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Abstract

This paper presents an arbitrage-free valuation model for a credit
risky security where credit risk coexists and interacts with an asset
price bubble and liquidity risk (or liquidity costs). As an illustration,
this model is applied to determine the fair rate for microfinance loans.

1 Introduction

In the derivatives literature, models exist for pricing securities with credit risk
(see Jarrow [10] for a review), liquidity risk (see Cetin, Jarrow, Protter [4]),
and asset price bubbles (see Protter [17] for a review). However, these risks
are considered separately. As is well known in the economics literature, these
three risks coexist and interact. Indeed, these interacting risks are one of the
underlying causes of financial crisis. A case in point was the 2007 credit crisis,
proceeded by a housing price bubble with expanded home loan credit risk.
When the housing bubble collapsed, massive mortgage loan defaults occurred,
and a liquidity crisis resulted (see Brunnermeier, Eisenbach, Sannikov [3] for
a review of the related economics literature).

The purpose of this paper is to provide an arbitrage-free valuation model
for a credit risky security where there is also liquidity risk and an asset price
bubble is present. This valuation methodology applies to any credit risky

∗Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca,
N.Y. 14853 and Kamakura Corporation. email: raj15@cornell.edu.
†Statistics Department, Columbia University, New York, NY 10027; supported in part

by NSF grant DMS-1612758. email: pep2117@columbia.edu.

1



 Electronic copy available at: https://ssrn.com/abstract=3191446 

security, although for clarity and illustration, we will apply this model to
microfinance loans in this paper.

An outline of this paper is as follows. Section 2 provides the mathematical
setup of the model, and section 3 provides the details of the market and the
traded securities. Section 3 studies a model with credit risk and bubbles,
and section 5 adds liquidity risk. Section 6 applies the model to microfinance
loans, and section 7 concludes.

2 The Setup

We begin by considering a stochastic differential equation evolving under a
risk neutral measure (to be subsequently defined), so that there is no drift.
The classical Black Scholes paradigm gives rise to an equation of the form

dXt = σ(Xt)dBt X0 = 1. (1)

A more interesting situation is when stochastic volatility also plays a role.
In this case the equation for X would be of the form

dXt = σ(vt, Xt)dBt X0 = 1 (2)

dvt = s(vt)dWt + b(vt)dt

where W is another Brownian motion, either independent or correlated to
B.

In this model, the process X represents the evolution of the value of the
assets underlying a credit risky loan (or security). X can alternatively be
viewed as the value of the business, or the value of the collateral supporting
the loan. In the case of microfinance, the loans are often small and without
collateral. In these cases what is important is the reputation of the group who
is borrowing, especially if there is a past history of successful microfinance
loans. In cases such as this, the process X is best interpreted as the value of
the business.

We now discuss the role of the Markov process X. Note that in equations
(1) and (2) the assets could evolve according to a familiar diffusion, or with
“badly behaved” functions σ, s, and b they could even behave like a financial
bubble. Put simply, due to the already developed theory of the modeling
of financial bubbles (cf, eg, [18]) means that the price process X modeled
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in (1) or alternatively in (2) must be a strict local martingale under the risk
neutral measure (or under the chosen risk neutral measure in the case of (2)).
A strict local martingale is a local martingale which is not a martingale.

Delbaen and Sharikawa [8] showed for σ continuous showed that equa-
tion (1) gives rise to a strict local martingale if and only if X is nonnegative
and one has the condition∫ ∞

a

x

σ(x)2
dx <∞ for some a > 0. (3)

This was later extended by Mijatovic and Urusov [15] without requiring σ to
be continuous but rather satisfying the conditions of Engelbert and Schmidt
for weak existence and uniqueness.

The stochastic volatility case does not lend itself to such a simple and ele-
gant formulation, but partial results exist, and are general enough to be use-
ful. In the one dimensional case we have the results of Andersen-Piterbarg [1],
Bernard-Cui-McLeish [2], and Lions-Musiela [14]. For the multidimensional
case the theory becomes difficult. So far the best results are due to Xue-Mei
Li [13] and Dandapani and Protter [6]. A tangentially related result is that
of Ruf [19].

As is explained in our companion paper [11] one typically uses a reduced
form Cox model to interpret credit risk. We introduce the function

g : [0,∞)→ [0,∞)

which is concave and strictly decreasing in x for all x. We combine g with
X when we consider the usual Cox framework, where the stopping time τ
represents the time of a default event:

τ = inf{t > 0 :

∫ t

0

g(Xs)ds ≥ Z} (4)

where Z is an independent exponential random variable with parameter 1.
What’s nice about this construction is that the stopping time τ is a “totally
inaccessible” stopping time1 and it has a compensator. Indeed the process

1{t≥τ} −
∫ t

0

g(Xs)ds (5)

1See for example [16] for all definitions of terms, such as totally inaccessible stopping
times.
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is a martingale for its natural filtration. Giving (5) an intuitive interpretation
using the idea of hazard rates, we have that

P (τ ∈ [t, t+ dt]) ≈ g(Xt),

given there has been no default prior to the time t, which of course makes no
strict sense since the left side is non-random and the right side is random.
However one thinks of the right side as non-random due to the realization of
a particular ω ∈ Ω.

We can now give our economic interpretation of the function g. Given
that g(Xt) represents the default intensity and Xt the value of the assets
underlying the loan, g decreasing implies that as the value of the assets
increase, the default intensity declines. This is consistent with the structural
models of credit risk (see Lando [12]). The concavity of the function g means
that as the value of the assets X increases, the default probability decreases
but at a decreasing rate. Alternatively stated, as the value of the assets X
decreases, the default probability increases at an increasing rate.

To include liquidity costs, following Cetin, Jarrow, Protter [4] we define
the liquidity cost function l : [0,∞) → [0,∞) which is concave and strictly
decreasing in x for all x with l(0) = 0 and 0 ≤ l(x) ≤ x for all x. This
represents the value of the assets, after being sold or liquidated. In the
event of default, the lender would receive the value after liquidity costs l(Xt),
and not the market price Xt for a marginal trade. As the size of the asset
sold increases the liquidity cost of a forced sale also increases, and thus the
difference x− l(x) will increase with the size of x. This is why l is taken to
be concave.

Then, the default intensity with liquidity costs is given by the composition
of these two functions, i.e.

g(l(Xt)).

Note that g(l(x)) < g(x) for all x. With liquidity costs, the default time is
therefore

τ = inf{t > 0 :

∫ t

0

g(l(Xs))ds ≥ Z} (6)

with

1{t≥τ} −
∫ t

0

g(l(Xs)ds

being a martingale.
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3 The Market

Let us assume we have a time varying spot interest rate denoted as the process
(rt)t≥0, which for now could be taken either to be random or deterministic.
For short time durations it is often a reasonable simplifying approximation
to assume that rt ≡ r, that is a constant, and deterministic. We initialize
the money market account with a dollar at time 0 and denote its time t value
by2

Bt = e
∫ t
0 rsds. (7)

We let the time t value of a default-free zero-coupon bond paying a dollar at
time T be strictly positive and denoted by p(t, T ) > 0. Let Vt be the value
of the microfinace loan.

We next make the assumption of an absence of arbitrage opportunities
by using the now classic theory of Delbaen and Schachermayer [7].

Assumption. There exists an equivalent probability measure Q such that

p(t, T )

Bt

for all T ∈ [0, T ] and
Vt
Bt

are Q local martingales.

As stated earlier, the process X represents the value of the business sup-
porting the payments to the loan.

We need to introduce a new process (κt)t≥0, which represents systemic
issues rather than just idiosyncratic issues. The process κt(ω) represents a
default jump risk premium. This leads us to change the Cox construction of
(6) to become

τ = inf{t > 0 :

∫ t

0

g(l(Xs))κsds ≥ Z}

and by analogy equation (5) now becomes

1{t≥τ} −
∫ t

0

g(l(Xs))κsds. (8)

We now refine our model for the spot interest rate which was taken a
priori to be an arbitrary process rt = r(Yt) for a given stochastic process Y .

2Of course, we assume the necessary measurability and integrability such that the
following expression is well-defined.
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For illustrative purposes, letting Y equal X, the formula for the price of a
default-free zero-coupon bond is

p(0, t) = EQ{e−
∫ t
0 r(Xs)ds}

and the price from time t to maturity time T is given by

p(0, t) = EQ{e−
∫ t
0 r(Xs)ds

∣∣∣Gt}
where G = (Gt)t≥0 is the underlying filtration relative to which (8) is a
martingale.

4 No Liquidity Costs

This section develops a pricing model for credit risk that includes price bub-
bles and where there is no liquidity risk. Liquidity risk will be included in
the next section. For simplicity of notation, we also assume in this section
that there is no jump risk premium and κs ≡ 1. In this case the default time
is

τ = inf{t > 0 :

∫ t

0

g(Xs)ds ≥ Z} (9)

where

1{t≥τ} −
∫ t

0

g(Xs)ds (10)

is a martingale.
If there is a bubble in the risky assets then the diffusion X that satisfies

an equation of the form (1) is a local strict martingale. We know that a
nonnegative diffusion following an equation such as (1) or (2) is a strict
local martingale if and only there exists a point t0 where E(Xt0) < 1, given
that X0 ≡ 1. One can prove that for equations of the form (1) or (2)
by using the time homogenous strong Markov property that the function
t 7→ E(Xt) is strictly decreasing. That is, for arbitrary t0 and t1 with t0 < t1
we have E(Xt1) < E(Xt0). Of course when X is a true martingale then
t 7→ E(Xt) ≡ 1. So in some sense the expectation of the asset value process
X determines whether or not it is undergoing bubble pricing. Constant
means no bubble, and strictly decreasing (the only other possibility) means
bubble pricing is in force. To aid the tractability of our analysis we add the
following assumption.

6



Assumption. We replace the process Xt in our model with its expecta-
tion E(Xt).

This assumption is a gross simplification, and yet for short time spans it
may not be that unreasonable in practice. It certainly does make the analysis
more tractable. For the martingale case, we have λt = E(Xt) is constant:
λt ≡ λ for all t, 0 ≤ t ≤ 1. For the strict local martingale case we have
λt = E(Xt) is strictly decreasing in t.

Equations (9) and (10) become

τ = inf{t > 0 :

∫ t

0

g(λ)ds ≥ Z} (11)

where Z follows an exponential distribution with parameter 1, and

1{t≥τ} −
∫ t

0

g(λ)ds (12)

is a martingale. In this case the probability that default does not occur is
equivalent to

Q(Z ≥ sup
t≤1

g(λ)t) = Q(Z ≥ g(λ)) (13)

and therefore the probability of a default occurring is 1 − Q(Z ≥ g(λ)) =
e−g(λ). 3

In the bubble case we have the non-random default intensity t 7→ λt which
as previously discussed is equal to λQt = EQ(Xt) and is strictly decreasing
as a function of t. Note that the value of λt depends a priori on the choice
of the risk neutral measure Q so we denote this dependence on Q with a
superscript.

τ = inf{t > 0 :

∫ t

0

g(λQs )ds ≥ Z} (14)

where

1{t≥τ} −
∫ t

0

g(λQs )ds (15)

is a martingale.

3So in this case, in section 6 below, θ = e−g(λ).
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Since in the bubble case λs < λ0 = λ we see by inspection, given that g
is a decreasing function, that it takes longer for τ to occur in general when
X exhibits a bubble.

In analogy with (13) we have

Q(Z ≥ sup
t≤1

∫ t

0

g(λQs )ds) = 1− e−
∫ 1
0 g(λ

Q
s )ds) (16)

and this leads to the probability of there being no default to be e−
∫ 1
0 g(λ

Q
s )ds).

4

5 Liquidity Costs

This section adds liquidity costs to the model in the previous section. Here
we need to include the liquidity cost function l. We recall that

τl = inf{t > 0 :

∫ t

0

g(l(Xs))κsds ≥ Z}. (17)

For simplicity, we again assume that jump risk has no risk premium, i.e.
κs ≡ 1. In addition, we take things one step further. Recalling that l is
concave, Jensen’s inequality gives us

E(l(Xt)) ≤ l(E(Xt)).

Also, g is assumed to be concave and decreasing, hence by Jensen’s inequality
again:

E(g(l(Xt)) ≤ g(E(l(Xt))) ≤ g(l(λQt )) where λQt = EQ(Xt).

Next, using our simplifying assumption, we replace g(l(Xt)) by EQ(g(l(Xt)).
In analogy to the previous calculations we have that

Q(Z ≥ sup
t≤1

∫ t

0

(g(l(EQ(Xs)))ds) = Q(Z ≥
∫ 1

0

g(l((EQ(Xs)))ds)

= Q(Z ≥
∫ 1

0

g(l((λQs )))ds)

≤ Q(Z ≥
∫ 1

0

EQ(g(l((Xs)))ds). (18)

4In this case, in section 6 below, θ = e−
∫ 1
0
g(λQ

s )ds).
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And, the probability of a default is

1− (probability of no default) = 1−Q(Z ≥
∫ 1

0

EQ(g(l((Xs)))ds)

≤ 1−Q(Z ≥
∫ 1

0

g(l((λQs ))ds). (19)

The probability of default is the complement, hence

Q(default) = e−
∫ 1
0 E

Q(g(l((Xs)))ds) ≥ e−
∫ t
0 g(l(λ

Q
s ))ds). (20)

where the second inequality above follows from using (16) with its successive

approximations. We conclude that e−
∫ t
0 g(l(λ

Q
s ))ds is a crude underestimate of

the probability of default, but in spite of this it might be useful as a first
pass. 5

6 A Simple Example

This section applies the previous model to determine a microfinance loan’s
fair borrowing rate. The borrower is a collection of small business people
connected by the microfinance loan, see our companion article [11]. We
can mimic the “back of the envelope calculation” developed in that paper.
Adding to our standing assumptions we discretize time as finely as one might
like. Our interval is divided into increments labeled 1, 2, . . . , k, . . . T .

We calculated the fair lending rate in [11] and found it under a risk neutral
measure Q to be equal to

iQ =
1 + C

L
− θTp(0, T )∑T

k=1 θ
kp(0, k)

(21)

where θ is the probability of default over [0, 1] and p(0, k) = EQ(e−
∫ k
0 rudu)

for k = 1, . . . , T , and where p(t, T ) in general represents the price of a zero
coupon bond at time t and expiration date T . The constant L is the principal
of the microfinance loan, and the constant C is the cost to the lender in
making the loan.

To compute this fair lending rate, needed are: (i) the term structure
of zero-coupon bond prices (p(0, k)), easily computed in most government

5In this case, in section 6 below, θ = e−
∫ 1
0
g(l(λQ

s ))ds).
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bond markets (see Jarrow [9] for more details), (ii) an estimate of the cost
of issuing the loan as a percent of the loan’s principal ( C

L
), and (iii) an

estimate or conjecture of the probability of default over a year (θ). The one
year default probability in a model with both bubbles and liquidity risk is
given in expression (20) in the previous section.

For group lending programs these quantities are sometimes readily avail-
able or can be obtained. For example, Conlin [5] documents that for the
Calmeadow Metrofund, a group lending program in Toronto Canada, ad-
ministration fees charged were .065 (p. 257, Conlin [5]),6 and the actual
default frequencies for loans between 1990 and 1996 ranged from .0004 - .011
(Table 1, Conlin [5]).

7 Conclusion

This paper presents an arbitrage-free valuation model for a credit risky se-
curity where credit risk coexists and interacts with an asset price bubble
and liquidity risk (or liquidity costs). As an illustration, this model is ap-
plied to determine the fair rate for microfinance loans. The application of
this model to practice and its empirical implementation awaits subsequence
research.
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