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Abstract

A key challenge for Bitcoin cryptocurrency holders, such as
startups using ICOs to raise funding, is managing their FX
risk. Specifically, a mis-informed decision to convert Bitcoin
to fiat currency could, by itself, cost USD millions.

In contrast to financial exchanges, Blockchain based
crypto-currencies expose the entire transaction history to
the public. By processing all transactions, we model the net-
work with a high fidelity graph so that it is possible to char-
acterize how the flow of information in the network evolves
over time. We demonstrate how this data representation
permits a new form of microstructure modeling — with the
emphasis on the local topological network structure to study
the role of users, entities and their interactions in formation
and dynamics of crypto-currency investment risk. In partic-
ular, we identify certain sub-graphs (chainlets) that exhibit
predictive influence on Bitcoin price and volatility and char-
acterize the types of chainlets that signify extreme losses.
keywords: Cryptocurrencies, Graph analysis, forecast-

ing, financial risk, ICOs.

JEL codes: C58, C63, G18

1 Introduction

Nascent empirical research suggests that short-run Bitcoin
price behavior is prone to bubbles and busts and somewhat
detached from asset pricing theory [9, 10, 5]. Since Bitcoin
derives its economic value from a “network effect” – the more
individuals who use Bitcoin, the more valuable the entire
Bitcoin ecosystem becomes- it is expected that transaction
activity is strongly linked with Bitcoin price changes [9, 10].
In contrast to existing financial networks, Blockchain based
crypto-currencies expose the entire transaction graph to the
public. Bitcoin transactions are listed for all participants
and the most significant agents can be immediately located
on the network.

In contrast to closed financial systems, the largest ac-
counts in a crypto-currency exchange are listed and can be
tracked over time and have been popularly referred to as
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“whales”. The econometrics of Bitcoin seeks new interdis-
ciplinary research to demonstrate how full disclosure of an
agent’s actions in a crypto-currency market inform price dis-
covery and ultimately serve as an early-warning indicator for
excess market volatility or even a crash.

With the goal of building a predictive model, we therefore
depart from classical times-series cross sectional models that
leverage standard macro economic variables such as GDP
and inflation. Instead, we use Bitcoin’s microstructure.

By processing all financial interactions, our objective is
to model the network with a high fidelity graph so that it
is possible to characterize how the flow of information in
the network evolves over time. This novel data representa-
tion permits an entirely new form of financial econometrics
— with the emphasis on the topological network structures
rather than covariance of historical time series of prices. The
role of users, entities and their interactions in formation and
dynamics of crypto-currency risk investment, financial pre-
dictive analytics and, more generally, in re-shaping the mod-
ern financial world is a novel area of research [11, 6, 7, 8,
12].

2 Method: Chainlets and Data
Processing

As shown in Figure 1, a Bitcoin graph consists of three main
components: addresses, transactions and blocks (see [1] for a
primer on Blockchain graphs). One approach to understand
how transactions relate to market price is to introduce the
novel concept of k-chainlets [2].

A k-chainlet is a Bitcoin sub-graph of k ≥ 1 transactions
and their corresponding input and output addresses corre-
sponding to different accounts, not necessarily unique to a
user. In the simplest case, a single transaction creates a 1-
chainlet with one or more inputs and a single output. For
example, in Figure 1, transaction t2 results in the transfer
of Bitcoin from addresses a3, a4, a5 to address a8. Such a
transaction creates a 1-chainlet that has three inputs and
one output. We denote this subgraph as a chainlet of type
C3→1, where 3 and 1 are the number of input and output
addresses, respectively.

A 1-chainlet is the smallest building block of the Bitcoin
graph; inputs and outputs of the chainlet are determined
at once, and the transaction is digitally signed. This signed
information cannot be modified, but multiple 1-chainlets can
be combined to extend the graph. For simplicity, in the rest
of this work, we use the term chainlet to refer to 1-chainlets.
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Figure 1: A transaction-address graph representation of the
Bitcoin network. Addresses are represented by circles, trans-
actions with rectangles and edges indicate a transfer of coins.
Blocks order transactions in time, whereas each transaction
with its input and output nodes represents an immutable de-
cision that is encoded as a subgraph on the Bitcoin network.
Some addresses, such as a6 in the figure, may contain un-
spent bitcoins.

Graph analysis allows us to evaluate the local topological
structure of the Bitcoin graph over time and assess the role
of chainlets on Bitcoin price formation and dynamics.

Figure 2 illustrates how the activity of the network can be
represented by a chainlet matrix. On a given day, we count
the occurrences of each Ci→j and store it in a chainlet ma-
trix. The maximum number of inputs or outputs of a chain-
let can be large, however, sometimes exceeding 1000. When
the number of inputs and/or outputs exceeds a threshold N ,
we refer to these chainlets as ”extreme chainlets”. In our his-
torical analysis of daily snapshots, we choose N = 20, which
corresponds to the 97.5 percentile of all chainlet occurrences.

Figure 2: This figure illustrates how the network is repre-
sented in time with a 20× 20 chainlet matrix. Each matrix
is formed by taking snapshots of the Bitcoin graph and count-
ing the occurrences of Ci→j , ∀i, j on a given day. The color
scale denotes the frequency of chainlet occurrences. The left
and right extreme chainlets are shown by the bottom row and
far right column respectively.

It is instructive to distinguish between ’left extreme chain-
lets’ and ’right extreme chainlets’. Left extreme chainlets
are the subset Cl := {Ci→j | i = N, j ∈ {1, . . . , N}}, as

highlighted in the bottom row in Figure 2. They represent
transactions from of a large number of accounts to fewer
addresses. As a general rule, left extreme chainlets indicate
bitcoin investment.

Right extreme chainlets are the subset Cr := {Ci→j | i ∈
{1, . . . , N − 1}, j = N}, as highlighted in the far right col-
umn in Figure 2. They represent the sale of a large sum of
Bitcoins across the market - the seller divides the balance
and sends them to potentially hundreds of Bitcoin addresses.
We denote the USD amount of Satoshis transferred on date
t by left and right extreme chainlets as Al

t and Ar
t , and the

total occurrences as Ol
t and Or

t respectively.
Figure 3 shows the ratio of extreme chainlets to total oc-

currences at time t, denoted as Ox
t . We also measure ex-

treme chainlet activity with the ratio of Bitcoins transacted
by extreme chainlets, Ax

t . For example, if the volume to-
day was 2M Satoshis and 200K Satoshis were transacted by
using extreme chainlets, then Ax

t = 0.1.
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Figure 3: Ratio of extreme chainlets by daily occurrence
over 2015. On June 3 (day 154), New York State finan-
cial services superintendent announced BitLicense: a set of
rules that would govern virtual-currency businesses. BitLi-
cense came into effect on September 8th (day 251). Rather
than complying with these rules, cryptocurrency exchanges
demanded their customers to leave their platforms. Many
customers left by selling their Bitcoins, as evidenced by high
extreme chainlet activity.

3 Forecasting Bitcoin

The extent to which we can build predictive models from the
chainlets has already led to some promising results [2] (see
[2] for specification of the types and groups of chainlets that
exhibit predictive influence on Bitcoin price and volatility).

3.1 Risk modeling

We characterize the uncertainty of a ’loss’ and, in particular,
estimate the probability of extreme losses occurring over a
future horizon. The loss is defined as the negative of the log
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returns, Lt = −rt, where rt := ln (Pt+1/Pt) and Pt is the
Bitcoin price on day t.

Bitcoin prices are sourced from Coinbase over the period
1/1/2012 to 10/7/2017 (2107 observations)1 and the corre-
sponding chainlet matrices are available through the website
2.

Table 1 shows the results from regressing the square of
the log returns r2t , a proxy for volatility, against xt – the
vector of daily extreme chainlet activity.

Estimate Std. Error t-value Pr(> |t|)
(Intercept) 0.9995 0.0807 12.385 < 2e-16 ***

Al
t 0.7248 0.1063 6.818 1.21e-11 ***

Ar
t 0.2959 0.1278 2.316 0.02068 *

Ax
t -0.5348 0.1313 -4.073 4.82e-05 ***

Ol
t -0.5699 0.1074 -5.304 1.25e-07 ***

Or
t -0.4541 0.1644 -2.762 0.00579 **

Ox
t 0.5043 0.1832 2.753 0.00595 **

Table 1: This table shows the statistical significance of the
extreme chainlet regressors on r2t , a proxy for volatility.
Note that both the response and the regressors have been
standardized.
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Figure 4: The empirical densities of the standardized daily
losses conditioned on the lower (red) and upper (green)
α = 0.05 percentiles of extreme chainlet activity by (top)
amount (Ax) and (bottom) occurrences (Ox). The standard-
ized unconditional loss density is shown by the black line.

Results establishing Granger causality between prices and

1Our analysis (see Figure 3 in [2]) showed that the Bitcoin network
did not stabilize until late 2011.

2https://github.com/cakcora/CoinWorks

chainlets are shown in [2]. We emphasize that the purpose of
our analysis here is to augment these results with the distri-
butional properties of losses given extreme chainlet activity.
Figure 4 and Table 2 show the unconditional loss densities,
φ(Lt) (black) and conditional densities of the standardized
daily Bitcoin losses over the same period from 1-1-2012 to
10-7-2017. The mean of the loss density is observed to shift
to the right (indicating higher losses) when conditioned on
the top fifth percentile (green) of extreme chainlet activity
measures Ax

t (top) and Ox
t (bottom). Conversely, we ob-

serve that the mean of the loss density shifts to the left
when conditioned on the lower fifth percentile (red) of ex-
treme chainlet activity measures Ax

t (top) and Ox
t (bottom).

The skew and kurtosis of the conditional loss distributions
are also observed to differ significantly from the uncondi-
tional loss distribution.

pdf mean std.dev. skewness kurtosis
φ(Lt) 0 1 0.518 12.082

φ(Lt|Ax
t < Φ−1Ax

t
(0.05)) -0.047 1.107 3.283 31.618

φ(Lt|Ax
t > Φ−1Ax

t
(0.95)) 0.0861 0.843 1.590 6.046

φ(Lt|Ox
t < Φ−1Ox

t
(0.05)) -0.081 0.633 1.296 8.114

φ(Lt|Ox
t > Φ−1Ox

t
(0.95)) 0.118 0.930 2.025 10.457

Table 2: This table show the moments of the conditional and
unconditional empirical density functions corresponding to
those shown in Figure 4.

3.2 GARCH

The application of GARCH models to forecast Bitcoin has
been extensively investigated in [4, 3]. We supplement these
findings, by demonstrating the importance of including ex-
treme chainlet activity, xt in the GARCH model. We choose
an ARMA(p, q)−GARCHX(1, 1) model:

yt = µ+

p∑
i=1

yt−i +

q∑
i=1

ut−1 + σtut, (1)

σ2
t = α0 + α1u

2
t−1 + βσ2

t−1 + βT
x xt, (2)

where yt are the observed daily returns, ut are standard
skewed Student’s t-innovations and σt is the volatility. Ad-
ditional diagnostics, provided on request, show a positive
ARCH effect and that a GARCH(1,1) model has the lowest
AIC with a ARMA(2,2) model for the mean equation. Both
models pass a Box-Ljung and Lagrange Multiplier test at
the 99% confidence level for the residuals and square of the
residuals. Separate sign-bias tests show that asymmetry is
not significant.

Table 3 compares the 99% daily Value-at-Risk (VaR)
backtest of the ARMA(2,2)-GARCHX(1,1) model with the
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Figure 5: Next day volatilities estimated using a
(top) ARMA(2,2)-GARCH(1,1) model and a (bottom)
ARMA(2,2)-GARCHX(1,1) model. The forecasting horizon
is rolled over a 30 day out-of-sample period (red). In sam-
ple volatility estimates are shown in blue and observed daily
returns are shown in gray.

ARMA(2,2)-GARCH(1,1) model over an historical period
of 1857 days. The backtest is performed over an in-sample
rolling horizon, with model refitting every 7 days. The
ARMA(2,2)-GARCHX(1,1) model is observed to pass the
Kupiec unconditional and the Christoffersen conditional
coverage tests at the 95% confidence level whereas the
ARMA(2,2)-GARCH(1,1) underestimates the VAR and fails
both tests.

ARMA(2,2)-GARCH(1,1) ARMA(2,2)-GARCHX(1,1)
alpha 1%

Expected Breaches 18.6
Actual VaR Breaches 33 15

Unconditional Coverage (Kupiec)
H0: Correct Breaches

LR.uc Statistic 9.201 0.742
LR.uc Critical 3.841
LR.uc p-value 0.002 0.389

Reject Null YES NO
Conditional Coverage (Christoffersen)

H0: Correct Breaches and Independence of Failures
LR.cc Statistic 9.451 0.986
LR.cc Critical 5.991
LR.cc p-value 0.009 0.611
Reject Null YES NO

Table 3: This table compares coverage test results of VaR
backtests using the GARCH and GARCHX model.

Figure 5 compares the day ahead forecasted volatility,
over a 30 day out-of-sample rolling horizon, (top) without
and (bottom) with the chainlet regressors. The GARCHX
model is observed to predict higher volatility than the
GARCH model and is found to be preferable for modeling
risk. Under a quadratic loss function, we reject H0 in the
Diebold-Mariano test (DM=-2.2728) and conclude that the
differences in the model residuals are significant at the 95%
level (p = 0.023).

4 Summary

We model the blockchain transaction history of Bitcoin with
high fidelity graphs. Extreme chainlet activity, character-
ized by transaction amounts and occurrences are shown em-
pirically to result in increased probability of losses and to
significant changes in the volatility. With the inclusion of
these chainlet activities as external regressors in the variance
equation, we show a significant improvement in the GARCH
model for predicting extreme next day losses. Orders in the
mean and variance equation being equal, the inclusion of
extreme chainlet regressors results in nearly 90% reduction
in the number of false daily 99% VaR breaches or under-
breaches over an approximately 5 year backtesting horizon.
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