The Coming Big Data Tsunami in Energy Market Analytics

Jeff Fong, Co-Founder, F S DataScience
October 2014
The views expressed in the following material are the
author’s and do not necessarily represent the views of
the Global Association of Risk Professionals (GARP),
its Membership or its Management.
Outline

I. Why are Big Data & Analytic concepts important in Energy Markets?

II. What is Big Data & Analytics?

III. A “small” Big Data & Analytics example

IV. Big Data, Analytics and Energy Markets

V. Getting started if you haven’t already
Why are Big Data & Analytic concepts important in Energy Markets?
Big Data & Analytics

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries
The Past: A competitive advantage was often obtained with an asset.
 ○ Railroads, pipelines, refineries
Big Data & Analytics

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries,
 - Water utilities
 - Power generation

WATER WORKS

If player lands on water works, they pay nothing to owner.
Instead, the player pays ₦250 to the owner of the electric company to give them electricity to pump water.

ELECTRIC COMPANY

If player lands on electric company, charge them anything between ₦150 and ₦500.
Whenever you feel like it, randomly charge them ₦2000.
Big Data & Analytics

- The Past: A competitive advantage was often obtained with an asset.
 - Railroads, pipelines, refineries,
 - Water utilities
 - Power generation
 - Asset based competitive advantage
 - Monopolies
Big Data & Analytics

- What we see today is a trend where analytics revolutionize industries
- Lower capital intensive industries were first
- We have already seen many industries revolutionized by companies that specialize in data and analytics (Google, Amazon)
 - Advertising and Sales
 - Logistics
 - Travel and Airlines
Big Data & Analytics

- What we see today is a trend where analytics revolutionize industries
- Lower capital intensive industries were first
- We have already seen many industries revolutionized by companies that specialize in data and analytics (Google, Amazon)
 - Advertising and Sales
 - Logistics
 - Travel and Airlines
- Energy markets are next!

I. The data is being stored
II. Sufficient processing power is now available
III. Markets are becoming integrated
Big Data & Analytics

- As energy markets continue to become more global, the competitive advantage from analytics will continue to grow
 - increased integration of global energy markets
 - new pipelines, transmission, energy technologies
 - growing amounts of data
 - increased competition and demand response
 - integration with financial markets

- The future of strategic discussions will include data analytics and algorithms as being competitive advantages
What is Big Data & Analytics?
What is “Big Data & Analytics”

- “Big” is relative
 - data starts to become big when you can’t make use of the raw data without summarizing it

- Three types of analytics
 1. Descriptive
 2. Predictive
 3. Prescriptive
Analytics: Descriptive

- Most data in its raw form is not suitable for human consumption
- Data must be condensed into useful pieces of information
- The purpose of descriptive analytics is to summarize what has happened
- The focus is on learning about your data (data discovery)
- 80% of business analytics is descriptive (think about your BI reports)
Analytics: Descriptive

- Averages, variance, correlations, principle components, distributions and summary statistics are all descriptive.
- They help you learn about your data, but are not in themselves, predictive or prescriptive.
- Example: How do interest rates, spot prices and volatility move together?
Analytics: Predictive

- Predictive analytics do not tell you will happen; it tells you what *might* happen. (probabilistic)
- In other words, using data you do have; fill in data you don't have
 - predict possible future data
 - fill in possible values for missing data
Analytics: Predictive (=modeling)

- Predictive analytics do not tell you what will happen; it tells you what *might* happen. (probabilistic)
- In other words, using data you do have; fill in data you don't have
 - predict possible future data
 - fill in possible values for missing data
- Model building is a big part of predictive analytics
 - Statistical models, data mining, machine learning, time-series, monte-carlo simulation, forecasting, neural nets are all predictive
 - They tell you what might happen, but not what to do about it
Analytics: Predictive

- Example: ‘Predict’ or model the value of an OTC call option
 - We use data we have (interest rates, spot prices and volatility) to predict data we don’t have (the call option value)
Analytics: Predictive

- Example: ‘Predict’ or model the value of an OTC call option
 - We use data we have (interest rates, spot prices and volatility) to predict data we don’t have
 - Possible future interest rates, spot prices and volatility
 - And possible future option values
Using our data, descriptive analytics and predictive models

○ We can prescribe an action that best achieves an objective

Prescriptive analytics needs “actionable data”

○ What actions can be taken that affect outcomes?
○ What are the objectives?

Minimize risk?
Maximize reward?
Maximize Sharpe ratio?
Analytics: Prescriptive

- Example: Actions to hedge a call option
 - We have the data for interest rates, spot prices & volatility
 - We have a predictive model for an option price
 - Objective: Maximize return per unit of risk

Dynamic hedging is a prescriptive strategy
- *delta / gamma hedge*
- *hedge greek exposures*
A “small” Big Data & Analytics example
A Portfolio Trading example

1. SPY - S&P500 index
2. TLT - 20+ year Treasury bonds ETF
3. VXX – S&P500 Volatility ETF
A Portfolio Trading example

Mini universe of 9 stocks and ETFs

1. SPY - S&P500 index
2. TLT - 20+ year Treasury bonds ETF
3. VXX – S&P500 Volatility ETF
4. JNK - High yield corporate bond ETF
5. UGA - Gasoline futures ETF
6. VLO - Valero Energy Corp (refinery)
7. USO - Oil (WTI) futures ETF
8. JO - Coffee ETF
9. SBUX - Starbucks
A Portfolio Trading example

Mini universe of 9 stocks and ETFs

1. SPY - S&P500 index
2. TLT - 20+ year Treasury bonds ETF
3. VXX – S&P500 Volatility ETF
4. JNK - High yield corporate bond ETF
5. UGA - Gasoline futures ETF
6. VLO - Valero Energy Corp (refinery)
7. USO - Oil (WTI) futures ETF
8. JO - Coffee ETF
9. SBUX - Starbucks

How can we methodically construct a trading strategy?
Mini universe of 8 stocks and ETFs

Calculate:
- means, variances
- correlations, autocorrelations
- principle components

Discover features about this dataset
Predictive

- This “small” example isn’t really that small. There are $2^8=256$ possible combinations of underliers to include, each with endless possibilities of share combinations.

- With some data mining (We’ll make the code available for you to try yourself), we can build a (predictive) model of a cointegrated portfolio from our mini universe of stocks and ETFs.
This “small” example isn’t really that small. There are $2^8=256$ possible combinations of underliers to include, each with endless possibilities of share combinations.

With some data mining *(We’ll make the code available for you to try yourself)*, we can build a (predictive) model of a cointegrated portfolio from our mini universe of stocks and ETFs.

In other words, we can build a portfolio that mean reverts using predictive (modeling) analytics.
Predictive

Mini universe
Predictive

Mini universe

Data-Mined subset
Predictive

1. long 7.0136 shares of JNK @ $40.31 = $282.72
2. short 2.0775 shares of UGA @ $48.87 = ($101.53)
3. short 1.2010 shares of VLO @ $48.36 = ($58.08)
4. short 2.7351 shares of USO @ $30.64 = ($83.80)
Predictive

5 year history of the net value of the model cointegrated portfolio
Predictive

5 year history of the net value of the model cointegrated portfolio

Distribution of the net portfolio value over the 5 years
Let’s create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!
Let’s create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!
Let’s create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!
Let’s create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!
Let’s create a simple (prescriptive) strategy with the objective being to generate trading profits!

This is not a recommendation! Do your own due diligence!
Big Data, Analytics and Energy Markets
Energy Market Big Data Analytics

- Modeling energy markets is a difficult and complex problem
 - complex distributions
 - large constrained optimization problems
 - market feedback loops
- Problems in energy markets, get very big, very fast!
Energy Market Big Data Analytics

- Digging into the details is like opening pandora’s box
- If we look at a power plant, at its surface it seems simple
Energy Market Big Data Analytics

- Digging into the details is like opening pandora’s box
- If we look at a power plant, at its surface it seems simple
- Once we peel back the surface, it gets complicated very fast
Energy Market Big Data Analytics

- Digging into the details is like opening pandora’s box
- If we look at a power plant, at its surface it seems simple
- Once we peel back the surface, it gets complicated very fast

What is the optimal hedge?

What other assets complement my existing portfolio?

How sensitive is my portfolio to EIA numbers?

What’s the impact of a transmission or pipeline disruption?
The “Real” World
The “Real” World

Hundreds of nodes and relationships

Dozens of different asset types

Many constraints and market rules to consider

A lot of analytics and software/hardware are required to analyze such complex problems
Energy Market Big Data Analytics

- Even the largest problems can still be broken down
 - Use an analytics based approach to simplify the problems
 - Include top down quantitative methods with bottoms up fundamental based modeling
 - Leverage “Big Data” technology once its needed
 - Hadoop (reading / writing)
 - Distributed and cloud computing (large scale computations)

Hadoop and distributed / cloud technologies can be extremely powerful in helping you solve large problems
Getting started if you haven’t already
Learn as much as you can!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R
Learn more!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R
- Start by solving small optimization problems to gain experience
- Free online universities and excellent courses
 - udacity, coursera, etc
- Learn more about other fields where you have interests
Learn more!

- Learn to work with and analyze large data sets
 - SQL (any will do)
 - Any good programming or statistical language such as R
- Start by solving small optimization problems to gain experience
- Free online universities and excellent courses
 - udacity, coursera, etc
- Learn more about other fields where you have interests
- Go write the ERP exam!
Gaining Adoption

- Gaining adoption can be difficult at first
- Start with small, easy to handle projects
 - Try descriptive analytics first
- Focus on solving specific problems first to show ROI
- Share results often and invite feedback
 - Incorporate feedback and use rapid prototyping
- Teach & collaborate!
Resources

- Free online courses
 - coursera.org
 - udacity.com

- Open source software options
 - www.mysql.com
 - hadoop.apache.org
 - www.r-project.org
 - http://d3js.org
 - Javascript libraries

- Commercial software options
 - www.tableausoftware.com
 - Matlab
 - MS SQL / Oracle
QUESTIONS?
Creating a culture of risk awareness®

Global Association of Risk Professionals

111 Town Square Place
14th Floor
Jersey City, New Jersey 07310
U.S.A.
+ 1 201.719.7210

2nd Floor
Bengal Wing
9A Devonshire Square
London, EC2M 4YN
U.K.
+ 44 (0) 20 7397 9630

www.garp.org

About GARP | The Global Association of Risk Professionals (GARP) is a not-for-profit global membership organization dedicated to preparing professionals and organizations to make better informed risk decisions. Membership represents over 150,000 risk management practitioners and researchers from banks, investment management firms, government agencies, academic institutions, and corporations from more than 195 countries and territories. GARP administers the Financial Risk Manager (FRM®) and the Energy Risk Professional (ERP®) Exams; certifications recognized by risk professionals worldwide. GARP also helps advance the role of risk management via comprehensive professional education and training for professionals of all levels. www.garp.org.