 1

)

d→ N

(

0,
1

α2

)

,

√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ N

(

0,
2(α− 1)

α2(α− 2)

)

.

From Proposition 2, both estimators are asymptotically unbiased. We focus

on comparing their asymptotic variances.

First, we consider the case in which the ES and VaR probability is the

same. Consider, ke = kq = (1 − p)N with p → 1 as N → ∞. Consequently,

we get that

Var
(

êF (p)
eF (p)

)

Var
(

q̂F (p)
qF (p)

) ≈
2(α−1)
α2(α−2)

1
ke

1
α2

1
kq

=
2(α− 1)

α− 2
= 1 +

α

α− 2
.

Which means that when considering the same probability level, the relative

estimation uncertainty of the ES measure is higher than that of the VaR

measure. The difference is larger for lower α, i.e. heavier distributions.

Next, we compare the estimation uncertainty of VaR(99%) and ES(97.5%).

In this case, we need to set ke/kq = (1−p2)/(1−p1) = 2.5, which reflects the

relative difference in the two tail probabilities. By applying the Proposition

with kq and ke such that ke/kq = 2.5, we get that

Var
(

êF (p2)
eF (p2)

)

Var
(

q̂F (p1)
qF (p1)

) ≈
2(α−1)
α2(α−2)

1
ke

1
α2

1
kq

=
4(α− 1)

5(α− 2)
=: g(α).

The function g(α) is decreasing in α. By solving g(α) = 1, we get the
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break–even point at αbe = 6. For α > 6, g(α) < 1; if α < 6, then g(α) > 1.

That means, if the losses are heavy–tailed with α < 6, the estimation

uncertainty in ES(97.5%) is higher than that of VaR(99%).

2.2 Overlapping and time–scaling approaches

Consider the problem of forecasting risk over holding periods longer than one

day, say a H days and suppose data is observed at the daily frequency. There

are three ways one can obtain multi–day holding period risk forecasts: First,

estimate a daily risk forecast and apply some scaling law to obtain the multi–

day forecast, typically square–root–of–time. We call this approach the time–

scaling approach. Alternatively one can time aggregate daily observations.

Focussing on log returns, a 10 day return would be the sum of 10 one–day

returns, and the risk forecasts would then be made by these 10 day returns.

Here we have two alternatives. We can either use non–overlapping aggregated

data, or allow the aggregation periods to overlap. We term the first the non–

overlapping approach and the second the overlapping approach.

Ideally, the non–overlapping approach is preferred, but in practice it

would likely result in excessively large data requirements, beyond what would

be available in most cases. This means that any implementation needs to

depend on either the time–scaling approach or overlapping approach. From

a purely theoretic point of view, the time–scaling approach is not very at-

tractive, the common square–root–of–time approach is only correct for scal-

ing VaR or ES for independendly and identically distributed (i.i.d.) nor-
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mal returns, and in practice is either higher or lower depending on the un-

known underlying stochastic process. This suggests that the overlapping

approach might be preferred. By aggregating high frequency observations

we get smoother forecasts due to the smoothing of what might be seen as

anomalous extreme outcomes. In addition, when dealing with infrequent

trading, high–frequency (daily) observations become unreliable.

Our purely anecdotal observation of practitioners suggests that using the

overlapping approach is increasingly preferred to the scaling method. The

Basel Committee on Banking Supervision (BSBC), as expressed in the 2013

version of the Basel III Proposals, suggested the overlapping approach, but

not in the revised 2014 version.. However, the overlapping approach gives rise

to a particular theoretical challenge, induced dependence in the constructed

dataset, and hence the potential to increase the estimation uncertainty. The

pros and cons of using the overlapping approach for forecasting risk have

until now been mostly conjectured, and not been supported by analytical

work. While some theoretical results exist on the properties of square–root–

of–time approach compared to overlapping approach, little to none exists on

the impact on the estimation uncertainties.

Suppose Y1, Y2, · · · , YN+H−1 are i.i.d. daily observations with the common

distribution function G. We can then define the two alternatives by;

The overlapping approach Calculate overlapping observations by

Zi =

H
∑

j=1

Yi+j−1.
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Denote the distribution of Zi by F . Then use Z1, · · · , ZN in (1) to

estimate qF and eF .

The square–root–of–time approach Use Y1, · · · , YN , to estimate qG and

eG from (1). Then we estimate qF and eF by
√
Hq̂G and

√
HêG respec-

tively.

The number of observations used in these approaches is N +H − 1 and N ,

respectively so the required sample sizes are comparable. The overlapping

approach provides a direct estimate of qF , while the time scaling approach

only provides an estimate of
√
HqG, which is an approximation of qF . In

practice, this approximation turns to be an exact relation if F is i.i.d. normal,

and slightly too high for i.i.d. heavy–tailed distributions.

Consider the overlapping approach. In this case, the H−day observations

Z1, · · · , ZN are not independent but exhibit a moving average. Clearly, if G

is Gaussian, so is F . If G is heavy–tailed with tail index α, F will also be

heavy–tailed with tail index α; see Feller (1971).

The estimation uncertainty of risk measures based on dependent obser-

vations is given in the following Proposition. Again, the proof is postponed

to the Appendix.

Proposition 3 Suppose Z1, · · · , ZN are dependent observations defined as

Zi =
∑H

j=1 Yi+j−1, where Y1, Y2, · · · , YN+H−1 are i.i.d. observations from a

heavy tailed distribution function with α > 2. Suppose the distribution func-

tion G satisfies the second order condition in Proposition 2 and the sequence
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k satisfies the same condition in Proposition 2. We have that as N → ∞,

√
k

(

q̂F (1− k/N)

qF (1− k/N)
− 1

)

d→ N

(

0, H
1

α2

)

,

√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ N

(

0, H
2(α− 1)

α2(α− 2)

)

.

Proposition 3 shows that using overlapping data enlarges the estimation vari-

ance for the estimators on both VaR and ES by a factor proportional to H ,

leading to the following corollary on the comparison of estimation variance

across the strategies.

Corollary 4 As N → ∞, for a given k sequence satisfying the conditions

in Proposition 3, we have that

Var

(

q̂F (k/N)

qF (k/N)

)

∼ H Var

(√
Hq̂G(k/N)√
HqG(k/N)

)

.

A similar results holds for ES.

To conclude, for both risk measures, given our assumptions, the overlap-

ping approach will result in a standard deviation that is
√
H times higher as

the standard deviation using the square–root–of–time approach.

If the observations Y1, Y2, · · · are not i.i.d., rather, they exhibits serial

dependence at the first place, then it further complicates the dependence

structure of the overlapped H−day returns Z1, Z2, · · · . Thus Proposition 3

and Corollary 4 may not hold. In that case,it is necessary to use simulations

to compare the two cases, and we do that in the next section.
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3 Simulation study

While the theoretic results in Section 2 provide guidance as to the asymptotic

performance of the estimators on VaR and ES, in typical sample sizes the

asymptotics may not yet hold. For that reason, it is of interest to investigate

the properties of the estimators for a range of sample sizes that might be en-

countered in practical applications, and we do that by means of an extensive

simulation study.

Though, it would be straightforward to consider other probability levels,

for the remainder of this Section, we focus on presenting results from the

Basel II and III probabilities, and so we can omit the probability from the

notation, unless otherwise indicated. Hence VaR means VaR(99%) and ES

means ES(97.5%) below. We report the full set of results for both probabil-

ities in the web appendix at www.ModelsandRisk.org/VaR-and-ES.

In the results reported blow, the sample size of each simulated sample, N ,

ranges from 300 to 12,500. For presentation purposes, we denote sample sizes

above 300 as years with a year consisting of 250 observations, so a sample size

at 12,500 corresponds to 50 years. More comprehensive results are reported

in the web appendix.

We consider two fat tailed distributions, the Student–t and Pareto distri-

butions. The results from both are qualitatively similar, so in what follows

we focus on the Student–t distributions, leaving the Pareto distributions to

the web appendix.

We forecast the two risk measures by HS as in (1). Although the HS
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estimator is biased in finite sample, (see e.g. Blom, 1958) and (Danielsson

et al., 2015), since our foucs is the estimation uncertainty, we do not need to

adjust the bias by the methods proposed by Hyndman and Fan (1996).

3.1 The number of simulations

The simulations are used not only to obtain estimates of the risk measures,

but more importantly the uncertainty of those estimates. This means that

in practice we aim to capture the quantiles of the quantiles. Our somewhat

ad hock criteria for the results is that they are accurate for at least three

significant digits, and as it turns out it requires at least S = 107 simulations.

For the largest sample sizes, we are then generating S×N = 107×2.5×105 =

2.5 × 1012 random numbers, and for each sequence need to find a quantile

and a mean.

Why is such a large simulation necessary? Taking the VaR measure as

an example, from each sample, we obtain one simulated quantity q̂F/qF − 1.

Across S simulated samples, we obtain S such ratios denoted as r1, r2, · · · , rS.

They are regarded as i.i.d. observations from the distribution of q̂F/qF , de-

noted as FR. Since we intend to obtain the 99% confidence interval of this

ratio, [F−1R (0.005), F−1R (0.995)], we take the [0.005S]-th and [0.995S]-th or-

der statistics among r1, · · · , rS, rS,[0.0005S] and rS,[0.995S] to be the estimates

of the lower and upper bounds respectively. For the lower bound, following
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Theorem 2 in Mosteller (1946), we get that as S → ∞,

√
S

(

rS,[0.0005S]

F−1R (0.005)
− 1

)

d→ N

(

0,
0.0005 · (1− 0.0005)

(

F−1R (0.005)
)2

f 2
R(F

−1
R (0.005))

)

,

where fR is the density function of FR. Following Proposition 2, the distribu-

tion FR can be approximated by a normal distribution with a given standard

deviation σN . Using this approximated distribution, we can explicitly calcu-

late the asymptotic variance above as

σ2
R =

0.005 · (1− 0.005)

(σNΦ−1(0.005))
2
(

1
σN

φ
(

σNΦ−1(0.005)
σN

))2 = 3.586.

Note that this variance is independent of σN . Therefore this result can be

applied to any estimator that possesses asymptotic normality.

To ensure that the relative error between our simulated lower bound

rS,[0.0005S] and the actual lower bound F−1R (0.005) is less than 0.001 with

a confidence level of 95%, the restriction requires a minimum S such that

S ≥ σ2
R ∗
(

Φ−1(0.975)

0.001

)2

= 1.378× 107.

A minimum of S = 107 samples is necessary for our simulation study and

that is the number of simulated samples we use throughout this section.
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3.2 Level comparison of the risk measures

The theoretic results in Section 2.1.1 indicate that the relative difference

between VaR and ES is small for distributions that do not have very heavy

tails, where the difference is inversely related to the tail thickness. We explore

this relation by Monte Carlo simulations with a finite sample size. For each

given α, we simulate observations from standard Student–t distribution with

degree of freedom ν = α, and for each simulated sample, we calculate the

ratio between the two estimators êF and q̂F . Such a procedure is repeated S

times for each given sample sizes. We plot the average ratio across different

simulated samples with respect to the variation of α, reported in Figure 1.

Figure 1: Ratio of ES(97.5%) to VaR(99%)
The figure shows the ratio of ES(97.5%) to VaR(99%) for a range of sample sizes. For
each given sample size, the number of simulated samples is S = 107.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
α

Theory
300 days
4 years

10 years
50 years

1.0

1.1

1.2

The solid line shows the theoretical level of the ratio, the f(α) function in

Section 2.1.1, declining towards one as the tails become progressively thinner.

The same decline is observed for every sample size. The results for the larger

sample sizes, 10 and 50 years, are increasingly close to the theoretic results,

and at 50 years, virtually the same.
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As the sample size decreases, the relative difference between ES and VaR

decreases sharply, especially for the heavier tails. For example, while asymp-

totic theory suggests that for α = 3, ES is 11% larger than VaR, at 300 days

it is only 3% and 8% at 4 years. At the smallest sample sizes, for tails that

are slightly thinner than usual, the ES falls below the VaR.

3.3 Estimation accuracy

The asymptotic results in Section 2.1.2 show that ES is estimated more

precisely than VaR for relatively thin distributions, and less precisely for the

fatter and more typical distributions, with the break even point at α = 6.

Below we investigate this results further for finite samples.

For each given α, we simulate N observations from a standard Student–

t distribution with degrees of freedom ν = α, where N varies from 300

to 125,000. For each simulated sample, we obtain the two estimates êF

and q̂F and calculate the relative estimation error as the ratio between the

estimates and their corresponding true values, eF and qF . Such a procedure

is repeated S times for each given sample size. We then report the mean

and standard error of the estimation errors, as well as the 99% empirical

confidence interval, corresponding to the 0.5% and 99.5% quantiles from

the S simulated estimation errors, respectively. Table 1 gives the summary

information for various sample sizes and tail thicknesses.

We obtain three main results: First, the Monte Carlo results are consis-

tent with the theoretic result in Proposition 2, i.e. ES is estimated with more
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Table 1: Comparison of the estimation accuracy

VaR(99%) ES(97.5%)

α Sample size bias se 99% conf bias se 99% conf

2.5 300 days 1.11 (0.33) [0.61,2.46] 1.01 (0.38) [0.54,2.64]
2.5 2 years 1.06 (0.22) [0.67,1.89] 1.01 (0.29) [0.61,2.20]
2.5 10 years 1.01 (0.09) [0.82,1.28] 1.00 (0.13) [0.78,1.48]
2.5 50 years 1.00 (0.04) [0.91,1.11] 1.00 (0.06) [0.89,1.19]

3 300 days 1.09 (0.27) [0.65,2.16] 1.01 (0.27) [0.60,2.14]
3 2 years 1.05 (0.19) [0.70,1.73] 1.00 (0.21) [0.66,1.82]
3 10 years 1.01 (0.08) [0.84,1.23] 1.00 (0.09) [0.82,1.31]
3 50 years 1.00 (0.03) [0.92,1.09] 1.00 (0.04) [0.91,1.12]

4 300 days 1.07 (0.21) [0.69,1.85] 1.00 (0.19) [0.66,1.73]
4 2 years 1.04 (0.15) [0.74,1.55] 1.00 (0.15) [0.72,1.52]
4 10 years 1.01 (0.06) [0.86,1.19] 1.00 (0.06) [0.86,1.20]
4 50 years 1.00 (0.03) [0.93,1.08] 1.00 (0.03) [0.93,1.08]

Note: For each given α, N observations from a standard Student–t distribution with degree of freedom

ν = α are simulated. For each simulated sample, the ES and VaR are estimated and then divided by

their corresponding true values. The resulting ratio is regarded as the relative estimation error. The

table reports the bias (mean), standard error and 0.5% and 99.5% quantiles of these ratios across the

S = 107 simulated samples. The two quantiles are reported as the lower and upper bounds of the 99%

confidence interval. In comparing across the two risk measures, the red values indicates those with the

higher standard error.

uncertainty than VaR. This simulation results show that the only exception

occurs at the very small sample size combined with a higher α.

Second, the estimation bias increases as the sample size becomes smaller.

This is expected given the HS bias of Blom (1958) and Monte Carlo bias of

Danielsson et al. (2015). It also follows that the use of ES will partly offset

the HS bias.

Finally, the empirical confidence bounds indicate that the estimation er-

rors are highly positively skewed, especially for the small sample sizes. For
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example, at N = 300 and α = 2.5, the 99% confidence interval for VaR

ranges from about 61% to 246% of the true value. Even for an uncommonly

large 10–year sample, the confidence bound is [0.82,1.28]. For ES(97.5%),

the confidence bounds are wider at [0.54,2.64] and [0.78,1.48], respectively.

3.4 The overlapping approach and the time–scaling

approach

The theoretic results in Section 2.2 provided insights into the impact of using

overlapping estimation or time–scaling to obtain multi–day holding period

risk forecasts. We further extend those results by means of Monte Carlo sim-

ulations, both investigating the final example properties but also examining

the impact of using dependent data. Below we only report a subset of the

results for VaR, as the results for ES were qualitatively similar, with the full

results available in the web Appendix.

For each given distribution and H , we simulate N daily observations,

S = 107 times, varying N from 300 to 12,500 (50 years). For each simulated

sample, we estimate the H–day holding period VaR using both the time–

scaling and overlapping date approaches. Similar to the above, we divide the

estimates by the true values. Since we estimate the VaR of theH–day holding

period, which is not analytically tractable, we have to rely on pre-simulations

with very large data samples to obtain the true values. We consider H = 10

and H = 50.
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3.4.1 Data generating process: The i.i.d. case

We start with the i.i.d. case and report the results in Table 2, which is similar

to Table 1, with the addition of two columns that show the ratios of the se

and the width of the confidence interval, for the overlapping approach over

the square–root–of–time approach.

The i.i.d. simulation results are consistent with those predicted by Propo-

sition 3: time–scaling results in better estimation accuracy than the overlap-

ping destination. Both the standard errors and the width of the confidence

intervals for the overlapping approach are much higher than that of the time–

scaling approach, ranging from 1.3 to 3.9 times larger.

The bias and uncertainty for the overlapping approach first increases and

then decreases as the sample size increases, something not observed for the

time–scaling approach. We surmise that this happens because in each sam-

ple, large daily losses will persist in H–day losses for H days, which is a

significant fraction of the sample for smaller sample size N . Consequently,

the HS estimators using the overlapping approach may rely on large observa-

tions stemming from one daily large loss, which may lead to severely biased

estimates, though relatively small estimation uncertainty. As the sample size

N increases further, we move away from the scenario that the persistent large

H–day losses can be regarded as a large fraction of the sample. Therefore,

the sample size effect starts to perform as predicted in our theory. Prac-

tically, the overlapping approach performs the worst when used for typical

sample sizes, such as two years.
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Table 2: Impact of overlapping data on VaR: Student–t

(a) H=10

N α overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 2.5 1.01 (0.81) [0.43,4.48] 1.13 (0.33) [0.62,2.49] 2.5 2.2
2 years 2.5 1.12 (0.88) [0.50,5.31] 1.08 (0.23) [0.68,1.91] 3.8 3.9
10 years 2.5 1.03 (0.21) [0.70,1.92] 1.03 (0.089) [0.83,1.29] 2.4 2.7
50 years 2.5 1.00 (0.080) [0.84,1.26] 1.02 (0.039) [0.92,1.12] 2.1 2.1

300 days 3.0 1.00 (0.49) [0.48,3.25] 1.16 (0.29) [0.69,2.30] 1.7 1.7
2 years 3.0 1.06 (0.54) [0.56,3.65] 1.12 (0.20) [0.75,1.84] 2.7 2.8
10 years 3.0 1.01 (0.15) [0.75,1.61] 1.08 (0.081) [0.90,1.32] 1.9 2.0
50 years 3.0 1.00 (0.060) [0.87,1.19] 1.07 (0.035) [0.98,1.17] 1.7 1.7

300 days 4.0 0.98 (0.29) [0.53,2.23] 1.17 (0.23) [0.75,2.02] 1.3 1.3
2 years 4.0 1.02 (0.28) [0.61,2.32] 1.13 (0.17) [0.81,1.70] 1.6 1.9
10 years 4.0 1.00 (0.10) [0.80,1.35] 1.10 (0.068) [0.94,1.30] 1.5 1.5
50 years 4.0 1.00 (0.043) [0.90,1.13] 1.09 (0.030) [1.02,1.17] 1.4 1.5

(b) H=50

N α overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 2.50 0.72 (0.43) [0.15,2.44] 1.15 (0.34) [0.63,2.53] 1.3 1.2
2 years 2.50 0.81 (0.46) [0.27,2.79] 1.09 (0.23) [0.69,1.94] 2.0 2.0
10 years 2.50 1.08 (0.77) [0.56,4.55] 1.04 (0.090) [0.84,1.31] 8.6 8.5
50 years 2.50 1.01 (0.16) [0.75,1.69] 1.03 (0.039) [0.94,1.14] 4.1 4.7

300 days 3.00 0.76 (0.32) [0.17,1.95] 1.20 (0.30) [0.71,2.37] 1.1 1.1
2 years 3.00 0.84 (0.32) [0.30,2.12] 1.15 (0.21) [0.77,1.89] 1.5 1.6
10 years 3.00 1.02 (0.39) [0.61,2.89] 1.11 (0.083) [0.92,1.35] 4.7 5.3
50 years 3.00 1.00 (0.11) [0.80,1.39] 1.10 (0.036) [1.01,1.20] 3.1 3.1

300 days 4.00 0.78 (0.27) [0.18,1.65] 1.20 (0.24) [0.77,2.08] 1.1 1.1
2 years 4.00 0.86 (0.25) [0.33,1.70] 1.16 (0.17) [0.83,1.74] 1.5 1.5
10 years 4.00 0.99 (0.19) [0.65,1.74] 1.13 (0.070) [0.97,1.33] 2.7 3.0
50 years 4.00 1.00 (0.076) [0.83,1.23] 1.12 (0.031) [1.05,1.21] 2.5 2.5

Note: For each given α and holding period H, N daily observations from standard Student–t distribution

with degree of freedom ν = α are simulated with a year consisting of 250 days. For each simulated sample,

the VaR of H-day holding period is estimated using the two strategies in Section 2.2 separately, and then

divided by the corresponding true value obtained from pre-simulations. The resulting ratio is regarded as

the relative estimation error. The table reports the mean, standard error and 0.5% and 99.5% quantiles

of these ratios across S simulated samples with S = 107. The two quantiles are reported as the lower

and upper bounds of the 99% confidence interval. The last two columns show the ratios of the se and the

width of the confidence interval, for the overlapping approach over the square–root–of–time approach.
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3.4.2 Data generating process: Dependent data

The overlapping approach induces serial dependence and is therefore likely to

be especially sensitive to the inherent dependence of the data. We therefore

also explore the impact of simulating from dependent data, using a speci-

fication that both captures the fat tails and dependence. There are many

different ways one could specify such a model. A commonly used specification

would be a normal GARCH model, but such a model would not adequately

capture the tails, (see e.g. Sun and Zhou, 2014) and we therefore opted for a

GARCH model with Student–t innovations. We parameterized the simula-

tion model by estimating the same specification for a number of stocks and

picking a typical set of parameters. In particular:










Xt = σtεt;

σ2
t = 0.01 + 0.94σ2

t−1 + 0.04X2
t−1;

(2)

where εt are i.i.d. innovation terms following a standardized Student–t dis-

tribution with degree of freedom 6 and unit variance.

Table 3 reports the result based on daily observations generated from the

GARCH model. Notice that due to the serial dependence in the GARCH

model, our theoretical result in Proposition 3 may not hold. Therefore, we

have to rely on the simulation result for comparing the two approaches.

Compared to the i.i.d. case, the time–scaling approach results in even

lower standard errors than the overlapping approach. In addition, there are

two important differences between the i.i.d. and dependent cases for the

overlapping approach. First, in the dependent case, the standard errors and

biases decrease as N increases. Second, for H = 50, and N less than 10
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Table 3: Impact of overlapping data on VaR, t-GARCH(0.01, 0.04, 0.94, 6.0)

(a) H=10

N overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 1.01 (0.33) [0.49,2.38] 1.14 (0.29) [0.68,2.33] 1.1 1.1
2 years 1.02 (0.29) [0.57,2.28] 1.11 (0.22) [0.72,2.00] 1.3 1.3
10 years 1.01 (0.14) [0.75,1.52] 1.06 (0.100) [0.86,1.40] 1.4 1.4
50 years 1.00 (0.059) [0.87,1.18] 1.05 (0.044) [0.95,1.18] 1.3 1.3

(b) H=50

N overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 0.78 (0.32) [0.17,2.00] 1.16 (0.29) [0.69,2.37] 1.1 1.1
2 years 0.85 (0.31) [0.30,2.05] 1.12 (0.23) [0.74,2.02] 1.3 1.4
10 years 0.99 (0.24) [0.60,2.00] 1.08 (0.10) [0.87,1.42] 2.4 2.5
50 years 1.00 (0.10) [0.79,1.33] 1.07 (0.044) [0.96,1.20] 2.3 2.3

Note: For each holding periodH, N daily observations from the GARCHmodel (2) are simulated. For each

simulated sample, the VaR of H–day holding period is estimated using the two strategies in Section 2.2

separately, and then divided by the corresponding true value obtained from pre-simulations. The resulting

ratio is regarded as the relative estimation error. The table reports the mean standard error and 0.5% and

99.5% quantiles of these ratios across S simulated samples with S = 107. The two quantiles are reported

as the lower and upper bounds of the 99% confidence interval. The last two columns show the ratios of

the se and the width of the confidence interval, for the overlapping approach over the square–root–of–time

approach.

years, there is a downward bias, i.e. the estimates are lower than the true

value. The bias can be around 20% for low values of N .

The first difference provides some support for using the overlapping ap-

proach for dependent data, even though the time–scaling approach still per-

forms better in terms of estimation accuracy. This benefit is counteracted by

the second observation, where, for example, from a viewpoint of a prudential

regulator, the lower bound of the confidence interval based on overlapping

approach is much lower than that based on time–scaling approach.
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4 Empirical results

While the theoretic and simulation results above provide a clear picture of

the relative properties of various risk measures, they were obtained under

particular distributional assumptions. To augment those results, we also em-

ploy observed returns from CRSP. The downside is that since we do not know

the true value of the risk measures, we cannot directly validate the estima-

tion uncertainty, but can approximated by means of a block bootstraping

procedure.2

Our data sets consists of daily returns on all stock prices traded on NAS-

DAQ, NYSE or AMSE from 1926 to 2014. We removed illiquid stocks3 as

well as those with less than 650 observations.4 This filtering procedure results

in 7,686 stocks. For each stock, we split the time series into non–overlapping

samples with sample sizes N and then pool all samples from different stocks

together. The sample sizes in this analysis are N = 600, 1000 and 5000

resulting in 34,244, 20,097 and 2,503 samples for each of the three sample

sizes, respectively.

Similar to the simulation analysis, the probability levels are 99% for VaR

and 97.5% for ES. For expositional expediency, we therefore drop a reference

2The block size needs to be large enough to capture the inherent dependence in the
data, and we opted for 200 days.

3The liquidity criterion is related to the sample splitting procedure. A non–overlapping
sample of one stock is included in our analysis if on the first day of the sample the stock
has a share price above 5$ and market capitalization is higher than the 10% quantile of
the market capitalization of all stocks traded on NYSE on that day.

4The minimum sample size is determined at N + H , where N is the minimum sample
size 600 and H is the longest liquidity horizon in our analysis 50. The reason to choose
the minimum sample size at N = 600 instead of 500 is due to the block bootstrapping
procedure: the sample size is required to be a multiple of the block size, 200.
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to the probabilities from the notation.

In line with the theoretic and simulation analysis, the real data study con-

sists of three parts: a comparison of the levels of VaR and ES, the relative es-

timation uncertainty between VaR and ES and overlapping and time-scaling

approaches.

4.1 Level comparison

To compare the levels of VaR and ES, we calculate the ratio ES/VaR for each

sample and report the cross-sectional mean, median and standard error. In

addition, we report the fraction of samples with a ratio above one in the row

ratio. Finally, we do a t–test to test the mean equaling one across all samples,

and report the p–value in the row p–value. All results are in Column 4 of

Table 4.

We observe that the level of ES is slightly but statistically significantly

higher than that of VaR for each of the sample sizes respectively. However,

the economic significance is rather weak, especially for the smaller and more

typical sample sizes such as N = 600.

Following the simulation results in Figure 1, the ratio for large sample

sizes is close to its theoretical value f(α). By taking the mean ratio 1.06 under

N = 5, 000, we invert the relation f(α) = 1.06 to get that α∗ = 4.01. This

result is in line with the estimated tail index of stock returns in literature,

see, e.g. Jansen and de Vries (1991).
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4.2 Estimation accuracy

In order to compare the estimation uncertainty of VaR and ES, we start with

calculating the variation coefficient ratio (VCR) between ES and VaR, for

each sample. The VCR between two risk measures ϕ1 and ϕ2 is defined as

VCR(ϕ1, ϕ2) =
σ(ϕ1)/ϕ̂1

σ(ϕ2)/ϕ̂2

,

where ϕ̂i is the point estimate for ϕi and σ(ϕi) is the standard error of the

estimation obtained from block bootstrapping, i = 1, 2.

The block bootstrapping procedure is as follows. We randomly draw a

number of blocks consisting of consecutive observations with a block size B =

200 from the given sample. With N/B blocks, we construct a bootstrapped

sample with sample size N . For each bootstrapped sample j, we get the

point estimate of ϕi as ϕ̂i
(j), where j = 1, 2, · · · , K. Here the number of

replication K = 5, 000. Then we calculate the standard error σ(ϕi) as the

sample standard deviation among the K bootstrapped estimates.

From the theoretic analysis of i.i.d. data, one would expect that the VCR

(ES,VaR) exceeds one. However, the results in Column 5 in Table 4 show that

the VCR (ES,VaR) exceeds one only for the largest sample size N = 5, 000

so the empirical results only partially support the theoretic results. This is

comparable with some exceptional results in the simulation study, see Table

1, the last panel with α = 4.

To further explore the economic impact of estimation uncertainty, we

compare the lower bound of the 99% confidence interval when estimating the
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two risk measures. For each given sample, using the bootstrapping procedure,

we take the 0.005K–th and 0.995K–th quantiles among the K bootstrapped

estimates of VaR to construct the 99% confidence interval for the VaR es-

timate. We focus on the lower bound and denote it as l(VaR). Similarly,

we obtain l(ES) Then, we calculate the ratio between the standardized lower

bounds as

Q(VaR,ES) =
l(VaR)/ ̂VaR
l(ES)/̂ES

We report the outcome based on these ratios in the 5th column of Table 4.

The lower bound of VaR is significantly higher than that of ES across all

sample sizes, in line with our simulation results in Table 1.

4.3 The overlapping and time-scaling approaches

Finally, we compare the overlapping approach and the time–scaling approach,

in particular the square–root–of–time approach. The notation VCR (VaR

H10) is the VCR between the VaR measures using the overlapping approach

and square–root–of–time approach, and similarly for ES and H = 50. The

results are reported in the last four columns of Table 4.

We find strong evidence that all four VCRs are significantly above one.

These results are in line with our qualitative conclusion drawn from theoret-

ical analysis and simulations. The average VCR for H = 10 is below
√
10

and that for H = 50 is below
√
50. Therefore, the empirical VCR is lower

than the predicted VCR when assuming independence. Nevertheless, they

are close to the simulation results when the DGP is a t–GARCH process,
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see Table 3. Hence, we conclude both from simulation and real data analysis

that the serial dependence leads to VCR that are lower than those derived

from the independent case.

5 Concluding remarks

In this paper we focus on three key issues in risk analysis: the choice of risk

measures, the aggregation method when considering longer holding period

and the number of observations needed for accurate risk forecast.

First, by comparing the most commonly used risk measures, the VaR and

ES, we conclude that the theoretic superiority of ES over VaR comes at the

cost of higher estimation error for ES. For many end–users, using typical

sample sizes of a few hundred to a few thousand observations, this may well

tip the advantage in favor of VaR.

Second, the time–scaling approach is much more accurate than the over-

lapping approach and hence to be preferred. This certainly holds for i.i.d.

data and with the dependent structure considered here. Indeed, there seems

to be little reason to use the overlapping approach when forecasting risk.

Finally, both ES and VaR are highly sensitive to the sample size. We

need half a century of daily data for the estimators to reach their asymptotic

properties, with the uncertainty increasing rapidly with lower sample sizes.

For the smaller sample sizes, below a few thousand days, the uncertainty

becomes considerable, and at 500 or less very little signal remains. Consider

the case of typically thick tails (α = 3) and a 500 day sample size. In this
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Table 4: Empirical analysis with the CRSP data

N
Number of
Samples

Level ES and VaR uncertainty VCR holding period comparisons

ES/VaR VCR (ES,VaR) Q(VaR,ES) VaR H10 VaR H50 ES H10 ES H50

mean 1.03 0.91 1.02 1.39 2.28 1.41 2.53
median 1.01 0.86 1.01 1.16 1.78 1.24 2.04

600 34,244 se 0.09 0.39 0.11 1.01 2.49 0.73 2.48
ratio 0.57 0.29 0.55 0.61 0.85 0.70 0.93

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mean 1.04 0.96 1.01 1.40 1.90 1.33 1.97
median 1.03 0.92 1.01 1.22 1.63 1.24 1.73

1000 20,097 se 0.08 0.29 0.09 0.80 1.06 0.53 0.96
ratio 0.71 0.34 0.54 0.67 0.88 0.73 0.93

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mean 1.06 1.01 1.01 1.43 2.03 1.35 1.85
median 1.06 0.98 1.01 1.35 1.83 1.31 1.75

5000 2,503 se 0.04 0.18 0.04 0.49 0.89 0.33 0.64
ratio 0.97 0.45 0.58 0.83 0.95 0.87 0.96

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table shows the empirical results using daily returns on all liquid traded stocks on NASDAQ, NYSE or AMSE from 1926 to 2014. Each stock return

series is split into non–overlapping samples with sample sizes N = 600, 1, 000, 5, 000. All samples from different stocks are pooled together. A sample is included

if on the first day of the sample the stock has a share price above 5$ and market capitalization higher than the 10%th quantile of the market capitalization

of all stocks traded on NYSE on that day. The number of samples are reported in column 2. Column 4 reports the summary statistics of the ratios ES/VaR

across all samples. The row “ratio” reports the fraction of samples with a ratio above one. The row “p–value” reports the p–value of a t-test that the mean

equals to one. The empirical results for the variation coefficient ratio (VCR) between ES and VaR are reported in Column 5. For the calculation of the VCR,

a block bootstrapping procedure is employed with details in Section 4. Column 5 reports the empirical results based on the ratio Q(VaR, ES), which measures

the relative difference in the lower bound of the confidence intervals for VaR and ES with the calculation details in Section 4. The last four columns report the

empirical results based on the VCR between the a given risk measure and liquidity horizon using the overlapping approach and square–root–of–time approach.
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case, the 99% confidence interval around the true value of one is [0.70, 1.73]

for VaR(99%) and [0.66,1.82] for ES(97.5%).

As a side result, we also observed estimation biases using the HS method,

expected given Blom (1958). Nevertheless, sometimes the estimation bias can

work in the “right” direction from the regulators’ perspective: an upwards

bias may lead to a relatively high value on the lower bound and consequently

less room for under reporting. Therefore, a full discussion on estimation

uncertainty should take into account both bias and variance.

These results have a number of conclusions for both a practical use of the

risk forecasts and the impact on financial regulations.

First, in the latest Basel III market risk proposals, the Basel committee

suggests replacing 99% VaR with 97.5% ES. Our results indicate that this

will lead to less accurate risk forecasts. If the regulators are concerned by

precision, VaR is preferred. In addition, in some cases the 99% VaR is higher

than the 97.5% ES, meaning that the move from Basel II to Basel III may

result in lower risk forecasts. This is especially likely for the smaller sample

sizes most likely to be encountered in practice.

However, there are reasons beyond our study for which ES should be

preferred. For instance, ES is harder to manipulate than VaR and there-

fore might be preferred even if it is less accurate. A financial institution

may manipulate the risk forecast by picking a particular estimation method.

However, there is no guarantee that an estimation method that delivers a

favorable result today will deliver similar favorable results in the future. In-

stead, manipulation is much likely to happen by picking trades that place
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assets on the lower boundary of the confidence interval, something very easy

to do while being virtually undetectable. Because VaR is only one point on

the distribution of profit and loss and ES captures the entire tail from that

point, it is harder to implement such manipulation on ES than if VaR is used.

Second, the high estimation uncertainty for risk measures provides one

explanation for why violation ratios in back testing so often deviate from the

expected values by large amounts. When looking at the confidence intervals

for risk forecasts in our study, the lower bounds give banks some scope for

deliberately underreporting risk, perhaps by cherry picking trades known to

be on the lower edge. Since the lower bounds can be regarded as a reasonable

estimate of the risk metric within a given confidence level, the violation ratio

based on the lower bound should also be regarded as acceptable at the same

confidence level. Consequently, if the lower bound is reported as an accept-

able estimate of the risk, the Bernoulli distribution for violation will have

a higher probability of violation. Coupled with the well-known small sam-

ple problem in the Bernoulli distribution in back testing, the actual realized

violation ratio may largely deviate from the expected value as the probabil-

ity level used in the risk metric. This makes the backtesting procedure on

reported risk measures challenging.

Finally, the results in our study indicate that it is not advisable for nei-

ther financial institutions nor the regulators to rely solely on point estimates

of risk forecasts. It is important to also report the confidence bounds. Fur-

thermore, given the highly asymmetric nature of these bounds, the actual

bounds should be reported, rather than reporting the standard error only.
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Appendix

Proof of Proposition 1.

Recall that F is a heavy-tailed distribution with tail index α. Danielsson

et al. (2006) showed that if α > 1

lim
s→0

eF (1− s)

qF (1− s)
=

α

α− 1
. (3)

In addition, from the regular variation condition, we get that

lim
s→0

qF (1− cs)

qF (1− s)
= (2.5)−1/α. (4)

The proposition is proved by combining Eq. (3) and (4).

Proof of Proposition 2.

Under the conditions in the proposition, Theorem 2.4.8 in de Haan and

Ferreira (2006) showed that there exists a proper probability space with

Brownian motions {WN(s)}s≥0 such that as N → ∞,

∣

∣

∣

∣

√
k

(

XN,N−[ks]

U(N/k)
− s−1/α

)

− 1

α
s−

1

α
−1WN (s)−

√
kA(N/k)s−

1

α
s−ρ − 1

ρ

∣

∣

∣

∣

P→ 0

(5)

holds uniformly for all 0 < s ≤ 1.

By taking s = 1, the first statement on q̂F (1− k/N) follows immediately.

To prove the second statement on êF (1 − k/N) , we apply the integral for
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s ∈ (0, 1] to (5) and obtain that as N → ∞

√
k

(

êF (1− k/N)

U(N/k)
− 1

1− 1/α

)

−
∫ 1

0

1

α
s−

1

α
−1WN (s)ds−λ

1

(1− ρ)(1− 1/α− ρ)

P→ 0.

Notice that it is necessary to have α > 2 to guarantee the integrability of
∫ 1

0
1
α
s−

1

α
−1WN (s)ds.

Similarly, from the inequality (2.3.23) in de Haan and Ferreira (2006), we

get that for any ε > 0, with sufficiently large N ,

∣

∣

∣

∣

√
k

(

U(N/ks)

U(N/k)
− s−1/α

)

−
√
kA(N/k)s−

1

α
s−ρ − 1

ρ

∣

∣

∣

∣

≤ ε
√
kA(N/k)s−1/α−ρ−ε,

holds for all 0 < s ≤ 1. With a small ε such that 1/α + ρ + ε < 1, we can

take integral for s ∈ (0, 1] on both sides and obtain that as N → ∞,

√
k

(

eF (1− k/N)

U(N/k)
− 1

1− 1/α

)

→ λ
1

(1− ρ)(1− 1/α− ρ)
.

Therefore, by comparing the asymptotics of êF (1−k/N)
U(N/k)

and eF (1−k/N)
U(N/k)

, we get

that
√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ α− 1

α2

∫ 1

0

s−
1

α
−1W (s)ds.

The proof is finished by verifying the variance of the limit distribution as
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follows.

Var

(

α− 1

α2

∫ 1

0

s−
1

α
−1W (s)ds

)

=
(α− 1)2

α4

∫ 1

0

ds

∫ 1

0

dt
(

s−
1

α
−1t−

1

α
−1min(s, t)

)

=
2(α− 1)2

α4

∫ 1

0

dt

(

t−
1

α
−1

∫ t

0

s−
1

αds

)

=
2(α− 1)

α3

∫ 1

0

t−
2

αdt

=
2(α− 1)

α2(α− 2)
.

Proof of Proposition 3.

Proposition 2 was proved based on the limit relation (5). We refer to a similar

relation based on dependent data, see Theorem 2.1 in Drees (2003). There

exists a proper probability space with Gaussian processes {BN (s)}s≥0 such

that

∣

∣

∣

∣

√
k

(

XN,N−[ks]

U(N/k)
− s−1/α

)

− 1

α
s−

1

α
−1BN (s)−

√
kA(N/k)s−

1

α
s−ρ − 1

ρ

∣

∣

∣

∣

P→ 0

(6)

holds uniformly for all 0 < s ≤ 1, as N → ∞. Here the Gaussian processes

{BN (s)}s≥0 has a covariance function c(x, y) := Cov(BN(x), BN(y)) deter-

mined by the dependence structure as follows. Denote cm(x, y) as the tail

dependence function between X1 and X1+m as

lim
t→∞

tPr(X1 > U(t/x), X1+m > U(t/y)) = cm(x, y).
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Then

c(x, y) = min(x, y) +
+∞
∑

m=1

(cm(x, y) + cm(y, x)).

We calculate the specific c function under the moving average structure

Xi =
∑H

j=1 Yi+j−1. It is clear that cm(x, y) = 0 for m ≥ H . Next, for

1 ≤ m < H , we have that

cm(x, y) = lim
t→∞

tPr(X1 > U(t/x), X1+m > U(t/y))

= lim
t→∞

tPr(
H
∑

j=m+1

Yj > max(U(t/x), U(t/y)))

= lim
t→∞

t(H −m) Pr(Yj > U(t/min(x, y)))

=
H −m

H
min(x, y).

Consequently,

c(x, y) = min(x, y) + min(x, y) · 2
H−1
∑

m=1

H −m

H
= Hmin(x, y).

The covariance function of BN(s) indicates that we can write BN (s) =
√
HWN(s), where WN is a standard Brownian motion. The proposition

is thus proved by following similar steps as in the proof of Proposition 2.
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