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1 Introduction

What is the best approach to forecast the market risk of stock portfolios? As Santos

et al. (2013) emphasize, the first choice one has to make is between a univariate and a

multivariate approach. Many portfolio problems, such as optimization, usually require a

multivariate approach, but this is not the case for portfolio risk measurement. Indeed,

risk measures are a function of the portfolio return probability distribution. This distribu-

tion can be modeled either directly via a univariate model or indirectly via a multivariate

model for the vector of portfolio stock returns. Given the easier implementation and

much smaller computing efforts required for univariate models, many researchers recom-

mend this direct approach to risk measurement1. However, a case can also be made for

the indirect approach, because multivariate models use more information by modeling

the dependencies between portfolio stock returns. Everything else held constant, this

additional information should improve risk forecasts compared with a univariate model.

The main difficulties with the multivariate approach are that, as the dimension of the

portfolio increases, there are more possibilities for estimation errors, and restrictions must

be imposed to keep the model tractable.

The choice of which method to use has important consequences for risk managers

who need not only accurate risk measures, but also flexible and convenient procedures to

compute them routinely. At the same time, the question is empirical because it depends

on both the data and models used. For our application, we choose to consider a stock

factor portfolio. More precisely, we consider the weekly returns of an equally weighted

portfolio invested in the Fama and French (1993) and Carhart (1997) momentum, or FFC,

factors. We think there are three reasons that these four factors allow a rich investigation

of the question at hand. First, the FFC factors are pervasive in the empirical asset

pricing literature and among practitioners. Second, for multivariate portfolio analysis

in high dimensions, one often has no choice but to impose a factor structure, in which

case a linear model in the FFC factors is an obvious choice. Third, whereas the linear

correlations between the four factors weekly returns are very small, suggesting great

1See for example Berkowitz and O’Brien (2002) and Christoffersen (2009).
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diversification benefits and lower risk, Christoffersen and Langlois (2013) find that these

measures hide important asymmetric and nonlinear dependencies that could be better

captured by an adequate multivariate model than by a univariate model.

The issue has been studied many times in the context of forecasting portfolio Value-

at-Risk (VaR)2. Given that VaR is typically proportional to the standard deviation of

the portfolio return, the literature has focused on comparing univariate and multivariate

GARCH models. Brooks and Persand (2003) compare twelve univariate volatility models

and the diagonal VEC model of Bollerslev et al. (1988) for forecasting the volatility and

VaR of a portfolio comprised of UK assets at 1, 5, 10 and 20-day horizons. They find

no clear improvements from using a multivariate approach compared with a univariate

approach and suggest that, unless covariances are required, multivariate GARCH models

are not worthwhile. Similarly, McAleer and Da Veiga (2008) compare twelve univariate

and sixteen multivariate GARCH models to forecast the one-day-ahead volatility and

VaR of an international equity portfolio. Although the multivariate models offer bet-

ter volatility forecasts, there is no clear preference between the two approaches for VaR

forecasting : eight of the univariate models and eight of the multivariate models fail the

conditional coverage test of Christoffersen (1998). One aspect that makes these results

hard to interpret is the fact that backtesting procedures are only meant to evaluate a

model in isolation, not against another model 3. To address this limitation, Santos et al.

(2013) rely instead on the asymmetric tick loss function, as in Giacomini and Komunjer

(2005), to compare the out-of-sample next day VaRs of different pairs of univariate vs

multivariate GARCH models. Using large and diversified US stock portfolios, they find

that multivariate models with dynamic conditional correlations and Student t distributed

errors outperform univariate models. Further, multivariate models with constant corre-

lations usually underperform relative to univariate models. In a recent article, Kole et al.

(2017) examine the impact of different levels of temporal and portfolio aggregation on

forecasting the 10-day VaR for a diversified portfolio of eight indexes, related to stocks,

bonds and alternative investments. Also relying on the asymmetric tick loss function,

2For a recent survey on VaR forecasting and backtesting methods see Nieto and Ruiz (2016).
3See paragraph 3.1 in Acerbi and Szekely (2014).
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they find that lower levels of aggregation, i.e. multivariate models for index returns or

asset class returns, provide better risk forecasts relative to complete portfolio aggregation,

but the differences are not large and often not significant. More specifically, multivariate

models based on the three main asset classes deliver the best 1% VaR results whereas

multivariate models based on the eight indexes deliver the best 5% VaR results. Further,

contrary to the results of Santos et al. (2013), Kole et al.’s (2017) analysis shows that

dynamic correlations do not produce improvements in risk forecasts. It is important to

note that all the above-mentioned studies are based on daily returns, yet our paper con-

siders the weekly returns of a stock only portfolio, so our aggregation level corresponds

to Kole et al.’s (2017) three levels of portfolio aggregation, without the bond and alter-

native investment classes, and with weekly temporal aggregation. As this short survey

demonstrates, the literature to date offers mixed evidence.

We distinguish ourselves from previous research by a focus on Expected Shortfall

(ES), also called Conditional Value-at-Risk (CVaR). With the recent shift from VaR to

ES sanctioned by the Basel Committee on Banking Supervision (BCBS)4 and the growing

literature on backtesting ES, this risk measure is becoming a serious alternative to VaR.

The change is motivated by the fact that VaR does not capture adequately the conditional

expected losses and lacks subadditivity, whereas ES avoids these limitations. Adding ES

as a forecasting objective presents an interesting challenge in that, contrary to VaR, there

is no loss function for which ES is the minimizer5. This property of a risk measure is

known as elicitability, and gives a natural criterion for relative comparison of univariate

and multivariate models. However, as Fissler et al. (2016) show, the pair VaR/ES is

jointly elicitable with respect to a class of loss functions. We use this result6 and the loss

function proposed in Acerbi and Szekely (2014) to compare our models based on their

ability to forecast VaR and ES jointly.

We apply extensive tests and comparisons between models to obtain our results. First,

we perform the VaR standard backtests as well as the first two ES backtests of Acerbi

4See Basel Committee on Banking Supervision (2016).
5This result is proved in Gneiting (2011).
6See Dimitriadis and Bayer (2017) for an application of this result to the joint estimation of VaR and

ES in a regression framework.
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and Szekely (2014) for each model, at many levels. Second, we use Diebold and Mariano’s

(1995), or DM, test and the conditional framework of Giacomini and White (2006) to

assess statistical differences between the predictive ability of each pair of models with

respect to both VaR and the VaR/ES pair at the 1% and 5% level. Third, we implement

the Model Confidence Set (MCS) approach of Hansen et al. (2011) to establish a set of

superior models in each case.

We find that in most cases there are no significant differences between the risk fore-

casting accuracy of univariate and multivariate models for both VaR and the VaR/ES

pair. When there is a difference, it is in favor of the univariate models. Our VaR results

are in direct contrast with those of Santos et al. (2013), but partly corroborate the re-

sults of Kole et al. (2017), which are the papers most closely related to our study. Given

the empirical nature of the question, this discrepancy is not incoherent. One possible

explanation for the divergence with Santos et al. (2013) is the fact that they do not use

univariate distributions allowing for skewness, an important feature to include, especially

for measuring tail risk. Our analysis includes both univariate and multivariate skewness

by considering the univariate Skewed t distribution of Hansen (1994) and the asymmetric

t copula of Demarta and McNeil (2005). To our knowledge, asymmetric copula models

have never been compared with asymmetric univariate models in the risk forecasting lit-

erature. Another disparity with Santos et al. (2013) is the fact that we use weekly returns

whereas they use daily returns. Lower data frequency can hurt multivariate models by

preventing them from adequately capturing the assets’ cross-sectional and serial depen-

dencies. The main conclusion of Kole et al. (2017) is that aggregation of daily returns into

weekly or biweekly returns leads to the loss of important details in return dynamics, and

affects the accuracy of VaR forecasts more than the choice between a univariate or a mul-

tivariate model. However, their results show a clearer preference for multivariate models

when weekly or biweekly returns are employed, suggesting that lower levels of portfolio

aggregation can compensate for fewer details in the temporal dimension. We must also

emphasize that these two papers have not examined ES, so it remains unclear how data

frequency impacts the relative performance of multivariate and univariate models in our
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case.

The paper is organized as follows. Section 2 presents the framework and assumptions

underlying the models used to forecast VaR and ES. Sections 3 and 4 are devoted to

multivariate and univariate models respectively. In Section 5 we present the data and

the parameter estimates of our models. Section 6 explains the procedure employed to

generate out-of-sample risk forecasts. Section 7 is dedicated to VaR and ES backtests.

In Section 8 we present the loss functions used to assess the relative performance of

our models. Section 9 is devoted to the DM test and Section 10 is discusses the MCS

approach. Section 11 concludes the paper.

2 Framework

Let rt = (r1t, . . . , rNt)
′

denote the random vector of the N factor returns at time t and

rt = w
′
t−1rt denote the random portfolio return at time t, where wt−1 is the vector of

predetermined equal portfolio weights at time t − 1. We assume that the time series

{rt}Tt=1 and {rt}Tt=1 are stationary. Let F t and Ft denote, respectively, the distribution

function of rt and rt, conditional on the information set available at time t − 1. Also,

let Fjt correspond to the jth marginal distribution function of F t for j = 1, . . . , N . In

this paper we assume that all distribution functions are continuous, have densities and

are strictly increasing. In particular, this implies that the inverse distribution function

(quantile function) F−1(·) is well defined.

Given a significance level p = 1% or 5% at time t− 1, we are interested in forecasting

the next period conditional VaR and ES defined by

V aRp
t = F−1

t (p) (1)

and

ESpt = Et−1

[
rt | rt < V aRp

t

]
. (2)

In order to estimate these risk measures, we need a statistical model for Ft. In the uni-
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variate approach, this is done by directly making assumptions on Ft. In the multivariate

approach, we take an indirect path by modeling the joint conditional distribution of the

vector of factor returns F t. Since rt is a linear combination of the factor returns in rt and

the weights in wt−1 are part of the information set at time t−1, Ft is really a function of

F t. As a special case, assuming that rt follows a multivariate normal distribution implies

a normal distribution for rt. In other cases the link between the two distributions is not

as clear so we rely on simulation methods to derive Ft from F t and then compute the

estimated VaR and ES. Details on the procedure are given in Section 6.

3 Multivariate models

The multivariate models in this section are taken from Christoffersen and Langlois (2013),

who study the joint dynamics of the FFC factors. Analysis of the data reveals that each

factor marginal distribution is highly nonnormal and that the dependencies between

each pair of factors are nonlinear. This suggests multivariate nonnormality for the joint

distribution of the four factors. Therefore, instead of relying on the multivariate normal

distribution we use copulas to fit the joint conditional distribution of the factor returns.

Copulas are flexible because they enable modeling of the marginal distributions separately

via Sklar’s (1959) theorem. This theorem allows the decomposition of the next period

joint conditional distribution of the N factor returns into their conditional marginal

distributions and a conditional copula linking these marginals:7:

F t(rt) = Ct(F1t(r1t), . . . , FNt(rNt)). (3)

Given our assumptions in Section 2, the copula Ct is uniquely determined. Each of the

marginals Fjt contains all the univariate information on the jth factor, while the copula

Ct contains all the dependence information between the factors. This decomposition

shows that a model for F t can be built in two steps. First model each of the marginals

7Patton (2006) shows that Sklar’s (1959) theorem applies to conditional distributions. An important
point in this decomposition is that the information set must be the same for all marginal distributions
and the copula.
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Fjt for j = 1, . . . , N and then choose a copula Ct to link them. We now address these

two steps in turn.

Each of the four factors next period conditional marginal distribution is fitted with

the following model:

rjt = µjt + σjtzjt with zjt
i.i.d.∼ Fj(0, 1) (4)

where µjt and σjt are respectively the conditional mean and standard deviation of the

return on factor j and zjt is an error term. The error term zjt is an independent and iden-

tically distributed random variable following the unconditional standardized distribution

Fj(0, 1). This model allows for dynamic first and second moments as well as nonnormal

distributions, but assumes that higher conditional moments are constant. For each fac-

tor, the conditional mean is fitted using an AR(3) model while the conditional variance

is fitted using the NGARCH(1,1) model of Engle and Ng (1993):

µjt = φ0j + φ1jrjt−1 + φ2jrjt−2 + φ3jrjt−3 , (5)

σ2
jt = ωj + βjσ

2
jt−1 + αj(zjt−1 − θj)2 (6)

where ωj > 0, βj, αj ≥ 0 and αj(1+θ2
j )+βj < 1 for j = 1, . . . , N . A positive leverage pa-

rameter (θj > 0) implies that negative shocks (zjt−1 < 0) have a larger impact on the next

period variance than do positive shocks of the same magnitude. The standardized distri-

bution of each factor Fj(0, 1) is fitted using Hansen’s (1994) skewed t distribution. This

standardized distribution has two parameters, κj and υj, which determine the skewness

and kurtosis, and its density is given in Appendix A. Marginal skewness is an important

improvement from the symmetric Student distribution when measuring tail risk.

To link the marginals we consider the skewed t copula of Demarta and McNeil (2005),

which is derived from the standardized multivariate skewed t distribution. This choice is

motivated by the asymmetric dependence between the factors reported in Christoffersen

and Langlois (2013). The skewed t copula, denoted Cst
νc,Υt,λ, is characterized by a N × 1

vector of asymmetry parameters λ, a scalar degree of freedom parameter νc, and a copula
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correlation matrix Υt. Its density is given in Appendix B.2.

We allow the copula correlation matrix Υt to evolve through time. More specifically,

we assume that the correlation matrix of the copula quantiles (which are defined in the

appendix), denoted Υ̇t, follows the cDCC model of Aielli (2013)8:

Qt = Q(1− βc − αc) + βcQt−1 + αcε
∗
t−1ε

∗′
t−1, (7)

Υ̇t = Q
∗− 1

2
t QtQ

∗− 1
2

t (8)

where Q = E(Qt) = E(ε∗tε
∗′
t ) is a positive definite correlation matrix while βc and αc are

non-negative scalars with αc + βc < 1. Also, ε∗t = Q
∗ 1
2
t εt where Q∗t = diag(dg(Qt)) and

εt is a N × 1 vector containing the standardized copula quantiles. See Appendix B.4 for

details.

As benchmarks to the dynamic skewed t copula, we consider the dynamic normal

copula and the dynamic student copula, i.e. both with a dynamic correlation matrix. We

also implement the three copula models with a constant correlation matrix and refer to

these models as static copula models. Note that in all six copula models the dynamics for

the marginals stay the same. Finally, we add for reference the multivariate normal dis-

tribution with a constant and a dynamic correlation matrix, in which case each marginal

follows a univariate normal distribution. That is, Fj(0, 1) corresponds to the univariate

standard normal distribution for all j. This makes a total of eight multivariate models.

4 Univariate models

An analysis of the factor residuals ẑjt shows that an AR(3)-NGARCH(1,1) model with

skewed t distribution approximates each factor marginal distribution Fjt very well. We

can therefore expect this model to provide a decent fit to the equally weighted portfolio

return dynamic:

8Aielli’s (2013) cDCC model is a modification of Engle’s (2002) original Dynamic Conditional Corre-
lation (DCC) model and provides a consistent estimator for the matrix Q.
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rt = µt + σtzt with zt
i.i.d.∼ F (0, 1) (9)

µt = φ0 + φ1rt−1 + φ2rt−2 + φ3rt−3 (10)

σ2
t = ω + βσ2

t−1 + α(zt−1 − θ)2 (11)

with the same parameter restrictions as before and F (0, 1) corresponding to Hansen’s

(1994) univariate skewed t distribution with parameters κ and υ. As a reference we also

consider the univariate standard normal distribution for F (0, 1). This leads to a total of

two univariate models.

5 Data set and parameter estimates

Similar to Christoffersen and Langlois (2013), we study the four weekly equity factors

from July 5, 1963 to december 31, 2010. This corresponds to T = 2479 observations.

The data set comes from Kenneth French’s data library9, where the details on how the

FFC factors are constructed can be found. The raw weekly returns are converted into

weekly log returns using the formula rln = ln(1 +
rweekly

100
). For the rest of the paper,

unless otherwise indicated, the term return will mean weekly log return. Because we are

working with weekly log returns, our risk forecasts are the next week log return VaR and

ES.

The descriptive statistics for the factor returns are presented in Table 1. We see that

the Market, Size and Momentum factors have a longer left tail, as illustrated by the

negative skewness. Also, all factors display thicker tails than the normal distribution, as

the kurtosis values much higher than three indicate. The nonnormality of each factor’s

marginal distribution is confirmed by the very large Jarque-Bera statistics in the last row,

rejecting the null hypothesis of a normal distribution in all cases.

With this data set we estimate all our models by the method of Maximum Likelihood

9See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. We use the orig-
inal data set of Christoffersen and Langlois’s (2013) study which is different from the current one in
Kenneth French’s data library because of retroactive adjustments.
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(ML). Starting with the univariate models, let θ denote the vector containing the param-

eters of ut, σ
2
t and F . Given the sample of observations for the factor returns r1, . . . , rT ,

we construct a pseudo-sample of observations for the equally weighted portfolio return

rt = w
′
Trt for t = 1, . . . , T 10. We then estimate θ by maximizing the conditional log-

likelihood lnL(θ) =
∑T

t=1 ln ft(xt). The ML estimates for the two univariate models

are presented in Table 2, where the first column corresponds to the univariate normal

distribution and the second column corresponds to the univariate skewed t distribution.

For the copula models we use a two-step estimation procedure. Differentiating both

sides of equation (3) we get the conditional likelihood of rt:

f t(rt) = ct(F1t(r1t), . . . , FNt(rNt))
N∏
j=1

fjt(rjt) (12)

where ct is the conditional copula density. Taking the log and summing over t we obtain

the conditional log-likelihood function for our sample

lnf t(r1, . . . , rT ) =
T∑
t=1

ln ct(F1t(r1t), . . . , FNt(rNt)) +
N∑
j=1

T∑
t=1

ln fjt(rjt). (13)

Assuming that the parameters of the marginals and the copula are all different, the last

expression implies that we can maximize the log-likelihood in two steps. First, we estimate

the parameters for each of the marginals Fjt by maximizing lnLj(θj) =
∑T

t=1 ln fjt(rjt)

for j = 1, . . . , N . Second, using the estimated marginals F̂1t, . . . , F̂Nt we construct a

pseudo-sample of observations for the copula11:

ût = (F̂1t(r1t), . . . , F̂Nt(rNt)) (14)

for t = 1, . . . , T and estimate its parameters by maximizing

10We are working with log returns for the factors, which we convert into arithmetic returns using the
formula rweekly = exp (rln) − 1 before computing their weighted sum. We then convert the arithmetic
portfolio return back into log return.

11More specifically, because Fjt(rjt) = Fj(zjt), we use the residuals ẑjt from the first step to obtain

the empirical CDF estimate F̂j(x) = 1
T+1

∑T
t=1 1{ẑjt≤x} and let ûjt = F̂j(ẑjt).

11
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lnLc(θc) =
T∑
t=1

ln ct(ût). (15)

The parameter estimates for each of the marginals, obtained from the first step, are

presented in the second part of Table 3. The first part shows the parameters estimates

of the marginals under the normal distribution, obtained when estimating the static and

dynamic multivariate normal distribution models 12. The parameters estimates for the

copulas, obtained from the second step, are given in Table 4. Our multivariate estimation

results neatly replicate those of Christoffersen and Langlois (2013).

6 VaR and ES forecasts

The goal of the paper is to compare the out-of-sample risk forecasting accuracy of the

univariate and multivariate approach. To do this we need to generate out-of-sample

forecasts for the one-week-ahead VaR and ES with each of our ten models. We begin by

estimating the parameters of each model using the first 20 years of weekly returns. This

corresponds to the first 1,043 observations from 1963 to 1983. We re-estimate each model

once a year, on July 1, using all the data available before that date, i.e. we are using an

expanding estimation window. Although the parameters of the models are updated once

a year, the conditional mean and variance of the equally weighted portfolio and of the

FFC factors, as well as the conditional correlations between the FFC factors, are updated

weekly.

In the case of multivariate models, once the one-week-ahead multivariate conditional

distribution of the vector of factor returns F t is constructed at time t − 1, we simulate

k = 100,000 vectors of returns r̃t from this distribution. The simulated portfolio returns

for the next period are then obtained by applying the current vector of equal portfolio

weights wt−1 to r̃t
13:

12We also use a two-step estimation procedure for the static and dynamic multivariate normal distri-
bution models. This is motivated by the likelihood decomposition given in Engle (2002).

13We do the same conversion as in footnote 10.
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{r̃it}ki=1 = {w′t−1r̃
i
t}ki=1 (16)

The p · 100% one-week-ahead estimated VaR and ES, denoted V̂ aR
p

t and ÊS
p

t respec-

tively, are computed via the following formulas :

V̂ aR
p

t = −Percentile
{
{r̃it}ki=1, 100p

}
(17)

ÊS
p

t = − 1

p · k

k∑
i=1

r̃it · 1{r̃it<−V̂ aR
p

t }
(18)

where 1{·} is an indicator function equal to 1 if the argument is true and 0 otherwise.

In the case of univariate models, although analytical expression for the VaR and

ES are available, we still choose to rely on simulations to compute the risk measures in

order to keep the estimation procedure as similar as possible between the two approaches.

Thus, once the one-week-ahead univariate conditional distribution of the equally weighted

portfolio return Ft is constructed at time t − 1, we simulate k portfolio returns r̃t from

this distribution and estimate the one-week-ahead VaR and ES directly from equations

(17) and (18).

We consider two levels of significance : p = 1% and p = 5% for VaR and ES. Repeating

the previous steps each period, we obtain, for each of the ten models, a time series of 1, 436

out-of-sample forecasts for the one-week-ahead VaR and ES at both levels of significance.

This out-of-sample period range from the first week of July 1983 to the end of December

2010; we lose the first 1,043 observations from the first estimation. For the rest of the

paper, t = 1, . . . , T = 1436 will denote the out-of-sample period.

13
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7 Backtest

7.1 VaR backtest

We begin model comparisons by looking at the number of VaR violations at the 1% and

5% level14. A VaR violation occurs when the portfolio return drops below the estimated

VaR, i.e. rt < −V̂ aR
p

t . Let It = 1{rt<−V̂ aR
p

t }
indicates whether a VaR violation occurred

at time t and T1 =
∑T

t=1 It be the total number of violations in the out-of-sample period,

which is assumed positive. The number T1 is shown for each model in Table 5. Given

our 1,436 observations, a correctly specified VaR model should produce around 14 and

72 violations at the 1% and 5% level respectively. The first column of Table 5 illustrates

the difficulty in obtaining an adequate frequency of violations at the 1% level. Indeed,

all models produce higher than 14 violations. The risk underestimation of the univariate

normal distribution is particularly noticeable, producing more than 2.5 times the correct

number of violations. Still, the static and dynamic skewed t copula models would fall

inside the “green zone” under the Basel rules while all other models would fall inside

the “yellow zone”15. The univariate skewed t distribution also performs relatively well

compared with multivariate models; only the static and dynamic skewed t copula models

produce a lower number of violations. At the 5% level, we see that obtaining the required

frequency of violations is much more common. All the dynamic multivariate models have

nearly exactly 72 violations while the static multivariate models have a slightly lower

number of violations. Both univariate models have around 12 more violations than the

required number.

We can test whether the observed fraction of violations is statistically different from

p = 1% or 5% using the unconditional coverage test introduced in Kupiec (1995). Details

for the test are given in Appendix C.1 and the p-values appear under the UC columns

of Table 5. For the 1% VaR using significance level of 10%16 we reject all ten models.

14We also performed the VaR backtests at the 2.5% level. The results were between those at the 1%
and 5% levels.

15Under the Basel rules, based on a sample of 250 observations for the 1% VaR, 4 or less violations
corresponds to the green zone, between 5 and 9 violations corresponds to the yellow zone and 10 or more
violations corresponds to the red zone.

16A higher significance level for the tests can be justified by the fact that failing to reject a correct

14
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The dynamic Skewed t copula barely fails the test. Again, this highlights the challenge of

adequately modeling the 1% left tail of the distribution of portfolio returns. The results

are opposite when we consider the 5% VaR; all our models pass the test at the 10%

significance level except for the Normal distribution and the static Skewed t copula.

Another property of a correctly specified VaR model is the independence of the vio-

lations through time. We can test for first order dependence of the violations using the

independence test of Christoffersen (1998). Details on the independence test are given

in Appendix C.2 and the p-values appear under the Ind columns of Table 5. For the 1%

VaR, using a 10% significance level we see that only the univariate Normal distribution

and the static Skewed t Copula are not rejected, with 3 and 1 consecutive violations (T11)

respectively. In fact, all of our models have between 1 and 4 consecutive violations in

the out-of-sample period but those with a higher frequency of violation usually display a

lower discrepancy between π̂01 and π̂11. For example, the dynamic Skewed t Copula has

the same number of consecutive violations as the univariate normal distribution but a

much lower number of violations overall, leading to a relatively high π̂11 compared with

π̂01. The static Skewed t Copula is an exception to the rule because it is the only model

with only one pair of consecutive violations. For the 5% VaR, the results are similar; all

models have 7 or 8 consecutive violations but only the univariate models pass the test.

We can jointly test for coverage and independence with the conditional coverage test

of Christoffersen (1998). Details on the test can be found in Appendix C.3 and the p-

values are displayed under the CC columns of Table 5. For the 1% VaR we see that

the results are consistent with the conclusions of the two previous tests. Indeed, none of

our models passed both of the previous tests at the 10% level and consequently none of

them pass the conditional coverage test at this level either. For the 5% VaR the results

are different. Although all multivariate models failed the independence test at the 10%

level, most of them are not rejected in the conditional coverage test at this level. Both

univariate models passed all three tests.

We can summarize this section by saying that our models fail to display both adequate

model (Type II error) can be very costly in risk management. See chapter 13 of Christoffersen (2012)
for details.
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coverage and independent violations for the 1% VaR. The Normal distribution, univariate

or multivariate, clearly does not capture the 1% tail risk, whereas the univariate Skewed

t distribution has a similar coverage to some multivariate models. The only model that

comes close to an adequate 1% frequency of violations is the Dynamic Skewed t copula.

In the case of the 5% VaR all models display adequate coverage but multivariate models

fewer violations. Independence of violations is also much easier to obtain.

7.2 ES backtest

Contrary to VaR, there is no loss function for which ES is the unique minimizer. This

important result is shown in Gneiting (2011) and often goes under the name “lack of

elicitability”. This finding sparked a debate over whether it is even possible to backtest

ES. Fortunately, the recent literature has clearly answered the question by proposing

many ES backtests that do not rely on the elicitability property, although the procedures

are not as straightforward as for VaR. Among the growing literature in this area17, we

choose to implement the first two tests proposed by Acerbi and Szekely (2014). These

tests do not make any assumptions about the distribution of returns (nonparametric) and

are simple to execute.

For the tests we assume that, each period (week), the portfolio return rt is distributed

according to a real but unknown distribution Ft and forecast using a predictive conditional

distribution Pt. Thus V aRp
t and ESpt represent the true risk measures, i.e. when rt ∼

Ft, while V̂ aR
p

t and ÊS
p

t represent the estimated risk measures, i.e. when rt ∼ Pt.

Portfolio returns are assumed to be independent but not identically distributed. The null

hypothesis for both tests is

H0 : P
[p]
t = F

[p]
t for all t (19)

where P
[p]
t (·) = min

{
1, Pt(·)

p

}
is the left tail of the distribution below the p quantile. In

the first test we assume that a preliminary VaR test has been done and consider the

alternative hypothesis

17See for example Du and Escanciano (2016) on conditional backtests for ES.
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H1 : ÊS
p

t ≥ ESpt for all t and > for some t

V̂ aR
p

t = V aRp
t for all t .

(20)

Note that the predicted VaRs are still adequate under H1. This means that we should

first accept the model for VaR before performing the test. We test H0 again H1 with the

following statistic:

Z1 =

∑T
t=1

rt·It
ESpt

T1

+ 1. (21)

As an average of VaR exceedances, the statistic is in fact completely insensitive to an

excessive number of violations. It can be shown that the expected value of Z1 is zero

under H0 and negative under H1. Therefore, we expect a realized value of Z1 that is close

to 0. The value signals a problem when it is negative.

The second test evaluates both the frequency and magnitude of VaR violations. That

is, it is a joint test for VaR and ES coverage. The null hypothesis (19) is tested against

the following alternative

H1 : ÊS
p

t ≥ ESpt for all t and > for some t

V̂ aR
p

t ≥ V aRp
t for all t .

(22)

The test statistic is

Z2 =
T∑
t=1

rt · It
T · p · ESpt

+ 1. (23)

Again, it can be shown that the expected value of Z2 is zero under H0 and negative under

H1.

The distributions of Z1 and Z2 under the null hypothesis are unknown but can be

approximated using simulations. For each of our model, the p-values of both tests are

obtained using the following steps:
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1. Simulate M random portfolio returns {r̃it}Mi=1 for each t = 1, . . . , T .

2. Compute Zi
1 and Zi

2 using {r̃it}Tt=1 for each i = 1 . . .M .

3. Estimate pval1 =

∑M
i=1 1

(Zi1<Z1)

M
and pval2 =

∑M
i=1 1

(Zi2<Z2)

M
.

We use M = 5000 and simulate the M portfolio returns each week with the predictive

conditional distribution Pt used for VaR and ES forecasts.

The p-values of the two tests are shown in the columns Z1 and Z2 of Table 5. Because

we rejected all models for the 1% VaR in the last section, interpreting the results of Z1

in the first part of the table seems hazardous. At least we can note that the dynamic

Skewed t Copula, which is the model with the coverage closest to 1%, passes the test at

the 10% significance level. The estimated Z1 p-values for the 5% ES are more revealing.

Indeed, although all models have adequate 5% VaR coverage, only the univariate Skewed

t distribution passes the test, and its p-value is much higher than that of all the other

models, including asymmetric multivariate models. Asymmetric distributions tend to

result in more accurate ES forecasts because they better capture the fat tail behavior in

stock returns, but with the first test this is only apparent in the univariate case. Turning

now to the p-values of Z2, we see that we reject all models for the 1% ES at the 10%

level. In the case of the 5% ES we observe that all copula models, except for the static

Normal Copula, pass the test. Also, even though the univariate skewed t distribution

passed the first test for the 5% ES, it is rejected in the second test. This discrepancy

between the results of the two tests for the 5% ES is surprising given that all models

passed the unconditional coverage test.

Overall, just like our models failed the 1% VaR backtests, they also fail the 1% ES

backtests. In the case of the 5% ES, the two tests offer conflicting results.

8 Loss functions

As mentioned in the introduction, backtesting procedures are not the right tools to com-

pare models. These tests provide a binary outcome, i.e. reject or do not reject a model,
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whereas we would like to rank models from worst to best. In other words, backtests are

useful for absolute evaluation, not relative evaluation. One could still argue that models

that fail the backtest in the first stage are clearly worse than those that passed it, and

should therefore be discarded before moving to the second stage. In this paper, however,

we choose to keep all models irrespectively of the results of their first stage backtest. We

do this because otherwise we would have no models left for the 1% VaR and ES and, as

Novales Cinca and Garcia-Jorcano (2017) argue, rejected models in the first stage could

still end up being top performers in the second stage when the size of VaR exceedances

is taken into account.

We are interested in comparing the out-of-sample VaR and ES forecasting accuracy

of our models. The standard approach to this end is to use loss functions, which compare

our risk forecasts, here VaR and ES, to the realized portfolio return at each period. The

idea is that a model with a given average loss will be preferred to a model with a higher

average loss over the out-of-sample period. Therefore, in selecting a loss function we

should make sure that our forecasting object minimizes its expected value. The existence

of such a loss function for a given statistic, referred to as the elicitability property, is not

automatic. Indeed, VaR is elicitable but ES is not. The V aRp
t loss function, also known

as the “check” or “tick” loss function in quantile regressions, is defined by

LV (vt, rt) = (rt + vt)(p− 1{rt+vt<0}) (24)

where vt is a non-random real variable. This is an asymmetric function because the

penalty given when 1{rt+vt<0} = 1 is usually much higher than in the case where 1{rt+vt<0} =

0. Nonetheless, this function penalizes risk overestimation because, conditional on 1{rt+vt<0} =

1, a higher value for vt leads to a higher penalty. The function LV is the “right” loss

function for VaR in the sense that

V aRp
t = arg min

vt

E[LV (vt, rt)]. (25)

Thus, computing L̄V = 1
T

∑T
t=1 LV (vt, rt) with vt = V̂ aR

p

t for each model and sorting
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the numbers in increasing order allows us to rank models in descending order of VaR

predictive accuracy. That is, the model with the lowest value of L̄V is deemed the most

accurate VaR model, the one with the second-lowest value of L̄V is deemed the second

best VaR model and so on, to the model with the highest value of L̄V which is deemed

the worst VaR model.

The choice of the loss function is important because different choices can lead to

very different results18. Here we take the point of view of a risk manager interested

in accurately forecasting the p quantile of Ft. Other researchers have taken the point

of view of the regulator and employed loss functions that penalize risk underestimation

only. This view was pioneered by Lopez (1999) who proposed the following regulator loss

function (RFL) for VaR:

RLF (vt, rt) =
[
1 + (rt + vt)

2
]
1{rt+vt<0}. (26)

However, because VaR does not minimize the expected value of RLF with respect to

vt, it is unclear why a model with a lower average loss RLF = 1
T

∑T
t=1RLF (vt, rt) than

another model should be deemed superior.

The VaR out-of-sample average loss L̄V for each model, in basis points, is shown in the

first two columns of Table 6. We see that the univariate Skewed t distribution displays the

lowest average loss for both the 1% and 5% VaR. The univariate normal distribution is

also clearly not as inaccurate as the backtest might have suggested, given that its average

loss is lower than all non-dynamic multivariate models for both the 1% and 5% VaR.

This indicates that the frequency of VaR violations is only half of the picture in the loss

function; the overestimation of risk is also important. The dynamic multivariate models,

except for the multivariate normal distribution, appear more accurate than the univariate

normal distribution but less accurate than the univariate Skewed t distribution. Had we

used Lopez’s (1999) RLF function, the results would have been completely different. The

univariate Skewed t distribution would have ranked third for the 1% VaR, surpassed

by the dynamic and non-dynamic Skewed t Copula models, and last for the 5% VaR.

18See section 5.2 in Nieto and Ruiz (2016).
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Therefore, in our application, taking risk overestimation into account is a determining

factor in selecting VaR models. Nonetheless, we believe that LV is the best criterion for

VaR model comparison because it is a natural loss function in the sense of equation (25),

unlike RLF .

We now turn to ES model comparison. Because ES is not elicitable, there is no natural

loss function available for comparing the ES forecasting accuracy of our models. However,

it turns out that, because ES is a function of VaR, the pair (VaR,ES) is jointly elicitable.

This fact has been noted by Acerbi and Szekely (2014) and demonstrated by Fissler et al.

(2016). Thus, although we cannot compare our models based on their ability to forecast

ES alone, we can compare them based on their ability to jointly forecast VaR and ES.

We choose to use Acerbi and Szekely’s (2014) joint loss function, which has the form

LV,E(vt, et, rt) =
p

2
e2
t +

δp

2
v2
t − petvt + (et(vt + rt) +

δ

2
(r2
t − v2

t ))1{rt+vt<0} (27)

where δ is a real number. For a large class of distributions, it can be shown that

{V aRp
t , ES

p
t } = arg min

vt,et

E[LV,E(vt, et, rt)] (28)

under the condition that δ ·V aRt > ESt. Therefore a natural criterion for VaR/ES model

comparison is given by L̄V,E = 1
T

∑T
t=1 LV,E(vt, et, rt) with vt = V̂ aR

p

t and et = ÊS
p

t . We

use δ = 2, which makes the inequality δ · V aRt > ESt true for all t = 1, . . . , T and all

models at both the 1% and 5% levels.

The out-of-sample average joint loss L̄V,E for each model, in basis points, is shown

in the last two columns of Table 6. The results are identical to those in the first two

columns. The univariate Skewed t distribution is again the most accurate model at the

1% and 5% levels. This confirmed preference for the univariate Skewed t distribution is

coherent because ES is a function of VaR, which implies that more accurate VaR forecasts

should also lead to more accurate ES forecasts. The univariate Normal distribution still

displays a lower average joint loss than all non-dynamic multivariate models for both the
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1% and 5% levels.

We can summarize this section by saying that loss functions give a very different

picture of the relative performance of our models compared with the backtests. Indeed,

models with the frequency of violations closest to p in the first stage do not emerge as

the most accurate models in the second stage. Models that produce higher VaR and ES

estimates, although closer to an adequate frequency of violation, are penalized for risk

overestimation in periods where no violations occur. Given that most of the out-of-sample

periods are without violations, it appears that the cost of overestimating VaR and ES

can be quite high.

9 Testing for comparative predictive accuracy

Although there are differences between models’ average losses, these differences may not

be statistically significant. We can test for pairwise differences in predictive accuracy

using the approach introduced by Diebold and Mariano (1995).

Let L stands for either LV or LV,E and let

dijt = Lit − Ljt (29)

represent the loss differential between model i and model j at time t. The null hypothesis

of equal predictive ability between two models can be formulated as

H0 : E(dijt) = 0 . (30)

Assuming that the loss differential dijt is stationary, the null hypothesis can be tested via

a simple z-test with the test statistic

DMij =
d̄ij
σ̂d̄ij

a∼ N(0, 1) (31)

where d̄ij = 1
T

∑T
t=1 dijt and σ̂d̄ij is a consistent estimate of the standard deviation of

d̄ij. We compute d̄ij by regressing the loss differential on an intercept and obtain a
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heteroscedasticity and autocorrelation consistent (HAC) estimate for σd̄ij .

The p-values for the bilateral test are displayed for each pair of models in Tables 7

to 10. Tables 7 and 8 compare each pair of models using the VaR loss function whereas

Tables 9 and 10 use Acerbi and Szekely (2014) VaR/ES joint loss function. The num-

bers in parentheses represent the fraction of the average loss for the column model to

the average loss for the row model. An up (left) arrow indicates that we reject the null

hypothesis of equal predictive ability at the 5% significance level and that the column

(row) model outperforms the corresponding row (column) model. Looking at the first

row we see that the univariate Normal distribution model is outperformed by the uni-

variate Skewed t model for the 1% VaR and 1% VaR/ES but there are no significant

differences compared with other models. For the 5% VaR and 5% VaR/ES, the average

loss differential between the two univariate models disappears and the univariate Normal

distribution outperforms all static multivariate models. The second row indicates that in

all cases the univariate Skewed t distribution outperforms all static multivariate models,

but the average loss differential with dynamic multivariate models is not significant. We

also see that dynamic multivariate models usually outperform static multivariate models.

The previous test can also be done in a conditional framework. In this case, instead

of testing only which model risk forecasts are more accurate on average, we also test for

predictability of the loss differential. With this perspective the null hypothesis becomes

H0 : E(dijt | Ft−1) = 0 . (32)

A statistic for testing this null hypothesis was developed by Giacomini and White

(2006). Implementing their test with ht−1 = (1, dijt−1)
′

as the test function, the results

obtained are identical to those of the DM test and we therefore omit them.

10 The Model Confidence Set

Tables 7-10 contain a lot of information. We can summarize the results with the Model

Confidence Set (MCS) procedure of Hansen et al. (2011). The idea is to construct a set
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of models, the MCS, that will contain the best model with a given level of confidence,

analogous to a confidence interval for a parameter. This set is obtained by a sequence

of equal predictive ability (EPA) tests that, in case of rejection of the null hypothesis,

allow us to trim the set of candidate models by eliminating the worst performing model

according to an elimination rule. The steps are repeated until the EPA hypothesis fails to

be rejected, in which case the set of surviving models constitute the MCS that contains

the best performing model with the desired level confidence.

Let M0 denote our initial set of ten models and let M⊆M0 be a nonempty subset

of these models. The EPA null hypothesis is

H0 : E(dijt) = 0 for all i, j ∈M. (33)

Note that this null hypothesis is identical to the DM null hypothesis, except that we

consider all pairs of models in M instead of a single pair. As Hansen et al. (2011)

discuss, a natural range statistic for testing H0 is

TR = max
i,j∈M

|DMij|. (34)

The EPA test statistic is thus the absolute value of the DM statistic farthest away from

zero among the pairs of models. Because the asymptotic distribution of TR is unknown,

Hansen et al. (2011) propose to estimate it via a circular block bootstrap scheme. This

allows the computation of a bootstrap p-value for the EPA test.

The MCS procedure begins by setting M =M0. We then perform the EPA test on

the models in M. If we reject the null hypothesis at the chosen level of confidence, we

identify the worst model i∗, defined as the model with the highest loss relative to another

model. In other words,

i∗ = arg max
i∈M

max
j∈M

DMij. (35)

This model is then eliminated fromM. We repeat this process until we fail to reject the
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EPA hypothesis, in which case we set MCS =M.

We implement the MCS approach at a 95% confidence level 19. We use 10 000 boot-

strap re-samples with a circular bootstrap scheme and a block of one. The inputs for

the procedure are the losses Lit of each model; the statistics DMij are computed using

a bootstrap estimate of σd̄ij instead of the HAC estimate in the previous section. The

results are presented in Table 11. For the 5% VaR and 5% VaR/ES, the MCS consists

of all univariate and all dynamic multivariate models. That is, the procedure eliminated

all static multivariate models. At the 1% level, the VaR MCS includes the univariate

skewed t model as well as all dynamic multivariate models, with the exception of the

dynamic multivariate normal model. Lastly, the 1% VaR/ES MCS consist of all models.

This means that the EPA null hypothesis was not rejected by the first test.

These results agree with those of the last section. At the 5% level the MCS cannot

identify a set of superior models among the univariate and dynamic multivariate models

but eliminates all multivariate models without dynamic correlations. There is thus a

significant improvement from including dynamic correlations in the multivariate models.

For the 1% VaR, the MCS also eliminates the univariate normal model, but the univariate

skewed t model remains in the set of superior models so there is still no clear preference

between the two approaches. For the 1% VaR/ES, average loss differentials between the

models are too small to distinguish superior models.

11 Conclusion

The goal of this paper is to compare a univariate approach to a multivariate approach

for forecasting the one-week-ahead Expected Shortfall of stock portfolios. We do this

comparison in the context of a portfolio equally invested in the FFC factors by consid-

ering the data and multivariate models employed by Christoffersen and Langlois (2013).

In total, two univariate models are compared with eight multivariate models involving

asymmetric distributions and asymmetric copulas with dynamic correlations. Using sim-

19We use the “mcs” MATLAB function from the MFE toolbox by Kevin Sheppard. See
https://www.kevinsheppard.com/MFE Toolbox.
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ulations, we generate 1,436 weekly out-of-sample VaR and ES for each model covering

the period from 1983 to 2010. We analyze the relative performance of our models in two

stages. In the first stage we backtest each model by comparing the ex-ante risk measures

to the ex-post portfolio returns. In the second stage we rely on loss functions based on

the elicitability property of VaR as well as the joint elicitability property of VaR and ES

to rank models. We test for statistical differences between the average loss of models

with the tests of Diebold and Mariano (1995) and Giacomini and White (2006), along

with the MCS procedure of Hansen et al. (2011).

We find no significant differences between the risk forecasting accuracy of univariate

models and multivariate models with dynamic correlations. However, we find significant

differences in the risk forecasting accuracy of univariate models and multivariate models

without dynamic correlations. These differences all support the univariate models. We

also find that dynamic correlations produce a significant gain in the accuracy of multi-

variate models.
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Appendix A Hansen’s (1994) skewed t distribution

The density of Hansen’s (1994) skewed t distribution is given by

f(z;κ, ν) =


bc

(
1 + 1

ν−2

(
bz+a
1−k

)2
)− ν+1

2

if z < −a
b

bc

(
1 + 1

ν−2

(
bz+a
1+k

)2
)− ν+1

2

if z ≥ −a
b

(36)

where −1 < κ < 1 and 2 < ν <∞. The constants a, b and c are given by

a = 4κc
ν − 2

ν − 1
, (37)

b2 = 1 + 3κ2 − a2, (38)

and

c =
Γ((ν + 1)/2)√
π(ν − 2)Γ(ν/2)

. (39)

The univariate skewed t distribution has a mean of zero and a unit variance. Its skewness

and kurtosis are given by

E(z3) =
m3 − 3am2 + 2a3

b3
, (40)

and

E(z4) =
m4 − 4am3 + 6a2m2 − 3a4

b4
(41)

where

m2 = 1 + 3κ2, (42)

m3 = 16cκ(1 + κ2)
(ν − 2)2

(ν − 1)(ν − 3)
, if ν > 3 (43)

and

m4 = 3
(ν − 1)

(ν − 4)
(1 + 10κ2 + 5κ4), if ν > 4. (44)
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Appendix B Demarta and McNeil’s (2005) skewed t

copula

B.1 Multivariate skewed t distribution density

Demarta and McNeil’s (2005) skewed t copula is based on a version of the multivariate

skewed t distribution. We say that the N × 1 random vector x follows a multivariate

skewed t distribution, denoted x ∼ F st
νc,µ,Σ,λ, if it has the following density function:

f st(x; νc,µ,Σ,λ) = c

K vc+N
2

(√(
vc + (x− µ)′Σ−1(x− µ)

)
λ
′
Σ−1λ

)
exp

(
x− µ)

′
Σ−1λ

)
(√(

vc + (x− µ)′Σ−1(x− µ)
)
λ
′
Σ−1λ

)− vc+N
2 (

1 + (x−µ)′Σ−1(x−µ)
vc

) vc+N
2

(45)

where Kγ(·) is the modified Bessel function of the third kind and c is a constant given by

c =
2

2−(vc+N)
2

Γ
(
vc
2

)
(πvc)

N
2 |Σ| 12

. (46)

Also, νc is scalar degree of freedom parameter, µ is a N×1 vector of location parameters,

Σ is a N × N symmetric positive definite dispersion matrix and λ is a N × 1 vector of

asymmetry parameters. The first two moments of x are given by

E (x) = µ+
vc

vc − 2
λ (47)

and

Cov (x) =
vc

vc − 2
Σ +

2v2
c

(vc − 2)2(vc − 4)
λλ

′
. (48)

The multivariate skewed t distribution has the following stochastic representation

x
d
= µ+

√
wy + λw (49)

where w is an inverse gamma random variable, w ∼ IG(νc/2, νc/2), y a N × 1 vector of
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normal variables, y ∼N (0,Σ), and y and w are independent.

B.2 Skewed t copula density

The skewed t copula is derived using the standardized multivariate skewed t distribution

F := F st
νc,0,Υ,λ with jth marginal Fj and correlation matrix Υ :

Cst
νc,Υ,λ(u) = F (F−1

1 (u1), . . . , F−1
N (uN)). (50)

Let f := f stνc,0,Υ,λ be the density of F with jth marginal fj. The copula density is

obtained by differentiating both sides of equation (50):

cst(u; νc,Υ,λ) =
f(F−1

1 (u1), . . . , F−1
N (uN))∏N

j=1 fj(F
−1
j (uj))

=

2
(vc−2)(N−1)

2 K vc+N
2

(√(
vc + η′Υ−1η

)
λ
′
Υ−1λ

)
exp

(
η
′
Υ−1λ

)
Γ
(
vc
2

)1−N |Υ| 12
(√(

vc + η′Υ−1η
)
λ
′
Υ−1λ

)− vc+N
2 (

1 + η′Υ−1η
vc

) vc+N
2

×
N∏
j=1

(√(
vc + η2

j

)
λ2
j

)− vc+1
2
(

1 +
η2j
vc

) vc+1
2

K vc+1
2

(√(
vc + η2

j

)
λ2
j

)
exp (ηjλj)

(51)

where ηj := F−1
j (uj) is defined as the jth copula quantile for j = 1, . . . , N . The density

in equation (51) is used to obtain the skewed t copula parameter estimates in the second

step of the estimation, i.e. when maximizing the log-likelihood in equation (15).

B.3 Copula quantiles

One difficulty in the the second step of the skewed t copula ML estimation is obtaining

the copula quantiles ηjt = F−1
j (ujt) because the inverse marginals F−1

j are not known in

closed form. Christoffersen and Langlois (2013) address this problem by using empirical
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quantiles from a large number simulations with representation (49). Yoshiba (2018)

simulation results suggest that using a monotone interpolator is faster and more accurate

than using empirical quantiles so we instead choose this approach to compute the copula

quantiles. We apply following procedure with m = 150 interpolating points:

1. Let umin = minj=1,...,T ujt and umax = maxj=1,...,T ujt .

2. Compute ηmin = F−1
j (umin) and ηmax = F−1

j (umax) using an accurate quantile

function. This is done by finding the quantile such that numerical integration of

the univariate density fj until that point equals umin or umax respectively. We use

the bisection method for this.

3. Calculate ηk = ηmin+ (ηmax−ηmin)
m−1

and compute uk = Fj(ηk) by numerical integration

of fj for k = 2, . . . ,m− 1.

4. Use a monotone interpolator with the data points {(ηmin, umin), . . . , (ηmax, umax)} to

obtain ηjt = F−1
j (ujt) for all other values of ujt ∈ [umin, umax]. We apply MATLAB

piecewise cubic Hermite interpolating polynomial (“pchip”) to this end.

5. Repeat for j = 1, . . . , N .

B.4 Aielli’s (2013) cDCC

In the dynamic skewed t copula model we allow the copula correlation matrix Υ to evolve

through time. Let Υt be the copula correlation matrix at time t and let Υ̇t be the copula

quantiles correlation matrix at time t. Also, let

η̄j := E(ηj) =
vc

vc − 2
λj (52)

and

sj := var(ηj) =
vc

vc − 2
+

2v2
c

(vc − 2)2(vc − 4)
λ2
j (53)

be respectively the expectation and the standard deviation of the jth copula quantile.

This allows us to define the standardized copula quantiles εjt =
ηjt−η̄j
sj

for j = 1, . . . , N
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and the vector εt = (εjt, . . . , εNt)
′

containing them. The link between the two correlation

matrices Υt and Υ̇t is given by equation (48):

Υt =
νc − 2

νc

(
DΥ̇tD −

2ν2
c

(νc − 2)(νc − 4)
λλ

′
)

(54)

where D := diag(s1, . . . , sN) is a N × N diagonal matrix containing the standard devi-

ations of the copula quantiles. Thus the dynamic of Υt comes from the dynamic of Υ̇t,

which we assume is the cDCC model of Aielli (2013) :

Qt = Q(1− βc − αc) + βcQt−1 + αcε
∗
t−1ε

∗′
t−1 (55)

Υ̇t = Q
∗− 1

2
t QtQ

∗− 1
2

t (56)

where Q = E(Qt) = E(ε∗tε
∗′
t ) is a positive definite correlation matrix while βc and αc are

non-negative scalars with αc + βc < 1. Also, ε∗t = Q
∗ 1
2
t εt where Q∗t = diag(dg(Qt)) and

dg(·) is an operator that returns a vector containing the diagonal elements of a square

matrix argument. The matrix Q is obtained by targeting using the cDCC estimator

proposed in Aielli (2013) (See definition 3.3).

B.5 Simulation

The skewed t copula can be simulated with the following steps, where k represents the

chosen number of simulations:

1. Simulate k vectors {x̃i}ki=1 using the stochastic representation (49) and the forecast

correlation matrix for the next period.

2. Compute
{
ũi
}k
i=1

=
{(
F1(x̃i1), . . . , FN(x̃iN)

)′}k
i=1

. Given a high number of simula-

tions, instead of using numerical integration we can use the empirical CDF estimate

of Fj with the simulated serie {x̃ij}ki=1 to calculate
{
Fj(x̃

i
j)
}k
i=1

for j = 1, . . . , N .

Once the copula uniform variables
{
ũi
}k
i=1

have been simulated, we can apply Hansen’s

(1994) inverse distribution function to obtain the next period simulated standardized
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returns {z̃ij}ki=1 for each factor j. We then compute the simulated jth factor returns by

multiplying each element of {z̃ij}ki=1 by the jth factor forecast conditional volatility and

adding to it the jth factor forecast conditional mean.

Appendix C VaR backtests

C.1 Kupiec’s (1995) unconditional coverage test

Let π denote the true probability of breaching VaR for a particular model and let p

denote the chosen significance level for the VaR. The null hypothesis adequate coverage

H0 : π = p is tested using a likelihood ratio test:

LRuc = −2 ln

[
L(p)

L(π̂)

]
= −2 ln

[
(1− p)T0pT1
(1− π̂)T0 π̂T1

]
(57)

where T is the number of out-of-sample observations, T1 is defined as in Section 7.1,

T0 = T − T1 and π̂ = T1
T

. This test statistic asymptotically follows a χ2 distribution with

one degree of freedom, corresponding to one restriction (π = p).

C.2 Christoffersen’s (1998) independence test

Let T00 represent the number of periods with no violation followed by a period with no

violation, T10 the number of periods with violation followed by a period with no violation,

T01 the number of periods with no violation followed by a period with violation and T11

the number of periods with violation followed by a period with violation. Define π11 the

probability of a violation next period conditional on a violation in the previous period and

π01 the probability of a violation next period conditional on no violation in the previous

period. The null hypothesis of first order independence H0 : π11 = π01 can be tested with

a likelihood ratio test :

LRind = −2 ln

[
L(Π̂)

L(Π̂1)

]
= −2 ln

[
(1− π̂)T0 π̂T1

(1− π̂01)T00 π̂T0101 (1− π̂11)T10 π̂T1111

]
(58)
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where π̂01 = T01
T00+T01

and π̂11 = T11
T10+T11

. This test statistic asymptotically follows a χ2

distribution with one degree of freedom, corresponding to one restriction (π11 = π01).

C.3 Christoffersen’s (1998) conditional coverage test

The conditional coverage null hypothesis H0 : π11 = p and π01 = p is tested by combining

the likelihood ratios of the two previous test:

LRcc = LRuc + LRind (59)

and asymptotically follows a χ2 distribution with two degrees of freedom, corresponding

to the two restrictions π11 = p and π01 = p.
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Table 1: Descriptive Statistics of Weekly Factor Returns (1963–2010)

Market Size Value Momentum

Mean (BPS) 6.98 3.48 8.28 14.52

Median (BPS) 25.97 6.00 6.00 22.96

Max (%) 12.52 6.24 9.37 11.89

Min (%) -20.35 -9.90 -7.13 -17.17

SD (%) 2.21 1.18 1.21 1.88

Skewness -0.75 -0.44 0.18 -1.44

Kurtosis 10.01 8.04 8.16 15.38

J-B 5311 2701 2765 16681

This table presents the descriptive statistics for the four factor returns using the sample
from July 5, 1963 to december 31, 2010. The mean and median are in basis points (BPS)
while the maximum, the minimum and the standard deviation (SD) are in percentages
(%). The last line presents the Jarque-Bera satistic.
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Table 2: Parameter Estimates for the Univariate Models (1963–2010)

Parameter Estimates Normal Distribution Skewed t
Distribution

φ0 8.06e-04 8.16e-04
(1.11e-04) (1.09e-04)

φ1 0.132 0.116
(0.021) (0.021)

φ2 0.067 0.061
(0.021) (0.021)

φ3 0.026 0.045
(0.020) (0.020)

β 0.709 0.703
(0.016) (0.028)

α 0.230 0.231
(0.012) (0.021)

θ 0.062 0.045
(0.041) (0.065)

ν - 5.725
(0.570)

κ - -0.160
(0.028)

Log-likelihood 9226 9333

This table presents the parameters estimates of the univaraite models. Standard errors
in parentheses are computed with the outer product of gradients method. The parameter
ω is obtained by variance targeting.
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Table 4: Parameter Estimates for the Copulas (1963–2010)

Constant Correlation Dynamic Correlation

Parameter Estimates Normal Copula Student Copula Skewed t Normal Copula Student Copula Skewed t
Copula Copula

νc 4.508 4.603 9.020 8.939
(0.228) (0.216) (0.735) (0.756)

λMarket -0.023 -0.077
(0.023) (0.052)

λSize -0.067 -0.145
(0.027) (0.053)

λValue 0.037 0.070
(0.023) (0.047)

λMomentum -0.140 -0.169
(0.035) (0.051)

βc 0.886 0.884 0.885
(0.004) (0.006) (0.006)

αc 0.089 0.094 0.092
(0.003) (0.005) (0.005)

ρMarket,Size -0.014 0.001 -0.003 0.013 0.039 0.035

ρMarket,Value -0.358 -0.352 -0.348 -0.378 -0.378 -0.371

ρMarket,Momentum 0.107 0.115 0.108 0.082 0.089 0.087

ρSize,Value -0.047 -0.047 -0.036 -0.086 -0.109 -0.103

ρSize,Momentum 0.013 0.022 -0.021 0.032 0.040 0.028

ρValue,Momentum -0.077 -0.094 -0.077 -0.110 -0.139 -0.136

Log-likelihood 188.7 435.1 450.2 1051.0 1151.9 1161.4

This table presents the parameters estimates of each copula obtained in the second step
of the estimation. Standard errors in parentheses are computed with the outer product
of gradients method. The copula unconditional correlation matrix is fixed by correlation
targeting (except for the normal copula).
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Table 5: VaR and ES backtests (1983-2010)

p = 1% p = 5%

T1 UC Ind CC Z1 Z2 T1 UC Ind CC Z1 Z2

Univariate Models

Normal Distribution 39 0.00 0.11 0.00 0.00 0.00 84 0.15 0.17 0.14 0.00 0.00

Skewed t Distribution 26 0.01 0.09 0.00 0.94 0.03 85 0.12 0.38 0.20 0.36 0.06

Multivariate Models

Normal Distribution 33 0.00 0.04 0.00 0.00 0.00 69 0.73 0.02 0.06 0.00 0.02

Normal Copula 30 0.00 0.02 0.00 0.01 0.00 69 0.73 0.06 0.16 0.00 0.06

Symmetric t Copula 26 0.01 0.09 0.00 0.19 0.00 68 0.64 0.05 0.14 0.00 0.21

Skewed t Copula 23 0.04 0.38 0.07 0.17 0.01 65 0.40 0.03 0.07 0.00 0.33

Dynamic Normal Distribution 34 0.00 0.01 0.00 0.00 0.00 73 0.88 0.04 0.12 0.00 0.03

Dynamic Normal Copula 27 0.00 0.01 0.00 0.10 0.00 73 0.88 0.04 0.12 0.00 0.11

Dynamic Symmetric t Copula 26 0.01 0.01 0.00 0.34 0.00 74 0.79 0.05 0.13 0.02 0.16

Dynamic Skewed t Copula 21 0.10 0.00 0.00 0.21 0.03 73 0.88 0.04 0.12 0.05 0.23

This table presents the VaR and ES backtest results. The first four columns are at the
1% level and the last four columns are at the 5% level. Columns T1 indicates the total
number of violations in out-of-sample period. Columns UC, Ind and CC contains the p-
values for the uncoditional coverage, the indepedence and the conditional coverage VaR
tests respectively. Columns Z1 and Z2 contains the p-values for the first two ES tests of
Acerbi and Szekely.
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Table 6: VaR and VaR/ES Average Loss (1983-2010)

Average Loss VaR Average Loss VaR/ES

p = 1% p = 5% p = 1% p = 5%

Univariate Models

Normal Distribution 3.001 8.467 0.058 0.111

Skewed t Distribution 2.561 8.452 0.044 0.107

Multivariate Models

Normal Distribution 3.422 9.205 0.072 0.125

Normal Copula 3.321 9.236 0.068 0.125

Symmetric t Copula 3.196 9.249 0.063 0.124

Skewed t Copula 3.150 9.253 0.061 0.124

Dynamic Normal Distribution 3.012 8.459 0.063 0.114

Dynamic Normal Copula 2.812 8.468 0.055 0.112

Dynamic Symmetric t Copula 2.763 8.461 0.054 0.111

Dynamic Skewed t Copula 2.748 8.474 0.053 0.111

This table presents each model’s average loss for VaR (L̄V ) and the for pair VaR/ES
(L̄V,E) in the out-of-sample period. Columns one and three are at the 1% level while
columns two and four are at the 5% level.
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Table 7: DM Test for 1% VaR (1983-2010)
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Univariate Normal 0.01↑ 0.08 0.14 0.35 0.46 0.95 0.26 0.18 0.15
( 0.85) ( 1.14) ( 1.11) ( 1.07) ( 1.05) ( 1.00) ( 0.94) ( 0.92) ( 0.92)

Univariate Skewed t 0.01← 0.01← 0.01← 0.01← 0.10 0.30 0.39 0.41
( 1.34) ( 1.30) ( 1.25) ( 1.23) ( 1.18) ( 1.10) ( 1.08) ( 1.07)

Multivariate Normal 0.03↑ 0.02↑ 0.02↑ 0.03↑ 0.00↑ 0.00↑ 0.00↑
( 0.97) ( 0.93) ( 0.92) ( 0.88) ( 0.82) ( 0.81) ( 0.80)

Normal Copula 0.03↑ 0.03↑ 0.08 0.00↑ 0.00↑ 0.00↑
( 0.96) ( 0.95) ( 0.91) ( 0.85) ( 0.83) ( 0.83)

Symmetric t Copula 0.04↑ 0.29 0.02↑ 0.01↑ 0.00↑
( 0.99) ( 0.94) ( 0.88) ( 0.86) ( 0.86)

Skewed t Copula 0.43 0.03↑ 0.01↑ 0.01↑
( 0.96) ( 0.89) ( 0.88) ( 0.87)

Dynamic Multivariate Normal 0.01↑ 0.01↑ 0.02↑
( 0.93) ( 0.92) ( 0.91)

Dynamic Normal Copula 0.05 0.14
( 0.98) ( 0.98)

Dynamic Symmetric t copula 0.49
( 0.99)

This table presents the p-values of the DM test comparing each row model to a column
model for the 1% VaR. The loss function used for pairwise comparisons is LV . Numbers
in parentheses indicate the ratio of the column model average loss to the row model
average loss in the out-of-sample period. An up (left) arrow indicates that we reject the
null hyptohesis of equal predictive ability at the 5% significance level and that the column
(row) model outperforms the corresponding row (column) model.
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Table 8: DM Test for 5% VaR (1983-2010)

U
n

iv
a
ri

a
te

S
k
ew

ed
t

M
u

lt
iv

a
ri

a
te

N
o
rm

a
l

N
o
rm

a
l

C
o
p

u
la

S
y
m

m
et

ri
c
t

C
o
p

u
la

S
k
ew

ed
t

C
o
p

u
la

D
y
n

a
m

ic
M

u
lt

iv
a
ri

a
te

N
o
rm

a
l

D
y
n

a
m

ic
N

o
rm

a
l

C
o
p

u
la

D
y
n

a
m

ic
S

y
m

m
et

ri
c
t

co
p

u
la

D
y
n

a
m

ic
S

k
ew

ed
t

co
p

u
la

Univariate Normal 0.67 0.01← 0.00← 0.00← 0.00← 0.96 1.00 0.97 0.97
( 1.00) ( 1.09) ( 1.09) ( 1.09) ( 1.09) ( 1.00) ( 1.00) ( 1.00) ( 1.00)

Univariate Skewed t 0.01← 0.00← 0.00← 0.00← 0.97 0.93 0.96 0.90
( 1.09) ( 1.09) ( 1.09) ( 1.09) ( 1.00) ( 1.00) ( 1.00) ( 1.00)

Multivariate Normal 0.01← 0.00← 0.00← 0.00↑ 0.00↑ 0.00↑ 0.00↑
( 1.00) ( 1.00) ( 1.01) ( 0.92) ( 0.92) ( 0.92) ( 0.92)

Normal Copula 0.10 0.19 0.00↑ 0.00↑ 0.00↑ 0.00↑
( 1.00) ( 1.00) ( 0.92) ( 0.92) ( 0.92) ( 0.92)

Symmetric t Copula 0.73 0.00↑ 0.00↑ 0.00↑ 0.00↑
( 1.00) ( 0.91) ( 0.92) ( 0.91) ( 0.92)

Skewed t Copula 0.00↑ 0.00↑ 0.00↑ 0.00↑
( 0.91) ( 0.92) ( 0.91) ( 0.92)

Dynamic Multivariate Normal 0.69 0.95 0.50
( 1.00) ( 1.00) ( 1.00)

Dynamic Normal Copula 0.48 0.70
( 1.00) ( 1.00)

Dynamic Symmetric t copula 0.30
( 1.00)

This table presents the p-values of the DM test comparing each row model to a column
model for the 5% VaR. The loss function used for pairwise comparisons is LV . Numbers
in parentheses indicate the ratio of the column model average loss to the row model
average loss in the out-of-sample period. An up (left) arrow indicates that we reject the
null hyptohesis of equal predictive ability at the 5% significance level and that the column
(row) model outperforms the corresponding row (column) model.
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Table 9: DM Test for 1% VaR and ES (1983-2010)
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Univariate Normal 0.04↑ 0.06 0.13 0.43 0.59 0.40 0.51 0.37 0.30
( 0.76) ( 1.23) ( 1.16) ( 1.08) ( 1.05) ( 1.09) ( 0.94) ( 0.92) ( 0.91)

Univariate Skewed t 0.02← 0.03← 0.03← 0.03← 0.11 0.24 0.30 0.30
( 1.62) ( 1.53) ( 1.42) ( 1.39) ( 1.43) ( 1.25) ( 1.21) ( 1.20)

Multivariate Normal 0.05↑ 0.05 0.06 0.07 0.00↑ 0.01↑ 0.01↑
( 0.94) ( 0.87) ( 0.85) ( 0.88) ( 0.77) ( 0.75) ( 0.74)

Normal Copula 0.06 0.07 0.40 0.01↑ 0.01↑ 0.01↑
( 0.93) ( 0.91) ( 0.94) ( 0.82) ( 0.79) ( 0.78)

Symmetric t Copula 0.12 0.93 0.06 0.03↑ 0.01↑
( 0.98) ( 1.01) ( 0.88) ( 0.85) ( 0.84)

Skewed t Copula 0.76 0.15 0.06 0.03↑
( 1.03) ( 0.90) ( 0.87) ( 0.86)

Dynamic Multivariate Normal 0.02↑ 0.03↑ 0.04↑
( 0.87) ( 0.85) ( 0.83)

Dynamic Normal Copula 0.12 0.13
( 0.97) ( 0.96)

Dynamic Symmetric t copula 0.34
( 0.99)

This table presents the p-values of the DM test comparing each row model to a column
model for the 1% pair VaR/ES. The loss function used for pairwise comparisons is LV,E.
Numbers in parentheses indicate the ratio of the column model average loss to the row
model average loss in the out-of-sample period. An up (left) arrow indicates that we
reject the null hyptohesis of equal predictive ability at the 5% significance level and that
the column (row) model outperforms the corresponding row (column) model.
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Table 10: DM Test for 5% VaR and ES (1983-2010)
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Univariate Normal 0.08 0.03← 0.02← 0.03← 0.03← 0.56 0.87 0.95 0.98
( 0.96) ( 1.13) ( 1.13) ( 1.12) ( 1.11) ( 1.03) ( 1.01) ( 1.00) ( 1.00)

Univariate Skewed t 0.02← 0.01← 0.01← 0.01← 0.29 0.42 0.46 0.47
( 1.17) ( 1.17) ( 1.16) ( 1.16) ( 1.07) ( 1.05) ( 1.04) ( 1.04)

Multivariate Normal 0.69 0.39 0.39 0.02↑ 0.01↑ 0.01↑ 0.00↑
( 1.00) ( 0.99) ( 0.99) ( 0.91) ( 0.89) ( 0.89) ( 0.89)

Normal Copula 0.25 0.29 0.02↑ 0.01↑ 0.01↑ 0.00↑
( 0.99) ( 0.99) ( 0.91) ( 0.89) ( 0.89) ( 0.89)

Symmetric t Copula 0.41 0.04↑ 0.01↑ 0.01↑ 0.01↑
( 1.00) ( 0.92) ( 0.90) ( 0.90) ( 0.90)

Skewed t Copula 0.05 0.02↑ 0.01↑ 0.01↑
( 0.92) ( 0.90) ( 0.90) ( 0.90)

Dynamic Multivariate Normal 0.10 0.11 0.15
( 0.98) ( 0.98) ( 0.98)

Dynamic Normal Copula 0.20 0.34
( 1.00) ( 0.99)

Dynamic Symmetric t copula 0.64
( 1.00)

This table presents the p-values of the DM test comparing each row model to a column
model for the 5% pair VaR/ES. The loss function used for pairwise comparisons is LV,E.
Numbers in parentheses indicate the ratio of the column model average loss to the row
model average loss in the out-of-sample period. An up (left) arrow indicates that we
reject the null hyptohesis of equal predictive ability at the 5% significance level and that
the column (row) model outperforms the corresponding row (column) model.
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Table 11: MCS Results (1983-2010)

MCS

p = 1% p = 5%

Univariate Skewed t Univariate Normal
Dynamic Normal Copula Univariate Skewed t

VaR Dynamic Student Copula Dynamic Multivariate Normal
Dynamic Skewed t Copula Dynamic Normal Copula
Dynamic Skewed t Copula Dynamic Student Copula
Dynamic Skewed t Copula Dynamic Skewed t Copula

Univariate Normal
Univariate Skewed t

VaR/ES All models Dynamic Multivariate Normal
Dynamic Normal Copula
Dynamic Student Copula
Dynamic Skewed t Copula

This table presents the Model Confidence Set obtained using the procedure of Hansen
et al. (2011) at a 95% level of confidence. The first row corresponds to VaR model
comparisons with the loss function LV and the second corresponds to VaR/ES model
comparisons with the loss function LV,E. The first column is at the 1% level while the
second column is at the 5% level.
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