Stress Testing and Economic Scenario Generation

Mikhail Makarov
EVMTech,
mmakarov@evmtech.com

June 2014
Scenarios and Risk Management

The course of **economy** is subject to crises. There is a need to assess their impact on **value** and **risk** of assets and liabilities.
Need For Real World Scenarios

- RW scenarios represent our estimate on the probabilities of future events.
- RW scenarios are used for risk modeling, need a good fit to extreme events.
- Modeling company strategy for each scenario – difficult problem.
Need For Risk Neutral Scenarios

- RN scenarios provide market consistent valuation of complex instruments/contracts
- RN scenarios need to focus on the expected values
Need For Stress Testing

Balance Sheet Start
- Cash
- Loans
- Trading Book
- Intangible assets
- Deposits
- ST Liability
- LT Liability
- Equity

Balance Sheet End
- Cash
- Loans
- Trading Book
- Intangible assets
- Deposits
- ST Liability
- LT Liability
- Equity

\[Y = F(X) \]

X ~ r.v. scenarios
F ~ contracts
Y ~ result

Stress Testing Questions:
- What if the real X is different from our model? What is the impact on Y?
- Are there any scenarios which are dangerous for the whole industry?
Real World Scenario Generator

- RW stylized facts
- GARCH and equity index model
- Risk free interest rate model
- Corporate spread model
- Other models
- Dependency modeling
Stylized Facts for RW Scenarios

Stylized fact summarizes a statistical analysis or an economic hypothesis.

<table>
<thead>
<tr>
<th>Stylized Fact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No arbitrage</td>
<td>No (simple) arbitrage opportunities: interest rate parity, positive forward rates,…</td>
</tr>
<tr>
<td>No autocorrelation</td>
<td>Autocorrelations of marketable risk factor returns are insignificant.</td>
</tr>
<tr>
<td>Mean reversion</td>
<td>Interest rate, inflation and credit cycle exhibit mean reversion property.</td>
</tr>
<tr>
<td>Volatility clustering</td>
<td>High volatility events tend to cluster in time, e.g. equity indices, FX rates.</td>
</tr>
<tr>
<td>Heavy tails</td>
<td>Tails of observed return data deviate from normal or lognormal behavior.</td>
</tr>
<tr>
<td>Asymmetric tails</td>
<td>Negative returns often exhibit fatter tails than positive ones.</td>
</tr>
<tr>
<td>Tail dependence</td>
<td>Higher dependence under stressed market conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Stylized Fact: Mean Reversion

Mean Reversion of Real Interest Rate Based on USD 10Y Treasury and US CPI

Real IR
Sample Mean
Stylized Fact: Volatility Clustering

Volatility Clusters: MSCI US annual moving average volatilty
Stylized Fact: Tails

Heavy Tails

CDF of Monthly Returns of MSCI UK (1970-2010)

Asymmetric Tails

Stylized Fact: Tail Dependence

Overview of Scenario Generation

- Standards **econometric** models are used when available.
- **Historical** data, **market** expectations (e.g. forward rates), and **expert** judgment are used for calibration.
- **Quality** of scenarios is checked against stylized facts and expert judgment.
Modeling Equity Indices

GARCH(1,1) - a standard model for equity index.

- Modeling the returns, \(R_t = \log(S_t) - \log(S_{t-1}) \), as follows:
 \[
 R_t = \mu_t + \sigma_t \varepsilon_t
 \]
 return = expectation + volatility × stochastic residual

- Modeling volatility \(\sigma_t \) using auto-regression:
 \[
 \sigma_t^2 = a_0 + a_1 r_{t-1}^2 + b_1 \sigma_{t-1}^2 \quad \text{where} \quad r_t = R_t - \mu_t
 \]

- Using market historical average or expectation for \(\mu_t \).
GARCH and Volatility Clustering

GARCH volatility plot compared to white noise volatility plot

- GARCH
- White Noise
GARCH and Tails

GARCH can produce heavy and asymmetric tails.
Equity Index Dependencies

• Index 1:
 \[R_t^1 = \mu_t^1 + \sigma_t^1 \varepsilon_t^1 \]

• Index 2:
 \[R_t^2 = \mu_t^2 + \sigma_t^2 \varepsilon_t^2 \]

• T-copula between error terms \(\varepsilon_t^1 \) and \(\varepsilon_t^2 \) gives a dependency model for indices.
Modeling Risk-Free Yield Curve

- Need to model $i_{T,t}$ - interest rates at time t with time T to maturity.

- New difficulty: $i_{T,t}$ must be carefully constructed, otherwise – arbitrage.

Example:

If a scenario gives $i_{T=9,t=1} = 8\%$ and $i_{T=10,t=1} = 2\%$ => arbitrage.
Modeling Risk-Free Yield Curve

- Use **forward** interest rates: \(f_{T,t} = T \log(1 + i_{T,t}) - (T - 1) \log(1 + i_{T-1,t}) \)
- \(f_{T,t} > 0 \) keeps the yield curve arbitrage-free
- Think of \(f_{T,t} \) as a curve which evolves as \(t \) changes
- Write the curves in a good basis (say Legendre polynomials)
 \[
 f_{T,t} = c_0(t)P_0(T) + c_1(t)P_1(T) + c_2(t)P_2(T) + c_3(t)P_3(T) + \text{small noise term}
 \]
- The coefficients \((c_0(t), c_1(t), c_2(t), c_3(t))\) are modeled using GARCH(1,1)
Modeling Risk-Free Yield Curve

Each scenario generates a sequence of curves for $t=1,2,3,...$
Risk-free Yield Curve Simulation

Example: three scenarios of yield curve evolution
Need to model credit spreads for each credit rating, maturity, country, industry.

Difficulties:
- inconsistent credit spreads for different maturities may lead to arbitrage
- credit spread for AAA should be smaller than for BBB
Corporate Spreads

- Define **credit cycle** = weighted average of spreads for all ratings and maturities
- Model credit cycle using GARCH
- Model each credit spread based on credit cycle
ESG Variables

• **Market Risk**
 - Risk-free yield curves
 - Equity indices
 - Foreign exchange rates
 - Corporate yields/spreads
 - Hedge fund indices
 - Private equity indices
 - Real estate indices
 - MBS, ABS indices

• **Credit Risk**
 - Credit cycle
 - Probability of default
 - Migration matrix

• **Macro Variables**
 - GDP
 - Inflation
 - Unemployment
 - Real disposable income
 - Current account balance
Dependency Modeling

• For simple dependencies, copula on error terms is sufficient.

• Conditions like no-arbitrage require more complex dependency models.

• Complex dependencies are often modeled with the help of derived variables:
 – Modeling forward rates to model yield;
 – Modeling credit cycle to model credit spreads and migration probabilities.
Risk Neutral Scenarios

- Fundamental theorem of asset pricing
- Key building blocks for risk neutral scenarios
- Building risk neutral scenarios for equity Index
Need For Risk Neutral Scenarios

RN scenarios provide **market consistent valuation** of complex instruments/contracts
RN scenarios need to focus on the **expected values**
Fundamental Theorem of Asset Pricing

No arbitrage \Leftrightarrow existence of risk neutral measure Q.

In risk neutral measure Q (after discounting):

- Scenarios form a martingale.
- **Price** of any contingent claim C is $E_Q[C]$.
- Any self-financing trading strategy has the same expected return.
Main Building Blocks of Risk Neutral Scenarios

Implied volatility surface
- Implied volatility values available only for liquid options
- **Moneyness** dimension gives volatility smile
- For illiquid markets or non-traded assets, models or judgment are used

Martingale property
- Martingale conditions apply to all simulated time points for all investment types over all holding periods, in principle → large set of martingale conditions
- In practice: priority order – martingale conditions/tests for the most relevant investment strategies

Correlation between different risk factors
- Correlations cannot be derived from derivative markets
- RN can use RW correlations model
- Many correlations are not important for valuation
Index Model: Volatility Surface

- Let \(C(S_0,K,T) \) be value of a European option with strike \(K \) and expiration \(T \).
- Instead of option prices, industry prefers to work with volatilities \(\sigma(S_0,K,T) \) implied by B-S.
- Using volatility surface, one can compute implied distribution of the index at any time \(t \).
RN Scenarios for an Index

• Given volatility surface, compute implied index distribution for each time t.
• Select a number of simple trading strategies.
• Run an optimization algorithm that modifies values of RW scenarios to
 – Match implied distributions as close as possible.
 – Satisfy the restriction: each trading strategy should have the same return (after discounting)
ESG Variables

• **Market Risk**
 - Risk-free yield curves
 - Equity indices
 - Foreign exchange rates
 - Corporate yields/spreads
 - Hedge fund indices
 - Private equity indices
 - Real estate indices
 - MBS, ABS indices

• **Credit Risk**
 - Credit cycle
 - Probability of default
 - Migration matrix

• **Macro Variables**
 - GDP
 - Inflation
 - Unemployment
 - Real disposable income
 - Current account balance
Stress Testing

- Stress test example
- Extending regulatory scenarios
- Generating regulatory scenarios
Need For Stress Testing

Balance Sheet Start
- Cash
- Loans
- Trading Book
- Intangible assets
- Deposits
- ST Liability
- LT Liability
- Equity

Balance Sheet End
- Cash
- Loans
- Trading Book
- Intangible assets
- Deposits
- ST Liability
- LT Liability
- Equity

Y = F(X)

X ~ r.v. scenarios
F ~ contracts
Y ~ result

Stress Testing Questions:
- What if the real X is different from our model? What is the impact on Y?
- Are there any scenarios which are dangerous for the whole industry?
Forward vs Reverse Stress Test

FORWARD

- Macro stress
- Extension to portfolio relevant risk factors
- P&L and BS impact

REVERSE

- Provide story line
- Identify stress scenarios leading to stress loss
- Portfolio stress loss
Stress Test Example 1

Assuming >= 5% GDP drop in 1 year, what is the expected impact on the credit portfolio namely migration probabilities?

- Keep only the RW scenarios with GDP drop >= %5.
- Take the average of the migration probabilities for the selected RW scenarios.
Simple Stress Test Example 1

Migration and default probabilities for the stress scenario:

<table>
<thead>
<tr>
<th>Initial Rating</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA Sev Adverse</td>
<td>78.20%</td>
<td>5.75%</td>
<td>0.64%</td>
<td>0.13%</td>
</tr>
<tr>
<td>Baseline</td>
<td>94.19%</td>
<td>1.44%</td>
<td>0.14%</td>
<td>0.03%</td>
</tr>
<tr>
<td>AA Sev Adverse</td>
<td>0.06%</td>
<td>67.65%</td>
<td>2.63%</td>
<td>0.34%</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.27%</td>
<td>88.55%</td>
<td>0.62%</td>
<td>0.08%</td>
</tr>
<tr>
<td>A Sev Adverse</td>
<td>0.01%</td>
<td>0.05%</td>
<td>68.71%</td>
<td>2.30%</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.06%</td>
<td>0.21%</td>
<td>85.56%</td>
<td>0.54%</td>
</tr>
<tr>
<td>BBB Sev Adverse</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.09%</td>
<td>68.52%</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.02%</td>
<td>0.03%</td>
<td>0.38%</td>
<td>83.37%</td>
</tr>
</tbody>
</table>
Simple Stress Test Example 2

What is the expected value of MSCI UK given that MSCI US <= index value 80?

- Keep only the RW scenarios with MSCI US <= 80.
- Take the average of the MSCI UK for the selected RW scenarios.
ESG and Forward Stress Testing

1. Stress condition via quadrant
2. Select scenarios satisfying stress condition
3. Compute P&L and BS average impact
Picking Stress Test Conditions

- Companies submit scenarios with large losses according to their models.
- Group similar scenarios (clustering algorithm).
- For each scenario group, identify main factors and define quadrants.

Provide story line and quadrants for the groups
Identify stress scenarios groups
Collect portfolio stress loss for the industry
Creating a culture of risk awareness®

Global Association of Risk Professionals

111 Town Square Place
14th Floor
Jersey City, New Jersey 07310
U.S.A.
+1 201.719.7210

2nd Floor
Bengal Wing
9A Devonshire Square
London, EC2M 4YN
U.K.
+44 (0) 20 7397 9630

www.garp.org

About GARP / The Global Association of Risk Professionals (GARP) is a not-for-profit global membership organization dedicated to preparing professionals and organizations to make better informed risk decisions. Membership represents over 150,000 risk management practitioners and researchers from banks, investment management firms, government agencies, academic institutions, and corporations from more than 195 countries and territories. GARP administers the Financial Risk Manager (FRM®) and the Energy Risk Professional (ERP®) Exams; certifications recognized by risk professionals worldwide. GARP also helps advance the role of risk management via comprehensive professional education and training for professionals of all levels. www.garp.org.