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Abstract

In the last few years, Bitcoin and other cryptocurrencies have attracted the interest

of many investors, practitioners and researchers. However, little attention has been

paid to the predictability of the risk measures of Bitcoin. In this paper, we compare

the one-step-ahead volatility forecast of Bitcoin using several GARCH-type models

and also evaluate the performance of several procedures when estimating the Value-at-

Risk. We also take into account the presence of outliers and estimate the volatility and

Value-at-Risk in a robust fashion. Our results show that robust procedures outperform

the non-robust ones to forecast the volatility as well as to estimate the Value-at-Risk.

These results suggest that the presence of outliers play an important role in modelling

and forecasting Bitcoin risk measures.
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1 Introduction

Since its creation in 2008, Bitcoin has attracted the interest of many investors, practitioners

and researchers. This interest has grown quickly in the last years, probably due to the

decentralised nature of Bitcoin and by its large profits; see Nakamoto (2008).

Previous studies, such as Sapuric and Kokkinaki (2014), Baek and Elbeck (2015) and

Brière et al. (2015), have observed that Bitcoin is highly volatile, thus forecasting the volatil-

ity as well as estimating the Value-at-Risk (VaR) as better as possible is crucial for better

decisions of investors and practitioners.

Bitcoin daily volatility has been previously studied by Dyhrberg (2016), Balcilar et al.

(2017), Chu et al. (2017), Katsiampa (2017), Liu et al. (2017), Pichl and Kaizoji (2017),

Naimy and Hayek (2018) and Catania et al. (2018) among others. However, most of the

studies have been focused on the in-sample framework and comparisons have been made

based on information criteria. In this context, Katsiampa (2017) estimates the volatility

of Bitcoin using several GARCH-type models assuming Gaussian errors and concludes that

the best model to estimate the volatility is the AR(1)-CGARCH(1,1), Chu et al. (2017)

analyse the seven most popular cryptocurrencies using GARCH-type models with different

error distributions and conclude that the best model to estimate the Bitcoin volatility is the

IGARCH(1,1). Liu et al. (2017) compare the GARCH model assuming the normal reciprocal

inverse Gaussian (NRIG) distribution against the Gaussian and Student-t error distributions

and conclude that the GARCH model with Student-t errors estimates better the volatilty.

Charles and Darné (2018) replicate the study of Katsiampa (2017) and additionally take into

account the presence of extreme observations. They find that, using the jump-filtered returns

as in Laurent et al. (2016), the AR(1)-GARCH(1,1) model reports smaller information

criteria than the models considered in Katsiampa (2017).

In an out-of-sample point of view, Naimy and Hayek (2018) compare the one-step-ahead

volatility forecasts estimated by GARCH and EGARCH models with Gaussian, Student-t

and generalised error distributions. The authors compare the predicted volatility with the

realised volatility using the root mean square error (RMSE), mean absolute error (MAE) and

mean absolute percentage error (MAPE) and they conclude that EGARCH models present

the best performance. Catania et al. (2018) compare the Gaussian GARCH model with
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the generalised autoregressive score (GAS) models of Creal et al. (2013) and Harvey (2013).

This comparison is based on the QLIKE measure and the predicted volatility is compared

with the squared observed returns. They conclude that the GARCH model is outperformed

by the GAS models. Peng et al. (2018) compare the volatility forecast obtained by GARCH,

EGARCH and GJR models assuming symmetric and asymmetric Gaussian and Student-t

errors against the Support Vector Regression GARCH model of Bezerra and Albuquerque

(2017) and they find that the latter yields more accurate forecasts. Although out-of-sample

comparisons are available in the literature, most of them are restrictive since they do not

consider models which presented better performance in previous studies, and, additionally,

they leave out several error distributions and models of the GARCH family. In this sense,

a comprehensive out-of-sample comparison is needed.

On the other hand, most of the papers available in the literature do not consider the

presence of outliers, which, as mentioned by, for instance, Carnero et al. (2012), Boudt

et al. (2013) and Trućıos and Hotta (2016), affect drastically the volatility forecast and VaR

estimation. As far as we know, only Catania and Grassi (2017), Charles and Darné (2018)

and Catania et al. (2018) take into account the presence of outliers to estimate the Bitcoin

volatility, being the last one the only work in an out-of-sample context. However, Catania

et al. (2018) only consider the Gaussian GARCH model against the GAS models.

In a VaR context, Chu et al. (2017), Chan et al. (2017), Osterrieder and Lorenz (2017),

Stavroyiannis (2018) and Gkillas and Katsiampa (2018) estimate the VaR of Bitcoin. How-

ever, none of these works consider the presence of outliers in a context of conditional het-

eroscedastic.

The contribution of this paper is threefold. First, we carry out an extensive out-of-

sample comparison of the Bitcoin volatility forecast using several GARCH-type models

with different error distributions, filling, then, a gap in the literature and also summarising

the GARCH-type results found in the previous works. Second, we address the presence of

outliers and show that the better volatility forecast is obtained using a robust procedure,

suggesting that outliers play a crucial role when modelling and forecasting the volatility of

Bitcoin. Finally, we evaluate the performance of the VaR estimation using of the best non-

robust procedures to forecast the volatility, chosen by the Model Confidence Set (MCS), and
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the robust procedure proposed by Trućıos et al. (2017) showing that non-robust procedures

underestimate the VaR while the robust procedure estimates the VaR with good results.

These results are useful for academics, as an important reference for future research, as well

as for practitioners, providing information about how to better measure the risk.

The rest of the paper is organized as follows: Section 2 describes the models, realised

measures and loss functions used in the out-of-sample comparison. Section 3 describes the

data and reports the main findings. Finally, Section 4 presents the conclusions and future

researches.

2 Methodology

In this section, we briefly describe the GARCH-type models used to forecast the volatility of

Bitcoin as well as the realised volatility measures used as volatility proxies. At the end of this

section, we also describe the loss functions used to evaluate the out-of-sample performance

and the robust bootstrap procedure of Trućıos et al. (2017) to estimate the VaR.

2.1 GARCH models

The GARCH model is commonly used for modelling and forecasting the second-order mo-

ments of return in economic and financial time series. Since its introduction by Bollerslev

(1986), several extensions have been proposed in the literature. These extensions differ to

each other in how the volatility equation is defined.

Let rt be the observed returns at time t and εt the error term follows a white noise

process. The GARCH(1,1) model is defined by

rt = σtεt,

σ2
t = ω + αr2t−1 + βσ2

t−1,

with σ2
t being the conditional variance (or squared volatility) at time t and ω, α and β

parameters satisfying some stationary conditions. Sufficient conditions for stationarity are

given by ω > 0, α, β ≥ 0 and α + β < 1.

As mentioned above, different extensions of the GARCH model involve different spec-
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ifications of the volatility equation (σ2
t ). Table 1 describe the volatility equations of the

GARCH-type models used in the comparison. 1 For good reviews of univarate GARCH-

type models, see, for instance, Teräsvirta (2009) and Rodŕıguez and Ruiz (2012).

In all non-robust cases, several error distributions are assumed, namely, Normal, Skew

Normal, Student-t, Skew Student-t, GED, Skew GED, Normal Inverse Gaussian, General-

ized Hyperbolic and the Johnson’s reparametrized SU innovation distribution; see Ghalanos

(2018) for details of the parametrization distributions and GARCH-type models used in this

paper.

Table 1: GARCH-type models

Model Volatility equation Proposed by
GARCH σ2

t+1 = ω + αr2t + βσ2
t Bollerslev (1986)

IGARCH σ2
t+1 = ω + αr2t + (1− α)σ2

t Engle and Bollerslev (1986)
EGARCH log(σ2

t+1) = ω + αz2t + γ(|zt| − E(|zt|)) + βlog(σ2
t ) Nelson (1991)

GJR σ2
t+1 = ω + αr2t + γI(rt < 0)r2t + βσ2

t Glosten et al. (1993)
APARCH σδt+1 = ω + α(|rt| − γrt)δ + βσδt Ding et al. (1993)
CGARCH σ2

t+1 = qt+1 + α(r2t − qt) + β(σ2
t − qt)

qt+1 = ω + ρqt + φ(rt2 − σ2
t ) Lee and Engle (1999)

TGARCH σt+1 = ω + ασt(|zt| − η1zt) + βσt Zakoian (1994)
AVGARCH σt+1 = ω + ασt(|zt − η2| − η1(zt − η2)) + βσt Schwert (1990)
NGARCH σδt+1 = ω + ασδt (|zt|)δ + βσδt Higgins and Bera (1992)

NAGARCH σ2
t+1 = ω + ασ2

t (|zt − η2|)2 + βσ2
t Engle and Ng (1993)

FGARCH σδt+1 = ω + ασδt (|zt − η2| − η1(zt − η2))δ + βσδt Hentschel (1995)

Robust σ2
t+1 = ω + γcαρ

(
r2t
σ2
t

)
+ βσ2

t , Boudt et al. (2013)

GARCH with ρ(x) =

{
1, if x > c,

x, if x ≤ c,

and γc being a constant to ensure consistency

2.2 Realised measures

Evaluate the predictive ability of different approaches to forecast the volatility is challenging

since the volatility is a latent variable and consequently is not directly observable. A good

proxy for the conditional variance is the realised variance (Andersen et al., 2003) which

use intra-day data. In this paper we use the realised variance - RV and some alternative

realised measures which are robust to microestructure noise. Specifically, we use the Bipower

1In Table 1, zt corresponds to the devolatilised return zt =
rt
σt

.
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variation - BV (Barndorff-Nielsen and Shephard, 2004), MinRV (Andersen et al., 2012) and

MedRV (Andersen et al., 2012) as proxies of the true conditional variance. We prefer to

use realised measures instead of square observed daily returns as in Catania et al. (2018)

because realised measures have showed to be a better proxy (Alizadeh et al., 2002; McAleer

and Medeiros, 2008; Patton, 2011) and are most widely used nowadays. Table 2 presents

the realised measures used in this paper.

Table 2: Realised measures.

Realised measure Formula

RV
N∑
i=1

r2i

BV
π

2

(
N

N − 1

)N−1∑
i=1

|ri||ri+1|

MinRV
π

π − 2

(
N

N − 1

)N−1∑
i=1

min (|ri|, |ri+1|)2

MedRV
π

6− 4
√

3 + π

(
N

N − 2

)N−1∑
i=1

med (|ri−1|, |ri|, |ri+1|)2

For more details about realised measures as well as for asymptotic properties see McAleer

and Medeiros (2008), Barndorff-Nielsen and Shephard (2004) and Andersen et al. (2012).

2.3 Robust loss function

The evaluation of the volatility forecast will be made using volatility proxies such as de-

scribed in the previous section. However, these proxies are imperfect since they are estimates

of the integrated variance. To avoid that imperfect volatility proxies lead to misleading re-

sults in the predictability comparison of the volatility forecast, Patton (2011) propose the

use of robust loss functions, these functions are robust to the microestructure noise in the

volatility proxy. The general class of the robust loss function is defined by Patton (2011)

and given by

L(σ̂2, h, b) =



h− σ̂2 + σ̂2log(
σ̂2

h
), for b = -1,

σ̂2

h
− log(

σ̂2

h
)− 1, for b = -2,

(σ̂2b+4 − h2b+4)

(b+ 1)(b+ 2)
− hb+1(σ̂2 − h)

b+ 1
, otherwise,
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where σ̂2 is the squared forecasts volatility and h the squared volatility proxy. In this paper

we consider the robust loss function of Patton (2011) with three different values of b: b = −2

(QLIKE), b = −1 (MSE) and b = 0 (hereafter denoted by RLF).

2.4 VaR estimation

Assuming that returns are zero mean, the one-step-ahead VaR in the non-robust models is

estimated as usual by α%V aR = Qα%σ̂T+1|T where Qα% is the α% quantile of the assumed

error distribution (scaled to have unit variance) and σ̂T+1|T is the one-step-ahead volatility

forecast.

To estimate the VaR in a robust way, we use the robust bootstrap procedure recently

proposed by Trućıos et al. (2017). The procedure is based on a residual-based bootstrap

scheme combining with a robust estimator and robust filters for the volatility. The procedure

can be summarized in the following steps:

• Step 1: Estimate the parameters ω, α and β in a robust way and obtain the stan-

dardized residuals ε̂t = rt
σ̂t

. Denote by F̂ε the empirical distribution of these centred

standardized residuals.

• Step 2: Using ε∗t (bootstrap extractions from F̂ε) generate bootstrap series through

the following recursion.

r∗t = σ∗t ε
∗
t ,

σ∗2t+1 = ω̂ + α̂σ∗2t cγrc

(
r∗2t
σ∗2t

)
+ β̂σ∗2t ,

where σ∗21 = σ̂2
1 and the filter rc(·) is defined in Table 3. Using the bootstrap series

estimate the parameters ω̂∗, α̂∗ and β̂
∗

using the same estimator in Step 1.

• Step 3: Obtain h-steps-ahead forecast for returns as

r̂∗T+h|T = ε∗T+hσ̂
∗
T+h|T ,

σ̂∗2T+h|T = ω̂∗ + α̂∗σ̂∗2T+h−1|T cγrc

(
r∗2T+h−1|T

σ̂∗2T+h−1|T

)
+ β̂

∗
σ̂∗2T+h−1|T ,

(1)

for h = 1, ..., H, and where r̂∗T |T = rT , ε∗T+h are bootstrap extractions from F̂ε and
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σ̂∗2T |T is obtained through the recursion σ̂∗2t|T = ω̂∗ + α̂∗σ̂∗2t−1|T cγrc

(
r2t−1

σ̂∗2t−1|T

)
+ β̂

∗
σ̂∗2t−1|T

for t = 2, ..., T , with σ̂∗21|T = σ̂2
1, rc(x) equal to x if x ≤ c and ε∗2t (squared bootstrap

extractions from F̂ε) otherwise and c being a cut-off value defined a priori.

• Step 4: Repeat steps 2 and 3B times to obtainB bootstrap replicates (r̂
∗(1)
T+h|T , ..., r̂

∗(B)
T+h|T ),

the α % VaR is estimated as the α% empirical quantile of the bootstrap replicates.

3 Data and results

We use daily Bitcoin closing prices (in US dollar) traded on Bitstamp from September

13, 2011 to December 31, 2017 (2280 observations). Tick-by-tick data were obtained from

bitcoincharts2 and the daily closing prices were constructed from the tick-by-tick data as

the last price traded at each day.

Returns are calculated as rt = log(Pt) − log(Pt−1) with Pt being the closing price at

day t. Table 3 reports descriptive statistics and Figure 1 shows the daily returns as well

as the autocorrelation of returns and squared returns. We can observe that Bitcoin is

highly volatile with an annualized standard deviation of 0.8350 (0.0526 ×
√

252), returns

also present asymmetry and large Kurtosis. The large Kurtosis is probably explained by the

presence of extreme returns, as observed in Figure 1. Because the returns series does not

exhibit serial correlation no ARMA filter is applied to the data, the series is only centred

to have zero mean.

Table 3: Descriptive statistics of Bitcoin daily returns

Mean Std. Dev. Min Q1 Med. Q3 Max Skewness Kurtosis
0.0034 0.0526 -0.6639 -0.0111 0.0024 0.0200 0.4455 -1.4011 28.4802

To evaluate the out-of-sample performance we use a rolling windows scheme with win-

dows size equal to 1000 days. In each window the one-step-ahead conditional variance

is estimated. The one-step-ahead conditional variance is compared with the four realised

measures described in Section 2.2 using five minutes high-frequency data (results using 10

minutes high-frequency data were also evaluated and the conclusions are similar). The non-

robust GARCH-type models were estimated using the R package rugarch of Ghalanos (2017)

2https://api.bitcoincharts.com/v1/csv/
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Figure 1: Daily returns, autocorrelation returns and autocorrelation squared returns

and the realised measures were computed using the R package highfrequency of Boudt et al.

(2017).

Differently of Charles and Darné (2018) which takes into account the presence of outliers

using jump-filtered returns as in (Laurent et al., 2016), we estimate the conditional variance

in a robust way using the robust estimator of Boudt et al. (2013) with the modification

introduced in Trućıos et al. (2017).

Table 4 reports the MSE, QLIKE and RLF between σ̂2
T+1 and the respective realised

measure (RV, MinRV, MedRV, BP). The shadowed cells are the set of models with best

out-of-sample performance obtained using the MCS approach (Hansen et al., 2011) at 75%

significant level.3 In bold, the best model (first position in the MCS rank) in each case.

The MSE selects a large set of models reflecting a low power to distinguish between

different models, indeed using the MSE just 15 of 100 models were left out (16 when con-

sidering the MinRV as a volatility proxy). Other works have also found that the MSE has

a low power to distinguish between different models, see for instance Patton and Sheppard

(2009) and Liu et al. (2015). On the other hand, observe that the QLIKE and RLF loss

functions are better to choose a small set of models with the best performance.

In general, note that the MCS methodology select the same models by loss function

regardless the realised measure used. An exception is observed when the QLIKE measure

3We have used the R package MCS of Bernardi (2017)
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is used in which case the CGARCH model belong to the group of models with the best

performance only when the realised variance is used.

Considering all loss functions and realised measures only five models are in the set of

better models in all cases, namely, TARCH and AVGARCH assuming generalized error

distribution (standard and skew version) and the robust GARCH model. The CGARCH

model which was the best model in Katsiampa (2017) appear in the set when using the MSE

and RLF loss functions and also using the QLIKE loss function and the realised variance as

volatility proxy. The IGARCH model which was the best model in the in-sample analyse

in Chu et al. (2017) only appear in the set when considering the MSE loss functions.

In all cases, the GARCH model estimated in a robust way reports the best results

regardless the loss function and realised measure used. This result is extremely important

since most of analyses available in the literature about Bitcoin do not take into account the

presence of outliers and, as we can see in Table 3, results can be substantially improved using

a robust approach. A simple model such as the GARCH model estimated considering the

presence of outliers outperforms more sophisticated models such as TARCH or AVGARCH.

These results are in concordance with Charles and Darné (2018) which also find, in an in-

sample context, that sophisticated models are outperformed by a GARCH model when the

presence of outliers is considered in the analyse.

The 1% VaR is also computed and backtesting procedures for the VaR are carried out.

We compute the VaR for the models chosen by the MCS as the models with the best

performance in all criteria. Results are shown in Table 5 and report the proportion of fails

(returns smaller than the 1% VaR), p-values of the unconditional coverage - UC (Kupiec,

1995), conditional coverage - CC (Christoffersen, 1998), dynamic quantile -DQ (Engle and

Manganelli, 2004) tests as well as the average quantile loss function of González-Rivera et al.

(2004).

Results reveal that the non-robust procedures underestimate the VaR and all backtesting

procedures reject the null hypothesis that the proportion of fails is equal to 0.01. Using the

robust procedure of Trućıos et al. (2017) all tests fail to reject the null hypothesis. Also,

observe that the smallest average quantile loss function of González-Rivera et al. (2004) is

obtained when the VaR is estimated in a robust way. Figure 2 reports the returns of the
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Table 4: Average MSE, QLIKE and RHF between σ̂2
T+1 and the realised measures.

Innov MSE (× 105) QLIKE RLF (× 103)
Distrib. RV MinRV MedRV BP RV MinRV MedRV BP RV MinRV MedRV BP

G
A
R
C
H

norm 0.6462 0.6924 0.6799 0.6932 4.6611 15.7753 12.8778 14.0071 0.2137 0.3374 0.3023 0.3356
snorm 0.6420 0.6879 0.6755 0.6886 4.5618 15.5269 12.6780 13.7686 0.2110 0.3334 0.2987 0.3316

std 0.6301 0.6750 0.6626 0.6756 4.3189 14.8890 12.1316 13.1683 0.2089 0.3293 0.2950 0.3271
sstd 0.6301 0.6751 0.6627 0.6756 4.3255 14.9089 12.1485 13.1858 0.2091 0.3297 0.2952 0.3274
ged 0.6223 0.6663 0.6541 0.6668 4.2173 14.6294 11.9493 12.9009 0.2039 0.3222 0.2885 0.3199
sged 0.6233 0.6675 0.6553 0.6680 4.2448 14.7110 12.0190 12.9733 0.2046 0.3233 0.2895 0.3210
nig 0.6298 0.6745 0.6622 0.6750 4.2573 14.7438 12.0325 13.0099 0.2067 0.3262 0.2921 0.3239

ghyp 0.6301 0.6748 0.6624 0.6753 4.2558 14.7365 12.0229 13.0057 0.2068 0.3263 0.2922 0.3240
jsu 0.6282 0.6729 0.6605 0.6734 4.2763 14.7824 12.0522 13.0590 0.2074 0.3272 0.2930 0.3250

IG
A
R
C
H

norm 0.6848 0.7331 0.7202 0.7339 4.7743 16.1611 13.2284 14.3087 0.2237 0.3511 0.3150 0.3491
snorm 0.6777 0.7255 0.7126 0.7262 4.6886 15.9360 13.0387 14.1000 0.2210 0.3472 0.3114 0.3451

std 0.6347 0.6799 0.6675 0.6805 4.3386 14.9463 12.1776 13.2208 0.2101 0.3311 0.2965 0.3289
sstd 0.6347 0.6799 0.6675 0.6805 4.3451 14.9660 12.1944 13.2380 0.2103 0.3314 0.2968 0.3292
ged 0.6324 0.6769 0.6646 0.6774 4.2577 14.7373 12.0339 12.9998 0.2069 0.3262 0.2922 0.3238
sged 0.6324 0.6770 0.6647 0.6775 4.2854 14.8159 12.0990 13.0714 0.2075 0.3272 0.2931 0.3249
nig 0.6348 0.6797 0.6673 0.6802 4.2773 14.8017 12.0791 13.0627 0.2080 0.3280 0.2938 0.3257

ghyp 0.6349 0.6798 0.6674 0.6803 4.2736 14.7908 12.0680 13.0539 0.2080 0.3280 0.2938 0.3257
jsu 0.6329 0.6778 0.6654 0.6783 4.2947 14.8362 12.0955 13.1079 0.2087 0.3289 0.2946 0.3266

E
G
A
R
C
H

norm 0.3997 0.4384 0.4268 0.4397 4.2819 14.6638 11.9263 13.0381 0.1808 0.2942 0.2614 0.2934
snorm 0.3816 0.4187 0.4073 0.4199 4.1724 14.2734 11.5432 12.7374 0.1756 0.2865 0.2542 0.2857

std 1.3587 1.4412 1.4209 1.4434 8.3776 26.2082 21.2621 23.6404 0.4427 0.6451 0.5872 0.6438
sstd 4.1221 4.2203 4.1960 4.2242 12.4856 33.6221 27.5656 31.3650 0.7206 0.9637 0.8926 0.9662
ged 0.4687 0.5082 0.4964 0.5091 4.2841 14.7140 11.8625 13.1082 0.1953 0.3115 0.2778 0.3100
sged 0.4772 0.5175 0.5055 0.5184 4.3620 14.9607 12.0615 13.3298 0.1989 0.3168 0.2826 0.3153
nig 0.5874 0.6336 0.6205 0.6347 4.8527 16.4305 13.2608 14.6555 0.2302 0.3598 0.3223 0.3582

ghyp 0.6182 0.6666 0.6531 0.6676 4.9544 16.7707 13.5804 14.9264 0.2372 0.3700 0.3317 0.3682
jsu 0.7094 0.7620 0.7476 0.7632 5.4314 18.0941 14.5942 16.1862 0.2653 0.4078 0.3667 0.4061

G
J
R
-G

A
R
C
H

norm 0.6660 0.7127 0.7001 0.7135 4.7435 15.9572 12.9768 14.2207 0.2187 0.3438 0.3083 0.3420
snorm 0.6389 0.6840 0.6717 0.6848 4.6482 15.6192 12.6296 13.9678 0.2145 0.3375 0.3024 0.3358

std 0.6722 0.7172 0.7048 0.7177 4.5216 15.3809 12.4347 13.7138 0.2205 0.3438 0.3085 0.3417
sstd 0.6751 0.7203 0.7078 0.7209 4.5321 15.4303 12.4847 13.7505 0.2211 0.3447 0.3094 0.3426
ged 0.6565 0.7007 0.6884 0.7012 4.3948 15.0588 12.2121 13.3783 0.2138 0.3346 0.3001 0.3324
sged 0.6636 0.7083 0.6960 0.7088 4.4448 15.2279 12.3615 13.5232 0.2161 0.3380 0.3033 0.3358
nig 0.6720 0.7171 0.7047 0.7176 4.4515 15.2494 12.3697 13.5464 0.2179 0.3403 0.3054 0.3381

ghyp 0.6676 0.7125 0.7001 0.7130 4.4402 15.2048 12.3250 13.5114 0.2173 0.3395 0.3046 0.3373
jsu 0.6733 0.7183 0.7059 0.7188 4.4802 15.3081 12.3999 13.6200 0.2193 0.3422 0.3071 0.3400

A
P
A
R
C
H

norm 0.5586 0.6027 0.5902 0.6038 4.7028 15.8339 12.8170 14.1272 0.2115 0.3350 0.2995 0.3337
snorm 0.5675 0.6110 0.5986 0.6120 4.6737 15.6700 12.6122 14.0424 0.2126 0.3354 0.3000 0.3341

std 1.7452 1.8356 1.8142 1.8373 8.3640 26.8273 21.8816 23.9507 0.4686 0.6800 0.6200 0.6771
sstd 1.8165 1.9096 1.8877 1.9113 8.5378 27.4649 22.4993 24.4475 0.4809 0.6969 0.6357 0.6940
ged 0.6816 0.7289 0.7158 0.7296 4.6978 16.0421 12.9647 14.2607 0.2317 0.3605 0.3235 0.3583
sged 0.6922 0.7402 0.7270 0.7410 4.7671 16.2775 13.1611 14.4651 0.2352 0.3656 0.3282 0.3635
nig 0.8510 0.9064 0.8918 0.9072 5.2732 17.8979 14.5316 15.8679 0.2698 0.4134 0.3723 0.4108

ghyp 0.9272 0.9856 0.9705 0.9863 5.3893 18.3389 14.9618 16.2017 0.2803 0.4280 0.3859 0.4252
jsu 1.0107 1.0730 1.0571 1.0739 5.8575 19.6262 15.9345 17.4342 0.3075 0.4645 0.4197 0.4619

C
S
-G

A
R
C
H

norm 0.5051 0.5437 0.5324 0.5442 3.7672 13.2390 10.7400 11.7096 0.1779 0.2865 0.2553 0.2845
snorm 0.5101 0.5494 0.5381 0.5499 3.7854 13.2734 10.7744 11.7376 0.1784 0.2872 0.2560 0.2852

std 0.5592 0.5996 0.5881 0.5999 3.7305 13.2083 10.7250 11.6396 0.1846 0.2949 0.2633 0.2924
sstd 0.5644 0.6056 0.5939 0.6058 3.8005 13.3810 10.8571 11.8077 0.1870 0.2986 0.2666 0.2960
ged 0.5320 0.5713 0.5600 0.5715 3.7362 13.1697 10.7139 11.5997 0.1803 0.2888 0.2577 0.2863
sged 0.5280 0.5672 0.5559 0.5674 3.7172 13.1183 10.6648 11.5505 0.1799 0.2883 0.2572 0.2858
nig 0.5441 0.5842 0.5728 0.5844 3.7599 13.2428 10.7656 11.6695 0.1832 0.2929 0.2614 0.2903

ghyp 0.5472 0.5876 0.5760 0.5878 3.7487 13.2312 10.7534 11.6463 0.1837 0.2937 0.2621 0.2911
jsu 0.5493 0.5903 0.5786 0.5905 3.7040 13.1620 10.6864 11.5745 0.1837 0.2943 0.2626 0.2917

T
A
R
C
H

norm 0.4556 0.4977 0.4855 0.4989 4.4336 15.1155 12.2453 13.4620 0.1931 0.3116 0.2773 0.3106
snorm 0.4272 0.4673 0.4554 0.4685 4.3205 14.7282 11.8736 13.1577 0.1866 0.3021 0.2685 0.3012

std 1.5828 1.6712 1.6500 1.6731 8.3242 26.6331 21.6692 23.8363 0.4582 0.6671 0.6075 0.6648
sstd 1.6504 1.7416 1.7199 1.7436 8.5075 27.2939 22.2991 24.3616 0.4708 0.6845 0.6236 0.6821
ged 0.3065 0.3125 0.3068 0.3128 3.0786 8.9822 6.6485 8.5162 0.1422 0.2063 0.1860 0.2055
sged 6.2929 6.3005 6.2951 6.3018 4.2964 10.5292 8.2206 10.2862 0.2816 0.3505 0.3309 0.3530
nig 0.7427 0.7960 0.7817 0.7969 5.1558 17.5626 14.2467 15.5755 0.2572 0.3974 0.3571 0.3952

ghyp 0.8061 0.8622 0.8474 0.8631 5.2881 18.0411 14.7000 15.9507 0.2678 0.4122 0.3709 0.4098
jsu 0.8974 0.9577 0.9420 0.9587 5.7644 19.3435 15.6862 17.1989 0.2962 0.4503 0.4061 0.4480

A
V
G
A
R
C
H

norm 0.5495 0.5940 0.5813 0.5951 4.5948 15.2893 12.2950 13.7239 0.2074 0.3293 0.2941 0.3281
snorm 0.5027 0.5443 0.5321 0.5454 4.4396 15.0180 12.1520 13.3952 0.1988 0.3169 0.2827 0.3158

std 1.5283 1.6143 1.5937 1.6160 8.3379 26.7001 21.7781 23.8574 0.4505 0.6564 0.5978 0.6538
sstd 1.5985 1.6881 1.6667 1.6900 8.6625 27.6488 22.6233 24.6775 0.4685 0.6805 0.6201 0.6781
ged 0.2903 0.2957 0.2902 0.2960 3.0270 8.8674 6.5561 8.4003 0.1382 0.2010 0.1811 0.2002
sged 0.3010 0.3067 0.3012 0.3071 3.1075 9.0838 6.7185 8.6091 0.1423 0.2063 0.1860 0.2055
nig 0.7162 0.7690 0.7548 0.7699 5.1853 17.7134 14.4072 15.6786 0.2553 0.3951 0.3549 0.3929

ghyp 0.8057 0.8616 0.8469 0.8624 5.3933 18.3932 15.0112 16.2479 0.2710 0.4163 0.3747 0.4138
jsu 0.8512 0.9107 0.8953 0.9118 5.7763 19.1370 15.3250 17.1624 0.2912 0.4439 0.4001 0.4416

N
G
A
R
C
H

norm 0.5416 0.5858 0.5733 0.5869 4.6604 15.7700 12.7876 14.0398 0.2081 0.3310 0.2956 0.3296
snorm 0.5319 0.5753 0.5629 0.5763 4.5226 15.3895 12.4799 13.6896 0.2030 0.3237 0.2890 0.3223

std 1.6741 1.7651 1.7436 1.7668 7.9521 25.7754 21.2326 22.8155 0.4470 0.6538 0.5953 0.6508
sstd 1.7375 1.8309 1.8089 1.8327 8.1307 26.3710 21.7885 23.2955 0.4593 0.6702 0.6105 0.6671
ged 0.6240 0.6704 0.6575 0.6712 4.4331 15.3760 12.5222 13.5547 0.2159 0.3404 0.3046 0.3381
sged 0.6309 0.6780 0.6650 0.6788 4.4978 15.5595 12.6575 13.7321 0.2191 0.3450 0.3089 0.3428
nig 0.7848 0.8391 0.8248 0.8399 4.9346 16.9856 13.9009 14.9371 0.2505 0.3887 0.3493 0.3861

ghyp 0.8490 0.9057 0.8910 0.9065 4.9718 17.2124 14.1918 15.0570 0.2560 0.3966 0.3567 0.3938
jsu 0.9421 1.0036 0.9878 1.0045 5.4913 18.6339 15.2523 16.4191 0.2873 0.4389 0.3958 0.4362

N
A
G
A
R
C
H

norm 0.6528 0.6993 0.6868 0.7001 4.6372 15.7110 12.8230 13.9435 0.2139 0.3375 0.3025 0.3357
snorm 0.6234 0.6681 0.6559 0.6688 4.5686 15.4497 12.5384 13.7637 0.2100 0.3314 0.2968 0.3295

std 0.6804 0.7263 0.7137 0.7269 4.7956 16.2179 13.0605 14.4966 0.2309 0.3581 0.3217 0.3559
sstd 0.6805 0.7266 0.7139 0.7271 4.8023 16.2470 13.0900 14.5172 0.2311 0.3585 0.3220 0.3563
ged 0.6477 0.6920 0.6797 0.6924 4.4874 15.3887 12.4775 13.6599 0.2158 0.3378 0.3030 0.3354
sged 0.6462 0.6908 0.6785 0.6913 4.5119 15.4574 12.5342 13.7219 0.2162 0.3387 0.3037 0.3364
nig 0.6691 0.7147 0.7021 0.7151 4.6438 15.8441 12.8098 14.0973 0.2243 0.3495 0.3136 0.3471

ghyp 0.6664 0.7120 0.6994 0.7124 4.6296 15.7878 12.7553 14.0513 0.2238 0.3488 0.3130 0.3464
jsu 0.6746 0.7203 0.7077 0.7207 4.7149 16.0246 12.9284 14.2904 0.2276 0.3538 0.3176 0.3515

F
u
ll

G
A
R
C
H

norm 0.6313 0.6769 0.6642 0.6779 4.6570 15.7984 12.8002 14.0545 0.2202 0.3456 0.3095 0.3440
snorm 0.6314 0.6753 0.6628 0.6762 4.5357 15.3349 12.3748 13.7062 0.2181 0.3414 0.3058 0.3398

std 1.5654 1.6517 1.6310 1.6535 8.4590 26.9654 21.9542 24.1603 0.4575 0.6647 0.6057 0.6622
sstd 1.6544 1.7434 1.7221 1.7452 8.5986 27.4219 22.3873 24.4923 0.4713 0.6826 0.6223 0.6799
ged 0.6032 0.6485 0.6357 0.6492 4.5789 15.7680 12.7706 13.9733 0.2213 0.3468 0.3105 0.3447
sged 0.6112 0.6573 0.6443 0.6581 4.6636 16.0417 12.9991 14.2162 0.2249 0.3521 0.3153 0.3500
nig 0.7458 0.7986 0.7844 0.7994 5.2114 17.7875 14.4494 15.7488 0.2592 0.3994 0.3591 0.3970

ghyp 0.8244 0.8805 0.8657 0.8813 5.4332 18.5296 15.0815 16.3849 0.2744 0.4205 0.3786 0.4179
jsu 0.8738 0.9329 0.9174 0.9338 5.7881 19.4739 15.8039 17.2912 0.2934 0.4461 0.4023 0.4436

Robust 0.1027 0.1099 0.1041 0.1102 1.8795 7.2874 5.6621 6.4628 0.0644 0.1192 0.1020 0.1182
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out-of-sample period and the 1% VaR estimated in a robust way.

In general, our results show that the risk measures are better estimated when using

robust procedures.

Table 5: Proportion of returns smaller than the 1% VaR, p-values of the UC, CC, DQ test
and average quantile loss function (AQLF) (×103).

Models Prop. Fails UC CC DQ AQLF
TGARCH GED 0.1039 0.0000 0.0000 0.0000 2.9755
TGARCH SGED 0.1039 0.0000 0.0000 0.0000 2.9805
AVGARCH GED 0.1023 0.0000 0.0000 0.0000 2.9776
AVGARCH SGED 0.1023 0.0000 0.0000 0.0000 2.9710
Robust 0.0063 0.1475 0.3331 0.6602 1.4283
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2014−06 2015−11 2017−03

 

 

Figure 2: Return in the out-of-sample period (black solid line) and the estimated 1% VaR
(red dashed line) obtained using the robust bootstrap procedure of Trućıos et al. (2017).

4 Conclusions and future works

In this paper, we have made a comprehensive out-of-sample comparison in a context of the

daily volatility forecast of Bitcoin using GARCH-type models with different error distri-

butions. Additionally, we included a robust GARCH procedure and compare it with the

non-robust models. Our results reveal that better results are obtained when the presence

of outliers is not neglected and estimation of the volatility is made in a robust way.

Among the non-robust procedures, the models with better out-of-sample performance to

forecast the volatility are the TARCH and AVGARCH models both considering generalized

error distribution (standard and skew version). However, these models are outperformed by

the GARCH model when estimated in a robust fashion. In particular, we use the robust

estimator of Boudt et al. (2013) with the modification used in Trućıos et al. (2017).

The VaR estimated in a non-robust way reports large values of the proportion of fails

and all backtesting procedures reject the null hypothesis of that the proportion of fails is

12



equal to 0.01 giving a misleading picture of what can be expected in the future. On the

other hand, the VaR estimated using the robust bootstrap procedure of Trućıos et al. (2017)

shown a good performance.

Additional comparisons considering different GARCH-type models estimated in a robust

way as well as considering switch regime are interesting research topics. In the same spirit,

to compare robust GARCH-type models with GAS models as the used in Catania et al.

(2018) and some alternative procedures as the used in Peng et al. (2018) as well as analyse

the performance of risk measures in a high-frequency context are interesting research topics.

Some papers such as Dyhrberg (2016), Balcilar et al. (2017) and Cermak (2017) have also

consider explanatory variables to better estimate the volatility. Thus, one step further in this

research is to analyse the performance of the out-of-sample volatility forecast considering

explanatory variables and robust GARCH procedures.

This paper is in concordance with the results of Carnero et al. (2012), Trućıos and Hotta

(2016) and Trućıos et al. (2017) which show the dramatic effect of additive outliers in the

estimation and prediction of the volatility and VaR. For a good review about outliers in

GARCH models, we refer to Hotta and Trućıos (2018).

In a multivariate framework Boudt et al. (2013), Grané et al. (2014) and Trućıos et al.

(2018b) shown the dramatic effect of outliers in the estimation and prediction of the volatil-

ities and co-volatilities. In this sense, it is important that future studies considering jointly

Bitcoin with other cryptocurrencies take into account the presence of outliers. In this sense,

the procedures proposed by, for instance, Croux et al. (2010), Boudt and Croux (2010),

Boudt et al. (2013), Iqbal (2013), Trućıos et al. (2018a) and Trućıos et al. (2018a) could be

useful.
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Rodŕıguez, M. J. and Ruiz, E. (2012). Revisiting several popular GARCH models with lever-
age effect: Differences and similarities. Journal of Financial Econometrics, 10(4):637–668.

Sapuric, S. and Kokkinaki, A. (2014). Bitcoin is volatile! isn’t that right? In International
Conference on Business Information Systems, pages 255–265. Springer.

Schwert, G. W. (1990). Stock volatility and the crash of’87. The Review of Financial
Studies, 3(1):77–102.

Stavroyiannis, S. (2018). Value-at-risk and related measures for the bitcoin. The Journal
of Risk Finance, 19(2):127–136.
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Trućıos, C. and Hotta, L. K. (2016). Bootstrap prediction in univariate volatility models
with leverage effect. Mathematics and Computers in Simulation, 120:91–103.
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