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We present a way to compute additive marginal contributions for the six capital mea-
sures forming the capital computation under the new Basel III market risk regime, com-
monly named “Fundamental Review of the Trading Book regime” (FRTB, [9, 11]). Marginal
contributions are most useful for the allocation of capital charges and risk weighted as-
sets (RWA) to individual risk factors, financial instruments and/or portfolios. For most
components we apply the Euler theorem.

1. Overview
As response to issues observed in the capitalization of banks during the Lehman crisis, the Basel
Committee started out to fundamentally reform the computation of regulatory capital in a series
of proposed regulations and consultations [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While the process is still
ongoing, a number of features have stabilized and the general framework can be assumed to be fixed.
Consequently, certain legislations have started the process to implement the regulation into local law,
cf. e.g. the European CRR2 draft [13].

In ongoing monitoring and reporting as well as allocation of capital costs, the impact of single
portfolios, financial instruments / trades and/or certain risk factors presents a permanent challenge.
This is especially evident when considering the enlarged complexity of the FRTB component risk mea-
sures, substantially increasing efforts on operative risk management side. Measures of the individual
contribution of sub-portions of the full book are an efficient tool to facilitate such ongoing tasks.

While in practice, one or a mixture of marginal, incremental and standalone measures are used,
marginal measures derived using the Euler method (also known as allocation by gradient) have been
shown to be the only suitable definition of risk contributions both from the practical aspect of risk
adjusted performance measurement [15] as well as a quite fundamental axiomatic approach [16]. This
was confirmed in Reference [17] which, apart from a broad overview on the topic, also depicts the
results of a long-term comparison of the various measures in a real-life application. Therefore, the
application of marginal measures for the allocation of the FRTB risk charges suggests itself.

In the following we will briefly comprise the regulatory framework as well as provide an overview on
the methods used to compute the marginals. Section 2 outlines the necessary quantities and methods
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with particular focus on the Euler theorem and the treatment of inhomogeneities. Subsequently, we
then present the specific results for the individual FRTB components. To work in order of increasing
complexity, we first address the IMA in Part I and continue to the SA in Part II.

Outline of the regulatory framework

The proposed framework consists of two approaches, a Standardized Approach (SA) and an Internal
Models Approach. In turn, the SA is composed of three components:

• Sensitivity-based Approach (SBA): approximates a classical (partial-revaluation variance/covariance
delta+) market risk model by applying prescribed shocks on sensitivities and aggregating using
prescribed correlations; it is composed of three contributions: delta, curvature and vega risk

• Residual Risk Add-On (RRAO): notional-based add-on for risks not covered by the SBA and DRC
components

• Default Risk Component (DRC): Jump-to-Default (JtD) sensitivity-based capital charge against
default risks

Also, the IMA is composed of three components

• Internal Model Capital Charge (IMCC): classical market risk simulation over a stress period,
however, applying an expected shortfall (ES) risk measure and, in order to restrict diversification
and account for liquidity horizon, based on up to 90 profit/loss (PL) distributions

• Scenarios of Extreme Stress (SES): capital add-on for risk factors not eligible for inclusion into
the IMCC component (non-modellable risk factors (NMRF)), computed as individual stress tests

• Default Risk Component (DRC): simulation of default events not included in the IMCC, based
on a Value-at-Risk (VaR) risk measure

For most components it is prudent to compute the marginals using the Euler method as it is the
methodologically correct way [16]. Additionally, it carries the advantage that it allows re-using inter-
mediate results from the actual charge computation.

Merely for IMA DRC an alternative approach is used, leading to more stable marginals than obtained
from the Euler method.

2. Methodology
For brevity we assume familiarity of the reader with the notion of scenarios, PL distributions and risk
measures in general as well as sub-additivity, coherence, the Value-at-Risk and the expected shortfall
in particular. Clarifying nomenclature, by trade we refer to a booking of a financial instrument into
a specific portfolio. It is the smallest considered entity and, therefore, usually, the goal is to identify
the marginal contributions of trades. Marginal contributions of overall financial instrument positions,
portfolios, issuers or other levels of aggregation are obtained by addition of trade-level marginals. To
bear flexibility, we will, in the following, refer to the smallest entities considered as elements.

2.1. The Euler theorem

The concept of the Euler allocation is based on the fact that a homogeneous function f (x) of degree τ,
i.e. for which

f (kx) = kτ f (x)
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holds, can be represented by its partial derivatives with regard to the coordinate(s) x ∈RN (thus, it is
sometimes also referred to as allocation by gradient).

Namely, differentiating the homogeneity relation w.r.t. k yields

N∑
i

∂ f (kx)

∂(kxi )

∂(kxi )

∂k
= τkτ−1 f (x)

and with k = 1 the Euler theorem follows as

f (x) =
N∑

i=1
τ−1xi

∂ f (x)

∂xi
.

If f (x) is e.g. a risk charge, then the N components of x are the risk contributors, i.e. elements, which
jointly yield the overall charge and whose individual contributions are given by the addends. In this
setting, the allocation of the risk charge is trivial.

Appendix A outlines the usage of the Euler theorem with a series of examples helpful for the appli-
cation to the FRTB risk measures. For further details on the application in risk management refer to
[1].

2.2. Inhomogeneous functions

For the cases considered here, inhomogeneities arise primarily from minimum, maximum, absolute
value and Heaviside functions as part of the aggregation formulae. In order to apply the Euler theorem
in a valid fashion, these inhomogeneities need to be addressed.

To this avail, one can make use of the fact that these functions are actually evaluated only once:
during the computation of the relevant top level (standalone) risk charge. The decision, which argu-
ment of the function prevails is then fixed. When, in a second step, computing the marginals, these
functions can be considered mere decision rules, the outcome of which has already been decided in
the first step. Consequently, the marginal computation would always take the contribution from the
same argument which prevailed during the computation of the top level charge.

If keeping track of these decisions when computing the top-level charge, max(x)/min(x) functions
thus turn into deterministic operations for the computation of the marginals. The same is true for the
absolute value |x| = abs(x) which is equal to max(x,−x). The resulting function is then homogeneous
and can be safely allocated using the Euler theorem.

In the following, we denote such operations, the outcome of which is determined/saved during the
top-level aggregation and employed as deterministic operation/decision rule during the marginal
computation, by an index which indicates the object to which the logic is related (e.g. the bucket, the
computation for which the function is used for). We define it formally as

max f
b ({x j }) := xi : xtop−level

i ≥ xtop−level
j ∀ j (1)

min f
b ({x j }) := xi : xtop−level

i ≤ xtop−level
j ∀ j (2)

abs f
b (x) := max f

b {x,−x} (3)

Θ
f
b (x) := Θ

f
b

(
xtop−level

)
(4)

where the indices f and b imply the use in the computation of some fb(x j ).
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Part I.
Internal Model Approach (IMA)
3. Internal Model Capital Charge (IMCC) = Expected Shortfall

Component (IMA ES)
The IMCC is based on the coherent expected shortfall risk measure, consequently, one may expect that
the capital allocation should be straightforward. Indeed, the marginal expected shortfall components
present the building blocks of the allocation. However, the latter has to also account for the nonlinear
aggregation across the individual expected shortfall computations.

Definition

The internal model capital charge IMCC is given by [11, page 24] (cf. also [13, pages 171f], denominated
as expected shortfall risk measure ES therein)

IMCC = ρIMCCT + (1−ρ)
∑

IMCCb (5)

where the sum is over the broad risk-factor categories (BRC) b = {IR, FX, EQ, CR, CO}. The expressions
for IMCCb of each BRC and the fully diversified IMCCT (collectively referred to as «unconstrained
expected shortfall measures» UES in [13]) are given by

IMCC y = ESy,SR
ESy,C F

ESy,C R
(6)

where y ∈ {T }∪b and the index x of the partial expected shortfall contributions ESy,x (denominated as
PES in [13]) indicates a specific risk factor set (R ..reduced, F ..full) and a specific time period (C ..current,
S..stress). The current regulation draft [13] provisions a flooring of the ratio ESC F /ESC R to 1. Since, in
practice it is extremely unlikely that this floor will ever come into effect on a bank’s top level, we omit
this peculiarity.

Finally, each partial expected shortfall ESy,x is given in the form

ESy,x =
√∑

shESy,x,h

which mirrors, and therefore can be addressed by leveraging on, the example function X in Appendix
A.2.

Homogeneity

We first confirm the homogeneity of (6)

IMCC y (kwi ) = ESy,SR (kwi )
ESy,C F (kwi )

ESy,C R (kwi )

(24)= kESy,SR (wi )
kESy,C F (wi )

kESy,C R (wi )

= kIMCC(wi )

whereby the homogeneity of (5), which is only a sum of the former, directly follows

IMCC(kwi ) = kIMCC(wi ).

Both expressions are homogeneous of grade 1.
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Euler marginal

Due to the Euler theorem, the contributions IMCC y can be decomposed as

IMCC y = ∑
i

1−1wi
∂IMCC y (wi )

∂wi

= ∑
i

wi
∑
x

∂IMCC y

∂ESy,x

∂ESy,x

∂wi
,

where

∂IMCC y

∂ESy,x
=


ESy,C F

ESy,C R
x = SR

ESy,SR

ESy,C R
x =C F

−ESy,SR
ESy,C F

ES2
y,C R

x =C R

and, cf. Appendix A.2,
∂ESy,x

∂wi

(25)= ∑
h

shESy,x,h

wi ESy,x
mESy,x,h,i

such that the decomposition is

IMCC y =
∑

i

∑
x

∑
h

∂IMCC y

∂ESy,x

shESy,x,h

ESy,x
mESy,x,h,i

and, thus, the marginal contribution is found as

mIMCC y,i =
∑
x

∑
h

∂IMCC y

∂ESy,x

shESy,x,h

ESy,x
mESy,x,h,i . (7)

Due to its additive nature, the marginal of the full IMCC w.r.t. some element i is then given by

mIMCCi = ρmIMCCT,i + (1−ρ)
∑
b

mIMCCb,i . (8)

Discussion

While for capital allocation purposes mIMCCi is the relevant marginal, monitoring and analyses efforts
may find the base-level marginal contribution mESy,x,h,i to a specific ES run quite helpful. Also the
intermediate marginals provide quantitative insight into the regulatory charge. For example, the
additive nature of marginals can be used to determine the contribution of a specific liquidity horizon
by selecting one h and, instead, summing across all i in Eqs. (7) and (8).

With regard to the computational effort it is worth noting that the marginal is the product of a
number of prefactors and the base-level marginals of the element under consideration. Since the
prefactors are computed from existing top-level results and are static and equal for all elements i ,
while the base-level marginals have to be determined for each element separately, the actual effort
lies with the latter. Still, since the PL strip does not need to be sorted, the computation of a base-level
marginal actually requires less effort than the computation of a standalone figure. Consequently, the
overall computational effort of computing marginal measures turns out to be much smaller than the
effort to compute standalone figures for the same elements.
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4. Non-modellable Risk Factors (IMA NMRF)
Definition

The Scenarios of Extreme Stress (SES) capital charge for NMRF is determined by [9, page 65]1

SES =
√∑

r
1C (r )SES2

r +
∑

r
(1− 1C (r ))SESr (9)

where r iterates over all NMRF and 1C (r ) is the indicator function determining whether a NMRF is
within the set C of NMRF associated with idiosyncratic credit spread risk. Only the latter, and possibly
also idiosyncratic equity risk [11, page 10], may be aggregated using a zero correlation assumption,
i.e. using a square root of sum of squares.

In the following we assume that the stress tests for the NMRF r are computed in a similar fashion as
currently consulted in [14], namely, as PL valuations of a predetermined risk factor stress shock

SESr =
∑

i
PLi (r → r ′). (10)

In the – numerically extremely demanding and, thus, at the time of writing appearing very unlikely –
case that SESr are determined by full revaluation of all risk factor scenarios and a subsequent appli-
cation of a risk measure on the obtained top-level PL distribution, this additional level of complexity
needs to be accounted for as well in the computation of the marginals.

Euler marginal

The allocation is straightforward since the Euler allocation can be employed without effort. For NMRF
not in C the aggregation is an addition of stress tests, the Euler allocation of which is trivially an
addition as well. For NMRF in C the aggregation, the allocation of a square root of sum of squares is
discussed in Appendix A.2 and can be applied here similar to the IMCC in Section 3.

Leveraging on Eq. (26) the marginal contribution of element i is then found as

mSESi =
∑

r

(
1C (r )

SESr

SES
+ (1− 1C (r ))

)
SESr,i (11)

where the single addends are the marginal contributions mSESr,i of the element i to the single stress
tests SESr . Hence, the marginal contribution mSESr of a single stress test r to the overall SES charge
can be found by summation across all individual contributions i instead of r .

Discussion

As for the IMCC, the marginal is simple sum of a static prefactor, computed from top-level measures,
and a element-specific base-level marginal which in this case is trivially the standalone SES charge
with respect to the NMRF under consideration.

For the credit risk factor aggregation the top-level SESi charges for the various credit risk factors
have to be available for the computation of the prefactor. It is prudent to thus save the SESi , j of the
elements j until the SESi are available and compute the marginals then (simple multiplication).

For non-credit risk factors the mSESi , j are given by the SESi , j , no additional computation is neces-
sary.

1Compared to the reference, the notation was slightly modified without any change to the meaning. In [13, page 187] the
capital charge is denominated as stress scenario risk measure SSt .
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Extension to multiple stress tests

Where a bank chooses to compute multiple stress tests for a certain risk factor (set), of which one is
chosen according to some criteria, the outcome of these criteria needs to be saved on top level and
applied as a decision rule in the computation of the marginals.

Consider, for example, the case that two risk factor shocks (upward/downward) are predetermined
and the one with the larger loss (more negative PL) on top-level is chosen, i.e.

SESr = min

{∑
i

SESr,1,i ,
∑

i
SESr,2,i

}

= min r

{∑
i

SESr,1,i ,
∑

i
SESr,2,i

}
, (12)

in Eq. (9) instead of (10), where we have already substituted the minimum function by a deterministic
decision rule minr , which is fixed on top-level for each considered risk factor r . The marginal SES is
then still given by Eq. (11) but with element-wise SESr,i replaced by

SESr,i = min r
{
SESr,1,i ,SESr,2,i

}
.

Clearly, this is not limited to only two shocks and also the selection/decision logic can be more
complex. In this way, the marginal computation can also be carried out for more advanced approaches,
e.g. the one proposed by the EBA [14, Art. 247].

5. Internal Default Risk Charge (IMA DRC)
The IMA DRC capital charge is based on a VaR, i.e. percentile, risk measure. Recalling the results of a
prior investigation w.r.t. the allocation of the historical VaR [17], in such a case the allocation weights
should be derived from an alternative risk measure.

In said investigation, it was found that, while the incremental VaR yields allocation weights with
wrong convergence properties, the weights obtained from an ES on the same (or, for stability, a
reshuffled2) PL strip show converge correctly to the analytic limit. In addition, the incremental VaR
figures are not additive and require an ex-post rescaling which gives rise to frequently occurring,
extremely high allocation weights. The marginal ES is additive per se and the ES weights can be used
directly to allocate the VaR. Finally, it was found that the achieved stability increase by enlarging the
number of included scenarios (by adjusting the ES confidence level) slows down and even inverses
beyond the 12.5%/87.5% level.

The IMA DRC charge is measured as 99.9% percentile of the loss distribution. Assuming a normal
distribution this corresponds to an ES with confidence level 99.738%3. Assuming that the final IMA

2In case of the IMA DRC, the number of scenarios is far greater than in the case of the historical (stressed) VaR. Therefore a
reshuffling of the scenarios is not necessary.

3Assuming a normal distribution (WLOG transformed to zero mean) having arbitrary σ, we obtain from

ES = (1−α)−1 (σ
p

2π)−1
∫ ∞

VaRα
t exp

(
−t 2/2σ2

)
dt = (1−α)−1σ/

p
2πexp

(
−VaR2

α/2σ2
)

!= VaRβ

with VaRx =σΦ−1 that for a VaR confidence level of β= 99.9% an ES with confidence level of α= 99.738% yields exactly
the same result. Dependencies on the standard deviations cancel. While deviations from normality could be accounted
for by adjusting the ES confidence level obtained above, we estimate the impact of such correction on the ultimately
derived marginals to be negligible.

Alternatively, instead of using a fixed ES confidence level based on distribution assumptions, the confidence level could
also be determined dynamically for each date from the observed PL distribution such that ES(x) = VaR(99.9%). However,
the continuous change of the confidence level would increase the variability of the obtained marginals.
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DRC will use one million scenarios, a common choice for current IRC models, this means that the
tail average is averaged from 2,620 scenarios which – in most cases – should well suffice for stable
marginals.4

Employing the ES correspondence, the IMA DRC marginal for any element i can be computed as

mIMA DRCi =
IMA DRCtop−level

EStop−level
mESi .

6. IMA Final Aggregation
The final capital charge for approved desks is given by aggregation

C A = max
(
IMCC t−1 +SESt−1,mc IMCCavg +SESavg

)+max
(
IMA DRCt−1, IMA DRCavg

)
where the IMCC/SES average is taken across the 60 last business days as opposed to the 12 last weeks
for the IMA DRC [13, Article 325bb].

The marginal computation is straightforward. As in the previous cases, the max function is converted
to a decision rule whether on top level the last day’s value or the average are chosen for IMCC/SES
and IMA DRC, respectively. The average and the additions are fully linear, so that the marginal C A for
element i is given by

mC A,i = max IMCC (
mIMCCi ,t−1 +mSESi ,t−1,mc mIMCCi ,avg +mSESi ,avg

)+
max IMA DRC (

mIMA DRCi ,t−1,mIMA DRCi ,avg
)

.

Part II.
Standardized Approach
7. Sensitivity-Based Approach (SA SBA)
All SBA measures are computed threefold for three different correlation scenarios (low, mid, high). For
each contribution, the highest of the three computed scenario charges contributes to the top-level
SBA charge. For the purpose of brevity, in the following we do not differentiate the three cases. The
computation of the marginals can either be performed in parallel to the computation of all three
scenarios (and the relevant marginal set shown) or for just the relevant one ex post (corresponding to a
decision rule for the maximum operation).

Here we present the marginals for the various SBA components. For a better understanding of
the mechanism, the derivations of partial marginals (with increasing complexity) are given in the
Appendix.

7.1. Delta Charge

For the delta charge the weighted sensitivities WS (= risk factor capital charges) are pre-aggregated to
bucket capital charges Kb using

Kb =
√√√√max

{
0,

nb∑
kb=1

WS2
kb

+
nb∑

kb=1

∑
lb 6=kb

ρkb lb WSkb WSlb

}
(13)

4Alternatively, the percentile could be determined employing a Harrell-Davis estimator [18] instead of the usual one. This
would allow for a rather stable quantile marginal, however, still more unstable than the ES marginals.
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with the exception of the «Others» bucket m of the credit and equity risk classes which is pre-aggregated
using

Km =
nm∑

k=1

∣∣WSkm

∣∣ .

The delta capital charge is then obtained as

Delta =
√√√√m−1∑

b=1
(Kb)2 +

m−1∑
b=1

∑
c 6=b;c 6=m

γbc SbSc +Km

=:
√

Z (Sb)+Km

where the quantity Sb is determined depending on the argument Z of the square root as

Sb =
{

S′
b Z (S′

b) > 0 (A)

max
{
min

{∑nb

k=1 WSkb ,Kb
}

,−Kb
}

Z (S′
b) < 0 (B)

(14)

where S′
b =∑nb

k=1 WSkb .
For our purposes, we rewrite the regulatory formula as

Delta =
√

Z (Sb)+Km

Z (Sb) =
m−1∑
b=1

K 2
b +

m−1∑
b=1

∑
c 6=b;c 6=m

γbc SbSc

Kb =
√√√√max K

b

{
0,

nb∑
kb=1

WS2
kb

+
nb∑

kb=1

∑
lb 6=kb

ρkb lb WSkb WSlb

}

Km =
nm∑

km=1
max K

m

{
WSkm ,−WSkm

}
Sb = S′

bΘ
Z (

Z (S′
b)

)+ max S
b

{
min S

b

{
S′

b ,Kb
}

,−Kb
}(

1−ΘZ (
Z (S′

b)
))

S′
b =

nb∑
kb=1

WSkb

WSkb = ∑
p

wkb ,p WSkb ,p

where sensitivities from elements (e.g. trades or portfolios) p with weights w are shown explicitly. All
inhomogeneous components have been replaced by decision rules (being fixed at top level) so that the
expression is homogeneous with grade 1.

The decomposition with regard to element j and risk factor i (belonging to bucket bi ) is given by

Delta = ∑
i , j

1−1wi , j
∂Delta(wi , j )

∂wi , j

= ∑
i , j

wi , j
(
1−δbi m

) ∂Delta

∂Z (Sb)

(
∂Z (Sb)

∂Kbi

∂Kbi

∂wi , j
+ ∂Z (Sb)

∂Sbi

(
∂Sbi

∂S′
bi

∂S′
bi

∂wi , j
+ ∂Sbi

∂Kbi

∂Kbi

∂wi , j

))

+wi , jδbi m
∂Delta

∂Km

∂Km

∂wi , j

9
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where the derivatives are

∂Delta

∂Z (Sb)
= 1

2
√

Z (Sb)

∂Delta

∂Km
= 1

∂Z (Sb)

∂Kbi

= 2Kbi

∂Z (Sb)

∂Sbi

= 2
∑

c 6=bi ;c 6=m
γbi c Sc

∂Sbi

∂S′
bi

= ΘZ (
Z (S′

b)
)+ max S

bi

{
min S

bi
{1,0} ,0

}(
1−ΘZ (

Z (S′
b)

))
∂Sbi

∂Kbi

= max S
bi

{
min S

bi
{0,1} ,−1

}(
1−ΘZ (

Z (S′
b)

))
∂Kbi

∂wi , j
= 1

Kbi

max K
bi

0,

WSi +
∑

lbi 6=i
ρi lbi

WSlbi


WSi , j

∂S′
bi

∂wi , j
= WSi , j

∂Km

∂wi , j
= max K

m {1,−1}WSi , j

and thus the marginal (setting wi , j = 1)

mDeltai , j = Pi (Delta,Ki ,WSi )WSi , j

with

Pi = (
1−δbi m

) 1

Delta−Km

{
max K

bi

{
0,

(
WSi +∑

lbi 6=i ρi lbi
WSlbi

)}
+ ∑

c 6=bi ;c 6=m
γbi c Sc

(
ΘZ (

Z (S′
b)

)+ (
1−ΘZ (

Z (S′
b)

))[
max S

bi

{
min S

bi
{1,0} ,0

}
+max S

bi

{
min S

bi
{0,1} ,−1

}
1

Kbi

(
max K

bi

{
0,

(
WSi +∑

lbi 6=i ρi lbi
WSlbi

)})])}
+δbi m max K

m (1,−1)

It is notable that, similar to the IMA marginals, the computation of the Delta marginals is a mere
multiplication of the element- and risk-factor-level WSi , j with an applicable prefactor. Since the
prefactors Pi are based on the top-level Kb and WSi aggregates, they are identical for all WSi , j on the
same risk factor i and only a limited number of prefactors needs to be computed.

For validation, when applying for the FX risk factor class (Kb = Sb = WSi , Z (S′
b) > 0, no other bucket

m, no max Kb flooring necessary)

mDeltai , j = 1

Delta

{
WSi +

∑
c 6=bi

γbicSc

}
WSi , j

10
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expression (28) as derived in Appendix B is retrieved.

7.2. Vega Charge

Vega sensitivities are aggregated using the formula as delta sensitivities; only a different correlation
has to be employed.

7.3. Curvature Charge

For the curvature charge the individual curvature risk charges CVR are pre-aggregated to bucket risk
charges Kb using

Kb =
√√√√max

{
0,

nb∑
k=1

max(CVRkb ,0)2 +
nb∑

kb=1

∑
lb 6=kb

ρ2
kb lb

CVRkb CVRlbψkb lb (CVRkb ,CVRlb )

}
where

ψ(x, y) =
{

1 otherwise

0 x < 0 ∩ y < 0
.

The curvature charge is then calculated using

Curvature =
√√√√m−1∑

b=1
K 2

b +
m−1∑
b=1

∑
c 6=b;c 6=m

γ2
bc SbScψ(Sb ,Sc )+Km

where Sb = ∑nb

k=1 CVRkb and Km = ∑nm

k=1

∣∣CVRkm

∣∣.5 As in the Delta case, there is a fallback to Sb =
max Sb

{
min Sb

{
S′

b ,Kb
}

,−Kb
}

in case the argument of the square root is negative.
The expressions are largely equivalent to the Delta case with the exception of the added function ψ.

In order to ensure homogeneity, as in the other cases, this two-dimensional step function needs to be
replaced by a decision rules fixed at top level.

Equal to the Delta case, we rewrite the most common regulatory workflow in precise terms, replace
the max/min/abs/Θ functions as well as said ψ by decision rules and add the weights wkb ,p to the
sensitivity contributions of elements p and risk factor kb :

Curvature =
√

Z (Sb)+Km

Z (Sb) =
m−1∑
b=1

K 2
b +

m−1∑
b=1

∑
c 6=b;c 6=m

γ2
bc SbScψ

Z
bc

Kb =
√√√√max K

b

{
0,

nb∑
kb=1

max K
kb

(CVRkb ,0)2 +
nb∑

kb=1

∑
lb 6=kb

ρ2
kb lb

CVRkb CVRlbψ
K
kb lb

}

Km =
nm∑

km=1
max K

m

{
CVRkm ,−CVRkm

}
Sb = S′

bΘ
Z (

Z (S′
b)

)+ max S
b

{
min S

b

{
S′

b ,Kb
}

,−Kb
}(

1−ΘZ (
Z (S′

b)
))

S′
b =

nb∑
kb=1

CVRkb

5W.r.t. the “Other” buckets in the Curvature, the regulation is unfortunately not very precise and certain assumptions need
to be made - which we did in a rather conservative fashion, mirroring the Delta workflow: aggregate the absolute values
and allow no diversification with the remaining buckets.
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CVRkb = ∑
p

wkb ,p CVRkb ,p

so that the decomposition with regard to element j and risk factor i (belonging to bucket bi ) can be
given in a formal way as

Curvature = ∑
i , j

1−1wi , j
∂Curvature(wi , j )

∂wi , j

= ∑
i , j

wi , j
(
1−δbi m

) ∂Curvature

∂Z (Sb)

(
∂Z (Sb)

∂Kbi

∂Kbi

∂wi , j
+ ∂Z (Sb)

∂Sbi

(
∂Sbi

∂S′
bi

∂S′
bi

∂wi , j
+ ∂Sbi

∂Kbi

∂Kbi

∂wi , j

))

+wi , jδbi m
∂Curvature

∂Km

∂Km

∂wi , j

with the derivatives

∂Curvature

∂Z (Sb)
= 1

2
√

Z (Sb)

∂Curvature

∂Km
= 1

∂Z (Sb)

∂Kbi

= 2Kbi

∂Z (Sb)

∂Sbi

= 2
∑

c 6=bi ;c 6=m
γbi c Scψ

Z
bi c

∂Sbi

∂S′
bi

= ΘZ (
Z (S′

b)
)+ max S

bi

{
min S

bi
{1,0} ,0

}(
1−ΘZ (

Z (S′
b)

))
∂Sbi

∂Kbi

= max S
bi

{
min S

bi
{0,1} ,−1

}(
1−ΘZ (

Z (S′
b)

))
∂Kbi

∂wi , j
= 1

Kbi

max K
bi

0,

CVRi +
∑

lbi 6=i
ρi lbi

CVRlbi
ψK

i lbi


CVRi , j

∂S′
bi

∂wi , j
= CVRi , j

∂Km

∂wi , j
= max K

m {1,−1}CVRi , j

Again, a (solely risk factor i -dependent) prefactor can be extracted and the marginal computed as a
simple product of WSi , j and the corresponding prefactor:

mCurvaturei , j = Pi CVRi , j

where

Pi = (
1−δbi m

) 1

Curvature−Km

{
max K

bi

{
0,

(
WSi +∑

lbi 6=i ρi lbi
WSlbi

ψK
i lbi

)}
+ ∑

c 6=bi ;c 6=m
γbi c Scψ

Z
bi c

(
ΘZ (

Z (S′
b)

)+ (
1−ΘZ (

Z (S′
b)

))[
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max S
bi

{
min S

bi
{1,0} ,0

}
+max S

bi

{
min S

bi
{0,1} ,−1

}
1

Kbi

(
max K

bi

{
0,

(
CVRi +∑

lbi 6=i ρi lbi
CVRlbi

ψK
i lbi

)})])}
+δbi m max K

m (1,−1)

8. Residual Risk Add-On (SA RRAO)
Opposed to common conception, the RRAO is not purely additive. This is due to the absolute value of
the sign-sensitive notional being taken on top level.

If i is the index of the RRAO-relevant instruments and RW i and Ni are their assigned risk weights
and notionals, respectively, and ti the index of trades on instrument i , the RRAO is given as

RRAO = ∑
i

∣∣∣∣∣RW i
∑
ti

Nti

∣∣∣∣∣
= ∑

i
max i

{
RW i

∑
ti

Nti ,−RW i
∑
ti

Nti

}
= ∑

i ,ti

max i {1,−1}RW i Nti

where, as usual, the absolute value is replaced by a decision rule fixed on top level.
Consequently, the RRAO marginal of any trade ti on instrument i is given as

mRRAOti = max i {1,−1}RW i Nti

where max i {1,−1} remains as indicator of the contribution of instrument i to the overall add-on.

9. Standardized Default Risk Charge (SA DRC)
Also for the default risk charge component of the standardized approach, the aggregation formulas are
homogeneous as long as the max/min functions are treated as in the above cases. As a consequence,
Euler allocation can be used.

9.1. Non-securitisations

Basis of the SA DRC computation is the (maturity- and LH-)weighted jump-to-default WJTDgb qr which
is given per instrument q , issuer/obligor gb (being part of bucket b) and per position in portfolio r .

In a first aggregation step the WJTD are aggregated depending on the seniority of each instrument’s
debt

WJTDsn
gb

= ∑
q

∑
r

wgb ,q,r WJTDgb ,q,r · 1{seni=sn}, (15)

WJTDns
gb

= ∑
q

∑
r

wgb ,q,r WJTDgb ,q,r · 1{seni=ns}

where “sn” refers to senior, “ns” to non-senior issues and we have already inserted the weights wg ,q,r

for the decomposition (ultimately being set to 1).
In a second step net long/short WJTD by issuer across seniority are computed in a conservative

aggregation, where short positions are only recognized if they refer to (i.e. protect against default of)
the same or lower seniority than the long positions.

netWJTDlong
gb

= Θ(WJTDsn
gb

)Θ(WJTDns
gb

)
{

WJTDsn
gb
+WJTDns

gb

}

13
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+Θ(WJTDsn
gb

)
(
1−Θ(WJTDns

gb
)
)

max
{

0,WJTDsn
gb
+WJTDns

gb

}
(16)

+(
1−Θ(WJTDsn

gb
)
)
Θ(WJTDns

gb
)
{

WJTDns
gb

}
netWJTDshort

gb
= (

1−Θ(WJTDsn
gb

)
)(

1−Θ(WJTDns
gb

)
){

WJTDsn
gb
+WJTDns

gb

}
+Θ(WJTDsn

gb
)
(
1−Θ(WJTDns

gb
)
)

min
{

0,WJTDsn
gb
+WJTDns

gb

}
+(

1−Θ(WJTDsn
gb

)
)
Θ(WJTDns

gb
)
{

WJTDsn
gb

}
In the third step, determining the capital requirement by bucket crb , the net long/short WJTD by

issuer are aggregated across issuers and a rating-specific risk weight is applied

crb = max

{
0,

∑
gb

RW gb netWJTDlong
gb

−WtSbRW gb

∣∣∣netWJTDshort
gb

∣∣∣} (17)

permitting a certain bucket-specific amount of diversification given by

WtSb =
∑

gb
netWJTDlong

gb∑
gb

netWJTDlong
gb

+
∣∣∣netWJTDshort

gb

∣∣∣ (18)

i.e. the ratio of the bucket’s overall long exposure to its gross long and short exposure.
Finally, the total capital requirement for non-securitisations is given as sum across all buckets

tcrnon-sec =
∑
b

crb . (19)

For the computation of the marginal we need to replace theΘ functions in Eqs. (16), the max/min
function in Eqs. (16) and (17) and the absolute values in Eqs. (17) and (18) by top-level decision

rulesΘsn
gb

,Θns
gb

, max netWJTD
gb

/ min netWJTD
gb

, max cr
b and max cr

gb

{
netWJTDshort

gb
,−netWJTDshort

gb

}
= max WtS

gb{
netWJTDshort

gb
,−netWJTDshort

gb

}
, respectively.

After the replacements, tcrnon-sec is homogeneous with grade 1 since a factor k applied to all weights
can be pulled through all terms to finally give an overall factor k.

To identify the marginal we decompose the total capital requirement in the sense of the Euler
theorem formally as

tcrnon-sec = ∑
j ,i ,p

1−1w j ,i ,p
∂tcrnon-sec

∂wi , j

= ∑
j ,i ,p

w j ,i ,p
∂tcrnon-sec

∂crb j


 ∂crb j

∂netWJTDlong
j

+
∂crb j

∂WtSb j

∂WtSb j

∂netWJTDlong
j


︸ ︷︷ ︸

Ab j , j∂netWJTDlong
j

∂WJTDsn
j

∂WJTDsn
j

∂w j ,i ,p
+
∂netWJTDlong

j

∂WJTDns
j

∂WJTDns
j

∂w j ,i ,p


+

[
∂crb j

∂netWJTDshort
j

+
∂crb j

∂WtSb j

∂WtSb j

∂netWJTDshort
j

]
︸ ︷︷ ︸

Bb j , j

14
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(
∂netWJTDshort

j

∂WJTDsn
j

∂WJTDsn
j

∂w j ,i ,p
+
∂netWJTDshort

j

∂WJTDns
j

∂WJTDns
j

∂w j ,i ,p

)}

where we make use of the fact that risk factors j strictly contribute only to the capital charge contribu-
tion crbj of that bucket b j , which they are assigned to.

The terms are

∂tcrnon-sec

∂crb j

= 1

∂crb j

∂netWJTDlong
j

= RW j max cr
b j

{0,1}

∂crb j

∂netWJTDshort
j

= −WtSb j RW j max cr
j {+1,−1} max cr

b j
{0,1}

∂crb j

∂WtSb j

= −
∑

gb j

RW gb j
netWJTDshort

gb j
max cr

gb j
{+1,−1}

 max cr
b j

{0,1}

∂WtSb j

∂netWJTDlong
j

=
WtSb j −WtS2

b j∑
gb j

netWJTDlong
gb j

∂WtSb j

∂netWJTDshort
j

= −
WtS2

b j∑
gb j

netWJTDlong
gb j

max WtS
j {+1,−1}

∂netWJTDlong
j

∂WJTDsn
j

= Θsn
j Θ

ns
j +Θsn

j

(
1−Θns

j

)
max netWJTD

j

{
0,1

}
∂netWJTDlong

j

∂WJTDns
j

= Θns
j +Θsn

j

(
1−Θns

j

)
max netWJTD

j

{
0,1

}
∂netWJTDshort

j

∂WJTDsn
j

= (
1−Θsn

j

)+Θsn
j

(
1−Θns

j

)
min netWJTD

j

{
0,1

}
∂netWJTDshort

j

∂WJTDns
j

= (
1−Θsn

j

)(
1−Θns

j

)+Θsn
j

(
1−Θns

j

)
min netWJTD

j

{
0,1

}
∂WJTDsn

j

∂w j ,i ,p
= WJTD j ,i ,p · 1{seni=sn}

∂WJTDns
j

∂w j ,i ,p
= WJTD j ,i ,p · 1{seni=ns}.

The marginal contribution of instrument i w.r.t. issuer/obligor j and the position in portfolio r is
thus given by

mtcrnon-sec
j ,i ,p =

{
P sn

j WJTD j ,i ,p seni = sn

P ns
j WJTD j ,i ,p seni = ns

P sn
j = Ab j , j

(
Θsn

j Θ
ns
j +Θsn

j

(
1−Θns

j

)
max netWJTD

j

{
0,1

})
+Bb j , j

((
1−Θsn

j

)+Θsn
j

(
1−Θns

j

)
min netWJTD

j

{
0,1

})

15



 Electronic copy available at: https://ssrn.com/abstract=3265320 

P ns
j = Ab j , j

(
Θns

j +Θsn
j

(
1−Θns

j

)
max netWJTD

j

{
0,1

})
+Bb j , j

(
1−Θsn

j

)(
1−Θns

j

)+Θsn
j

(
1−Θns

j

)
min netWJTD

j

{
0,1

}
.

The prefactors can be computed once, for each issuer/obligor j and each seniority sn/ns, and applied
subsequently for any allocation to instruments, portfolios or other hierarchy levels.

9.2. Securitisations

The default risk for securitisations is very similar to the non-securitisation component. The difference
concerning the computation of the WJTD (no application of the LGD), a mere input for the computa-
tion of the marginals, is not relevant. However, the computation of the netWJTD is more restrictive
in that only exactly the same tranches may be offset. In this way a consideration by seniority is not
necessary for securitisations. Let gb , therefore, here, be a distinct tranche of a distinct pool being part
of securitisation bucket b, then

WJTDgb = ∑
q

∑
r

wgb ,q,r WJTDgb ,q,r , (20)

netWJTDlong
gb

= max
{

0,WJTDgb

}
(21)

netWJTDshort
gb

= min
{

0,WJTDgb

}
Note that the Basel [9, Art. 160] permits to offset tranche replications (i.e. where a collection of

tranches of a pool replicates another tranche of the same pool). To include, such combinations need
to be saved in the computation of the full charge and the marginals adjusted by including a respective
decision rule.

The computation of crb , WtSb and, ultimately, tcrsec mirrors the non-securitisation workflow. There-
fore, following the same steps as therein, we can assume homogeneity and decompose as follows

tcrsec = ∑
j ,i ,p

1−1w j ,i ,p
∂tcrsec

∂wi , j

= ∑
j ,i ,p

w j ,i ,p
∂tcrsec

∂crb j

 ∂crb j

∂netWJTDlong
j

+
∂crb j

∂WtSb j

∂WtSb j

∂netWJTDlong
j


︸ ︷︷ ︸

Ab j , j

∂netWJTDlong
j

∂WJTD j

∂WJTD j

∂w j ,i ,p



+
[

∂crb j

∂netWJTDshort
j

+
∂crb j

∂WtSb j

∂WtSb j

∂netWJTDshort
j

]
︸ ︷︷ ︸

Bb j , j

(
∂netWJTDshort

j

∂WJTD j

∂WJTD j

∂w j ,i ,p

)}
.

The expressions Ab j , j and Bb j , j as well as the (trivial) derivative ∂tcrsec/∂crb j remain identical with the
replacement of non-sec with sec. The remaining derivatives simplify

∂netWJTDlong
j

∂WJTD j
= max netWJTD

j

{
0,1

}
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∂netWJTDshort
j

∂WJTD j

= min netWJTD
j

{
0,1

}
∂WJTD j

∂w j ,i ,p
= WJTD j ,i ,p

∂WJTD j

∂w j ,i ,p
= WJTD j ,i ,p

so that the marginal contribution of instrument i w.r.t. distinct tranche j (of a distinct pool) and the
position in portfolio r is given by

mtcrsec
j ,i ,p = P j WJTD j ,i ,p

P j = Ab j , j max netWJTD
j

{
0,1

}
+Bb j , j min netWJTD

j

{
0,1

}
,

where the prefactor is again to be computed only once for each relevant tranche.

10. Conclusion
In the preceding chapters we formulated marginal measures for all components of the new market risk
capitalization framework. For the vast majority, these are based on the Euler allocation. The marginals
are found to have a very simple structure as product of a common prefactor and the standalone
contribution of that element of which the marginal is being sought. This reduces computational cost
considerably in contrast to e.g. an incremental measure.

A corner stone of the marginal derivation is the replacement of inhomogeneous functions with
homogeneous decision rules. These are fixed at the computation’s top level and the fixed decision is
then valid for all levels of the marginal computation.

For the Internal Model Default Risk Charge, which is based on a Value-at-Risk-based at a high
confidence level, an alternative approach is proposed which allows for stable marginals even in this
challenging setting.

At the time of writing, the FRTB regulation is not fully fixed, neither are the respective implementa-
tions into national law. Where regulatory requirements change, adjustments to the marginals become
necessary. Where such changes do not fundamentally change the charges, the demonstrated concepts
and tools should allow for a straightforward derivation also of changed regulatory expressions.

Part III.
Appendix
A. The Euler theorem - Examples

A.1. Example 1: Expected Shortfall

As first example we first consider the vanilla expected shortfall ES =∑
s esPLs/

∑
s es where s indexes

the scenarios, es = 1Φ−1(s)<confidencelevel is the tail indicator function (we assume that PL is a gain
distribution, i.e. losses carry a negative sign; the indicator is determined on top level) andΦ(s) is the
cumulative distribution function which yields the percentile of scenario s.
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In order to apply the Euler principle, we split the overall PL =∑
i wi PLi into its component contribu-

tions PLi , formally weighted by factors wi (could e.g. be interpreted as the component notional values
but in case no preference is desired can be set to 1), such that

ES =
∑

s es
∑

i wi PLs,i∑
s es

. (22)

We directly see that homogeneity of degree 1 (linear homogeneity)

ES(kwPL) = kES(wPL) (23)

holds.
From the Euler theorem we obtain the decomposition

ES = ∑
i

1−1wi
∂ES(wi )

∂wi

= ∑
i

wi

∑
s esPLs,i∑

s es

= ∑
i

mESi .

Where, in the last step, the addends of the sum are identified as the marginal contributions, i.e.

mESi :=
∑

s wi esPLs,i∑
s es

.

The marginal of component i is the tail average across the component’s PL contribution to the overall
tail scenarios.

While, this decomposition could clearly have been inferred from Eq. (22) directly, this straightforward
example reveals much about the mode of action of the Euler principle.

A.2. Example 2: Square-Root Aggregated Expected Shortfall

As second example, we consider the square-root of sum of squares, as appearing in the IMCC aggrega-
tion,

X =
√∑

h
shES2

h ,

where the ESh are e.g. the partial expected shortfall results for various liquidity horizons h. The scaling
factor sh depends only on the liquidity horizon h and can, for our purposes, be regarded as a static
factor.

While the square is homogeneous of degree 2, the square root of sum of squares is homogeneous of
degree 1:

X (kw) =
√∑

shES2
h(kw)

(23)=
√∑

k2shESh(w)

= k X (w) (24)

Thus, the Euler theorem can be applied in a straightforward fashion

X = ∑
i

1−1wi
∂X (wi )

∂wi
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= ∑
i

wi
∂X

∂(
∑

h shES2
h)

∂(
∑

h shES2
h)

∂ESh

∂ESh

∂wi

= ∑
i

wi · 1

2

(∑
h

shES2
h

)−1/2

·∑
h

sh2ESh · mESh,i

wi

= ∑
i

∑
h

shESh

X
mESh,i (25)

such that the contribution from component i can be written as

mX i :=∑
h

shESh

X
mESh,i

or even more granular as

mX h,i := shESh

X
mESh,i . (26)

The marginal contribution of a single liquidity horizon can be found by summation across all
components i

mX h = shESh

X

∑
i

mESh,i =
shES2

h

X
.

The result is not surprising: a simple rule of proportion where each liquidity horizon is weighted by
its contribution to the square root. It underlines the purposefulness of the Euler theorem, that, for
simple and clearly laid out problems, its outcome is not only numerically consistent but equally simple
and mirroring the mathematically intuitive result. For more conclusive arguments on the correct
convergence of Euler marginals we refer to [17].

B. Derivation of SBA marginals
In order to better outline the mechanism, in the following, we first derive partial marginals and
increasing the complexity step by step. At first we consider the FX asset class and go from marginals
per risk factor to marginals per risk factor and element. In a second step we address the other asset
classes, where we also introduce the treatment of the “Other” bucket.

B.1. FX

We first consider FX as here each bucket Kb represents only one exchange rate, i.e. the bucket Kb =
WSkb = S′

b =: WSb (there is no sum since there is only one WS per currency bucket).

Case (A) Assuming case (A) in (14) we thus have

Delta =
√∑

b
(wbWSb)2 +∑

b

∑
c 6=b

γbc wbWSb wc WSc .

Indeed, the expression is homogeneous of grade 1

Delta(kw) =
√∑

b
(kwbWSb)2 +∑

b

∑
c 6=b

γbc kwbWSbkwc WSc

= k Delta(w)
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which allows to write

Delta = ∑
i

1−1wi
∂Delta(wi )

∂wi

= ∑
i

wi

2Delta

(
2wi WS2

i +
∑
c 6=i

γi c WSi wc WSc +
∑
b 6=i

γbi wbWSbWSi

)

= ∑
i

wi

Delta

(
wi WS2

i +
∑
c 6=i

γi c WSi wc WSc

)
.

Setting the wi to unity we find the marginal contribution of currency i as

mDeltai = 1

Delta

(
WS2

i +
∑
c 6=i

γi c WSi WSc

)
(27)

which impresses by simplicity.
It is worth noting one peculiarity: one may intuitively reason that a hedging contribution (WS <

0) may lead to issues when computing the marginal from the square root expression without sign
protection in the second part of the argument. One might suspect that the argument of the square root
in the expression for the marginal could become negative. However, this is not the case. As observed
before, the aggregation function-specific scaling is contained in a prefactor while the representation
of the fundamental quantity to be scaled follows as simple product from the inner derivative which
does not contain any ambiguities such as a square root of a negative quantity. This is a feature of the
homogeneity.

Case (B) The fallback case (B) is selected in Eq. (14) if the argument of the square root in case (A)
would be negative. For FX this case does however not occur6.

Multi-instrument/multi-portfolio marginals We now consider the case where the weighted sensi-
tivities stem from multiple origins (e.g. multiple instruments/trades or multiple portfolios). Since the
weighted sensitivities are computed by simple addition, this is straightforward. Let p, respectively q ,
index the elements of the lowest aggregation level, e.g. instruments, and j the single element for which
the marginal is sought, then

Delta =
√√√√∑

b
(
∑
p

wb,p WSb,p )(
∑
q

wb,q WSb,q )+∑
b

∑
c 6=b

γbc

(∑
p

wb,p WSb,p

)(∑
q

wc,q WSc,q

)

and

Delta = ∑
i

1−1wi , j
∂Delta(wi , j )

∂wi , j

= ∑
i

wi , j

2Delta

((∑
p

wi ,p WSi ,p

)
WSi , j +WSi , j

(∑
q

wi ,q WSi ,q

)
+

∑
c 6=i

γi c WSi , j

(∑
q

wc,q WSc,q

)
+ ∑

b 6=i
γbi

(∑
p

wb,p WSb,p

)
WSi , j

)

= ∑
i

wi , j

Delta

(
WSi , j

(∑
p

wi ,p WSi ,p

)
+ ∑

c 6=i
γi c WSi , j

(∑
p

wc,p WSc,p

))
6It can be shown that the term can only turn negative for γ> 1.
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= ∑
i

wi , j

Delta

(
WSi , j wi WSi +

∑
c 6=i

γi c WSi , j wc WSc

)
,

so that the marginal delta of instrument j and currency i is given as

mDeltai , j = 1

Delta

(
WSi , j WSi +

∑
c 6=i

γi c WSi , j WSc

)

= 1

Delta

(
WSi +

∑
c 6=i

γi c WSc

)
WSi , j . (28)

The derivation is fully analogous to the previous case. Since the result is a product of WS and prefactor,
the same prefactor is obtained and the WS is decomposed into its multiple components.

B.2. IR and other asset classes

For IR and the other asset classes both aggregation steps need to be performed, i.e. the weighted
sensitivities of currency b have to be aggregated to bucket level (Eq. (13)) before the Kb are aggregated
to the Delta charge as in the FX case.Let p, respective q , index the elements of the lowest aggregation
level, e.g. individual trades, and j the single element for which the marginal is sought, then

Kb(w) =
√√√√max b

{
0,

nb∑
kb=1

(∑
p

wkb ,p WSkb ,p

)2

+
nb∑

kb=1

∑
lb 6=kb

ρkb lb

(∑
p

wkb ,p WSkb ,p

)(∑
q

wkb ,q WSlb ,q

)}
.

The decomposition is given by

Kb = ∑
i

1−1wi , j
∂Kb(wi , j )

∂wi , j

= ∑
i

wi

2Kb

(
max b

{
0, 2WSi , j

(∑
p

wi ,p WSi ,p

)
+2

∑
lb 6=i

ρi lb WSi , j

(∑
p

wlb ,p WSlb ,p

)})

= ∑
i

wi

Kb

(
max b

{
0, wi WSi , j WSi +

∑
lb 6=i

ρi lb WSi , j wlb WSlb

})
.

and thus the marginal found as

mKb = 1

Kb

(
max b

{
0, wi WSi , j WSi +

∑
lb 6=i

ρi lb WSi , j wlb WSlb

})

=
{

1
Kb

(
WSi +∑

lb 6=i ρi lb WSlb

)
WSi , j nonzero top− level contribution

0 otherwise

“Other” buckets The delta charge of the other classes is equivalent to the computation for IR with
the only difference being that for CSR and EQ an «Other» bucket m also contributes, the Kb of which is
given by

Km =
nm∑

k=1

∣∣WSkm

∣∣= nm∑
k=1

max
{
WSkm ,−WSkm

}
where the maximum function is again translated to a decision rule maxm which is determined on risk
factor km level. The marginal of a weighted sensitivity WSkm , j of a risk factor km from an element j
within the «Other» bucket is then given by

mKm = max m {1,−1}WSkm , j
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=
{

WSkm , j WSkm ≥ 0

−WSkm , j WSkm < 0

Note that the weighted sensitivity has no influence on the max decision rule and can, thus, be extracted
from it.
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